JP2004242151A - Adaptive antenna device and its control method - Google Patents

Adaptive antenna device and its control method Download PDF

Info

Publication number
JP2004242151A
JP2004242151A JP2003030777A JP2003030777A JP2004242151A JP 2004242151 A JP2004242151 A JP 2004242151A JP 2003030777 A JP2003030777 A JP 2003030777A JP 2003030777 A JP2003030777 A JP 2003030777A JP 2004242151 A JP2004242151 A JP 2004242151A
Authority
JP
Japan
Prior art keywords
directivity
weighting
value
adaptive antenna
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003030777A
Other languages
Japanese (ja)
Other versions
JP3980495B2 (en
Inventor
Taiji Takatori
泰司 鷹取
Keizo Cho
敬三 長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2003030777A priority Critical patent/JP3980495B2/en
Publication of JP2004242151A publication Critical patent/JP2004242151A/en
Application granted granted Critical
Publication of JP3980495B2 publication Critical patent/JP3980495B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an adaptive antenna device which can control a directivity highly precisely in an outgoing communication even when propagation environments are different between an incoming communication and the outgoing communication and can improve a throughput in a digital radio transmission, and to provide its control method. <P>SOLUTION: This adaptive antenna device has: first directivity forming devices 1011 to 101N; first compositing units 1021 to 102N for compositing the n-th output signals of the respective first directivity forming devices; second directivity forming devices 1031 to 103N for using signals of the first compositing units as an input signal and outputting M-piecec signals equal to the number of antenna elements; second compositing units 1041 to 104N for compositing the m-th output signals of the respective directivity forming devices; and M-pieces antenna elements. The first directivity forming devices consist of: first branching devices 1061 to 106N for branching the input signal into N-pieces signals; and first weighting devices 10711 to 107NN for weighting output signals of the first directivity forming devices. The weighting value of the n-th first weighting device of respective first directivity controllers is controlled by a terminal station n. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、無線通信システムの基地局に使用するに好適な適応アンテナ装置及びその制御方法に関する。
【0002】
【従来の技術】
適応アンテナ装置は、希望する信号と相関の高い到来波を合成し、相関の低い到来波を抑圧するように指向性制御を行うアンテナ装置である。
以下に従来の下り回線における適応アンテナ装置のビーム制御方法について説明する。
図4に下り通信の伝搬環境の推定を行わない従来の適応アンテナ装置の構成を示す(例えば、非特許文献1参照)。
【0003】
図4において、従来の適応アンテナ装置は、複数のアンテナ素子4011〜401Nと、各アンテナ素子に接続された複素重みを課す重み付け手段4021〜402Nと、各重み付け手段4021〜402Nの重みを制御する重み制御装置403と、基準信号発生装置404と、受信時には各アンテナ素子4011〜401Nに接続された複素重み付けをされた信号を合成し、送信時には重み付け手段4021〜402Nに入力信号を分岐するための合成及び分岐装置405から構成されている。
【0004】
一般に適応アンテナ装置の複数のアンテナ素子4011〜401Nで受信された信号をx1〜xNとし、重み付け手段4021〜402Nに設定される重みの値をw1〜wNとし、希望信号成分をdと表すと、希望する信号との誤差の2乗が最小になるように指向性を形成する重みの値は、
【数3】

Figure 2004242151
で与えられる。ただし、
【数4】
Figure 2004242151
【数5】
Figure 2004242151
【数6】
Figure 2004242151
である。
【0005】
上り通信時の伝搬環境と下り通信時の伝搬環境がまったく同一とみなせる場合には、アンテナ間の相関行列RXX 及び希望ユーザに対するステアリングベクトルrXdに変化が生じないため、上り通信時の重みの値を下り通信にもそのまま適用すれば、通信路の2乗誤差を最小とする指向性を形成することができる。したがって、上り通信と下り通信の伝搬環境がほぼ等しい場合には、単に複数のアンテナ素子で構成するアレーアンテナで構成すればよい。
【0006】
ところが上り通信と下り通信での周波数が異なるFDDシステムや、環境変動の大きい環境では、(式4)で定義したアンテナ間の相関行列RXXを推定することができず、適応アンテナ装置が動作しないという問題がある。
【0007】
下り通信において受信局で伝搬環境を推定し、伝搬環境の推定結果を送信局にフィードバックし、送信局における適応アンテナ装置で下り回線用の指向性形成を行う方法が提案されている(例えば、非特許文献2参照)。以下にその動作を示す。
下り通信では情報信号の間にプロービング信号を周期的に挿入して信号を伝送する。プロービング信号は送信局の各アンテナ素子と受信局との間の伝達関数の推定に用いる。
【0008】
プロービング信号を伝送する区間では、各アンテナ素子から異なったプロービング信号系列を送信する。ここで、各アンテナ素子から送信するプロービング信号は、全受信局が既知の信号系列とする。受信局では受信信号に対して、送信局の各アンテナ素子から送信される各プロービング信号との相関演算を行い、各アンテナ素子からのプロービング信号ごとに複素相関値を求める。
【0009】
この複素相関値を上り通信において送信局にフィードバックし、適応アンテナの指向性形成に反映させる。この方法では、各アンテナのプロービング信号との相関値を受信局において求めることによって、送信局の各アンテナ素子と受信局の間の伝搬環境を推定することができる。
この方法を利用する場合には各アンテナ素子から異なった信号が送信されるため、ビーム形成を行うことができない。
したがって、同一チャネルを利用する周辺セルに対して干渉を与えてしまうという問題がある。また、アンテナ素子数が増大すると、プロービング信号の信号系列長が長くなるため、スループットが低下するという問題が生じる。
【0010】
【非特許文献1】
R.A.Monzingo and T.W.Miller,Introduction to Adaptive Arrays, John Wiley & Sons,Inc.1980
【非特許文献2】
Derlek Gerlacha, Arlogyaswami Paulraj,“Base Station Antenna Arrays with Mobile to Base Feedback,”Conference Record of The Twenty−Seventh Asilomar Conference on,1993
【0011】
【発明が解決しようとする課題】
ディジタル無線伝送での下り通信における指向性制御では、送信局アンテナと受信局との間の伝達関数を推定する必要がある。ところが、伝達関数を推定するために、送信局で各アンテナ素子から信号を送信すると、伝達関数推定時に指向性形成ができないため、他システムや同一周波数チャネルを利用する他セルに多大な干渉を与えてしまうという問題があった。
【0012】
また、従来の伝達関数推定方法では送信局アンテナと受信局との間の伝達関数を推定するためには、予め定められた信号系列を送信する必要があるため、スループットが低下するという問題があった。
本発明はこのような事情に鑑みてなされたものであり、ディジタル無線伝送において、上り通信と下り通信の伝搬環境が異なる場合でも下り通信における高精度の指向性制御を行うことができ、かつスループットの向上を図った適応アンテナ装置及びその制御方法を提供することを目的とする。
【0013】
【課題を解決するための手段】
上記目的を達成するために、請求項1に記載の発明は、N(Nは2以上の自然数)個の端末局に対して、指向性を形成する基地局に設けられた適応アンテナ装置であって、
各端末局への送信信号をそれぞれ、入力信号とし、N個の出力信号を生成する第一の指向性形成装置と、
前記各第一の指向性形成装置のn(但し、1≦n≦N;nは自然数)番目の出力信号を合成する第一の合成器と、
該第一の合成器の信号を入力信号とし、アンテナ素子数と同数のM(M≧N;Mは自然数)個の信号を出力する第二の指向性形成装置と、
前記各第二の指向性形成装置のm(1≦m≦M;mは自然数)番目の出力信号を合成する第二の合成器と、
M個のアンテナ素子とを有し、
前記第一の指向性形成装置は、入力信号をN個の信号に分岐する第一の分岐装置と、該第一の分岐装置の出力信号に重み付けを行う第一の重み付け装置とからなり、
前記各第一の指向性制御装置のn番目の第一の重み付け装置の重みの値は端末局nによって制御されることを特徴とする。
【0014】
また、請求項2に記載の発明は、請求項1に記載のアンテナ装置において、前記第二の指向性形成装置は入力信号をM個の信号に分岐する第二の分岐装置と、
前記第二の分岐装置の出力信号に重み付けを行うM個の第二の重み付け装置とからなり、
前記第一の重み付け装置の重みの値W1,k,j及び第二の重み付け装置の重みの値W2,j,j を、
【数7】
Figure 2004242151
【数8】
Figure 2004242151
(ただし、ここで値w2,j,j はj番目の第二の指向性形成装置のj’番目の第二の重み付け装置の重みの値、値w’1,k,jは端末局jが式(9)により決定した重みの値であり、(t)は今回の演算タイミング時における値であることを、また(tn−1)は前回の演算タイミング時における値であることを、それぞれ示している。)
となるように決定することを特徴とする。
【0015】
また、請求項3に記載の発明は、複数の端末局に対して、指向性を形成する基地局に設けられた適応アンテナ装置の制御方法であって、
各端末局への送信信号に対して複数の指向性パターンを形成し、該複数の指向性パターンの合成を端末局側からのフィードバック情報に基づいて制御することを特徴とする。
【0016】
【発明の実施の形態】
以下、図面を参照して本発明の実施形態について説明する。
本発明の第1実施形態に係る適応アンテナ装置の構成を図1に示す。本実施形態は、送信信号に対して複数の指向性パタンを形成し、複数の指向性パタンの合成を端末局によって制御することにより、高精度の指向性形成を少ないフィードバック情報から行うことを可能としている。
【0017】
図1において符号1011〜101Nは第一の指向性形成装置、符号1021〜102Nは第一の合成器、符号1031〜103Nは第二の指向性形成装置、符号1041〜104Mは第二の合成器、符号1051〜105Mはアンテナ素子、符号1061〜106Nは第一の分岐装置、符号10711〜107NNは第一の重み付け装置である。
【0018】
基地局はまず上り通信時に伝搬環境の推定を行う。伝搬環境推定としては、たとえば、上り、下り回線においても到来波の到来方向は変化しないとみなし、上り通信時の信号から各到来波の到来方向推定を行う方法などが用いられる。到来方向推定のアルゴリズムにはMUSIC法やESPRIT法などの高分解能の到来方向推定アルゴリズムを用いることもできる。
【0019】
次に、上り通信時に推定した伝搬環境をもとに、第二の指向性形成装置で形成する指向性を決定する。指向性の決定方法としては、たとえば上り通信時に推定した到来方向に対して主ビームを向ける方法や、二乗誤差最小(MMSE)アルゴリズムを用いて、希望している信号に対してメインビームを向け、他の信号に対してヌルを形成する方法などを用いることができる。
【0020】
このように決定した第二の指向性形成装置の指向性パタンを用いて、下り通信を開始する。下り通信時には各端末局では各第二の指向性形成装置で形成される指向性パタンと端末局アンテナの間の伝達関数を推定する。伝達関数の推定は、例えば、各指向性パタンから異なったタイミングでプローブ信号を送信することによって実施することができる。また同一タイミングで、異なった拡散符号を用いて各指向性パタンからプローブ信号を送信する方法を用いることもできる。
【0021】
さらに推定した伝達関数から例えば以下の式に基づいて、第一の重み付け装置の重みの値を決定する。
【数9】
Figure 2004242151
ここで、w1,k,n はk番目の端末局に対する第一の指向性形成装置のn番目の第一の重み付け装置の重みの値,Hk,nはk番目の第二の指向性形成装置と端末局nの間の伝達関数である。
【0022】
上式のように制御することによって、
【数10】
Figure 2004242151
となり、k番目の端末局への信号が端末局nに干渉を与えることがなくなる。したがって、端末局nでは推定した伝達関数hk,n の値が大きく、干渉を受けている信号に対して、上式の計算を行い、第一の重み付け装置における重み付け値をフィードバックすればよい。端末局数をNとした場合、全ての干渉が問題となった場合でも、フィードバックする重み付け値の数はN−1個となる。
【0023】
これに対して、従来の全伝達関数をフィードバックさせる方法ではM個の伝達関数をフィードバックする必要がある。
一般にアンテナ素子数Mの方が端末局数Nよりも大きいため、本発明によってフィードバックする情報量を削減することができる。また本発明では端末局数に対してアンテナ素子数が大きくなればなるほど、大きなフィードバック量の削減効果が期待できる。
【0024】
図3に、本発明に係る適応アンテナ装置と、従来の適応アンテナ装置(Derlek Gerlacha,Arlogyaswami Paulraj,“Base Station Antenna Arrays with Mobile to Base Feedback,”Conference Record or The Twenty−Seventh Asilomar Conference on,1993)の性能の比較を示す。なお、端末局数は2、基地局のアンテナ素子数は8素子とした。
【0025】
また、変調方式はQPSK、各端末局での到来波は100波とし、各端末局の位置は、基地局を基準として端末局1を−20度方向、端末局2を10度方向とした。基地局での角度広がりは5度、端末局での角度広がりは360度とした。上り通信時には到来方向推定を行うものとし、到来方向推定では角度広がりの中心方向を誤差無く推定できるものとした。
最大ドップラー周波数fdmaxΔTは0.3とした。ここで△Tは端末局で推定した伝搬環境を指向性形成に反映させるまでに要する時間である。図に示すように,本発明によってフィードバック情報量を1/20に抑えることが可能となっていることが判る。
【0026】
本発明の第2実施形態に係る適応アンテナ装置の要部の構成を図2に示す。本実施形態では、端末局からのフィードバック情報を第二の指向性形成装置の指向性制御に反映させ、伝搬環境の変動への追従性を高めることを可能にしている。
本実施形態に係る適応アンテナ装置の基本構成は図1に示した第1実施形態に係る適応アンテナ装置と同じであるが、第1実施の形態と異なるのは、第二の重み付け装置の重みの値についても端末局からのフィードバック情報に基づいて制御するようにしている点である。
【0027】
この図において符号2011〜201Nは第二の分岐装置、符号20211〜202NMは第二の重み付け装置である。
端末局kへの送信信号は端末局nでは以下のように受信される。
【数11】
Figure 2004242151
ここでw2,j,j はj番目の第二の指向性形成装置のj’番目の第二の重み付け装置の重みの値、h ,n は基地局のアンテナ素子j’と端末局nの間の伝達関数である。
【0028】
上り通信と下り通信の伝搬環境が大きく異なるような環境では第二の指向性形成装置で形成する指向性も、下り通信の伝搬環境にあわせて更新していく必要がある。このような場合には、第一の重み付け装置の値、第二の重み付け装置の値を以下のように設定する。
【数12】
Figure 2004242151
【数13】
Figure 2004242151
【0029】
ただし、ここで値w2,j,j はj番目の第二の指向性形成装置のj’番目の第二の重み付け装置の重みの値、値w’1,k,jは端末局jが式(9)により決定した重みの値であり、(t)は今回の演算タイミング時における値であることを、また(tn−1)は前回の演算タイミング時における値であることを、それぞれ示している。
このように構成することで、下り通信の伝搬環境が変動する環境においても本発明の適応アンテナの動作が可能となる。
【0030】
【発明の効果】
以上に説明したように本発明によれば、各端末局への送信信号に対して複数の指向性パターンを形成し、該複数の指向性パターンの合成を端末局側からのフィードバック情報に基づいて制御するようにしたので、上り通信と下り通信の伝搬環境が異なる場合でも下り通信における高精度の指向性制御を行うことができ、かつスループットの向上が図れる。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係る適応アンテナ装置の構成を示すブロック図。
【図2】本発明の第2実施形態に係る適応アンテナ装置の要部の構成を示すブロック図。
【図3】本発明に係る適応アンテナ装置と従来のアンテナ装置との性能を比較して示した図。
【図4】従来の適応アンテナ装置の構成を示すブロック図。
【符号の説明】
1011〜101N…第一の指向性形成装置
1021〜102N…第一の合成器
1031〜103N…第二の指向性形成装置
1041〜104M…第二の合成器
1051〜105M…アンテナ素子
1061〜106N…第一の分岐装置
10711〜107NN…第一の重み付け装置
2011〜201N…第二の分岐装置
20211〜202NM…第二の重み付け装置
4011〜401N…アンテナ素子
4021〜402…N重み付け装置
403…重み制御装置
404…基準信号発生装置
405…合成及び分岐装置[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an adaptive antenna device suitable for use in a base station of a wireless communication system and a control method thereof.
[0002]
[Prior art]
The adaptive antenna device is an antenna device that combines an incoming wave with a high correlation with a desired signal and performs directivity control so as to suppress an incoming wave with a low correlation.
Hereinafter, a conventional beam control method of the adaptive antenna apparatus in the downlink will be described.
FIG. 4 shows a configuration of a conventional adaptive antenna apparatus that does not estimate the propagation environment of downlink communication (for example, see Non-Patent Document 1).
[0003]
In FIG. 4, the conventional adaptive antenna apparatus includes a plurality of antenna elements 4011 to 401N, weighting means 4021 to 402N for imposing a complex weight connected to each antenna element, and a weight for controlling the weight of each weighting means 4021 to 402N. The control device 403, the reference signal generating device 404, and a signal for combining complex weighted signals connected to the antenna elements 4011 to 401N at the time of reception, and a signal for branching an input signal to weighting means 4021 to 402N at the time of transmission. And a branching device 405.
[0004]
In general, signals received by a plurality of antenna elements 4011 to 401N of an adaptive antenna device are x1 to xN, weight values set in weighting means 4021 to 402N are w1 to wN, and a desired signal component is represented by d. The value of the weight forming the directivity so that the square of the error from the desired signal is minimized is
[Equation 3]
Figure 2004242151
Given by However,
(Equation 4)
Figure 2004242151
(Equation 5)
Figure 2004242151
(Equation 6)
Figure 2004242151
It is.
[0005]
If the propagation environment at the time of uplink communication and the propagation environment at the time of downlink communication can be considered to be exactly the same, there is no change in the correlation matrix RXX between antennas and the steering vector rXd for the desired user. If the value is applied to downlink communication as it is, directivity that minimizes the square error of the communication path can be formed. Therefore, when the propagation environments of the uplink communication and the downlink communication are almost equal, it is sufficient to simply configure the array antenna with a plurality of antenna elements.
[0006]
However, in an FDD system having different frequencies in uplink communication and downlink communication, or in an environment with large environmental fluctuations, the correlation matrix RXX between antennas defined in (Equation 4) cannot be estimated, and the adaptive antenna apparatus does not operate. There is a problem.
[0007]
In downlink communication, a method has been proposed in which a propagation environment is estimated at a receiving station, the estimation result of the propagation environment is fed back to a transmitting station, and directivity for a downlink is formed by an adaptive antenna device at the transmitting station (for example, a non-propagating method). Patent Document 2). The operation will be described below.
In downlink communication, a probing signal is periodically inserted between information signals to transmit a signal. The probing signal is used to estimate a transfer function between each antenna element of the transmitting station and the receiving station.
[0008]
In a section where a probing signal is transmitted, a different probing signal sequence is transmitted from each antenna element. Here, the probing signal transmitted from each antenna element is a signal sequence known to all receiving stations. The receiving station performs a correlation operation on the received signal with each probing signal transmitted from each antenna element of the transmitting station, and obtains a complex correlation value for each probing signal from each antenna element.
[0009]
This complex correlation value is fed back to the transmitting station in uplink communication, and is reflected in forming the directivity of the adaptive antenna. In this method, the propagation environment between each antenna element of the transmitting station and the receiving station can be estimated by obtaining the correlation value of each antenna with the probing signal at the receiving station.
When this method is used, different signals are transmitted from each antenna element, so that beam forming cannot be performed.
Therefore, there is a problem that interference is caused to neighboring cells using the same channel. In addition, when the number of antenna elements increases, the signal sequence length of the probing signal increases, which causes a problem that the throughput decreases.
[0010]
[Non-patent document 1]
R. A. Monzingo and T.M. W. Miller, Introduction to Adaptive Arrays, John Wiley & Sons, Inc. 1980
[Non-patent document 2]
Derek Gerlach, Argyaswami Paulraj, "Base Station Antenna Arrays with Mobile to Base Feedback," Conference Record of the Third Century.
[0011]
[Problems to be solved by the invention]
In directivity control in downlink communication in digital wireless transmission, it is necessary to estimate a transfer function between a transmitting station antenna and a receiving station. However, when a signal is transmitted from each antenna element at the transmitting station to estimate the transfer function, directivity cannot be formed at the time of transfer function estimation, so that a great deal of interference occurs in other systems or other cells using the same frequency channel. There was a problem that would.
[0012]
Further, in the conventional transfer function estimating method, it is necessary to transmit a predetermined signal sequence in order to estimate the transfer function between the transmitting station antenna and the receiving station. Was.
The present invention has been made in view of such circumstances, and in digital wireless transmission, it is possible to perform high-precision directivity control in downlink communication even when the propagation environment of uplink communication and downlink communication is different, and achieve high throughput. It is an object of the present invention to provide an adaptive antenna device and a control method therefor, which improve the performance.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, an invention according to claim 1 is an adaptive antenna apparatus provided in a base station that forms directivity for N (N is a natural number of 2 or more) terminal stations. hand,
A first directivity forming apparatus that takes a transmission signal to each terminal station as an input signal and generates N output signals,
A first combiner that combines an nth (where 1 ≦ n ≦ N; n is a natural number) output signal of each of the first directivity forming devices;
A second directivity forming device that receives the signal of the first combiner as an input signal and outputs M (M ≧ N; M is a natural number) signals of the same number as the number of antenna elements;
A second combiner that combines an m-th (1 ≦ m ≦ M; m is a natural number) output signal of each of the second directivity forming devices;
M antenna elements,
The first directivity forming device includes a first branching device that branches an input signal into N signals, and a first weighting device that weights an output signal of the first branching device.
The weight value of the n-th first weighting device of each first directivity control device is controlled by a terminal station n.
[0014]
The invention according to claim 2 is the antenna device according to claim 1, wherein the second directivity forming device is configured to branch an input signal into M signals,
M output from the second branching device weights the second weighting device, comprising:
The weight value W 1, k, j of the first weighting device and the weight value W 2, j, j of the second weighting device are
(Equation 7)
Figure 2004242151
(Equation 8)
Figure 2004242151
(Where the value w 2, j, j is the value of the weight of the j′-th second weighting device of the j-th second directivity forming device, and the values w ′ 1, k, j are the terminal stations j is the value of the weight determined by equation (9), (t n ) is the value at the current calculation timing, and (t n-1 ) is the value at the previous calculation timing Are shown respectively.)
Is determined so that
[0015]
According to a third aspect of the present invention, there is provided a method of controlling an adaptive antenna device provided in a base station forming directivity for a plurality of terminal stations,
A plurality of directivity patterns are formed for a transmission signal to each terminal station, and the synthesis of the plurality of directivity patterns is controlled based on feedback information from the terminal station side.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows the configuration of the adaptive antenna device according to the first embodiment of the present invention. In the present embodiment, by forming a plurality of directional patterns on a transmission signal and controlling the synthesis of the plurality of directional patterns by a terminal station, it is possible to perform highly accurate directivity formation from a small amount of feedback information. And
[0017]
1, reference numerals 1011 to 101N denote a first directivity forming device, reference numerals 1021 to 102N denote a first combiner, reference numerals 1031 to 103N denote a second directivity forming device, and reference numerals 1041 to 104M denote a second combiner. Reference numerals 1051 to 105M indicate antenna elements, reference numerals 1061 to 106N indicate first branching devices, and reference numerals 10711 to 107NN indicate first weighting devices.
[0018]
The base station first estimates a propagation environment during uplink communication. As the propagation environment estimation, for example, a method of estimating the arrival direction of each arriving wave from a signal at the time of uplink communication, assuming that the arrival direction of the arriving wave does not change in the uplink and the downlink, is used. A high-resolution direction-of-arrival estimation algorithm such as the MUSIC method or the ESPRIT method may be used as the direction-of-arrival estimation algorithm.
[0019]
Next, the directivity formed by the second directivity forming device is determined based on the propagation environment estimated during uplink communication. The directivity may be determined by, for example, directing the main beam to the direction of arrival estimated at the time of uplink communication, or directing the main beam to a desired signal using a minimum square error (MMSE) algorithm. A method of forming a null with respect to another signal can be used.
[0020]
The downlink communication is started using the directivity pattern of the second directivity forming device determined in this way. At the time of downlink communication, each terminal station estimates a transfer function between the directivity pattern formed by each second directivity forming device and the terminal station antenna. The transfer function can be estimated, for example, by transmitting a probe signal from each directional pattern at a different timing. A method of transmitting a probe signal from each directional pattern at the same timing using different spreading codes can also be used.
[0021]
Further, the value of the weight of the first weighting device is determined from the estimated transfer function based on, for example, the following equation.
(Equation 9)
Figure 2004242151
Here, w 1, k, n is the value of the weight of the n-th first weighting device of the first directivity forming device for the k-th terminal station, and H k, n is the k-th second directivity. The transfer function between the forming device and the terminal station n.
[0022]
By controlling as in the above equation,
(Equation 10)
Figure 2004242151
The signal to the k-th terminal station does not interfere with the terminal station n. Therefore, in the terminal station n, the value of the estimated transfer function h k, n is large, and the above equation is calculated for the signal receiving the interference, and the weighting value in the first weighting device may be fed back. Assuming that the number of terminal stations is N, the number of weighting values to be fed back is N-1 even if all interferences become a problem.
[0023]
On the other hand, in the conventional method of feeding back all transfer functions, it is necessary to feed back M transfer functions.
In general, since the number M of antenna elements is larger than the number N of terminal stations, the present invention can reduce the amount of information to be fed back. Further, in the present invention, the larger the number of antenna elements with respect to the number of terminal stations, the greater the effect of reducing the amount of feedback can be expected.
[0024]
FIG. 3 shows an adaptive antenna device according to the present invention and a conventional adaptive antenna device (Derek Gerlach, Arrogyswami Paulraj, "Base Station Antenna Arrays with Mobile to Energy terrestrial access fee feedback." 2 shows a comparison of the performances of the two. The number of terminal stations was 2, and the number of antenna elements of the base station was 8.
[0025]
The modulation method is QPSK, the incoming wave at each terminal station is 100 waves, and the position of each terminal station is -20 degrees in terminal station 1 and 10 degrees in terminal station 2 with respect to the base station. The angle spread at the base station was 5 degrees, and the angle spread at the terminal station was 360 degrees. It is assumed that the arrival direction is estimated at the time of uplink communication, and the center direction of the angular spread can be estimated without error in the arrival direction estimation.
The maximum Doppler frequency fdmaxΔT was set to 0.3. Here, ΔT is the time required until the propagation environment estimated by the terminal station is reflected on the formation of directivity. As shown in the figure, it can be seen that the present invention makes it possible to reduce the amount of feedback information to 1/20.
[0026]
FIG. 2 shows a configuration of a main part of an adaptive antenna device according to a second embodiment of the present invention. In the present embodiment, the feedback information from the terminal station is reflected on the directivity control of the second directivity forming device, and it is possible to enhance the follow-up to the fluctuation of the propagation environment.
The basic configuration of the adaptive antenna apparatus according to the present embodiment is the same as that of the adaptive antenna apparatus according to the first embodiment shown in FIG. 1, but differs from the first embodiment in that the weight of the second weighting apparatus is different. The point is that the value is also controlled based on the feedback information from the terminal station.
[0027]
In this figure, reference numerals 2011 to 201N indicate second branching devices, and reference numerals 20211 to 202NM indicate second weighting devices.
The transmission signal to the terminal station k is received by the terminal station n as follows.
[Equation 11]
Figure 2004242151
Here, w 2, j, j is the weight value of the j′-th second weighting device of the j-th second directivity forming device, and h j , n are the antenna element j ′ of the base station and the terminal. Transfer function between stations n.
[0028]
In an environment in which the propagation environments of uplink communication and downlink communication are significantly different, it is necessary to update the directivity formed by the second directivity forming device in accordance with the propagation environment of downlink communication. In such a case, the value of the first weighting device and the value of the second weighting device are set as follows.
(Equation 12)
Figure 2004242151
(Equation 13)
Figure 2004242151
[0029]
Here, the value w 2, j, j is the value of the weight of the j′-th second weighting device of the j-th second directivity forming device, and the value w ′ 1, k, j is the terminal station j. Is the value of the weight determined by equation (9), (t n ) is the value at the current calculation timing, and (t n-1 ) is the value at the previous calculation timing. , Respectively.
With this configuration, the adaptive antenna of the present invention can operate even in an environment where the propagation environment of downlink communication fluctuates.
[0030]
【The invention's effect】
As described above, according to the present invention, a plurality of directivity patterns are formed for a transmission signal to each terminal station, and the synthesis of the plurality of directivity patterns is performed based on feedback information from the terminal station side. Since the control is performed, even when the propagation environments of the uplink communication and the downlink communication are different, highly accurate directivity control in the downlink communication can be performed, and the throughput can be improved.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of an adaptive antenna device according to a first embodiment of the present invention.
FIG. 2 is a block diagram showing a configuration of a main part of an adaptive antenna device according to a second embodiment of the present invention.
FIG. 3 is a diagram showing a comparison between the performance of an adaptive antenna device according to the present invention and the performance of a conventional antenna device.
FIG. 4 is a block diagram showing a configuration of a conventional adaptive antenna device.
[Explanation of symbols]
1011 to 101N first directivity forming devices 1021 to 102N first combiners 1031 to 103N second directivity forming devices 1041 to 104M second combiners 1051 to 105M antenna elements 1061 to 106N First branching devices 10711 to 107NN first weighting devices 2011 to 201N second branching devices 20211 to 202NM second weighting devices 4011 to 401N antenna elements 4021 to 402 N weighting devices 403 weight control devices 404: Reference signal generator 405: Combining and branching device

Claims (3)

N(Nは2以上の自然数)個の端末局に対して、指向性を形成する基地局に設けられた適応アンテナ装置であって、
各端末局への送信信号をそれぞれ、入力信号とし、N個の出力信号を生成する第一の指向性形成装置と、
前記各第一の指向性形成装置のn(但し、1≦n≦N;nは自然数)番目の出力信号を合成する第一の合成器と、
該第一の合成器の信号を入力信号とし、アンテナ素子数と同数のM(M≧N;Mは自然数)個の信号を出力する第二の指向性形成装置と、
前記各第二の指向性形成装置のm(1≦m≦M;mは自然数)番目の出力信号を合成する第二の合成器と、
M個のアンテナ素子とを有し、
前記第一の指向性形成装置は、入力信号をN個の信号に分岐する第一の分岐装置と、該第一の分岐装置の出力信号に重み付けを行う第一の重み付け装置とからなり、
前記各第一の指向性制御装置のn番目の第一の重み付け装置の重みの値は端末局nによって制御されることを特徴とする適応アンテナ装置。
An adaptive antenna device provided in a base station forming directivity for N (N is a natural number of 2 or more) terminal stations,
A first directivity forming device that takes a transmission signal to each terminal station as an input signal and generates N output signals,
A first combiner for combining an n-th (where 1 ≦ n ≦ N; n is a natural number) output signal of each of the first directivity forming devices;
A second directivity forming device that receives the signal of the first combiner as an input signal and outputs M (M ≧ N; M is a natural number) signals of the same number as the number of antenna elements;
A second synthesizer that synthesizes an m-th (1 ≦ m ≦ M; m is a natural number) output signal of each of the second directivity forming devices;
And M antenna elements,
The first directivity forming device includes a first branching device that branches an input signal into N signals, and a first weighting device that weights an output signal of the first branching device.
The adaptive antenna device, wherein a value of a weight of an n-th first weighting device of each of the first directivity control devices is controlled by a terminal station n.
前記第二の指向性形成装置は入力信号をM個の信号に分岐する第二の分岐装置と、
前記第二の分岐装置の出力信号に重み付けを行うM個の第二の重み付け装置とからなり、
前記第一の重み付け装置の重みの値w1,k,j及び第二の重み付け装置の重みの値w2,j,j を、
Figure 2004242151
Figure 2004242151
(ただし、ここで値w2,j,j はj番目の第二の指向性形成装置のj’番目の第二の重み付け装置の重みの値、値w’1,k,jは端末局jが式(9)により決定した重みの値であり、(t)は今回の演算タイミング時における値であることを、また(tn−1)は前回の演算タイミング時における値であることを、それぞれ示している。)
となるように決定することを特徴とする請求項1に記載の適応アンテナ装置。
A second branching device that branches the input signal into M signals,
M output from the second branching device weights the second weighting device, comprising:
The weight value w1 , k, j of the first weighting device and the weight value w2 , j, j of the second weighting device are
Figure 2004242151
Figure 2004242151
(Where the value w 2, j, j is the value of the weight of the j′-th second weighting device of the j-th second directivity forming device, and the values w ′ 1, k, j are the terminal stations j is the value of the weight determined by equation (9), (t n ) is the value at the current calculation timing, and (t n-1 ) is the value at the previous calculation timing Are shown respectively.)
The adaptive antenna device according to claim 1, wherein the adaptive antenna device is determined such that
複数の端末局に対して、指向性を形成する基地局に設けられた適応アンテナ装置の制御方法であって、
各端末局への送信信号に対して複数の指向性パターンを形成し、該複数の指向性パターンの合成を端末局側からのフィードバック情報に基づいて制御することを特徴とする適応アンテナ装置の制御方法。
For a plurality of terminal stations, a control method of the adaptive antenna device provided in the base station forming the directivity,
Control of an adaptive antenna apparatus, wherein a plurality of directivity patterns are formed for a transmission signal to each terminal station, and the synthesis of the plurality of directivity patterns is controlled based on feedback information from the terminal station side. Method.
JP2003030777A 2003-02-07 2003-02-07 Adaptive antenna apparatus and control method thereof Expired - Fee Related JP3980495B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003030777A JP3980495B2 (en) 2003-02-07 2003-02-07 Adaptive antenna apparatus and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003030777A JP3980495B2 (en) 2003-02-07 2003-02-07 Adaptive antenna apparatus and control method thereof

Publications (2)

Publication Number Publication Date
JP2004242151A true JP2004242151A (en) 2004-08-26
JP3980495B2 JP3980495B2 (en) 2007-09-26

Family

ID=32957578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003030777A Expired - Fee Related JP3980495B2 (en) 2003-02-07 2003-02-07 Adaptive antenna apparatus and control method thereof

Country Status (1)

Country Link
JP (1) JP3980495B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111837153A (en) * 2018-03-28 2020-10-27 株式会社东芝 Queue travel operation system and queue travel operation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111837153A (en) * 2018-03-28 2020-10-27 株式会社东芝 Queue travel operation system and queue travel operation method

Also Published As

Publication number Publication date
JP3980495B2 (en) 2007-09-26

Similar Documents

Publication Publication Date Title
US7079868B2 (en) Smart antenna arrays
US7020490B2 (en) Radio communication system
EP1267443B1 (en) Improvements in or relating to smart antenna arrays
JP3526196B2 (en) Adaptive antenna
US7312750B2 (en) Adaptive beam-forming system using hierarchical weight banks for antenna array in wireless communication system
US7117016B2 (en) Adaptive antenna base station apparatus
US9252864B2 (en) Method and apparatus for fast beam-link construction in mobile communication system
US20050282587A1 (en) Base station apparatus with reception and diversity weight combining
US6968022B1 (en) Method and apparatus for scheduling switched multibeam antennas in a multiple access environment
US7414578B1 (en) Method for efficiently computing the beamforming weights for a large antenna array
EP1187254B1 (en) Adaptive antenna control method and adaptive antenna transmission/reception characteristic control method
JP3899062B2 (en) ANTENNA DEVICE AND ITS CONTROL METHOD
KR100332936B1 (en) Array antenna transmitter with a high transmission gain proportional to the number of antenna elements
JPH1070494A (en) Transmitter/receiver for transmission diversity
JP2002290317A (en) Transmission diversity communication unit
JP3980495B2 (en) Adaptive antenna apparatus and control method thereof
JP3905055B2 (en) Adaptive antenna transmission apparatus and adaptive antenna transmission method
JP4198570B2 (en) Adaptive antenna transmission apparatus and adaptive antenna transmission method
JP3808336B2 (en) Adaptive antenna transmitter and control method thereof
JP3970636B2 (en) Wireless communication system, transmitting station, receiving station, and wireless communication method
JP4507103B2 (en) GPS interference canceller
JP4778982B2 (en) Reception apparatus and interference suppression method
JPH1079619A (en) Array antenna system
JP3771151B2 (en) Control method for adaptive antenna transmitter
Jeng et al. Experimental studies of direction of arrivals using a smart antenna testbed in wireless communication systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070627

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees