JP2004241667A - Ignition coil for internal combustion engine - Google Patents

Ignition coil for internal combustion engine Download PDF

Info

Publication number
JP2004241667A
JP2004241667A JP2003030262A JP2003030262A JP2004241667A JP 2004241667 A JP2004241667 A JP 2004241667A JP 2003030262 A JP2003030262 A JP 2003030262A JP 2003030262 A JP2003030262 A JP 2003030262A JP 2004241667 A JP2004241667 A JP 2004241667A
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
coil
ignition coil
cover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003030262A
Other languages
Japanese (ja)
Inventor
Manabu Hashimoto
学 橋本
Tetsuo Nanai
哲夫 七井
Yoichi Yasukura
洋一 安蔵
Yasunori Otaka
康則 大高
Hiroaki Saito
博昭 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Car Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Car Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP2003030262A priority Critical patent/JP2004241667A/en
Publication of JP2004241667A publication Critical patent/JP2004241667A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coil which is not only excellent in heat shock resistance property but also has high reliability including also shock resistance from the outside in an independent ignition type ignition coil for an internal combustion engine mounted for every ignition plug of the engine and used in direct coupling with each ignition plug. <P>SOLUTION: It is possible to reduce application force followed by moment by altering the shape and material of a cover, and hence to reduce the generated maximum stress. The position of the center of gravity can be lowered by moving the position of a center core to the side of a connector, and hence the moment can be reduced. It is further possible to moderate the generation of internal stress by employing internally elastic soft epoxy, and hence suppress the occurrence of any crack. Thereby, it is possible to reduce the maximum main stress, and possible to prevent the performance from being deteriorated owing to the crack even when any shock is applied. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、エンジンの点火プラグ毎に装着されて各点火プラグに直結して使用される独立点火形の内燃機関用点火コイルに関する。
【0002】
【従来の技術】
従来の内燃機関用点火装置としては、細長円筒形のコイルケース内部にセンタコア,1次コイル,2次コイルを内装しており、これらのコイルは、それぞれのボビンに巻かれ、センタコアの周囲に同心上をなして配置されている。このコイルでは、高電圧が発生する為、絶縁樹脂なるエポキシを充填し、硬化させることにより、各部材間の絶縁性を確保している。この様な異種材料間では、線膨張係数が異なる為、厳しい温度環境下では熱応力が発生し、ボビンやエポキシに微少な亀裂が発生し、絶縁低下に陥る可能性がある。そこで、例えば、特開平11−26267号公報に記載のよう、さらに、2次ボビンの内側とセンタコアとの間に軟質エポキシを充填することにより、応力緩和を図っているものがある。
【0003】
【特許文献1】
特開平11−26267号公報
【0004】
【発明が解決しようとする課題】
上記コイルでは、熱衝撃性に対する応力緩和についてのみしか検討されておらず、耐衝撃性に関しては記載されていない。実環境上では、各コイルに外部から様々な衝撃が加わり、各部材には異なる材料を用いている為、様々な形で応力集中が発生してしまう箇所があり、そこを起点とするクラックが発生する可能性がある。
【0005】
そこで、本発明では、熱衝撃性に優れるだけではなく、外部からの耐衝撃性まで含めた信頼性の高いコイルを提供することを目的としている。
【0006】
【課題を解決するための手段】
上記目的は、下記によって達成される。すなわち軟質エポキシを2次ボビン内部のセンタコアの間だけではなく、耐電圧の低い低圧側全体に注型することにより、コイル全体に加わる衝撃を緩和することが可能となる。また、軟質エポキシの代わりに、シリコン系の接着剤を用いることも可能であり、常温硬化タイプのものを用いれば、カバーとの接着も同時に作業ができ、生産性も高めることが可能となる。
【0007】
また、カバーの材料をゴム系の弾性率の低いものを用いることでも、上面からの衝撃を緩和することが可能となり、またカバーに熱可塑性樹脂を用いた場合でも、形状を切り欠き、突起を設けることで、瞬間的な衝撃を吸収するとともに、外力がコイル本体に加わるとき、回転を与えることが可能となるため、コイル本体の重心方向に直接加わる力を緩和することができる。
【0008】
【発明の実施の形態】
以下、本発明の実施例を図1で説明する。
【0009】
細長円筒形ケース(外装ケース)6の内部には、中心(内側)から外側に向けて、センタコア5,2次ボビン4に巻かれた2次コイル3,1次ボビン2に巻かれた1次コイル1が同心状に配置されている。これらの構成部品は、外装ケース6に内挿された後、熱硬化性絶縁樹脂(エポキシ樹脂)14が充填されている。外装ケース6の外側には、センタコア5と磁路を形成するサイドコア7が装着されている。
【0010】
センタコア5の端部(上端でも下端でも良い)には応力吸収用弾性部材8(例えばシリコーンゴム),センタコア5の周囲にはやはり弾性部材15が設けられ、2次ボビン4とセンタコア5間に発生する熱応力(線膨張係数の差によって生じる応力)を緩和している。弾性部材15としては耐熱性のあるシリコーンゴム(本例では、軟質エポキシ樹脂)などで構成される。軟質エポキシ樹脂は、ガラス転移点が常温(20℃)以下で、ガラス転移点以上では弾性のある柔らかい性質(エストラマー)を有するエポキシ樹脂であり、例えば、エポキシ樹脂と変性脂肪族ポリアミンの混合物である。
【0011】
1次ボビン2は、機械的強度を確保するため無機物充填物20重量%以上のポリブチレンテレフタレート(PBT)やポリフェニレンオキサイド(変性PPO)、あるいはポリフェニレンサルファイド(PPS)等の熱可塑性合成樹脂で形成され、この1次ボビン2に巻かれる1次コイル1は、線径0.3〜1.0mm程度のエナメル線を一層あたり数十回から百数十回ずつ、数層にわたり合計100〜
300回程度積層巻きした巻線である。
【0012】
2次ボビン4も例えば、無機物を20重量%以上、より好ましくは30重量%以上混合した変性ポリフェニレンオキサイド(変性PPO),ポリフェニレンサルファイド(PPS)等の熱可塑性合成樹脂で成形されている。2次ボビン4は有底筒状を呈し、上記した応力吸収用弾性部材8,センタコア5が2次ボビン底部に受けられるようにして2次ボビン4に内装されている。
【0013】
2次ボビン4はセンタコア5と2次コイル3の間に介在して2次コイル3で発生した高電圧を絶縁する役目もある。2次コイル3で発生した高電圧を絶縁するためには、2次ボビン4の肉厚を0.5〜1.5mmとし、更に2次コイル3とセンタコア5間の電界集中及び応力集中を防止するために、センタコア5は2次ボビン4の内周側に弾性部材15を注入し、硬化して固定している。
【0014】
2次コイル3は、線径0.03〜0.06mm程度のエナメル線を用いて合計10000〜30000回程度、2次ボビン4に多数配設した鍔間に多層構造で分割巻きされている。
【0015】
エポキシ樹脂14は、2次ボビン4に巻かれた2次コイル3,1次ボビン2に巻かれた1次コイル1を外装ケース6に内挿し、更にイグナイタユニット21を供給し、真空状態で注入される。そして加熱によりエポキシ樹脂14が硬化することで絶縁性と機械強度を確保することができる。
【0016】
外装ケース6は、ポリフェニレンサルファイド(PPS)等の熱可塑性合成樹脂で成形されており、コイル部を収容,固定しエポキシ樹脂14を注型できるようにしている。
【0017】
カバー25は、熱可塑性合成樹脂で形成され、エポキシ樹脂14を硬化させた後、コネクタ上部24の上面に取り付けされている。
【0018】
次に本発明の考え方について、図2を用い説明する。
【0019】
コネクタ17の上面に、例えば、落下の様な衝撃が印加された場合、衝撃が印加される反対側に最大応力が発生し、その大きさは、全体の重心位置と衝撃が印加される場所までの距離Lと、衝撃力Fとの積で表される。従い、この応力を緩和させるには、全体の衝撃力を緩和させるか、距離を短くするか、重心の位置をコネクタ17側まで下げ、反対方向に加わる力を小さくさせ、弱い個所への発生位置を変えるか、内部に緩和構造を持たせるなどが有効な手段となる。
【0020】
例えば、図3に示すように、コネクタ17の上面のうち、取り付けフランジ
17a部の位置を低くし、距離を短くするこで、モーメント力を下げることが可能となり、また、図4に示すように、内部の納めている質量の大きいセンタコア5の位置をコネクタ17側に持ってくることにより、重心をコネクタ側に移動させることが可能となる。また、コネクタ17上面全体をおおうようにカバー18を取り付けることで、カバー18で吸収することができるようになる。さらに、このカバー18とコネクタ17間に隙間19を設けることでこの効果を上げることが可能である。
【0021】
また、図5(a)では、印加力を押さえる方法として、カバー18に切り欠き18aを入れることにより、きり欠きがバネ力を持ち、全体の印加力を低減させることができる。図5(b)ではカバー18の上面、または下面にゴム26を挟むことにより、同様な効果が得られると同時に、カバー18の材質をゴムにすれば、より効果的になる。さらに図5(c)では、カバー18上面に突起18bを立て、この突起18bが先に当たることにより緩和力を得、回転方向への力を与えることができ、重心への力の方向を変えることが可能となる。
【0022】
さらに、コネクタ17のカバー18,受け面17bは、肉厚を1mm以下と薄くすることにより、コネクタ24の剛性を落とすことができ、同様な効果を得ることができる。
【0023】
また、図5(c)では、カバー18の固定を、シリコン系の接着剤27を用いることにより、接着と軟らかな樹脂による印加力の緩和することができるとともに、この接着剤27を常温硬化タイプにすることにより、硬化プロセスを用いること無く接着させることが可能となり、作業性を損ねること無く生産性を高めることが可能となる。
【0024】
図6では、モーメントが働く内部にクラックが入らないように、センタコア5の周りを覆っている弾性部材15をエポキシ樹脂14の上側に注型した例である。2次コイル3の上面側は低電位となり、耐圧上は下面側ほど厳しくはなく、またケース6による剛性がある為、内部に弾性部材15が入っていても、エンジン側からの振動に十分耐えることができる。またこの弾性部材15は、真空注型することから中にボイドができる心配もない。
【0025】
図7に、各例を有限要素法で解析した結果の一例を示す。最大主応力は、現状に対し、約85〜90%まで低下させることが可能となる。
【0026】
【発明の効果】
本発明によれば熱衝撃性に優れ、外部からの耐衝撃性にも優れる信頼性の高い、コイルを実現できる。
【図面の簡単な説明】
【図1】本発明の内燃機関用点火コイルの断面図。
【図2】本発明の考え方。
【図3】本発明の一実施例を示す断面図。
【図4】本発明の別な一実施例を示す。
【図5】本発明の別な一実施例を示す。
【図6】本発明の別な一実施例を示す。
【図7】有限要素法による最大主応力比較。
【符号の説明】
1…1次コイル、2…1次ボビン、3…2次コイル、4…2次ボビン、5…センタコア、6…外装ケース、7…サイドコア、8…応力吸収用弾性部材、9…スプリング、10…プラグシール、11…高圧端子、12…イタバネ、13…高圧ダイオード、14…絶縁用樹脂(エポキシ樹脂)、15…弾性部材(軟質エポキシ樹脂)、16…プラグホールシール、17…コネクタ、17a…フランジ、17b…受け面、18…カバー、18a…切り欠き、18b…突起、19…隙間、21…イグナイタユニット、26…ゴム、27…シリコン系接着剤。
[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ignition coil for an internal combustion engine of an independent ignition type, which is mounted for each spark plug of an engine and is used directly connected to each spark plug.
[0002]
[Prior art]
A conventional ignition device for an internal combustion engine has a center core, a primary coil, and a secondary coil inside a slender cylindrical coil case, and these coils are wound around respective bobbins and concentric around the center core. It is arranged above. In this coil, since high voltage is generated, epoxy, which is an insulating resin, is filled and cured to ensure insulation between the members. Since such different materials have different coefficients of linear expansion, thermal stress is generated in a severe temperature environment, and a small crack is generated in a bobbin or epoxy, which may cause insulation deterioration. Therefore, for example, as described in Japanese Patent Application Laid-Open No. H11-26267, there is a method in which a soft epoxy is further filled between the inside of the secondary bobbin and the center core to reduce stress.
[0003]
[Patent Document 1]
JP-A-11-26267
[Problems to be solved by the invention]
In the above-mentioned coil, only the stress relaxation for the thermal shock resistance is studied, and the impact resistance is not described. In the actual environment, various impacts are applied to each coil from the outside, and different materials are used for each member, so there are places where stress concentration occurs in various forms, and cracks originating there are Can occur.
[0005]
Therefore, an object of the present invention is to provide a coil that is not only excellent in thermal shock resistance but also highly reliable including impact resistance from the outside.
[0006]
[Means for Solving the Problems]
The above object is achieved by the following. In other words, the impact applied to the entire coil can be reduced by casting the soft epoxy not only between the center cores inside the secondary bobbin but also on the entire low-voltage side having a low withstand voltage. In addition, a silicone-based adhesive can be used instead of the soft epoxy, and if a room-temperature-curing type is used, bonding with the cover can be performed at the same time, and productivity can be improved.
[0007]
Also, by using a rubber-based material having a low elastic modulus as the cover material, it is possible to reduce the impact from the upper surface, and even when a thermoplastic resin is used for the cover, the shape is cut out and projections are formed. By providing the coil body, instantaneous impact can be absorbed and rotation can be given when an external force is applied to the coil body, so that the force directly applied in the direction of the center of gravity of the coil body can be reduced.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIG.
[0009]
Inside the elongated cylindrical case (exterior case) 6, from the center (inside) to the outside, the center coil 5, the secondary coil 3 wound on the secondary bobbin 4, and the primary wound on the primary bobbin 2. The coil 1 is arranged concentrically. These components are inserted into the outer case 6 and then filled with a thermosetting insulating resin (epoxy resin) 14. Outside the outer case 6, a side core 7 forming a magnetic path with the center core 5 is mounted.
[0010]
An elastic member 8 for stress absorption (for example, silicone rubber) is provided at an end (the upper end or the lower end may be provided) of the center core 5, and an elastic member 15 is provided around the center core 5, and is generated between the secondary bobbin 4 and the center core 5. Thermal stress (stress caused by a difference in linear expansion coefficient) is reduced. The elastic member 15 is made of heat-resistant silicone rubber (a soft epoxy resin in this example) or the like. The soft epoxy resin is an epoxy resin having a glass transition point of room temperature (20 ° C.) or lower and an elastic soft property (estramer) above the glass transition point, and is, for example, a mixture of an epoxy resin and a modified aliphatic polyamine. .
[0011]
The primary bobbin 2 is formed of a thermoplastic synthetic resin such as polybutylene terephthalate (PBT), polyphenylene oxide (modified PPO), or polyphenylene sulfide (PPS) having an inorganic filler content of 20% by weight or more in order to secure mechanical strength. The primary coil 1 wound on the primary bobbin 2 has an enamel wire having a wire diameter of about 0.3 to 1.0 mm, several tens to one hundred and several tens times per layer, and a total of 100 to 100
It is a winding wound about 300 times.
[0012]
The secondary bobbin 4 is also formed of a thermoplastic synthetic resin such as modified polyphenylene oxide (modified PPO) or polyphenylene sulfide (PPS) in which an inorganic substance is mixed in an amount of 20% by weight or more, more preferably 30% by weight or more. The secondary bobbin 4 has a cylindrical shape with a bottom, and is housed in the secondary bobbin 4 such that the above-described stress-absorbing elastic member 8 and the center core 5 can be received at the bottom of the secondary bobbin.
[0013]
The secondary bobbin 4 also has a role of interposing between the center core 5 and the secondary coil 3 to insulate the high voltage generated in the secondary coil 3. In order to insulate the high voltage generated in the secondary coil 3, the thickness of the secondary bobbin 4 is set to 0.5 to 1.5 mm, and furthermore, electric field concentration and stress concentration between the secondary coil 3 and the center core 5 are prevented. For this purpose, the center core 5 has an elastic member 15 injected into the inner peripheral side of the secondary bobbin 4 and is hardened and fixed.
[0014]
The secondary coil 3 is dividedly wound in a multilayer structure between a plurality of flanges provided on the secondary bobbin 4 in a total of about 10,000 to 30,000 times using an enamel wire having a wire diameter of about 0.03 to 0.06 mm.
[0015]
The epoxy resin 14 inserts the secondary coil 3 wound on the secondary bobbin 4 and the primary coil 1 wound on the primary bobbin 2 into the outer case 6, further supplies the igniter unit 21, and injects it in a vacuum state. Is done. Then, the epoxy resin 14 is cured by heating, so that insulation properties and mechanical strength can be secured.
[0016]
The outer case 6 is formed of a thermoplastic synthetic resin such as polyphenylene sulfide (PPS), and accommodates and fixes the coil portion so that the epoxy resin 14 can be cast.
[0017]
The cover 25 is formed of a thermoplastic synthetic resin, and is attached to the upper surface of the connector upper part 24 after the epoxy resin 14 is cured.
[0018]
Next, the concept of the present invention will be described with reference to FIG.
[0019]
When an impact such as a drop is applied to the upper surface of the connector 17, for example, a maximum stress is generated on the opposite side to which the impact is applied, and the magnitude of the maximum stress depends on the position of the entire center of gravity and the location where the impact is applied. Is multiplied by the impact force F. Therefore, in order to alleviate this stress, the overall impact force is reduced, the distance is shortened, or the center of gravity is lowered to the connector 17 side, the force applied in the opposite direction is reduced, and the location where the weak point is generated is reduced. It is effective means to change or to have a relaxation structure inside.
[0020]
For example, as shown in FIG. 3, by lowering the position of the mounting flange 17a on the upper surface of the connector 17 and shortening the distance, it is possible to reduce the moment force, and as shown in FIG. By bringing the position of the center core 5 having a large mass stored therein to the connector 17 side, the center of gravity can be moved to the connector side. Further, by attaching the cover 18 so as to cover the entire upper surface of the connector 17, it is possible to absorb with the cover 18. Further, by providing a gap 19 between the cover 18 and the connector 17, this effect can be enhanced.
[0021]
In FIG. 5A, as a method for suppressing the applied force, the notch 18a has a spring force by inserting the notch 18a in the cover 18, so that the entire applied force can be reduced. In FIG. 5B, the same effect can be obtained by sandwiching the rubber 26 on the upper surface or the lower surface of the cover 18, and at the same time, it becomes more effective if the material of the cover 18 is rubber. Further, in FIG. 5 (c), a projection 18b is provided on the upper surface of the cover 18, and the projection 18b hits first to obtain a relaxation force, to apply a force in the rotation direction, and to change the direction of the force to the center of gravity. Becomes possible.
[0022]
Further, by reducing the thickness of the cover 18 and the receiving surface 17b of the connector 17 to 1 mm or less, the rigidity of the connector 24 can be reduced, and the same effect can be obtained.
[0023]
In FIG. 5C, the cover 18 is fixed by using a silicone-based adhesive 27 so that the adhesive and the applied force of the soft resin can be reduced, and the adhesive 27 is cured at room temperature. By doing so, bonding can be performed without using a curing process, and productivity can be increased without impairing workability.
[0024]
FIG. 6 shows an example in which the elastic member 15 covering around the center core 5 is cast on the upper side of the epoxy resin 14 so that a crack does not enter the inside where the moment acts. The upper surface side of the secondary coil 3 has a low potential, the withstand voltage is not as strict as that of the lower surface side, and the case 6 has rigidity. Therefore, even if the elastic member 15 is contained therein, it sufficiently withstands vibration from the engine side. be able to. Further, since the elastic member 15 is subjected to vacuum casting, there is no fear that voids are formed therein.
[0025]
FIG. 7 shows an example of a result of analyzing each example by the finite element method. The maximum principal stress can be reduced to about 85 to 90% of the current state.
[0026]
【The invention's effect】
According to the present invention, a highly reliable coil having excellent thermal shock resistance and excellent external shock resistance can be realized.
[Brief description of the drawings]
FIG. 1 is a sectional view of an ignition coil for an internal combustion engine of the present invention.
FIG. 2 shows the concept of the present invention.
FIG. 3 is a sectional view showing an embodiment of the present invention.
FIG. 4 shows another embodiment of the present invention.
FIG. 5 shows another embodiment of the present invention.
FIG. 6 shows another embodiment of the present invention.
FIG. 7 is a comparison of maximum principal stress by a finite element method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Primary coil, 2 ... Primary bobbin, 3 ... Secondary coil, 4 ... Secondary bobbin, 5 ... Center core, 6 ... Outer case, 7 ... Side core, 8 ... Elastic member for stress absorption, 9 ... Spring, 10 ... Plug seal, 11 ... High voltage terminal, 12 ... Ita spring, 13 ... High voltage diode, 14 ... Insulating resin (epoxy resin), 15 ... Elastic member (Soft epoxy resin), 16 ... Plug hole seal, 17 ... Connector, 17a ... Flange, 17b ... receiving surface, 18 ... cover, 18a ... notch, 18b ... projection, 19 ... gap, 21 ... igniter unit, 26 ... rubber, 27 ... silicone adhesive.

Claims (11)

内燃機関のプラグホールに内挿されて各点火プラグに直結して使用される独立点火形の内燃機関用点火コイルであって、コイルケース内に内側から順にセンタコア,二次ボビンに巻かれた二次コイル,一次ボビンに巻かれた1次コイルが同心上に配置され、これらの構成部材間に絶縁用樹脂が充填されている内燃機関用点火コイルにおいて、コイル上面に設けたカバーで、コネクタ全体を覆う形状にすることを特徴とする内燃機関用点火コイル。An ignition coil for an internal combustion engine of an independent ignition type used by being inserted into a plug hole of an internal combustion engine and directly connected to each ignition plug, wherein a coil wound around a center core and a secondary bobbin in order from the inside in a coil case. In an ignition coil for an internal combustion engine in which a primary coil and a primary coil wound around a primary bobbin are concentrically arranged and an insulating resin is filled between these components, a cover provided on the upper surface of the coil is used to cover the entire connector. An ignition coil for an internal combustion engine, wherein the ignition coil has a shape that covers 請求項1のコネクタとカバー間には、0.5mm 以上の隙間を設けることを特徴とする内燃機関用点火コイル。2. An ignition coil for an internal combustion engine according to claim 1, wherein a gap of 0.5 mm 2 or more is provided between the connector and the cover. 請求項1,2のカバーにゴム材を用いることを特徴とする内燃機関用点火コイル。An ignition coil for an internal combustion engine, wherein a rubber material is used for the cover according to claim 1 or 2. 請求項3のカバーには、熱可塑性樹脂を用い、その内側、もしくは外側をゴム材で覆うことを特徴とする内燃機関用点火コイル。4. The ignition coil for an internal combustion engine according to claim 3, wherein the cover is made of a thermoplastic resin and the inside or the outside is covered with a rubber material. 請求項3,4において、ゴム材の厚さは、1mm以上とすることを特徴とする内燃機関用点火コイル。5. The ignition coil for an internal combustion engine according to claim 3, wherein the thickness of the rubber material is 1 mm or more. 請求項1,2のカバーには、熱可塑性樹脂を用い、そのカバーに切り欠き、又は上部,サイド部に突起を設けることを特徴とする内燃機関用点火コイル。3. An ignition coil for an internal combustion engine according to claim 1, wherein said cover is made of a thermoplastic resin, and said cover is provided with cutouts or projections on upper and side portions. 請求項1〜6において、カバーの固定は、常温硬化タイプでシリコン系の接着剤を用いることを特徴とする内燃機関用点火コイル。7. The ignition coil for an internal combustion engine according to claim 1, wherein the fixing of the cover uses a room temperature curing type silicone adhesive. 請求項1〜7において、カバーと接するコネクタの壁の厚みを薄く1mm以下にすることを特徴とする内燃機関用点火コイル。8. The ignition coil for an internal combustion engine according to claim 1, wherein the thickness of the wall of the connector in contact with the cover is thin and 1 mm or less. 請求項1〜8において、コネクタ固定用のフランジ部は、上面より落とし、段差を設けることを特徴とする内燃機関用点火コイル。9. The ignition coil for an internal combustion engine according to claim 1, wherein the flange portion for fixing the connector is dropped from an upper surface to provide a step. 請求項1〜9において、内側のセンタコアをフランジよりカバー側まで伸ばして配置することを特徴とする内燃機関用点火コイル。The ignition coil for an internal combustion engine according to claim 1, wherein the inner center core extends from the flange to the cover side. 請求項1〜10において、2次コイル全長の1/4から上面側を軟質エポキシを充填することを特徴とする内燃機関用点火コイル。The ignition coil for an internal combustion engine according to claim 1, wherein a soft epoxy is filled on the upper surface side from 1 / of the entire length of the secondary coil.
JP2003030262A 2003-02-07 2003-02-07 Ignition coil for internal combustion engine Pending JP2004241667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003030262A JP2004241667A (en) 2003-02-07 2003-02-07 Ignition coil for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003030262A JP2004241667A (en) 2003-02-07 2003-02-07 Ignition coil for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2004241667A true JP2004241667A (en) 2004-08-26

Family

ID=32957198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003030262A Pending JP2004241667A (en) 2003-02-07 2003-02-07 Ignition coil for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2004241667A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006296698A (en) * 2005-04-20 2006-11-02 Pentax Corp Protective end cap for endoscope
JP2007173835A (en) * 2005-12-23 2007-07-05 Robert Bosch Gmbh Ignition coil for internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006296698A (en) * 2005-04-20 2006-11-02 Pentax Corp Protective end cap for endoscope
JP4681928B2 (en) * 2005-04-20 2011-05-11 Hoya株式会社 Endoscope protective cap
JP2007173835A (en) * 2005-12-23 2007-07-05 Robert Bosch Gmbh Ignition coil for internal combustion engine

Similar Documents

Publication Publication Date Title
JP3727764B2 (en) Ignition coil device for engine and method for manufacturing the same
US6343595B1 (en) Ignition coil for internal combustion engine
KR100418005B1 (en) Ignition unit for engine
JP4587920B2 (en) Ignition coil for internal combustion engine
US5977856A (en) Ignition coil device for internal-combustion engine
JP3684300B2 (en) Narrow cylindrical engine ignition coil device mounted in plug hole
JP2004241667A (en) Ignition coil for internal combustion engine
JP3561121B2 (en) Ignition coil for internal combustion engine
JP2008166365A (en) Insulating member for ignition coil
JP4063304B2 (en) Ignition device for internal combustion engine
JP2000208344A (en) Ignition coil
JP4926370B2 (en) Ignition coil for internal combustion engine
JP3517093B2 (en) Engine ignition coil device and engine with plastic head cover
JP3839800B2 (en) Ignition circuit unit integrated ignition coil
JP4055751B2 (en) Ignition device for internal combustion engine
JP2003229319A (en) Ignition coil for internal combustion engine
JP2000208346A (en) Ignition coil for internal combustion engine and manufacture of the same
JP2000269056A (en) Ignition coil for internal combustion engine
JP2003124042A (en) Ignition coil
JPH10340822A (en) Igniter for internal combustion engine
JP2004048019A (en) Ignitor for internal combustion engine
JP2003068541A (en) Ignition coil for internal combustion engine
JP2000243639A (en) Ignition control device of internal combustion engine
JPH10112413A (en) Ignition coil
JP2000311824A (en) Ignition coil for internal combustion engine