JP2004241261A - Measuring method of amount of hydrogen storage - Google Patents

Measuring method of amount of hydrogen storage Download PDF

Info

Publication number
JP2004241261A
JP2004241261A JP2003029466A JP2003029466A JP2004241261A JP 2004241261 A JP2004241261 A JP 2004241261A JP 2003029466 A JP2003029466 A JP 2003029466A JP 2003029466 A JP2003029466 A JP 2003029466A JP 2004241261 A JP2004241261 A JP 2004241261A
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen storage
amount
storage alloy
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003029466A
Other languages
Japanese (ja)
Inventor
Kazuya Akiyama
一也 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2003029466A priority Critical patent/JP2004241261A/en
Publication of JP2004241261A publication Critical patent/JP2004241261A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To supply a system in which downsizing and cost reduction are possible, and accurately measuring the amount of hydrogen storage in a hydrogen storage alloy tank is possible in which hydrogen storage alloy of a fuel cell of simple constitution is housed. <P>SOLUTION: This system has a temperature sensor 2 to measure temperature of the hydrogen storage alloy in the hydrogen storage alloy tank 1 in which the hydrogen storage alloy of the fuel cell 4 is housed, a hydrogen flow-path 6 by which the hydrogen is supplied from the hydrogen storage alloy tank 1 to the fuel cell 4, and a pressure sensor to measure hydrogen pressure of the hydrogen flow-path 6. The amount of hydrogen storage in the hydrogen storage alloy is obtained by means of a function to express the relationship between the hydrogen pressure and the amount of hydrogen storage in a respective temperature obtained beforehand by experiments. As for the function to express the relationship between the hydrogen pressure and the hydrogen storage at the respective temperature, an exponential function is used. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、水素吸蔵合金が収められた水素吸蔵合金タンク内の水素吸蔵量の測定方法に関する。
【0002】
【従来の技術】
【特許文献1】特開平5−10211号公報
【特許文献2】特開2002−107320号公報
水素を燃料とする固体高分子型燃料電池(PEFC)は、動作温度が100℃以下と低く、電力密度が高いため小型化が容易であり、現在電気自動車や携帯端末の電力源として期待されている。燃料電池を持ち運び可能なものとするためには、燃料である水素を容器に入れて持ち運ぶことが必要である。この方法として水素吸蔵合金へ吸蔵させる方法や、耐圧容器中に高圧ガスとして注入する方法が一般的であるが、高圧ガスの危険性や水素ガスの体積密度が低いということから、人が持ち運ぶ場合には水素吸蔵合金の利用が有利である。
水素吸蔵合金を水素吸蔵手段として利用するためには、現在の水素吸蔵量を知ることが必要である。従来このような水素吸蔵量の測定方法としては、流量計による水素流量の積算や水素圧力の測定によって行われていた
【特許文献1】。
また、水素吸蔵タンク内に電極を設け、さらに絶縁体からなる通電経路迂回手段を水素吸蔵タンク内に備えることにより、水素吸蔵量を反映する通電性を検出することによって水素吸蔵量を測定していた
【特許文献2】。
【0003】
【発明が解決しようとする課題】
情報端末のような小型機器に燃料電池を適用する場合には燃料電池の小型・低コスト化が必須であるが、流量計によって水素流量を積算し水素吸蔵量を測定する方法では、好ましい精度が得られず、また流量計が必要となることから、システムの小型・低コスト化が困難であった。図2に水素圧力(MPa)と水素吸蔵量〔cc(cm)/g〕との関係を示す。水素圧力のみによって水素吸蔵量を測定する場合には、水素吸蔵量が一定の場合においても、水素吸蔵合金の温度が高くなると水素圧力が高くなり、見掛け上、水素吸蔵量が増えたように見えるため、正確な水素吸蔵量を測定することが困難であった。
さらに、水素吸蔵タンク内に電極を設け、水素吸蔵量を的確に反映する通電性を検出することによって水素吸蔵量を測定する方法では、好ましい精度が得られる一方で水素吸蔵合金タンクが複雑になり、システムの小型・低コスト化が困難であった。
【0004】
本発明の目的は、上記したような従来システムの欠点に鑑みてなされたものであり、小型・低コスト化が可能な簡易な構成によって、水素吸蔵タンク内の水素吸蔵量を正確に測定することが可能なシステムを供給することにある。
【0005】
【課題を解決するための手段】
上記目的を達成するために本発明は特許請求の範囲に記載のような構成とするものである。すなわち、
請求項1に記載のように、水素吸蔵合金に吸蔵された水素を燃料として用いて発電を行う燃料電池システムにおいて、上記水素吸蔵合金中の水素吸蔵量を測定する方法であって、あらかじめ実験により求められた上記水素吸蔵合金の各温度における水素圧力と水素吸蔵量との関係を表す関数によって、上記水素吸蔵合金中の水素吸蔵量を求める水素吸蔵量の測定方法とするものである。
【0006】
また、請求項2に記載のように、請求項1に記載の水素吸蔵量の測定方法において、各温度における水素圧力と水素吸蔵量の関係を表す関数は指数関数である水素吸蔵量の測定方法とするものである。
【0007】
また、請求項3に記載のように、水素吸蔵合金に吸蔵された水素を燃料として用いて発電を行う燃料電池システムにおける上記水素吸蔵合金中の水素の吸蔵量を測定する方法において、水素吸蔵合金タンクと燃料電池との間の水素流路に設けた圧力センサにより水素圧力を検出し、この時、同時に水素吸蔵合金タンクに設けられた温度センサにより水素貯蔵合金の温度を検出し、こうして得られた圧力データおよび温度データを演算および記憶装置によって演算処理することにより、上記水素吸蔵合金タンク中の水素吸蔵量を求める水素吸蔵量の測定方法とするものである。
【0008】
また、請求項4に記載のように、水素吸蔵合金に吸蔵された水素を燃料として用いて発電を行う燃料電池システムにおける水素吸蔵合金中の水素吸蔵量を測定する方法において、水素吸蔵合金の各温度における水素圧力をy軸とし、水素吸蔵合金タンクの水素吸蔵量(cc/g)をx軸として、水素圧力をy軸において対数で表すと、x軸に表した水素吸蔵量に対して水素圧力が直線的に変化し、各温度についてy軸を対数で示したグラフ上では直線で表される一次関数、すなわち指数関数によって近似を行う水素吸蔵量の測定方法とするものである。
【0009】
上記のような水素吸蔵量の測定方法とすることにより、水素吸蔵合金の温度が変化した場合においても正確に、かつ簡易なシステム構成によって水素吸蔵量を知ることが可能となる。
【0010】
【発明の実施の形態】
以下図面を参照して本発明の実施の形態を詳細に説明する。
図1は本発明の実施の形態の一例である水素吸蔵合金が収められた水素吸蔵合金タンク1によって、水素が供給される小型燃料電池システムの構成を示す模式図であり、2は温度センサ、3は圧力センサ、4は燃料電池、5は演算および記憶装置、6は水素流路を示す。
水素吸蔵合金タンク1中の水素吸蔵合金より放出される水素を燃料とし燃料電池4が発電を行うことによって、水素吸蔵合金タンク1および水素流路6における水素圧力が減少する。この水素圧力を圧力センサ3によって検出し、このときの水素吸蔵合金の温度を水素吸蔵合金タンク1の温度として温度センサ2によって同時に検出する。なお、水素吸蔵合金の温度測定は、直接温度センサ2を水素吸蔵合金タンク1内に挿入し測定することも可能である。こうして得られた圧力データおよび温度データを演算および記憶装置5によって演算処理することにより、水素吸蔵合金タンク1中の水素吸蔵合金の水素吸蔵量を正確に求めることができる。
【0011】
次に演算および記憶装置5中で行われる演算処理について説明する。図3は水素吸蔵合金の各温度(℃)における水素圧力(MPa)と水素吸蔵量〔cc(cm)/g〕の関係を表すグラフの一例である。ここで水素圧力をy軸において対数で表すと、x軸に表した水素吸蔵量に対して水素圧力がほぼ直線的に変化し、各温度において直線の傾きがほぼ等しく、かつ温度に比例してy軸方向に直線が変移している領域が認められる。そこでこの領域を水素吸蔵合金の使用範囲とし、各温度についてy軸を対数で示したグラフ上において直線で表される一次関数、すなわち指数関数によって近似を行う。図4は直線によって近似された、温度T、T、T、(ただしT<T<T)における水素圧力(MPa)と水素残量(水素吸蔵量)との関係を表したグラフである。x軸は図3における使用範囲の上限を1、下限を0とした水素残量[水素吸蔵量〔cc(cm)/g〕]として表した。これらの関数は、それぞれ次に示す(数1)、(数2)、(数3)式と表すことができる。
【0012】
【数1】

Figure 2004241261
【0013】
【数2】
Figure 2004241261
【0014】
【数3】
Figure 2004241261
上記(数1)、(数2)、(数3)式において、温度によって異なるのはbT1、bT2、bT3の値である。さらに、bT1、bT2、bT3に関して、次の(数4)式に示す関係が成り立つ。
【0015】
【数4】
Figure 2004241261
上記(数4)式の値(η)を、次の(数5)式で表す。
【0016】
【数5】
Figure 2004241261
温度TにおけるbTsの値はbT1、bT2、bT3を内挿または外挿して求めることが可能であり、Tを基準とすると、次の(数6)式で表すことができる。
【0017】
【数6】
Figure 2004241261
温度Tにおける水素圧力(y)と水素吸蔵量xの関係は上記(数6)式を用いると、次の(数7)式で示される。
【0018】
【数7】
Figure 2004241261
よって、温度T、水素圧力(y)である場合の水素吸蔵量xは、上記(数5)式の(η)を用いると、上記(数7)式より、次の(数8)式に示す関係式から水素吸蔵量xを求めることが可能となる。
【0019】
【数8】
Figure 2004241261
図5に温度T(T<T<T)、水素圧力Pの場合における水素吸蔵量の求め方を示す。図5によると、この場合の水素吸蔵量は水素が十分に充填された状態を1とした場合の3/8であることが分かる。よってこの方法によれば、水素吸蔵合金温度が変化した場合においても、正確に水素吸蔵量を知ることが可能となる。
以上、本発明の実施形態例につき説明したが、本発明は、必ずしも上記した手段および手法に限定されるものではなく、本発明にいう目的を達成し、本発明にいう効果を有する範囲において適宜変更実施することが可能なものである。
【0020】
【発明の効果】
以上述べたように本発明によれば、水素吸蔵合金が収められた水素吸蔵タンク中の水素吸蔵量を、各温度における水素圧力と水素吸蔵量の関係を表す関数から求めることによって、水素吸蔵合金温度が変化した場合においても正確に、かつ簡易なシステム構成によって水素吸蔵量を知ることが可能となる。
【図面の簡単な説明】
【図1】本発明の実施の形態で例示した燃料電池システムの構成を示す模式図。
【図2】本発明の実施の形態で例示した燃料電池の水素吸蔵合金の水素圧力と水素吸蔵量の関係を示すグラフ。
【図3】本発明の実施の形態で例示した水素吸蔵合金の各温度における水素圧力と水素吸蔵量の関係を示すグラフ。
【図4】本発明の実施の形態で例示した水素吸蔵合金の直線にによって近似された、温度T、T、T、(ただしT<T<T)における水素圧力と水素吸蔵量の関係を示すグラフ。
【図5】本発明の実施の形態で例示した水素吸蔵合金の温度T(T<T<T)、水素圧力Pの場合における水素吸蔵量の求め方を示すグラフ。
【符号の説明】
1…水素吸蔵合金タンク
2…温度センサ
3…圧力センサ
4…燃料電池
5…演算および記憶装置
6…水素流路[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for measuring a hydrogen storage amount in a hydrogen storage alloy tank containing a hydrogen storage alloy.
[0002]
[Prior art]
Patent Document 1: Japanese Patent Application Laid-Open No. 5-10211 Patent Document 2: Japanese Patent Application Laid-Open No. 2002-107320 A polymer electrolyte fuel cell (PEFC) using hydrogen as a fuel has an operation temperature as low as 100 ° C. or less, and an electric power. Due to its high density, miniaturization is easy, and it is currently expected as a power source for electric vehicles and portable terminals. In order to make a fuel cell portable, it is necessary to carry hydrogen as a fuel in a container. This method is generally a method of storing in a hydrogen storage alloy or a method of injecting it as a high-pressure gas into a pressure-resistant container.However, due to the danger of the high-pressure gas and the low volume density of hydrogen gas, when a person carries it. It is advantageous to use a hydrogen storage alloy.
In order to use the hydrogen storage alloy as hydrogen storage means, it is necessary to know the current amount of hydrogen storage. Conventionally, such a method of measuring the amount of stored hydrogen has been performed by integrating the flow rate of hydrogen using a flow meter and measuring the hydrogen pressure [Patent Document 1].
In addition, an electrode is provided in the hydrogen storage tank, and an energization path bypass means made of an insulator is provided in the hydrogen storage tank, so that the hydrogen storage amount is measured by detecting the conductivity reflecting the hydrogen storage amount. [Patent Document 2].
[0003]
[Problems to be solved by the invention]
When a fuel cell is applied to a small device such as an information terminal, it is necessary to reduce the size and cost of the fuel cell.However, in the method of integrating the hydrogen flow rate with a flow meter and measuring the amount of hydrogen storage, preferable accuracy is obtained. It was difficult to reduce the size and cost of the system because it was not possible and a flow meter was required. FIG. 2 shows the relationship between the hydrogen pressure (MPa) and the hydrogen storage amount [cc (cm 3 ) / g]. When the hydrogen storage amount is measured only by the hydrogen pressure, even when the hydrogen storage amount is constant, the hydrogen pressure increases as the temperature of the hydrogen storage alloy increases, and apparently the hydrogen storage amount increases. Therefore, it has been difficult to accurately measure the hydrogen storage amount.
Furthermore, in the method of measuring the amount of hydrogen storage by providing an electrode in the hydrogen storage tank and detecting the electric conductivity that accurately reflects the amount of hydrogen storage, the hydrogen storage alloy tank becomes complicated while favorable accuracy is obtained. However, it has been difficult to reduce the size and cost of the system.
[0004]
An object of the present invention has been made in view of the above-described drawbacks of the conventional system, and is to accurately measure the amount of hydrogen storage in a hydrogen storage tank by a simple configuration that can be reduced in size and cost. To provide a possible system.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is configured as described in the claims. That is,
As described in claim 1, in a fuel cell system for generating electricity using hydrogen stored in a hydrogen storage alloy as a fuel, a method for measuring the amount of hydrogen stored in the hydrogen storage alloy, the method comprising: The present invention is a method for measuring the amount of hydrogen occlusion in which the amount of hydrogen occluded in the hydrogen storage alloy is determined by a function representing the relationship between the obtained hydrogen pressure and the amount of hydrogen occlusion at each temperature of the hydrogen storage alloy.
[0006]
According to a second aspect of the present invention, in the method for measuring a hydrogen storage amount according to the first aspect, the function representing the relationship between the hydrogen pressure and the hydrogen storage amount at each temperature is an exponential function. It is assumed that.
[0007]
According to a third aspect of the present invention, there is provided a method for measuring the amount of hydrogen stored in the hydrogen storage alloy in a fuel cell system for generating power using hydrogen stored in the hydrogen storage alloy as a fuel. The hydrogen pressure is detected by a pressure sensor provided in the hydrogen flow path between the tank and the fuel cell, and at the same time, the temperature of the hydrogen storage alloy is simultaneously detected by the temperature sensor provided in the hydrogen storage alloy tank. The pressure data and the temperature data obtained are calculated and processed by a storage device to provide a method of measuring the amount of hydrogen storage for obtaining the amount of hydrogen storage in the hydrogen storage alloy tank.
[0008]
According to a fourth aspect of the present invention, there is provided a method for measuring the amount of hydrogen occluded in a hydrogen storage alloy in a fuel cell system in which power is generated using hydrogen stored in the hydrogen storage alloy as a fuel. When the hydrogen pressure at the temperature is set on the y-axis, the hydrogen storage amount (cc / g) of the hydrogen storage alloy tank is set on the x-axis, and the hydrogen pressure is expressed in logarithm on the y-axis, the hydrogen storage amount on the x-axis is In this method, the pressure changes linearly, and the hydrogen storage amount is approximated by a linear function, that is, an exponential function represented by a straight line on a graph in which the y-axis is represented by a logarithm for each temperature.
[0009]
By adopting the method for measuring the hydrogen storage amount as described above, it becomes possible to know the hydrogen storage amount accurately and with a simple system configuration even when the temperature of the hydrogen storage alloy changes.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic diagram showing a configuration of a small fuel cell system in which hydrogen is supplied by a hydrogen storage alloy tank 1 containing a hydrogen storage alloy according to an embodiment of the present invention. Reference numeral 3 denotes a pressure sensor, 4 denotes a fuel cell, 5 denotes a calculation and storage device, and 6 denotes a hydrogen flow path.
The hydrogen pressure in the hydrogen storage alloy tank 1 and the hydrogen flow path 6 is reduced by the fuel cell 4 generating power using hydrogen released from the hydrogen storage alloy in the hydrogen storage alloy tank 1 as fuel. This hydrogen pressure is detected by the pressure sensor 3, and the temperature of the hydrogen storage alloy at this time is simultaneously detected by the temperature sensor 2 as the temperature of the hydrogen storage alloy tank 1. The temperature of the hydrogen storage alloy can be measured by directly inserting the temperature sensor 2 into the hydrogen storage alloy tank 1. The pressure data and temperature data obtained in this manner are subjected to arithmetic processing by the arithmetic and storage device 5, whereby the hydrogen storage amount of the hydrogen storage alloy in the hydrogen storage alloy tank 1 can be accurately obtained.
[0011]
Next, calculation and calculation processing performed in the storage device 5 will be described. FIG. 3 is an example of a graph showing the relationship between the hydrogen pressure (MPa) and the hydrogen storage amount [cc (cm 3 ) / g] at each temperature (° C.) of the hydrogen storage alloy. Here, when the hydrogen pressure is represented by a logarithm on the y-axis, the hydrogen pressure changes almost linearly with respect to the amount of hydrogen absorbed on the x-axis, and the slope of the straight line is substantially equal at each temperature and proportional to the temperature. An area where the straight line shifts in the y-axis direction is recognized. Therefore, this region is defined as a range of use of the hydrogen storage alloy, and approximation is performed at each temperature by a linear function, that is, an exponential function represented by a straight line on a graph showing the logarithm of the y-axis. FIG. 4 shows the relationship between the hydrogen pressure (MPa) and the remaining hydrogen amount (hydrogen storage amount) at temperatures T 1 , T 2 , T 3 (where T 1 <T 2 <T 3 ), approximated by a straight line. It is the graph which did. The x-axis is shown as the remaining amount of hydrogen [hydrogen storage amount [cc (cm 3 ) / g]] with the upper limit of the use range in FIG. These functions can be represented by the following (Equation 1), (Equation 2), and (Equation 3), respectively.
[0012]
(Equation 1)
Figure 2004241261
[0013]
(Equation 2)
Figure 2004241261
[0014]
[Equation 3]
Figure 2004241261
In the above equations (Equation 1), (Equation 2), and (Equation 3), the values of bT1 , bT2 , and bT3 differ depending on the temperature. Further, the relationship shown in the following (Formula 4) holds for b T1 , b T2 , and b T3 .
[0015]
(Equation 4)
Figure 2004241261
The value (η) of the above equation (4) is represented by the following equation (5).
[0016]
(Equation 5)
Figure 2004241261
The value of b Ts at the temperature T s can be obtained by interpolating or extrapolating b T1 , b T2 , and b T3 , and can be expressed by the following (Equation 6) based on T 1. .
[0017]
(Equation 6)
Figure 2004241261
When the relationship of the hydrogen pressure (y) and the hydrogen storage amount x at a temperature T s is using the above equation (6) is expressed by the following equation (7).
[0018]
(Equation 7)
Figure 2004241261
Therefore, the hydrogen storage amount x when the temperature is T s and the hydrogen pressure (y) is given by the following expression (8) from the expression (7) using the expression (η) in the expression (5). It is possible to obtain the hydrogen storage amount x from the relational expression shown below.
[0019]
(Equation 8)
Figure 2004241261
5 to the temperature T s (T 1 <T s <T 2), shows how to determine the hydrogen storage capacity in the case of the hydrogen pressure P s. According to FIG. 5, it can be seen that the hydrogen storage amount in this case is / of the case where the state where hydrogen is sufficiently filled is set to 1. Therefore, according to this method, even if the temperature of the hydrogen storage alloy changes, the hydrogen storage amount can be accurately known.
As described above, the embodiments of the present invention have been described. However, the present invention is not necessarily limited to the above-described means and methods, and may be achieved within the scope of achieving the object of the present invention and having the effects of the present invention. Changes can be made.
[0020]
【The invention's effect】
As described above, according to the present invention, the hydrogen storage amount in the hydrogen storage tank containing the hydrogen storage alloy is obtained from a function representing the relationship between the hydrogen pressure and the hydrogen storage amount at each temperature, whereby the hydrogen storage alloy is obtained. Even when the temperature changes, it is possible to know the hydrogen storage amount accurately and with a simple system configuration.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a configuration of a fuel cell system exemplified in an embodiment of the present invention.
FIG. 2 is a graph showing a relationship between a hydrogen pressure and a hydrogen storage amount of a hydrogen storage alloy of the fuel cell exemplified in the embodiment of the present invention.
FIG. 3 is a graph showing a relationship between hydrogen pressure and hydrogen storage amount at each temperature of the hydrogen storage alloy exemplified in the embodiment of the present invention.
FIG. 4 shows hydrogen pressure and hydrogen at temperatures T 1 , T 2 , T 3 (where T 1 <T 2 <T 3 ) approximated by a straight line of the hydrogen storage alloy exemplified in the embodiment of the present invention. 4 is a graph showing a relationship between occlusion amounts.
FIG. 5 is a graph showing a method of obtaining a hydrogen storage amount in the case of a temperature T s (T 1 <T s <T 2 ) and a hydrogen pressure P s of the hydrogen storage alloy exemplified in the embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Hydrogen storage alloy tank 2 ... Temperature sensor 3 ... Pressure sensor 4 ... Fuel cell 5 ... Calculation and storage device 6 ... Hydrogen flow path

Claims (4)

水素吸蔵合金に吸蔵された水素を燃料として用いて発電を行う燃料電池システムにおいて、上記水素吸蔵合金中の水素吸蔵量を測定する方法であって、あらかじめ実験により求められた上記水素吸蔵合金の各温度における水素圧力と水素吸蔵量との関係を表す関数によって、上記水素吸蔵合金中の水素吸蔵量を求めることを特徴とする水素吸蔵量の測定方法。In a fuel cell system for generating power using hydrogen stored in a hydrogen storage alloy as a fuel, a method for measuring the amount of hydrogen storage in the hydrogen storage alloy, wherein each of the hydrogen storage alloys determined in advance by experiments A method for measuring the amount of hydrogen occlusion, wherein the amount of occluded hydrogen in the hydrogen-absorbing alloy is determined by a function representing the relationship between the hydrogen pressure at temperature and the amount of hydrogen occlusion. 請求項1に記載の水素吸蔵量の測定方法において、各温度における水素圧力と水素吸蔵量の関係を表す関数は指数関数であることを特徴とする水素吸蔵量の測定方法。2. The method for measuring a hydrogen storage amount according to claim 1, wherein a function representing a relationship between the hydrogen pressure and the hydrogen storage amount at each temperature is an exponential function. 水素吸蔵合金に吸蔵された水素を燃料として用いて発電を行う燃料電池システムにおける、上記水素吸蔵合金中の水素の吸蔵量を測定する方法であって、水素吸蔵合金タンクと燃料電池間の水素流路に設けた圧力センサにより水素圧力を検出し、この時、同時に水素吸蔵合金タンクに設けられた温度センサにより水素貯蔵合金の温度を検出し、こうして得られた圧力データおよび温度データを演算および記憶装置によって演算処理することにより、上記水素吸蔵合金タンク中の水素吸蔵量を求めることを特徴とする水素吸蔵量の測定方法。A method for measuring the amount of hydrogen stored in a hydrogen storage alloy in a fuel cell system for generating power using hydrogen stored in a hydrogen storage alloy as a fuel, comprising: The hydrogen pressure is detected by the pressure sensor provided in the passage, and at this time, the temperature of the hydrogen storage alloy is simultaneously detected by the temperature sensor provided in the hydrogen storage alloy tank, and the obtained pressure data and temperature data are calculated and stored. A method for measuring the amount of hydrogen occlusion, wherein the amount of hydrogen occlusion in the hydrogen storage alloy tank is obtained by performing arithmetic processing by a device. 水素吸蔵合金に吸蔵された水素を燃料として用いて発電を行う燃料電池システムにおける水素吸蔵合金中の水素吸蔵量を測定する方法であって、水素吸蔵合金の各温度(℃)における水素圧力(MPa)をy軸とし、水素吸蔵合金タンクの水素吸蔵量(cc/g)をx軸として、水素圧力をy軸において対数で表すと、x軸に表した水素吸蔵量に対して水素圧力が直線的に変化し、各温度についてy軸を対数で示したグラフ上においては直線で表される一次関数、すなわち指数関数によって近似することを特徴とする水素吸蔵量の測定方法。A method for measuring the amount of hydrogen occlusion in a hydrogen storage alloy in a fuel cell system in which power is generated using hydrogen stored in the hydrogen storage alloy as a fuel, comprising a hydrogen pressure (MPa) at each temperature (° C.) of the hydrogen storage alloy. ) Is the y-axis, the hydrogen storage amount (cc / g) of the hydrogen storage alloy tank is the x-axis, and the hydrogen pressure is expressed as a logarithm on the y-axis. A method of measuring the amount of hydrogen storage, characterized in that the temperature is approximated by a linear function represented by a straight line, that is, an exponential function on a graph showing a logarithm of the y-axis for each temperature.
JP2003029466A 2003-02-06 2003-02-06 Measuring method of amount of hydrogen storage Pending JP2004241261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003029466A JP2004241261A (en) 2003-02-06 2003-02-06 Measuring method of amount of hydrogen storage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003029466A JP2004241261A (en) 2003-02-06 2003-02-06 Measuring method of amount of hydrogen storage

Publications (1)

Publication Number Publication Date
JP2004241261A true JP2004241261A (en) 2004-08-26

Family

ID=32956633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003029466A Pending JP2004241261A (en) 2003-02-06 2003-02-06 Measuring method of amount of hydrogen storage

Country Status (1)

Country Link
JP (1) JP2004241261A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006035919A1 (en) * 2004-09-28 2006-04-06 Canon Kabushiki Kaisha Fuel cell device capable of outputting a signal representing a residual capacity, method for outputting a signal representing a residual capacity of a fuel cell device, and electronic device capable of detecting a residual capacity of a fuel cell device
US7972738B2 (en) 2006-10-18 2011-07-05 Olympus Imaging Corp. Residual capacity detection method and residual capacity detection system for fuel cell battery
US8168338B2 (en) 2006-07-13 2012-05-01 Olympus Imaging Corp. Mobile terminal equipment using fuel battery and fuel battery system for mobile terminal equipment
CN106684407A (en) * 2016-12-27 2017-05-17 北京有色金属研究总院 System and method for controlling and optimizing hydrogen utilization factor of alloy hydrogen-storage fuel cell
JP2019183862A (en) * 2018-04-02 2019-10-24 清水建設株式会社 Hydrogen storage rate estimation system and hydrogen storage rate estimation method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006035919A1 (en) * 2004-09-28 2006-04-06 Canon Kabushiki Kaisha Fuel cell device capable of outputting a signal representing a residual capacity, method for outputting a signal representing a residual capacity of a fuel cell device, and electronic device capable of detecting a residual capacity of a fuel cell device
JP2006099984A (en) * 2004-09-28 2006-04-13 Canon Inc Fuel cell with output function utilizing remaining quantity, output method of remaining quantity of fuel cell and electronic apparatus having detecting function of remaining quantity of fuel cell
KR100879309B1 (en) * 2004-09-28 2009-01-19 캐논 가부시끼가이샤 Fuel cell device capable of outputting a signal representing a residual capacity, method for outputting a signal representing a residual capacity of a fuel cell device, and electronic device capable of detecting a residual capacity of a fuel cell device
US8440360B2 (en) 2004-09-28 2013-05-14 Canon Kabushiki Kaisha Fuel cell device capable of outputting a signal representing a residual capacity, method for outputting a signal representing a residual capacity of a fuel cell device, and electronic device capable of detecting a residual capacity of a fuel cell device
US8168338B2 (en) 2006-07-13 2012-05-01 Olympus Imaging Corp. Mobile terminal equipment using fuel battery and fuel battery system for mobile terminal equipment
US7972738B2 (en) 2006-10-18 2011-07-05 Olympus Imaging Corp. Residual capacity detection method and residual capacity detection system for fuel cell battery
CN106684407A (en) * 2016-12-27 2017-05-17 北京有色金属研究总院 System and method for controlling and optimizing hydrogen utilization factor of alloy hydrogen-storage fuel cell
JP2019183862A (en) * 2018-04-02 2019-10-24 清水建設株式会社 Hydrogen storage rate estimation system and hydrogen storage rate estimation method
JP7195519B2 (en) 2018-04-02 2022-12-26 清水建設株式会社 Hydrogen storage rate estimation system and hydrogen storage rate estimation method

Similar Documents

Publication Publication Date Title
US6584825B2 (en) Method and apparatus for determining the amount of hydrogen in a vessel
JP5725704B2 (en) Sensor element for measuring a gas component in a gas mixture, its method and its use
JP5091067B2 (en) Method and apparatus for estimating remaining battery level
US8521456B2 (en) State estimation method and state estimation apparatus of electric storage element
JP4061556B2 (en) Hydrogen amount sensor and hydrogen storage device
Yang et al. A mathematical model to study the performance of a proton exchange membrane fuel cell in a dead-ended anode mode
US20140272653A1 (en) Flow Battery System and Method of SOC Determination
JP2015534081A (en) Method for operating a solid electrolyte sensor element including a pump cell
JP2010127938A5 (en)
JP6385620B2 (en) Storage battery protection device and power storage system
JP2000081404A (en) Hydrogen quantity measuring device
JP3203062B2 (en) Method for measuring residual hydrogen content in hydrogen storage alloy container
JP2001216991A (en) Device and method for evaluating performance of fuel cell, device and method for evaluating specific surface area of electrode catalyst for fuel cell, and electrode catalyst for fuel cell and its production
JP2004241261A (en) Measuring method of amount of hydrogen storage
JP2008196903A (en) Hydrogen quantity sensor
WO1990005911A1 (en) Method and apparatus for analyzing oxygen
JP2005044602A (en) Analysis method and program of physical and chemical property of fuel cell
JP2019061786A (en) State estimation device of alkaline secondary battery
Purushothaman et al. Analysis of pressure variations in a low-pressure nickel–hydrogen battery. Part 2: Cells with metal hydride storage
FR2914786A1 (en) Gas flow rate evaluating method for fuel cell of e.g. motor vehicle, involves calculating total molar flow rate of gas with respect to formula comprising parameters of hydrogen concentrations, current, number of cells and Faraday&#39;s constant
JP2016521855A (en) Gas sensor for measuring a plurality of different gases and associated manufacturing method
Chen et al. A synchronous investigation of the degradation of metallic bipolar plates in real and simulated environments of polymer electrolyte membrane fuel cells
JP2009276188A (en) Hydrogen gas sensor
JP2004171945A (en) Remaining capacity detecting method for fuel cell, and remaining capacity detector for fuel cell
WO2011145150A1 (en) Hydrogen gas sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080205