JP2004241221A - Anisotropic conductive film and electronic apparatus using the same - Google Patents

Anisotropic conductive film and electronic apparatus using the same Download PDF

Info

Publication number
JP2004241221A
JP2004241221A JP2003028015A JP2003028015A JP2004241221A JP 2004241221 A JP2004241221 A JP 2004241221A JP 2003028015 A JP2003028015 A JP 2003028015A JP 2003028015 A JP2003028015 A JP 2003028015A JP 2004241221 A JP2004241221 A JP 2004241221A
Authority
JP
Japan
Prior art keywords
anisotropic conductive
conductive film
resistance
film
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003028015A
Other languages
Japanese (ja)
Inventor
Hideyuki Tanaka
英行 田中
Akito Miyamoto
明人 宮本
Tadashi Morimoto
廉 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003028015A priority Critical patent/JP2004241221A/en
Publication of JP2004241221A publication Critical patent/JP2004241221A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00013Fully indexed content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01011Sodium [Na]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01016Sulfur [S]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01024Chromium [Cr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01025Manganese [Mn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01027Cobalt [Co]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01045Rhodium [Rh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01051Antimony [Sb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01052Tellurium [Te]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits

Abstract

<P>PROBLEM TO BE SOLVED: To vary the resistance reversibly in the thickness direction of anisotropic conductive films used in various electronic apparatuses. <P>SOLUTION: An organic dielectric film 18 with a metal 19 embedded in a hole penetrating through the thickness direction of the film faces an organic dielectric film 15 with a metal 16 smaller than the metal 19 embedded in a hole penetrating through the thickness direction. A variable resistance substance 17 is sandwiched between these two films and glued. The resistance of the variable resistance substance 17 is varied reversibly by applying an electric pulse between electrodes 13 of an IC chip 11 and a circuit substrate 12 facing each other, which provides an anisotropic conductive film 14 of which resistance in thickness direction varies locally and reversibly. <P>COPYRIGHT: (C)2004,JPO&amp;NCIPI

Description

【0001】
【発明の属する利用分野】
本発明は、ICチップと回路基板との接続に有用な、新規な構造を有する異方性導電膜とそれを用いた電子機器に関する。
【0002】
【従来の技術】
従来、異方性導電膜は有機誘電体膜にその表面から裏面までを貫通する微細な導電体を埋め込んだものが知られている(例えば特許文献1参照)。また、導電性微粒子を有機誘電体膜内部に一様に分散させているものや導電性微粒子の直鎖状凝集体を分散させたものもある(例えば、非特許文献1参照)。以下に、図面を用いて従来の技術を説明する。
【0003】
図7は従来の異方性導電膜74の構造を示しており、厚さ方向に微細な孔を開けた有機誘電体膜15と、孔内部に電気化学的に充填した金属16から構成されている。異方性導電膜74はICチップ11と回路基板12の間に挟んで熱圧着され、ICチップ11と回路基板12の電極13を電気的に接続し、ICチップ11が回路基板12に実装される。
【0004】
他方、電気的な制御信号により、高抵抗状態と低抵抗状態の2状態間を可逆的に変化する様々な抵抗変化物質が知られている。その主なものは、(1)相変化材料(例えば特許文献2参照)、(2)金属デンドライトを形成するイオン導電材料(例えば特許文献3もしくは非特許文献2参照)、(3)巨大磁気抵抗(CMR)材料(例えば非特許文献3参照)、(4)LB膜材料(例えば非特許文献4参照)等である。
【0005】
抵抗変化物質の作製方法として、電気化学的手法で金属電極を硫化させ目的の抵抗変化物質を形成する方法が知られている。(例えば非特許文献2参照)
【0006】
【特許文献1】
特開2002−76056号公報(第2図)
【特許文献2】
特開平5−21740号公報
【特許文献3】
特表2000−512058号公報
【非特許文献1】
日経メカニカル、“住友電工,鎖状の金属ナノ粉末と樹脂で異方性導電シートを開発 ─ 次世代携帯電話機などの実装向けに”、[online]、2002年6月12日、Design & Manufacturing ONLINE、インターネット<URL:http://dm.nikkeibp.co.jp/members/DM/DMNEWS/20020611/3/>
【非特許文献2】
阪本利司、外6名、“硫化銅を用いたスイッチング素子”、2002年9月26日、第63回応用物理学会学術講演会
【非特許文献3】
W. W. Zhuang、外17名、“Novell Colossal Magnetoresistive Thin FilmNonvolatile Resistance Random Access Memory (PRAM)”、2002年12月8−11日、International Electron Devices Meeting 2002
【非特許文献4】
瀧本 清、外4名、“走査型プローブ顕微鏡を用いたLB膜のスイッチング現象”、応用物理 第63巻 第5号 (1994年) p.470
【0007】
【発明が解決しようとする課題】
この異方性導電膜14においては、ICチップ11と回路基板12との個々の電気的接続を随時開閉することが要求されている。
【0008】
本発明は、異方性導電膜14の厚さ方向の抵抗値を局所的かつ可逆的に変化させることを目的とする。
【0009】
【課題を解決するための手段】
この課題を解決するために本発明は、電気制御信号により抵抗値が可逆的に変化する抵抗変化物質を異方性導電膜内部に挿入したものである。
【0010】
これにより、ICチップと回路基板との間の電極の間が抵抗変化物質を介して接続され、抵抗変化物質が高抵抗状態から低抵抗状態に変化する電気制御信号を両電極の間に印加することにより導通(閉)状態、および抵抗変化物質が低抵抗状態から高抵抗状態に変化する電気制御信号を両電極の間に印加することにより絶縁(開)状態が得られる。
【0011】
本発明の請求項1に記載の発明は、厚さ方向に導電性を有する2層の異方性導電層の間に、電気的に抵抗値を制御する抵抗変化物質を有し、面内の個々の場所での抵抗値を電気的制御信号により可逆的に変化させることを特徴とする異方性導電膜としたものであり、ICチップと回路基板との電極の間のコンタクト抵抗を随時変化させるという作用を有する。
【0012】
請求項2に記載の発明は、抵抗変化物質を介した上下2層の異方性導電層において、一方の微小導電体がサイズd1、数密度n1を有し、他方の微小導電体がサイズd2、数密度n2を有し、d1>d2かつn1<n2なる関係を有する請求項1記載の異方性導電膜としたものであり、抵抗変化物質の電気的経路を厚さ方向にするという作用を有する。
【0013】
請求項3に記載の発明は、異方性導電層に含まれる微小導電体の形状が厚さ方向にその軸を有する円柱であり、円柱の先端に抵抗変化物質を有する異方性導電膜としたものであり、面内の電極の間の絶縁性が増大するという作用を有する。
【0014】
請求項4に記載の発明は、ポリマー膜にイオン若しくは中性子の高エネルギー粒子を照射することにより発生した欠陥領域をエッチングし、形成された孔に金属を電気化学的に埋め込み形成した膜を貼り合わせることにより作製した請求項1−3記載の異方性導電膜としたものであり、異方性導電膜の作製に要する微細な孔を容易に形成するという作用を有する。
【0015】
請求項5に記載の発明は、ICチップの有する電極と、回路基板に形成された電極の間に、請求項1−4記載の異方性導電膜を挟み、ICチップと回路基板の電極の間に電気的制御信号を与えることにより電極の間の抵抗値を可逆的に変化させる電子機器としたものであり、ICチップと回路基板の電極の間の開閉を電子的に行うという作用を有する。
【0016】
請求項6に記載の発明は、印加する電気的制御信号により異方性導電膜を高抵抗化し、異方性導電膜によって結線されるICチップの内部の特定回路への電源電圧を低下させることを特徴とする、請求項5記載の電子機器としたものであり、ICチップの消費電力を低減するという作用を有する。
【0017】
請求項7に記載の発明は、異方性導電膜によって結線される、1つのICチップ内に存在する複数の通信方式回路ブロックから、印加する電気的制御信号により異方性導電膜を低抵抗化し、特定の通信方式回路ブロックを起動させることを特徴とする、請求項5記載の電子機器としたものであり、1つのICチップで多方式の通信方式に対応するという作用を有する。
【0018】
【発明の実施の形態】
次に、本発明の具体例を説明する。
【0019】
(実施例1)
図1に示した、本発明の一実施の形態による異方性導電膜14の断面を用いて実施例を説明する。図1においてICチップ11は、電子機器を制御する作用を行うもので、半導体などから構成されている。回路基板12は、ICチップ11に電力の提供や電気信号を送受する作用を行うもので、配線が施されたプラスチックやセラミックなどの絶縁体から構成されている。電極13は電気的な入出力に関する作用を行うもので、金属から構成されている。異方性導電膜14はICチップ11と回路基板12を電気的に結線する作用を行うものである。有機誘電体膜15は金属16間の電気的絶縁及び対向する電極との接着の作用を行うもので、絶縁性ポリマーから構成されている。金属16は有機誘電体膜15の厚さ方向に導電性を与える作用を行うもので、導電体から構成されている。抵抗変化物質17は電気制御信号により抵抗値が変化する作用を行うもので、Ge−Sb−Te系の相変化材料から構成されており、電気制御信号を印加する前はアモルファス状態で高抵抗状態にある。有機誘電体膜18は金属19間の電気的絶縁及び対向電極との接着の作用を行うもので、絶縁性ポリマーから構成されている。金属19は有機誘電体膜18の厚さ方向に導電性を与える作用を行うもので、導電体から構成されている。
【0020】
全面が高抵抗状態にある異方性導電膜14を、ICチップ11と回路基板12の間に電極13を介して挟んだ後、まず各電極13の間に電圧8V、パルス幅200nsの制御信号(セット信号)を印加し、各電極13の間の領域の異方性導電膜14を低抵抗状態に変化させた。この時、セット信号によるジュール熱で電極13の間の相変化材料からなる抵抗変化物質17はアモルファス状態から結晶状態に変化している。それ以外の領域の異方性導電膜14は依然高抵抗状態にあり、膜の面方向の導電性は低く、充分に絶縁されていた。
【0021】
セット信号印加の結果、ICチップ11と回路基板12の電極13すべてが小さな接触抵抗で接続され、電気的にICチップ11への結線が開いている状態から閉じる状態となった。ICチップ11を起動させた後、動作させる必要がなくなったICチップ11の内部の回路ブロックに電源を供給する電極に対し、異方性導電膜14の両端に電圧10V、パルス幅100nsが印加されるように制御信号(リセット信号)を与えたことにより、印加した電極13の間の抵抗値は高抵抗状態に変化した。この時、リセット信号によるジュール熱で電極13の間の相変化材料からなる抵抗変化物質17が融点まで昇温された後に急冷され、結晶状態からアモルファス状態に変化している。
【0022】
リセット信号印加の結果、ICチップ11と回路基板12の当該電極13の間の接触抵抗が高くなり、電気的にICチップ11への結線が閉じている状態から開く状態となった。その結果、本電極から電力が供給されていたICチップ11の内部の回路ブロックは、電圧低下により動作しなくなり、ICチップ11の消費電力は低下した。再度この回路ブロックが必要になった時点で、電極13に対し、異方性導電膜14の両端に電圧8V、パルス幅200nsが印加されるように制御信号を与えたことにより、印加した電極13の間の抵抗値は低抵抗状態に復帰した。その結果、電極13から電力が供給されていたICチップ11の内部の回路ブロックは、電圧復帰により再度動作を開始した。
【0023】
図2に、本発明の一実施例による異方性導電膜14の製造方法を示す。図2において導電性支持板21は電気メッキする際の陰極の作用を行うもので、Crを密着層に用いてAuをスパッタ堆積した平滑なSiウェーハから構成されている。多孔質ポリマー膜22は、電気メッキにより形成される金属のテンプレートの作用を行うもので、膜の厚さ方向に孔を多数開けたポリカーボネートから構成されている。金属23は絶縁性ポリマー膜の厚さ方向に導電性を与える作用を行うもので、電気メッキにより堆積したRhから構成される。異方性導電膜24および異方性導電層25は対向する電極と電気的接続及び接着する作用を行うもので、孔に金属を埋め込んだポリマーから構成されている。
【0024】
まず、高エネルギーを有するイオン若しくは中性子をポリカーボネート膜面22に垂直に照射しトラックと呼ばれる欠陥を膜内部に形成し、これらトラックがエッチングされやすいことを利用して孔を開けたポリマー膜を用意する。孔は面内に規則正しく配列しておらずランダムに分布しているが、作製する異方性導電膜14の機能に問題は生じない。図2(a)に示すように、ポリマー膜は導電性支持板に熱接着した。この熱接着では孔は埋まらず保持されており、図2(b)に示すように導電性支持板を陰極にしてRhを電気メッキし、孔をRhで埋めた。結果、膜の厚さ方向にその軸を有する円柱形のRh(参照符号23)が形成された。次いで、ポリマー膜は水中での超音波洗浄により導電性支持板から容易くはがれて、図2(c)の形状となった。なお、導電性支持板がPtで覆われていた場合はこの様に容易くはがれることがなかった。得られた膜表面に抵抗変化物質17としてGe−Sb−Teをスパッタ法で堆積し、図2(d)を得た。堆積したGe−Sb−Te薄膜はアモルファス構造(高抵抗状態)であった。図2(c)までの作製方法で金属を埋め込んだ別のポリマー膜26を用意し、図2(e)の様に熱接着し、本発明の異方性導電膜14が完成した。
【0025】
有機誘電体膜に埋め込んだ、金属からなる円柱の大きさと数密度には好ましい条件が存在する。以下、図3を用いて、円柱の大きさと数密度について説明する。図3はICチップ11と回路基板12に挟まれた、本発明の一実施例による異方性導電膜14の断面構造を拡大した模式図である。抵抗変化物質17を介した上下2層の有機誘電体膜層15、18において、上層の金属19の直径がd1、数密度がn1、下層の金属16の直径がd2、数密度がn2である。図3(a)は、d1>d2かつn1<n2なる関係を有し、図3(b)は、d1=d2かつn1=n2である。図3(a)は好ましい構造で、金属19と金属16の間を流れる電流経路31が抵抗変化物質17の厚さ方向になり、抵抗変化物質に加える電気制御信号の電圧を制御しやすい。図1の異方性導電膜14の構造はこの条件を満たしている。図3(b)のような構造では、電流経路32の様に抵抗変化物質17の面内方向へ電流が流れ、電流制御信号の電圧が高くなる傾向や、個々の電極13の間の電流制御信号のばらつきが増大する等の不具合が生じやすい。
【0026】
以上、本発明による異方性導電膜14を用いれば、膜内部に抵抗変化物質17が挿入されており、電気パルスにより抵抗変化物質17が可逆的に高抵抗状態と低抵抗状態を遷移するという効果が得られていることがわかる。
【0027】
なお、以上の説明では、回路基板12と接続する部品をICチップ11で構成した例で説明したが、電気的に結線したい部品であればICチップ11に限定するものではなく、画像表示ディスプレイや他の回路基板12でも、同様に実施可能である。
【0028】
なお、以上の説明では、抵抗変化物質7をGe−Sb−Te系で構成した例で説明したが、この元素組み合わせの相変化材料に限定するものではなく、Ag−In−Sb−Te系やTe−Sb−As系、Te−Ge−Sb−S系、Te−Ge−As系、Te−Sb−As系、Te−Ge−Sn系、Ge−Te系、Te−Ge−Sn−Au系などを用いて同様に実施可能である。
【0029】
なお、以上の説明では、抵抗変化材料17を相変化材料で構成した例で説明したが、電気的に抵抗値を制御し得る物質であれば相変化材料に限定するものではなく、もちろん電気制御信号の形態は異なるが、巨大磁気抵抗(CMR)材料であるPr−Ca−Mn−O系や、金属デンドライトを形成するイオン導電体のAg−S系やCu−S系、走査型プローブ顕微鏡でその抵抗変化現象が観測されているスクアリリウム系色素のLB膜等を用いて同様に実施可能である。
【0030】
なお、以上の説明では、有機誘電体膜15中の微小な金属を円柱形状で構成した例で説明したが、有機誘電体膜15の面内方向に絶縁性を、厚さ方向に導電性を与え得るものであれば円柱に限定するものではなく、球形や球状粒子が膜の厚さ方向に直鎖状に連なった構造でも同様に実施可能である。一例として図4に球形の微小導電体を有機誘電体膜に分散させた異方性導電膜14の断面模式図を示す。異方性導電膜44はICチップ11と回路基板12との間に圧力を加えて押しつぶされているので有機誘電体膜45、48が変形し、導電体球46がこの変形により互いに接触している。抵抗変化物質17を介して上層と下層の有機誘電体膜層45〜48に分散させる微小な導電体球の46・49の直径は異なり、上層の導電体球49の直径がd1、数密度がn1、下層の導電体球46の直径がd2、数密度がn2であるとしたとき、d1>d2かつn1<n2なる関係を有する。その理由は、図3を用いた説明と同じである。
【0031】
(実施例2)
図5に示した、本発明の一実施例による異方性導電膜54をICチップ11と回路基板12の間に挟んだ断面の模式図を用いて実施例を説明する。図5において異方性導電膜5454はICチップ11と回路基板12を電気的に結線する作用を行うものである。金属56は有機誘電体膜15の厚さ方向に導電性を与える作用を行うものでRhから構成されている。抵抗変化物質57は電気制御信号により抵抗値が変化する作用を行うもので、Cu−S系のイオン伝導材料から構成されており、電気制御信号を印加することによりCuイオンが移動しCu−S層内部にCuデンドライトが成長したり消失したりして抵抗値が変化する。金属59は有機誘電体膜18の厚さ方向に導電性を与える作用を行うもので、Cuから構成されている。ICチップ11と回路基板12は携帯電話内部に搭載されている。
【0032】
本発明の異方性導電膜54を利用して、ICチップ11内に用意した、通信方式が異なる複数の回路ブロックの中から使用時に必要な回路ブロックのみを動作させることを試みた。A通信会社とB通信会社では通信方式が異なり、従来1つの携帯電話では片方の通信方式にしか対応できていなかった。そこで、ICチップ11内にこれらの通信会社に対応した通信方式の回路ブロックを其々用意し、回路基板12に本発明の異方性導電膜54を用いて実装した。実装した時点では異方性導電膜54の厚さ方向の導電性は高く、低抵抗状態であった。A通信会社の通信方式回路ブロックを利用する際には、B通信会社の通信方式回路ブロックは動作させる必要がないので、B通信会社の通信方式回路ブロックに結線される電極に通常印加するものより高い電圧(5V)をリセット信号として印加して異方性導電膜54を高抵抗化した。その結果、A通信会社の通信方式の回路ブロックのみ動作し、同通信方式の携帯電話と通話が可能となった。A通信会社の通信方式からB通信会社の通信方式に切り替える場合は、まず、B通信会社の通信方式回路ブロックに結線される電極に通常印加するものより高く逆極性の電圧(−5V)をセット信号として印加して異方性導電膜54を低抵抗化し、かつA通信会社の通信方式回路ブロックに結線される電極に通常印加するものより高い電圧(5V)をリセット信号として印加して異方性導電膜54を高抵抗化した。その結果、B通信会社の通信方式の回路ブロックのみ動作し、同通信方式の携帯電話と通話が可能となった。
【0033】
図6に、本発明の一実施例による異方性導電膜54の作製方法を示す。図6において金属63は絶縁性ポリマー膜の厚さ方向に導電性を与える作用を行うもので、電気メッキにより堆積したCuから構成される。抵抗変化物質64は電気制御信号により抵抗値が変化する作用を行うもので、Cu−S系のイオン伝導材料から構成されている。有機誘電体膜(すなわち、ポリマー膜22)に埋め込まれた電極の先端にのみ抵抗変化材料が形成さており、膜面内方向の絶縁性が高いという有利な特徴を有する。
【0034】
まず、図6(a)に示すように、ポリマー膜22を導電性支持板21に熱接着した。ポリマー膜22には孔が多数開けられており、この孔は熱接着した後にレーザー照射で開けてもよいし、そもそも孔が開いているポリマー膜を熱接着してもかまわない。続いて、図6(b)に示すように導電性支持板21を陰極にしてCu63を電気メッキし、孔をCu63で埋めた。結果、膜の厚さ方向にその軸を有する円柱形のCu63が形成された。続いて、硫酸ナトリウム若しくは硫酸塩などの硫黄分が入っている溶液中で通電を行うことにより、Cu先端部は硫化し、Cu−S系の抵抗変化物質64がCu先端部にのみ選択的に形成された。Cuが埋め込まれた状態でポリマー膜は水中での超音波洗浄により導電性支持板から容易くはがれて、図6(d)の形状となった。なお、導電性支持板がPtで覆われていた場合はこの様に容易くはがれないが、Auで覆われていると容易にはがれた。図2(c)までの作製方法で金属を埋め込んだ別のポリマー膜24を用意し、図6(e)の様に熱接着し、本発明の異方性導電膜54が完成した。
【0035】
以上、本発明による異方性導電膜54を用いれば、有機誘電体膜に埋め込まれた電極の先端にのみ選択的に抵抗変化材料が形成さており、電気的制御により抵抗変化材料が可逆的に高抵抗状態と低抵抗状態を遷移するという効果とともに膜面内の絶縁性が高いという効果も得られていることがわかる。
【0036】
【発明の効果】
以上のように本発明によれば、異方性導電膜54の厚さ方向の抵抗値を局所的かつ可逆的に変化させるという有利な効果が得られる。
【図面の簡単な説明】
【図1】本発明の一実施の形態による異方性導電膜の断面模式図
【図2】本発明の一実施の形態による、異方性導電膜の製造方法の説明図
【図3】円柱の大きさと数密度についての説明図
【図4】本発明の一実施例による球形の微小導電体を有機誘電体膜に分散させた異方性導電膜の断面模式図
【図5】本発明の一実施例による異方性導電膜54をICチップ11と回路基板12の間に挟んだ断面の模式図
【図6】本発明の一実施例による、異方性導電膜の作製方法を示す図
【図7】従来の異方性導電膜の断面模式図
【符号の説明】
11 ICチップ11
12 回路基板12
13 電極
14 異方性導電膜54
15 有機誘電体膜
16 金属
17 抵抗変化物質
18 有機誘電体膜
19 金属
21 導電性支持板
22 ポリマー膜
23 金属
24 異方性導電膜54
25 異方性導電層
31 電流経路
32 電流経路
44 異方性導電膜54
45 有機誘電体膜
46 導電体球
48 有機誘電体膜
49 導電体球
54 異方性導電膜54
56 金属
59 金属
63 金属
64 抵抗変化物質
74 異方性導電膜54
[0001]
FIELD OF THE INVENTION
The present invention relates to an anisotropic conductive film having a novel structure useful for connecting an IC chip to a circuit board and an electronic device using the same.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, an anisotropic conductive film is known in which a fine conductor penetrating from an upper surface to a lower surface is embedded in an organic dielectric film (for example, see Patent Document 1). In addition, there are a type in which conductive fine particles are uniformly dispersed in an organic dielectric film and a type in which linear aggregates of conductive fine particles are dispersed (for example, see Non-Patent Document 1). Hereinafter, a conventional technique will be described with reference to the drawings.
[0003]
FIG. 7 shows the structure of a conventional anisotropic conductive film 74, which is composed of an organic dielectric film 15 having fine holes formed in the thickness direction and a metal 16 electrochemically filling the inside of the holes. I have. The anisotropic conductive film 74 is thermocompression-bonded between the IC chip 11 and the circuit board 12 to electrically connect the IC chip 11 and the electrodes 13 of the circuit board 12, and the IC chip 11 is mounted on the circuit board 12. You.
[0004]
On the other hand, various resistance change materials that change reversibly between two states of a high resistance state and a low resistance state by an electric control signal are known. The main ones are (1) a phase change material (for example, see Patent Document 2), (2) an ion conductive material for forming a metal dendrite (for example, see Patent Document 3 or Non-Patent Document 2), and (3) a giant magnetoresistance. (CMR) material (for example, see Non-Patent Document 3), and (4) LB film material (for example, see Non-Patent Document 4).
[0005]
As a method for manufacturing a variable resistance material, a method of forming a target variable resistance material by sulfurizing a metal electrode by an electrochemical method is known. (For example, see Non-Patent Document 2)
[0006]
[Patent Document 1]
JP-A-2002-76056 (FIG. 2)
[Patent Document 2]
JP-A-5-21740 [Patent Document 3]
Japanese Patent Publication No. 2000-512058 [Non-patent Document 1]
Nikkei Mechanical, "Sumitomo Electric Works, Developing Anisotropic Conductive Sheet with Chain Metal Nanopowder and Resin-For Mounting Next-Generation Mobile Phones, etc.", [online], June 12, 2002, Design & Manufacturing ONLINE , Internet <URL: http: // dm. nikkeibp. co. jp / members / DM / DMNEWS / 20020611/3 / >>
[Non-patent document 2]
Rishi Sakamoto and 6 others, "Switching device using copper sulfide", September 26, 2002, 63rd Annual Meeting of the Japan Society of Applied Physics [Non-Patent Document 3]
W. W. Zhuang, 17 others, "Novell Colossal Magnetoresistive Thin Film Nonvolatile Resistance Random Access Memory (PRAM)", December 8-11, 2002, International Electro-Electronics.
[Non-patent document 4]
Kiyoshi Takimoto, et al., “Switching Phenomena of LB Film Using Scanning Probe Microscope”, Applied Physics Vol. 63, No. 5, (1994) p. 470
[0007]
[Problems to be solved by the invention]
The anisotropic conductive film 14 is required to open and close individual electrical connections between the IC chip 11 and the circuit board 12 as needed.
[0008]
An object of the present invention is to locally and reversibly change the resistance value in the thickness direction of the anisotropic conductive film 14.
[0009]
[Means for Solving the Problems]
In order to solve this problem, in the present invention, a variable resistance material whose resistance value reversibly changes according to an electric control signal is inserted into an anisotropic conductive film.
[0010]
Thereby, the electrodes between the IC chip and the circuit board are connected via the variable resistance material, and an electrical control signal for changing the variable resistance material from a high resistance state to a low resistance state is applied between the two electrodes. As a result, a conducting (closed) state and an insulating (open) state can be obtained by applying an electric control signal between the two electrodes, in which the resistance change material changes from a low resistance state to a high resistance state.
[0011]
The invention according to claim 1 of the present invention has a resistance change material that electrically controls a resistance value between two anisotropic conductive layers having conductivity in the thickness direction, An anisotropic conductive film characterized in that the resistance value at each location is reversibly changed by an electrical control signal, and the contact resistance between the electrode of the IC chip and the circuit board changes as needed. It has the effect of causing
[0012]
According to a second aspect of the present invention, in the upper and lower two anisotropic conductive layers via the variable resistance material, one microconductor has a size d1 and a number density n1, and the other microconductor has a size d2. 2. The anisotropic conductive film according to claim 1, having a number density n2, d1> d2 and n1 <n2. Having.
[0013]
According to a third aspect of the present invention, there is provided an anisotropic conductive film, wherein the shape of the minute conductor included in the anisotropic conductive layer is a cylinder having its axis in the thickness direction, This has the effect of increasing the insulation between the electrodes in the plane.
[0014]
According to a fourth aspect of the present invention, a defect region generated by irradiating a polymer film with high-energy particles of ions or neutrons is etched, and a film formed by burying a metal electrochemically in a formed hole is bonded. Thus, the anisotropic conductive film according to claim 1 has an effect of easily forming fine holes required for manufacturing the anisotropic conductive film.
[0015]
According to a fifth aspect of the present invention, the anisotropic conductive film according to the first to fourth aspects is interposed between an electrode of the IC chip and an electrode formed on the circuit board. An electronic device that reversibly changes the resistance between electrodes by giving an electrical control signal between them, and has the effect of electronically opening and closing the electrodes between the IC chip and the circuit board. .
[0016]
According to a sixth aspect of the present invention, the resistance of the anisotropic conductive film is increased by an applied electrical control signal, and the power supply voltage to a specific circuit inside the IC chip connected by the anisotropic conductive film is reduced. The electronic device according to claim 5, characterized in that it has an effect of reducing power consumption of an IC chip.
[0017]
According to a seventh aspect of the present invention, the anisotropic conductive film is connected to the anisotropic conductive film at a low resistance by an electric control signal applied from a plurality of communication system circuit blocks present in one IC chip. The electronic device according to claim 5, wherein a specific communication system circuit block is activated, and has an effect that one IC chip supports a multi-system communication system.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, a specific example of the present invention will be described.
[0019]
(Example 1)
An example will be described using the cross section of the anisotropic conductive film 14 according to one embodiment of the present invention shown in FIG. In FIG. 1, an IC chip 11 performs an operation of controlling an electronic device, and is made of a semiconductor or the like. The circuit board 12 serves to supply power and transmit and receive electric signals to and from the IC chip 11, and is made of an insulator such as plastic or ceramic with wiring. The electrode 13 performs an operation related to electrical input and output, and is made of metal. The anisotropic conductive film 14 functions to electrically connect the IC chip 11 and the circuit board 12. The organic dielectric film 15 functions to electrically insulate the metal 16 and adhere to the opposing electrode, and is made of an insulating polymer. The metal 16 has a function of giving conductivity in the thickness direction of the organic dielectric film 15, and is made of a conductor. The resistance change material 17 performs a function of changing a resistance value by an electric control signal, and is made of a Ge-Sb-Te phase change material, and is in an amorphous state and a high resistance state before application of the electric control signal. It is in. The organic dielectric film 18 functions to electrically insulate the metal 19 and adhere to the counter electrode, and is made of an insulating polymer. The metal 19 serves to provide conductivity in the thickness direction of the organic dielectric film 18, and is made of a conductor.
[0020]
After the anisotropic conductive film 14 whose entire surface is in a high resistance state is sandwiched between the IC chip 11 and the circuit board 12 via the electrode 13, first, a control signal having a voltage of 8 V and a pulse width of 200 ns is applied between the electrodes 13. (Set signal) was applied to change the anisotropic conductive film 14 in a region between the electrodes 13 to a low resistance state. At this time, the resistance change material 17 made of a phase change material between the electrodes 13 is changed from an amorphous state to a crystalline state by Joule heat due to the set signal. The anisotropic conductive film 14 in the other regions was still in a high resistance state, had low conductivity in the plane direction of the film, and was sufficiently insulated.
[0021]
As a result of the application of the set signal, the IC chip 11 and all the electrodes 13 of the circuit board 12 are connected with a small contact resistance, and the connection to the IC chip 11 is changed from an open state to an electrically closed state. After the IC chip 11 is activated, a voltage of 10 V and a pulse width of 100 ns are applied to both ends of the anisotropic conductive film 14 with respect to an electrode for supplying power to a circuit block inside the IC chip 11 which is no longer required to operate. By applying the control signal (reset signal) as described above, the resistance value between the applied electrodes 13 changed to a high resistance state. At this time, the resistance change material 17 made of a phase change material between the electrodes 13 is rapidly cooled after being heated to the melting point by Joule heat by the reset signal, and changes from a crystalline state to an amorphous state.
[0022]
As a result of the application of the reset signal, the contact resistance between the IC chip 11 and the electrode 13 of the circuit board 12 is increased, and the connection to the IC chip 11 is electrically opened from a closed state. As a result, the circuit block inside the IC chip 11 to which power was supplied from the present electrode stopped operating due to the voltage drop, and the power consumption of the IC chip 11 decreased. When this circuit block is needed again, a control signal is applied to the electrode 13 so that a voltage of 8 V and a pulse width of 200 ns are applied to both ends of the anisotropic conductive film 14, and the applied electrode 13 During the period, the resistance value returned to the low resistance state. As a result, the circuit block inside the IC chip 11 to which power was supplied from the electrode 13 restarted its operation due to the voltage return.
[0023]
FIG. 2 shows a method of manufacturing the anisotropic conductive film 14 according to one embodiment of the present invention. In FIG. 2, a conductive support plate 21 serves as a cathode when electroplating, and is made of a smooth Si wafer on which Au is sputter-deposited using Cr as an adhesion layer. The porous polymer film 22 functions as a metal template formed by electroplating, and is made of polycarbonate having a large number of holes formed in the thickness direction of the film. The metal 23 serves to give conductivity in the thickness direction of the insulating polymer film, and is made of Rh deposited by electroplating. The anisotropic conductive film 24 and the anisotropic conductive layer 25 perform the function of electrically connecting and bonding to the opposing electrode, and are made of a polymer in which a metal is embedded in a hole.
[0024]
First, ions or neutrons having high energy are irradiated perpendicularly to the polycarbonate film surface 22 to form defects called tracks in the film, and a polymer film having a hole is prepared by utilizing the fact that these tracks are easily etched. . The holes are not regularly arranged in the plane but are randomly distributed, but there is no problem in the function of the anisotropic conductive film 14 to be manufactured. As shown in FIG. 2A, the polymer film was thermally bonded to the conductive support plate. In this thermal bonding, the holes were not filled but were held, and as shown in FIG. 2B, Rh was electroplated using the conductive support plate as a cathode, and the holes were filled with Rh. As a result, a cylindrical Rh (reference numeral 23) having its axis in the thickness direction of the film was formed. Next, the polymer film was easily peeled off from the conductive support plate by ultrasonic cleaning in water to obtain a shape shown in FIG. When the conductive support plate was covered with Pt, it did not come off easily. Ge-Sb-Te as a variable resistance material 17 was deposited on the surface of the obtained film by a sputtering method to obtain FIG. The deposited Ge—Sb—Te thin film had an amorphous structure (high resistance state). Another polymer film 26 in which a metal was buried by the manufacturing method up to FIG. 2C was prepared and thermally bonded as shown in FIG. 2E to complete the anisotropic conductive film 14 of the present invention.
[0025]
Preferred conditions exist for the size and number density of the metal cylinder embedded in the organic dielectric film. Hereinafter, the size and number density of the cylinder will be described with reference to FIG. FIG. 3 is an enlarged schematic view of a cross-sectional structure of an anisotropic conductive film 14 according to an embodiment of the present invention, which is sandwiched between an IC chip 11 and a circuit board 12. In the upper and lower two organic dielectric film layers 15 and 18 via the variable resistance material 17, the diameter of the upper metal 19 is d1, the number density is n1, the diameter of the lower metal 16 is d2, and the number density is n2. . FIG. 3A has a relationship of d1> d2 and n1 <n2, and FIG. 3B has a relationship of d1 = d2 and n1 = n2. FIG. 3A shows a preferred structure, in which the current path 31 flowing between the metal 19 and the metal 16 is in the thickness direction of the variable resistance material 17, and the voltage of the electric control signal applied to the variable resistance material is easily controlled. The structure of the anisotropic conductive film 14 in FIG. 1 satisfies this condition. In the structure as shown in FIG. 3B, a current flows in the in-plane direction of the variable resistance material 17 like the current path 32, and the voltage of the current control signal tends to increase. Inconveniences such as an increase in signal variation are likely to occur.
[0026]
As described above, when the anisotropic conductive film 14 according to the present invention is used, the resistance change material 17 is inserted into the film, and the resistance change material 17 reversibly transitions between the high resistance state and the low resistance state by an electric pulse. It can be seen that the effect is obtained.
[0027]
In the above description, an example in which components connected to the circuit board 12 are configured by the IC chip 11 has been described. However, any component that is desired to be electrically connected is not limited to the IC chip 11, and may be an image display or a display. Other circuit boards 12 can be similarly implemented.
[0028]
In the above description, an example was described in which the variable resistance material 7 was formed of a Ge—Sb—Te system. However, the present invention is not limited to the phase change material of this element combination, and may be an Ag—In—Sb—Te system. Te-Sb-As system, Te-Ge-Sb-S system, Te-Ge-As system, Te-Sb-As system, Te-Ge-Sn system, Ge-Te system, Te-Ge-Sn-Au system The present invention can be similarly implemented by using such a method.
[0029]
In the above description, the example in which the resistance change material 17 is made of a phase change material has been described. However, the material is not limited to the phase change material as long as it is a substance that can electrically control the resistance value. Although the form of the signal is different, using a giant magnetoresistive (CMR) material such as Pr-Ca-Mn-O, an ionic conductor Ag-S or Cu-S based on metal dendrite, or a scanning probe microscope The same can be implemented by using an LB film of a squarylium dye in which the resistance change phenomenon is observed.
[0030]
In the above description, an example in which the fine metal in the organic dielectric film 15 is formed in a cylindrical shape has been described. However, the insulating property is provided in the in-plane direction of the organic dielectric film 15 and the conductivity is provided in the thickness direction. The present invention is not limited to a column as long as it can be provided, and the present invention can be similarly applied to a structure in which spherical or spherical particles are linearly connected in the thickness direction of the film. As an example, FIG. 4 shows a schematic cross-sectional view of an anisotropic conductive film 14 in which a spherical minute conductor is dispersed in an organic dielectric film. Since the anisotropic conductive film 44 is crushed by applying pressure between the IC chip 11 and the circuit board 12, the organic dielectric films 45 and 48 are deformed, and the conductive spheres 46 come into contact with each other due to the deformation. I have. The diameter of the minute conductive spheres 46 and 49 dispersed in the upper and lower organic dielectric film layers 45 to 48 via the resistance change material 17 is different, the diameter of the upper conductive sphere 49 is d1, and the number density is Assuming that n1, the diameter of the lower conductive ball 46 is d2, and the number density is n2, the relations are d1> d2 and n1 <n2. The reason is the same as the description using FIG.
[0031]
(Example 2)
The embodiment will be described with reference to the schematic diagram of a cross section in which the anisotropic conductive film 54 according to the embodiment of the present invention is interposed between the IC chip 11 and the circuit board 12 shown in FIG. In FIG. 5, an anisotropic conductive film 5454 functions to electrically connect the IC chip 11 and the circuit board 12. The metal 56 has a function of giving conductivity in the thickness direction of the organic dielectric film 15 and is made of Rh. The resistance change material 57 performs a function of changing a resistance value according to an electric control signal, and is made of a Cu-S based ion conductive material. When an electric control signal is applied, Cu ions move and Cu-S The resistance value changes as Cu dendrite grows or disappears inside the layer. The metal 59 serves to provide conductivity in the thickness direction of the organic dielectric film 18 and is made of Cu. The IC chip 11 and the circuit board 12 are mounted inside the mobile phone.
[0032]
Using the anisotropic conductive film 54 of the present invention, an attempt was made to operate only a circuit block necessary for use from among a plurality of circuit blocks prepared in the IC chip 11 and having different communication systems. The communication system is different between the A communication company and the B communication company, and one mobile phone has conventionally been able to support only one communication system. Therefore, circuit blocks of communication systems corresponding to these communication companies were prepared in the IC chip 11 and mounted on the circuit board 12 using the anisotropic conductive film 54 of the present invention. At the time of mounting, the conductivity in the thickness direction of the anisotropic conductive film 54 was high, and it was in a low resistance state. When using the communication system circuit block of the A communication company, the communication system circuit block of the B communication company does not need to be operated. A high voltage (5 V) was applied as a reset signal to increase the resistance of the anisotropic conductive film 54. As a result, only the circuit block of the communication system of the communication company A operates, and it is possible to talk with a mobile phone of the same communication system. When switching from the communication system of the A communication company to the communication system of the B communication company, first, a voltage (−5 V) having a higher polarity than that normally applied to the electrodes connected to the communication system circuit block of the B communication company is set. The anisotropic conductive film 54 has a low resistance by being applied as a signal, and a higher voltage (5 V) than that normally applied to the electrode connected to the communication system circuit block of the communication company A is applied as a reset signal to be anisotropic. The resistance of the conductive film 54 was increased. As a result, only the circuit block of the communication system of the B communication company operates, and it is possible to talk with a mobile phone of the same communication system.
[0033]
FIG. 6 shows a method of manufacturing the anisotropic conductive film 54 according to one embodiment of the present invention. In FIG. 6, a metal 63 acts to give conductivity in the thickness direction of the insulating polymer film, and is made of Cu deposited by electroplating. The resistance change material 64 performs a function of changing a resistance value according to an electric control signal, and is made of a Cu-S based ion conductive material. The variable resistance material is formed only at the tip of the electrode embedded in the organic dielectric film (that is, the polymer film 22), and has an advantageous feature that insulation in a film in-plane direction is high.
[0034]
First, as shown in FIG. 6A, the polymer film 22 was thermally bonded to the conductive support plate 21. A large number of holes are formed in the polymer film 22, and the holes may be formed by laser irradiation after being thermally bonded, or a polymer film having holes formed may be thermally bonded in the first place. Subsequently, as shown in FIG. 6B, Cu 63 was electroplated using the conductive support plate 21 as a cathode, and the holes were filled with Cu 63. As a result, a cylindrical Cu 63 having its axis in the thickness direction of the film was formed. Subsequently, by conducting an electric current in a solution containing a sulfur component such as sodium sulfate or sulfate, the Cu tip is sulfided, and the Cu-S-based resistance change material 64 is selectively applied only to the Cu tip. Been formed. With the Cu embedded, the polymer film was easily peeled off from the conductive support plate by ultrasonic cleaning in water to obtain the shape shown in FIG. 6D. When the conductive support plate was covered with Pt, the conductive support plate was not easily peeled off, but was easily peeled when covered with Au. Another polymer film 24 in which a metal was buried was prepared by the manufacturing method up to FIG. 2C, and was thermally bonded as shown in FIG. 6E to complete the anisotropic conductive film 54 of the present invention.
[0035]
As described above, when the anisotropic conductive film 54 according to the present invention is used, the resistance change material is selectively formed only at the tip of the electrode embedded in the organic dielectric film, and the resistance change material is reversibly controlled by electrical control. It can be seen that the effect of high insulative properties in the film plane is obtained as well as the effect of transition between the high resistance state and the low resistance state.
[0036]
【The invention's effect】
As described above, according to the present invention, an advantageous effect of locally and reversibly changing the resistance value in the thickness direction of the anisotropic conductive film 54 can be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of an anisotropic conductive film according to one embodiment of the present invention. FIG. 2 is an explanatory diagram of a method of manufacturing an anisotropic conductive film according to one embodiment of the present invention. FIG. 4 is a schematic cross-sectional view of an anisotropic conductive film in which a spherical microconductor is dispersed in an organic dielectric film according to an embodiment of the present invention. FIG. 6 is a schematic view of a cross section in which an anisotropic conductive film according to one embodiment is interposed between an IC chip 11 and a circuit board 12. FIG. 6 is a diagram illustrating a method of manufacturing an anisotropic conductive film according to one embodiment of the present invention. FIG. 7 is a schematic cross-sectional view of a conventional anisotropic conductive film.
11 IC chip 11
12 Circuit board 12
13 electrode 14 anisotropic conductive film 54
Reference Signs List 15 organic dielectric film 16 metal 17 variable resistance material 18 organic dielectric film 19 metal 21 conductive support plate 22 polymer film 23 metal 24 anisotropic conductive film 54
25 Anisotropic conductive layer 31 Current path 32 Current path 44 Anisotropic conductive film 54
45 organic dielectric film 46 conductive sphere 48 organic dielectric film 49 conductive sphere 54 anisotropic conductive film 54
56 metal 59 metal 63 metal 64 resistance change material 74 anisotropic conductive film 54

Claims (7)

厚さ方向に導電性を有する2層の異方性導電層の間に、電気的に抵抗値を制御する抵抗変化物質を有し、面内の個々の場所での抵抗値を電気的制御信号により可逆的に変化させることを特徴とする異方性導電膜。A resistance change material for electrically controlling a resistance value between two anisotropic conductive layers having conductivity in a thickness direction, and an electrical control signal for controlling a resistance value at each location in a plane. An anisotropic conductive film characterized by being reversibly changed by the following. 抵抗変化物質を介した上下2層の異方性導電層において、一方の微小導電体がサイズd1、数密度n1を有し、他方の微小導電体がサイズd2、数密度n2を有し、d1>d2かつn1<n2なる関係を有する請求項1記載の異方性導電膜。In the upper and lower two anisotropic conductive layers via the variable resistance material, one microconductor has a size d1 and a number density n1, the other microconductor has a size d2 and a number density n2, and d1 2. The anisotropic conductive film according to claim 1, wherein a relationship of> d2 and n1 <n2 is satisfied. 異方性導電層に含まれる微小導電体の形状が厚さ方向にその軸を有する円柱であり、円柱の先端に抵抗変化物質を有する異方性導電膜。An anisotropic conductive film in which the shape of the minute conductor included in the anisotropic conductive layer is a cylinder having its axis in the thickness direction, and a resistance change material is provided at the tip of the cylinder. ポリマー膜にイオン若しくは中性子の高エネルギー粒子を照射することにより発生した欠陥領域をエッチングし、形成された孔に金属を電気化学的に埋め込み形成した膜を貼り合わせることにより作製した請求項1−3記載の異方性導電膜。4. A polymer film formed by irradiating a polymer film with high-energy particles of ions or neutrons, etching a defect region generated by the irradiation, and bonding a film formed by electrochemically embedding a metal in a formed hole. The anisotropic conductive film according to the above. ICチップの有する電極と、回路基板に形成された電極の間に、請求項1−4記載の異方性導電膜を挟み、ICチップと回路基板の電極の間に電気的制御信号を与えることにより電極の間の抵抗値を可逆的に変化させる電子機器。An anisotropic conductive film according to claim 1 is interposed between an electrode of the IC chip and an electrode formed on the circuit board, and an electric control signal is applied between the IC chip and the electrode of the circuit board. An electronic device that reversibly changes the resistance between the electrodes. 印加する電気的制御信号により異方性導電膜を高抵抗化し、異方性導電膜によって結線されるICチップの内部の特定回路への電源電圧を低下させることを特徴とする、請求項5記載の電子機器。6. The method according to claim 5, wherein the resistance of the anisotropic conductive film is increased by an applied electrical control signal, and a power supply voltage to a specific circuit inside the IC chip connected by the anisotropic conductive film is reduced. Electronic equipment. 異方性導電膜によって結線される、1つのICチップ内に存在する複数の通信方式回路ブロックから、印加する電気的制御信号により異方性導電膜を低抵抗化し、特定の通信方式回路ブロックを起動させることを特徴とする、請求項5記載の電子機器。The resistance of the anisotropic conductive film is reduced by an applied electrical control signal from a plurality of communication system circuit blocks present in one IC chip connected by the anisotropic conductive film, and a specific communication system circuit block is formed. The electronic device according to claim 5, wherein the electronic device is activated.
JP2003028015A 2003-02-05 2003-02-05 Anisotropic conductive film and electronic apparatus using the same Pending JP2004241221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003028015A JP2004241221A (en) 2003-02-05 2003-02-05 Anisotropic conductive film and electronic apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003028015A JP2004241221A (en) 2003-02-05 2003-02-05 Anisotropic conductive film and electronic apparatus using the same

Publications (1)

Publication Number Publication Date
JP2004241221A true JP2004241221A (en) 2004-08-26

Family

ID=32955589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003028015A Pending JP2004241221A (en) 2003-02-05 2003-02-05 Anisotropic conductive film and electronic apparatus using the same

Country Status (1)

Country Link
JP (1) JP2004241221A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020105693A1 (en) * 2018-11-21 2020-05-28 三井化学株式会社 Anisotropic conductive sheet, anisotropic conductive composite sheet, anisotropic conductive sheet set, electric inspection device and electric inspection method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020105693A1 (en) * 2018-11-21 2020-05-28 三井化学株式会社 Anisotropic conductive sheet, anisotropic conductive composite sheet, anisotropic conductive sheet set, electric inspection device and electric inspection method
KR20210076129A (en) * 2018-11-21 2021-06-23 미쓰이 가가쿠 가부시키가이샤 Anisotropically conductive sheet, anisotropically conductive composite sheet, anisotropically conductive sheet set, electrical inspection device and electrical inspection method
JPWO2020105693A1 (en) * 2018-11-21 2021-09-27 三井化学株式会社 Gross conductive sheet, anisotropic composite sheet, anisotropic conductive sheet set, electrical inspection equipment and electrical inspection method
JP7257415B2 (en) 2018-11-21 2023-04-13 三井化学株式会社 Anisotropic conductive sheet, anisotropic conductive composite sheet, anisotropic conductive sheet set, electrical inspection device and electrical inspection method
KR102587764B1 (en) 2018-11-21 2023-10-10 미쓰이 가가쿠 가부시키가이샤 Anisotropic conductive sheet, anisotropic conductive composite sheet, anisotropic conductive sheet set, electrical inspection device and electrical inspection method

Similar Documents

Publication Publication Date Title
Kaeriyama et al. A nonvolatile programmable solid-electrolyte nanometer switch
Kozicki et al. Information storage using nanoscale electrodeposition of metal in solid electrolytes
US6900517B2 (en) Non-volatile memory with phase-change recording layer
JP4332881B2 (en) Solid electrolyte switching element, FPGA using the same, memory element, and method of manufacturing solid electrolyte switching element
US7423281B2 (en) Microelectronic device with a plurality of storage elements in serial connection and method of producing the same
TW550764B (en) Low cross-talk electrically programmable resistance cross point memory
CN100481435C (en) Reprogrammable fuse structure and method
KR100650761B1 (en) Phase change memory device and method of manufacturing the same
US9028138B2 (en) Electronic device
US20020163057A1 (en) Reversible field-programmable electric interconnects
US20060163553A1 (en) Phase change memory and fabricating method thereof
WO2006070773A1 (en) Switching element, rewritable logical integrated circuit, and memory element
JP2006319028A (en) Switching element, rewritable logic integrated circuit, and memory element
Symanczyk et al. Electrical characterization of solid state ionic memory elements
WO2009001262A1 (en) Electric device comprising phase change material and heating element
EP1354503B1 (en) A method for the implementation of electronic components in via-holes of a multi-layer multi-chip module
CN104409632A (en) Three dimension (3D) printing preparation method for multilayer structure organic resistive random access memory
WO2007069725A1 (en) Switching element and method for manufacturing same
JP2010079196A (en) Transistor array for tiling, transistor array, and display
JP2008536307A (en) Write-once memory
CN100482048C (en) Wiring board and fabrication method thereof
JP2008078509A (en) Nonvolatile memory cell equipped with resistive layers of multilayer structure and manufacturing method therefor, as well as, resistance variable nonvolatile memory device using the same
Kujala et al. Bending reliability of screen-printed vias for a flexible energy module
JP5417709B2 (en) Switching element, rewritable logic integrated circuit, and memory element
US8410469B2 (en) Chalcogenide nanoionic-based radio frequency switch