JP2004240905A - Operation support method and device of reactor for nuclear power generation - Google Patents

Operation support method and device of reactor for nuclear power generation Download PDF

Info

Publication number
JP2004240905A
JP2004240905A JP2003031867A JP2003031867A JP2004240905A JP 2004240905 A JP2004240905 A JP 2004240905A JP 2003031867 A JP2003031867 A JP 2003031867A JP 2003031867 A JP2003031867 A JP 2003031867A JP 2004240905 A JP2004240905 A JP 2004240905A
Authority
JP
Japan
Prior art keywords
reactor
output
abnormality
value
monitoring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003031867A
Other languages
Japanese (ja)
Other versions
JP3965498B2 (en
Inventor
Toshihisa Shirakawa
白川利久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003031867A priority Critical patent/JP3965498B2/en
Publication of JP2004240905A publication Critical patent/JP2004240905A/en
Application granted granted Critical
Publication of JP3965498B2 publication Critical patent/JP3965498B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

<P>PROBLEM TO BE SOLVED: To provide an operation support method and device of a reactor for nuclear power generation for automatically determining abnormality of equipment related to nuclear power generation, automatically controlling the output, and further automatically establishing a contact with a relevant site. <P>SOLUTION: A control auxiliary device 11 of this invention is connected to a control rod operation handle 14 and reactor manual stop button 15 of a plant total control device 3. The measured volumes during operation from a main measuring instrument 8 and another measuring instrument 9 are automatically compared and determined with a preliminarily acquired and set range value by the software built in a computer 20, whereby abnormality is determined to control the output of the reactor, and the contact with the telephone or FAX of the relevant site is automatically established. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、原子力発電における原子炉の運転支援方法及び装置である。
【0002】
【従来の技術】
原子炉の運転状況を監視し出力を制御したり、一次系配管大破断による一次冷却材喪失や一次冷却材ポンプ停止による流量減少等による事故が発生した場合スクラムさせたりする、プラント監視制御装置に関わるブロック図を図1に示す。図中の矢印は情報の伝わる方向を示す。原子炉等機械室(2)にある原子炉の水位等を測定している主測定器(8)からの状態量を中央操作室(1)にあるプラント総合制御装置(3)に導き常時観測していて、或る設定値を超えるとスクラム等制御機械(7)に制御棒自動挿入信号が発信され、スクラムと呼ばれる原子炉自動停止が人の判断の介在無しに実施される。そこには、思惑といったような人間の個人的判断が一切入らない。発電所を所有する団体の現場担当者、発電所責任者、経営者、発電所を監督する国や地方自治体の関係者への意向や思惑が一切入らない。自動停止に関わるプラント総合制御装置(3)は大掛かりであり、過去の実績に基づく改良によりほぼ完成されている。大幅な改造は新たな問題が発生する恐れがあるため原子炉の安全性を損なう。
一方、自動停止にいたらないような冷却水循環ポンプモータの軸振動増大等の各種異常事象に関しては緊急には大事故に至らないため原子炉の自動停止をさせない。緊急には大きな事故にはならないが、放置しておくと場合によっては大事故になりかねない異常事象に対してはモーター軸振動等を測定しているその他測定器(9)からの測定量は記録装置(19)で監視されて警報信号は出る。運転員や保守員といった現場担当者が判断して制御棒操作ハンドル群(4)操作や原子炉手動停止ボタン(5)を押して原子炉出力を制御していた。なお、中央操作室(1)には外部との連絡のために電話(6)が設置されている。
一般に、設備を停止させると稼働率が下がりコストが上昇する。原子力発電においても停止させると稼働率が下がり発電コストが上昇する。設備が大きくなると金額が大きくなる。判断を誤って停止させた場合責任問題となる。一方、判断を誤って停止させなかったために大事故になる場合が起こりうる。このように原子炉停止時期に関して個人的思惑が介在してくる。その他、混乱が生じている場合には連絡をとるべき相手に連絡することを忘れた場合、後日問題となることがある。
【0003】
【発明が解決しょうとする課題】
本発明は、異常事象が発生していることを判別し、原子炉出力低下から原子炉手動停止までの措置をその都度自動的に決定し適宜原子炉出力を制御することを目的とする。更に、自動的に状況に応じて適宜外部との連絡をとることを目的とする。
【0004】
【課題を解決するための手段】
図2は本発明のプラント運転支援装置に関わるブロック図である。図中の矢印は情報の伝わる方向を示す。原子力発電所のプラント総合制御装置(3)の制御棒操作ハンドル群(14)と原子炉手動停止ボタン(15)に本発明の制御補助装置(11)を結合することにより、観測対象機器に設置された主検出器(8)とその他検出器(9)からの測定量を元に異常事態の発生を判別しその都度判別結果を逐次確認しつつ原子炉出力を制御することを目的とする。更に、状況に応じて電力供給指令所FAX(16)や関連自治体、監督官庁FAX(12)や解除責任者携帯電話(13)に連絡をすることを目的とする。
図3は本発明の制御補助装置(11)の概観図である。なお、図中の矢印は信号が伝わる方向を示す。主測定器(8)とその他測定器(9)からの測定量を長2点鎖線で囲まれたコンピュータ(20)が測定量入力装置(26)を介して常時入力し、演算、信号送受信制御部(21)に内蔵しているソフトウエアーによって演算監視することによって異常であると判別とした場合、画像、音声、印刷表示器(22)とランプスイッチ操作器(23)と外部の関連自治体、監督官庁FAX(12)と解除責任者携帯電話(13)と電力供給指令所FAX(16)への送信を制御して警告を発すると共に、プラント総合制御装置(3)の制御棒操作ハンドル(14)と原子炉手動停止ボタン(15)を制御して原子炉出力を自動的に操作する。技術者の詳細な検討により正常運転継続に問題がないと判明した場合には、解除責任者から解除暗証番号を手入力キー(29)により入力し、警報を解除できる。ランプスイッチ操作器(23)は測定量が正常ならば対象機器が正常であることを緑ランプ(24)点滅で知らせ、異常ならば赤ランプ(25)を点滅させる。
【0005】
【発明の実施の形態】
コンピュータ(20)は監視対象機器に設置した主測定器(8)とその他測定器(9)からのスクラムには至らない測定量を常時入力し、監視対象機器に異常がなければ緑ランプ(24)を点滅させる。
測定量から監視対象機器が異常であるとコンピュータ(20)が判断すると緑ランプは消え赤ランプ(25)が点滅する。異常が短時間で終了し、偶然であると判断した場合は赤ランプ点滅が消え、緑ランプが再び点滅する。
異常が進展した場合は画像、音声、印刷表示器(22)と解除責任者携帯電話(13)と電力供給指令所FAX(16)へ自動的に一定時間例えば24時間以内に制御棒操作ハンドル群(14)が制御されてゼロ出力温態待機になるとの警報11を発する。コンピュータ(20)に内蔵している時計によるカウントダウンでの所定時間内に事象が把握できて問題がないことが判明した場合には所長等の解除責任者から知らされた暗証番号の手入力キー(29)入力により警報11は解除され正常運転とみなし通常監視に戻る。
放置された場合は制御棒操作ハンドル群(14)に信号が送られ自動的にゼロ出力温態待機状態に至る。画像、音声、印刷表示器(22)と解除責任者携帯電話(13)へ自動的に一定時間例えば48時間以内に原子炉手動停止ボタン(15)が押されて原子炉手動停止になるとの警報12を発する。事象が把握できて問題がないことが判明した場合には所長等の解除責任者から知らされた暗証番号の手入力キー(29)入力により警報12は解除されるが、制御棒を原子炉から取り出して出力を上昇させる準備を発信して監視は終了する。
所定の48時間以上放置された場合は原子炉手動停止ボタン(15)に信号が送られ自動的に原子炉手動停止に至る。画像、音声、印刷表示器(22)と関連自治体、監督官庁FAX(16)に警報13が送信される。監視は終了する。
図4、図5、図6は本発明の運転支援装置のコンピュータ(20)のソフトウエアーを示すフローチャートである。
ステップ{71}は、演算に使用する条件設定値を入力する。測定量の許容範囲は最大値AU0と最小値AL0により定められる。時々刻々入る測定量を格納するコンピュータ(20)のファイル名をFILEAIと指定する。
ステップ{72}は、演算に使用する値を初期化する。
NG=0:正常状態入力回数。
NR=0:異常状態入力回数。0は正常で赤ランプ点滅が切れていて、緑ランプは点滅している。正になると異常状態の兆候を示す。
NRI1=10:NRがNRI1=10以上になると赤ランプ点滅。緑ランプの点滅は切れる。
NRI2=40:NRがNRI2=40を越えると警報を発信する。
TT0=200:異常状態入力を示し始めてから途中正常値を含むTT0=200回入力の内NRがNRI2=40回以下であれば偶然事象と判断する。ステップ{72}の初期化に戻り正常とみなす。
H1=24:最初の警報が出てから24時間以内に事象が把握できて問題無しと判断されたら正常とみなす。
H2=48:2度目の警報が出てから48時間以内に事象が把握できて問題無しと判断されたら正常とみなす。
ステップ{73}は、演算に使用する時間Tiを、コンピュータ(20)に内蔵されている時計から入力する。
ステップ{74}は、演算に使用する時間Tiの測定量Aiを、コンピュータ(20)のFILEAIから入力する。
ステップ{75}は、測定量Aiが最大値AU0と最小値AL0の範囲内に入っているかどうかを判別し、入っていればYESでステップ{76}に進み、入っていなければNOでステップ{77}に進む。
ステップ{76}は、正常状態入力回数NGを演算する。
ステップ{77}は、異常状態入力回数NRを演算する。
ステップ{78}は、異常状態を示してからの全入力回数TTを演算する。
ステップ{79}は、異常状態入力回数NRがNRI1−1以下かどうかを判別し、以下ならばYESでステップ{80}に進み、そうでなければNOでステップ{81}に進む。
ステップ{80}は、ランプスイッチ操作器(23)に緑ランプ点滅スイッチ入れを発信し定常状態を示す。赤ランプは消える。
もし、NR=1ならNG=0として最初に異常を感知してからの総入力回数TT=NR+NGを演算開始する。
ステップ{81}は、異常状態入力回数NRがNRI1−1以下でなくNOであり、異常状態と判別した。ランプスイッチ操作器(23)に赤ランプ点滅スイッチ入れを発信し異常状態を示す。緑ランプは消える。
ステップ{82}は、異常状態入力回数NRがNRI2+1以上かどうかを判別し、以上ならば異常状態らしさが高まりYESでステップ{85}に進み、そうでなければNOでステップ{83}に進み更に様子を見る。
ステップ{83}は、最初に異常を感知してからの総入力回数TT=NR+NGがTT0−1以下かどうかを判別し、以下ならば更に異常状態らしいとしてYESでステップ{73}に進み監視を続行する。そうでなければ正常状態であると判断しNOでステップ{84}に進む。
ステップ{84}は、正常状態であると判断し、その時刻Tiと正常を画像、音声、印刷表示器(22)に信号を送る。ステップ{72}に戻り通常監視を続行する。
ステップ{85}は、異常状態入力回数NRがNRI2+1以上で異常状態らしさが高まり、警報11発信に関わる時期を演算するためにコンピュータ(20)に内蔵している時計を初期化しスタートさせる。
ステップ{86}は、演算に使用する時間Tjを、コンピュータ(20)に内蔵している時計から入力する。
ステップ{87}は、時間Tjの測定量Ajを、コンピュータ(20)のFILEAIから入力する。
ステップ{88}は、次段階の警報12までの最大残り時間H1から残り時間HOUR1をカウントダウンする。
ステップ{89}は、自動的にコンピュータ(20)から画像、音声、印刷表示器(22)と解除責任者携帯電話(13)と電力供給指令所FAX(16)へ発信する。例えば「警報11。偶然ではない。異常である。故障の可能性1」「検出値Aj」「20時間以内に制御棒挿入準備せよ。ゼロ出力予想せよ。電力供給指令所へFAX確認せよ」「事態が把握できて問題がないと判ったら、社長から全権を委託された発電所所長とかの解除責任者は警報解除の暗証番号を本発明のコンピュータ(20)や中央操作室(1)に電話(6)せよ」
ステップ{90}は、解除番号の照合である。正しい番号ならYESでステップ{91}に進み、誤りならNOでステップ{92}に進む。
ステップ{91}は、正しい解除番号が手入力キー(29)から入力されたため正常と判断され画像、音声、印刷表示器(22)に「解除1」が発信される。ステップ{72}で初期化され通常監視が続行される。
ステップ{92}は、事態が把握できないため、次段階の警報12までの残り時間HOUR1があればYESでステップ{86}に戻り警報11を発信する。HOUR1がゼロになりNOでステップ{93}に進む。
ステップ{93}は、次段階の警報12発信に関わる時期を演算するためコンピュータ(20)に内蔵している時計を初期化しスタートさせる。
ステップ{94}は、演算に使用する時間Tkを、コンピュータ(20)に内蔵している時計から入力する。
ステップ{95}は、時間Tkの測定量Akを、コンピュータ(20)のFILEAIから入力する。
ステップ{96}は、次段階の警報13までの最大残り時間H2から残り時間HOUR2をカウントダウンする。
ステップ{97}は、自動的にコンピュータ(20)からプラント総合操作装置(3)の制御棒操作ハンドル群(14)に制御棒挿入信号と画像、音声、印刷表示器(22)と解除責任者携帯電話(13)へ警告を発信する。例えば「警報12。制御棒挿入ハンドル操作しました。ゼロ出力だが温態待機」「36時間以内に原子炉手動停止せよ」「事態が把握できて問題がないと判ったら、社長から全権を委託された発電所所長とかの解除責任者は警報解除の暗証番号を中央操作室(1)に電話(6)せよ」「検出値Ak」
ステップ{98}は、解除番号の照合である。正しい番号ならYESでステップ{99}に進み、誤りならNOでステップ{100}に進む。
ステップ{99}は、正しい解除番号が手入力キー(29)から入力されたため正常と判断され画像、音声、印刷表示器(22)に「解除2」が発信される。出力ゼロのため原子炉から制御棒引き出しにより「出力上昇準備」が示される。ゼロ出力ながらも高温高圧の温態待機であるため定常出力への復帰は単時間で済むが複雑な手順を踏む必要がある。したがって、ステップ{100}で計算は終了となり監視も終了する。
ステップ{101}は、事態が把握できないで、次段階の警報13までの残り時間HOUR2があればYESでステップ{94}に戻り警報12を発信する。HOUR2がゼロになりNOでステップ{102}の警報13に進む。
ステップ{102}は、自動的にコンピュータ(20)からプラント総合操作装置(3)の原子炉手動停止ボタン(15)押し信号と画像、音声、印刷表示器(22)と解除責任者携帯電話(13)と関連自治体と監督官庁FAX(12)へ警告を発信する。例えば「警報13。原子炉手動停止ボタン押しました。原子炉手動停止」「検出値Ak」
ステップ{103}は、ゼロ出力で室温近傍の原子炉手動停止であるため定常出力への復帰は長時間かかり複雑な手順を踏む必要がある。したがって、計算は終了となり監視も終了する。
【0006】
【発明の効果】
本発明は従来のプラント総合制御装置(3)を殆ど変えることがないため工事に伴う誤りから生じる安全性の低下を生じることなく、原子力発電所の諸機器の異常を自動的に監視判別し原子炉出力を制御することにより安全性を一層向上させると共に、関連箇所へ自動的に警告を発することにより、電力供給指令所FAX(16)への通報は電力供給への信頼性を向上させ、関連自治体、監督官庁FAX(12)への通報は地域住民の安心感をもたらし原子力発電所の信頼感を増す。
温態待機状態では種々の点検が可能になるため事象を把握する可能性が高くかつ通常運転に戻し易く、解除責任者携帯電話(13)との連絡が迅速であることと相俟って、無意味な運転停止を未然に防ぐことができるため、原子力発電所の信頼性を向上させることができる。
【0007】
【その他実施例1】
異常判別の条件として、試験運転中に観測対象機器に設置した検出器の検出値A(t)を十分長期間例えば100時間記録取得し、その期間での最大値を1.0〜2.0倍にしたAU0と最小値を1.0〜0.5倍にしたAL0を異常判別の条件とする。
なお、100%出力、75%出力、50%出力で記録取得したAU0とAL0の値から、出力の2次関数とすることにより任意出力での異常判別の条件とすることができる。
【0008】
【その他実施例2】
異常判別の条件として、試験運転中に観測対象機器に設置した検出器の検出値A(t) を十分長期間例えば100時間記録取得し、単位時間当たりの例えば1分間当たり平均値A0を求め、A0の1.0〜2.0倍を上限値AUM0としA0の1.0〜0.5倍を下限値ALM0として異常判別の条件とする。
なお、100%出力、75%出力、50%出力で記録取得したAUM0とALM0の値から、出力の2次関数とすることにより任意出力での異常判別の条件とすることができる。
【0009】
【その他実施例3】
その他実施例1および2において、試験運転後の定常運転に入ってからの値を記録取得することにより、条件を更新することができる。
【0010】
【その他実施例4】
その他測定器(9)として、原子炉等機械室(2)にマイクロフォンを設置し、原子炉等機械室(2)に納められている全機器の異常を音波により監視する。なお、指向性マイクロフォンの方向をかえることにより異常な機器の場所を絞りこむ。
【0011】
【その他実施例5】
主測定器(8)として、沸騰水型原子炉における炉内構造物であるシュラウド部材や炉心指示板、また加圧水型原子炉における炉内構造物である原子炉容器上部蓋や上部指示板や下部指示板や炉心バッフル部材や熱遮蔽板に振動検出器を設置することにより既存亀裂の進展をその他実施例2により監視し、新規亀裂の発生をその他実施例1により監視することを特徴とする原子炉制御補助装置。
上記炉内構造物は一次系圧力バウンダリーではなく、原子炉安全性には大きな問題が生じない構造物ではあるが放置すると大事故になりかねない。既存亀裂の進展は時間経過と共に滑らかに平均的振動の変化として現れるからその他実施例2により平均的振動を監視することにより既存亀裂の進展を監視できる。新規亀裂の発生は突然パルス的であるから、その他実施例1により瞬時値を監視することにより新規亀裂の発生を観測することができる。前回定期点検と監視終了後の点検検査結果と監視装置での監視結果とを比べることにより亀裂に関する相関を得ることができる。
【0012】
【その他実施例6】
図7は沸騰水型原子炉の炉心平面図である。原子炉出力を制御する十字型の制御棒(40)は燃料集合体(41)の4体に1本の割合で配置されている。高出力運転時においては、図8に示すように運転中に挿入されている制御棒(40)は1本おきに挿入されている。炉心中心に制御棒(40)が挿入できる配置をAパターンと呼び、他をBパターンと呼んでいる。Aパターンで高出力運転をするためにはまずBパターンの制御棒は全て炉心から引き出され、次に炉心周辺部のAパターンに属する制御棒が炉心から引き出される。ゼロ出力温態待機状態にするためには予め、温態待機用挿入予定制御棒(42)を当該運転中のパターン例えばAパターンに属する制御棒の中から決めておき、制御棒操作ハンドル群(14)に信号を送ることにより温態待機用挿入予定制御棒(42)が挿入されてゼロ出力温態待機状態にすることができる。
原子炉手動停止では、図7に示す制御棒(40)の全てを炉心に挿入する。
【図面の簡単な説明】
【図1】従来のプラント制御監視装置に関わるブロック図
【図2】本発明のプラント運転支援装置に関わるブロック図
【図3】本発明の制御補助装置(11)の概観図
【図4】本発明のプラント運転支援装置のコンピュータ(20)のソフトウェアーを示すフローチャート
【図5】図4の続き
【図6】図5の続き
【図7】沸騰水型原子炉における制御棒配置を示す炉心平面図
【図8】高出力運転時運転中挿入されている制御棒(40)の配置例と温態待機用挿入予定制御棒(42)の配置例
【符号の説明】
1は中央操作室
2は原子炉等機械室
3はプラント総合制御装置
4は制御棒操作ハンドル群
5は原子炉手動停止ボタン
6は電話
7はスクラム等制御機械
8は主測定器
9はその他測定器
10は記録装置
11は本発明の制御補助装置
12は関連自治体、監督官庁FAX
13は解除責任者携帯電話
14は制御棒操作ハンドル群
15は原子炉手動停止ボタン
16は電力供給指令所FAX
20はコンピュータ
21は演算、信号送受信制御部
22は画像、音声、印刷表示器
23はランプスイッチ操作器
24は緑ランプ
25は赤ランプ
26は測定量入力装置
29は手入力キー
40は制御棒
41は燃料集合体
42は温態待機用挿入予定制御棒
{71}〜{103}はフローチャートステップ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is a method and an apparatus for supporting operation of a nuclear reactor in nuclear power generation.
[0002]
[Prior art]
A plant monitoring and control device that monitors the reactor operation status and controls the output, and scrams when an accident occurs due to loss of primary coolant due to a major breakage of the primary piping or a decrease in flow rate due to stoppage of the primary coolant pump. The block diagram involved is shown in FIG. Arrows in the figure indicate directions in which information is transmitted. The state quantity from the main measuring device (8), which measures the water level of the reactor in the machine room (2) of the reactor, etc., is led to the plant general control device (3) in the central operating room (1) and is constantly monitored When a certain set value is exceeded, a control rod automatic insertion signal is transmitted to a control machine (7) such as a scrum, and a reactor called a scram is automatically stopped without human intervention. There is no human personal judgment, such as speculation. There is no intention or speculation about the site personnel of the organization that owns the power plant, the power plant manager, the manager, or the officials of the national or local government that oversees the power plant. The plant integrated control device (3) related to the automatic stop is a large-scale and has been almost completed by improvement based on past results. Significant alterations compromise the safety of the reactor because new problems may arise.
On the other hand, with regard to various abnormal events such as an increase in the shaft vibration of the cooling water circulation pump motor that does not result in automatic shutdown, the reactor is not automatically stopped because a large accident does not occur immediately. For an abnormal event that does not become a major accident in an emergency, but may cause a major accident if left unchecked, the measurement quantity from other measuring instruments (9) that measures the motor shaft vibration etc. An alarm signal is issued while being monitored by the recording device (19). On-site personnel such as operators and maintenance personnel judged and operated the control rod operation handle group (4) and pressed the reactor manual stop button (5) to control the reactor output. A telephone (6) is provided in the central operation room (1) for communication with the outside.
In general, shutting down equipment lowers the operating rate and raises costs. Shutting down nuclear power also lowers the operating rate and increases power generation costs. The larger the equipment, the higher the price. If the judgment is stopped by mistake, it becomes a liability issue. On the other hand, there is a possibility that a large accident may occur because the judgment is not stopped by mistake. In this way, personal speculation comes about the reactor shutdown time. In addition, if there is confusion, if you forget to contact the person you should contact, it may become a problem at a later date.
[0003]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION It is an object of the present invention to determine that an abnormal event has occurred, automatically determine a measure from a reactor power reduction to a manual reactor shutdown each time, and appropriately control the reactor power. It is another object of the present invention to automatically contact the outside appropriately according to the situation.
[0004]
[Means for Solving the Problems]
FIG. 2 is a block diagram relating to the plant operation support device of the present invention. Arrows in the figure indicate directions in which information is transmitted. By installing the control auxiliary device (11) of the present invention to the control rod operation handle group (14) and the reactor manual stop button (15) of the nuclear power plant integrated control device (3), it is installed on the observation target equipment. An object of the present invention is to determine the occurrence of an abnormal situation based on the measured amounts from the main detector (8) and the other detectors (9) and to control the reactor power while sequentially confirming the result of the determination each time. Furthermore, the purpose is to contact the power supply control center FAX (16), related local governments, the regulatory agency FAX (12), and the mobile phone (13) responsible for cancellation according to the situation.
FIG. 3 is a schematic view of the control auxiliary device (11) of the present invention. The arrows in the figure indicate the direction in which the signal is transmitted. A computer (20) surrounded by a two-dot chain line constantly inputs measurement amounts from the main measurement device (8) and other measurement devices (9) via a measurement amount input device (26), and performs calculation and signal transmission / reception control. If it is determined to be abnormal by calculation and monitoring by software incorporated in the unit (21), an image, a sound, a print display (22), a lamp switch operation unit (23) and an external related local government, Controlling the transmission to the regulatory agency FAX (12), the cell phone responsible for release (13), and the power supply command center FAX (16) to issue a warning, the control rod operation handle (14) of the plant integrated control device (3). ) And the reactor manual stop button (15) to automatically control the reactor power. If it is determined by the detailed examination of the engineer that there is no problem in the normal operation continuation, the alarm can be canceled by inputting the cancellation password from the person in charge of cancellation by the manual key (29). If the measured amount is normal, the lamp switch operating device (23) notifies that the target device is normal by blinking the green lamp (24), and if abnormal, blinks the red lamp (25).
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
The computer (20) constantly inputs a measured amount that does not reach the scrum from the main measuring device (8) and other measuring devices (9) installed in the monitored device, and if there is no abnormality in the monitored device, the green lamp (24) ) Flashes.
When the computer (20) determines that the monitored device is abnormal from the measured amount, the green lamp goes out and the red lamp (25) flashes. If the abnormality is completed in a short time and it is determined that it is accidental, the red lamp stops blinking and the green lamp blinks again.
When the abnormality progresses, the control rod operation handle group is automatically sent to the image, voice, print display (22), the release responsible mobile phone (13), and the power supply command center FAX (16) within a predetermined time, for example, 24 hours. (14) is controlled and an alarm 11 is issued to indicate that the apparatus is in standby for zero output temperature. If it is found that there is no problem within a predetermined time of the countdown by the clock built in the computer (20) and there is no problem, a key for manually inputting the personal identification number (e.g. 29) The alarm 11 is canceled by the input, and the operation is regarded as normal operation, and the process returns to the normal monitoring.
If left unchecked, a signal is sent to the control rod operation handle group (14) to automatically enter the zero output warm state standby state. The image, sound, print display (22) and the release supervisor's cell phone (13) are automatically warned that the reactor manual stop button (15) is pressed within a certain period of time, for example, 48 hours, and the reactor is manually stopped. Issue 12. When the event can be grasped and it is found that there is no problem, the alarm 12 is released by manually inputting the password (29) of the personal identification number notified by the release manager such as the director, but the control rod is removed from the reactor. Preparation for taking out and raising the output is transmitted, and the monitoring ends.
If the reactor is left for more than a predetermined 48 hours, a signal is sent to the reactor manual stop button (15), and the reactor automatically stops. The alarm 13 is transmitted to the image, sound, and print display (22) and the related local governments and the FAX (16). Monitoring ends.
FIGS. 4, 5 and 6 are flowcharts showing the software of the computer (20) of the driving support device of the present invention.
In step {71}, a condition set value used for calculation is input. The allowable range of the measured quantity is determined by the maximum value AU0 and the minimum value AL0. The file name of the computer (20) that stores the measured quantity that is inserted every moment is designated as FILEAI.
Step {72} initializes the value used for the calculation.
NG = 0: Normal state input count.
NR = 0: number of abnormal state inputs. 0 is normal, the blinking of the red lamp has stopped, and the blinking of the green lamp is blinking. Positive indicates an abnormal condition.
NRI1 = 10: Red lamp blinks when NR exceeds NRI1 = 10. The green lamp stops blinking.
NRI2 = 40: An alarm is issued when NR exceeds NRI2 = 40.
TT0 = 200: If NR of NRI2 = 40 or less among TT0 = 200 times including a normal value in the middle from the start of indicating an abnormal state input, it is determined to be an accidental event. The process returns to the initialization of step {72} and is regarded as normal.
H1 = 24: If an event can be grasped within 24 hours after the first alarm is issued and no problem is determined, it is regarded as normal.
H2 = 48: If the event can be grasped within 48 hours after the second alarm is issued and it is determined that there is no problem, it is regarded as normal.
In step {73}, a time Ti used for the calculation is input from a clock built in the computer (20).
In step {74}, the measured amount Ai of the time Ti used for the calculation is input from the FILEAI of the computer (20).
A step {75} discriminates whether or not the measured quantity Ai is within the range between the maximum value AU0 and the minimum value AL0, and if yes, proceeds to step {76}; Proceed to 77}.
A step {76} calculates a normal state input count NG.
A step {77} calculates an abnormal state input number NR.
A step {78} calculates the total number of inputs TT after indicating the abnormal state.
In a step {79}, it is determined whether or not the abnormal state input number NR is equal to or less than NRI1-1. If the number is less than NRI1-1, the process proceeds to step {80} with YES, and otherwise proceeds to step {81}.
In step {80}, a green lamp blinking switch-on is transmitted to the lamp switch operating device (23) to indicate a steady state. The red lamp goes out.
If NR = 1, NG = 0 is set and the total number of input times TT = NR + NG since the abnormality is first sensed is calculated.
In step {81}, the abnormal state input frequency NR is not equal to or less than NRI1-1 and is NO, and thus the abnormal state is determined. A red lamp blinking switch-on is transmitted to the lamp switch operating device (23) to indicate an abnormal state. The green lamp goes off.
In step {82}, it is determined whether or not the abnormal state input number NR is equal to or more than NRI2 + 1. If it is, the likelihood of the abnormal state increases, and the process proceeds to step {85} with YES, and otherwise proceeds to step {83} with NO. Watch the situation.
In step {83}, it is determined whether or not the total number of inputs TT = NR + NG since the first abnormality is detected is equal to or less than TT0-1. continue. Otherwise, it is determined that it is in a normal state, and the process proceeds to step {84} with NO.
In step {84}, it is determined that the state is normal, and a signal indicating the time Ti and normality is sent to the image, sound, and print display (22). Returning to step {72}, normal monitoring is continued.
In step {85}, a clock built in the computer (20) is initialized and started in order to calculate a time related to the generation of the alarm 11 when the number NR of abnormal state input is equal to or more than NRI2 + 1 and to calculate a time related to the alarm 11 transmission.
In step {86}, a time Tj used for calculation is input from a clock built in the computer (20).
In step {87}, the measured amount Aj of the time Tj is input from FILEAI of the computer (20).
In step {88}, the remaining time HOUR1 is counted down from the maximum remaining time H1 until the next alarm 12.
In step {89}, the computer (20) automatically sends an image, a voice, a print display (22), a release responsible mobile phone (13), and a power supply command office FAX (16). For example, "Alarm 11. Not accidental. Abnormal. Possibility of failure 1.""Detection value Aj.""Prepare control rod insertion within 20 hours. Predict zero output. Check FAX to power supply command center." If the situation can be grasped and there is no problem, the chief of the power station, who has been entrusted by the president and who has full authority, calls the alarm release PIN to the computer (20) and central control room (1) of the present invention. (6) Let's do it "
Step {90} is collation of the release number. If the number is correct, the process proceeds to step {91} with YES, and if not, the process proceeds to step {92} with NO.
In step {91}, since the correct release number has been input from the manual input key (29), it is determined to be normal, and "Release 1" is transmitted to the image, sound, and print display (22). Initialized in step {72}, normal monitoring is continued.
In step {92}, since the situation cannot be grasped, if there is a remaining time HOUR1 until the next stage of the alarm 12, the process returns to step {86} with YES and issues the alarm 11. HOUR1 becomes zero, and the process proceeds to step {93} with NO.
A step {93} initializes and starts a clock built in the computer (20) in order to calculate a time related to the next stage of the alarm 12 transmission.
In step {94}, the time Tk used for the calculation is input from a clock built in the computer (20).
In step {95}, the measured amount Ak of the time Tk is input from the FILEAI of the computer (20).
In the step {96}, the remaining time HOUR2 is counted down from the maximum remaining time H2 until the next alarm 13.
Step {97} is to automatically send a control rod insertion signal, image, sound, print display (22), and release manager from the computer (20) to the control rod operation handles (14) of the plant integrated operation device (3). A warning is sent to the mobile phone (13). For example, "Warning 12. The control rod insertion handle was operated. Zero output but warm standby.""Stop the reactor manually within 36 hours.""If you can grasp the situation and find no problem, entrust the president with full authority. The chief of the cancellation, such as the power plant director, calls the central control room (1) with the PIN for the alarm cancellation (6).
Step {98} is the collation of the release number. If the number is correct, the process proceeds to step {99} with YES, and if not, the process proceeds to step {100} with NO.
In step {99}, since the correct release number has been input from the manual input key (29), it is determined to be normal, and "Release 2" is transmitted to the image, sound, and print display (22). Because the output is zero, "preparation for power increase" is indicated by pulling out the control rod from the reactor. Although it is a standby state at a high temperature and a high pressure even though the output is zero, the return to the steady output can be completed in a single time, but a complicated procedure must be taken. Therefore, the calculation ends at step {100}, and the monitoring ends.
In step {101}, if the situation cannot be grasped and there is a remaining time HOUR2 until the next stage of the alarm 13, the process returns to step {94} with YES and issues the alarm 12. HOUR2 becomes zero, and if NO, the process proceeds to the warning 13 in step {102}.
Step {102} is automatically performed from the computer (20) by pressing a signal for pressing the reactor manual stop button (15) of the plant integrated operation device (3), an image, a sound, a print display (22), and a release-responsible mobile phone ( 13), and send a warning to the relevant local governments and the FAX (12). For example, "Alarm 13. The reactor manual stop button was pressed. Reactor manual stop.""Detection value Ak."
In step {103}, the reactor is manually shut down near room temperature at zero output, so it takes a long time to return to the steady output, and it is necessary to take a complicated procedure. Therefore, the calculation ends and the monitoring ends.
[0006]
【The invention's effect】
Since the present invention hardly changes the conventional plant integrated control device (3), it automatically monitors and determines the abnormality of various equipment of a nuclear power plant without causing a decrease in safety caused by an error caused by construction. By further controlling the furnace power to further improve safety, and automatically issuing warnings to the relevant locations, the notification to the power supply control center FAX (16) improves the reliability of power supply, Reporting to local governments and the regulatory agency FAX (12) will give local residents a sense of security and increase their confidence in nuclear power plants.
In the warm standby state, various inspections become possible, so it is highly likely that the event will be grasped and it is easy to return to normal operation, and in combination with the quick communication with the release manager mobile phone (13), Since meaningless operation stop can be prevented beforehand, the reliability of the nuclear power plant can be improved.
[0007]
[Other Embodiment 1]
As a condition for the abnormality determination, the detection value A (t) of the detector installed on the observation target device is recorded and acquired for a sufficiently long period, for example, 100 hours during the test operation, and the maximum value in that period is set to 1.0 to 2.0. AU0 that is doubled and AL0 whose minimum value is 1.0 to 0.5 times are set as conditions for abnormality determination.
It should be noted that a condition for abnormality determination at an arbitrary output can be obtained by forming a quadratic function of the output from the values of AU0 and AL0 recorded and obtained at 100% output, 75% output, and 50% output.
[0008]
[Other Embodiment 2]
As a condition for the abnormality determination, the detection value A (t) of the detector installed in the observation target device during the test operation is recorded for a sufficiently long period, for example, 100 hours, and an average value A0 per unit time, for example, for 1 minute is obtained. 1.0 to 2.0 times A0 is set as an upper limit value AUM0, and 1.0 to 0.5 times A0 is set as a lower limit value ALM0, which is a condition for abnormality determination.
It should be noted that a condition for determining an abnormality at an arbitrary output can be obtained by forming a quadratic function of the output from the values of AUM0 and ALM0 recorded and acquired at 100% output, 75% output, and 50% output.
[0009]
[Other Embodiment 3]
In addition, in the first and second embodiments, the condition can be updated by recording and acquiring a value after the steady operation after the test operation is started.
[0010]
[Other Embodiment 4]
In addition, as a measuring device (9), a microphone is installed in a machine room (2) of a nuclear reactor or the like, and abnormalities of all devices contained in the machine room (2) of the nuclear reactor or the like are monitored by sound waves. By changing the direction of the directional microphone, the location of the abnormal device is narrowed down.
[0011]
[Other Embodiment 5]
The main measuring device (8) includes a shroud member and a core indicator plate, which are internal structures in a boiling water reactor, and an upper cover, an upper indicator plate, and a lower portion, which are internal structures in a pressurized water reactor. A vibration detector is installed on an indicator plate, a core baffle member, or a heat shield plate to monitor the progress of an existing crack according to the second embodiment, and to monitor the occurrence of a new crack according to the other embodiment 1. Furnace control auxiliary equipment.
The above-mentioned reactor internal structure is not a primary system pressure boundary, and is a structure that does not cause a major problem in reactor safety. However, if left untreated, a serious accident may occur. Since the growth of the existing crack appears as a change in the average vibration smoothly with the passage of time, the growth of the existing crack can be monitored by monitoring the average vibration according to the second embodiment. Since the occurrence of the new crack is suddenly pulse-like, the occurrence of the new crack can be observed by monitoring the instantaneous value according to the first embodiment. By comparing the inspection result of the previous periodic inspection with the inspection result after the end of the monitoring and the monitoring result of the monitoring device, it is possible to obtain a correlation regarding the crack.
[0012]
[Other Embodiment 6]
FIG. 7 is a plan view of the core of the boiling water reactor. The cross-shaped control rods (40) for controlling the reactor power are arranged at a ratio of one to four fuel assemblies (41). At the time of high-power operation, as shown in FIG. 8, every other control rod (40) inserted during operation is inserted. The arrangement in which the control rod (40) can be inserted into the center of the core is called an A pattern, and the other arrangement is called a B pattern. In order to perform the high-power operation in the pattern A, first, all the control rods in the pattern B are pulled out from the core, and then the control rods belonging to the pattern A in the periphery of the core are pulled out from the core. In order to enter the zero-output warm standby state, the control rod (42) to be inserted in the warm standby state is determined in advance from the control rods belonging to the operating pattern, for example, the A pattern, and the control rod operation handle group ( By sending a signal to 14), the insertion control rod (42) for hot standby is inserted, and a zero output hot standby state can be set.
In the manual shutdown of the reactor, all the control rods (40) shown in FIG. 7 are inserted into the core.
[Brief description of the drawings]
FIG. 1 is a block diagram relating to a conventional plant control and monitoring device. FIG. 2 is a block diagram relating to a plant operation support device according to the present invention. FIG. 3 is an overview diagram of a control auxiliary device (11) according to the present invention. FIG. 5 is a flowchart showing software of a computer (20) of the plant operation support apparatus of the invention. FIG. 5 is a continuation of FIG. 4; FIG. 6 is a continuation of FIG. 5; FIG. 8: Example of arrangement of control rods (40) inserted during operation during high-power operation and example of arrangement of control rods (42) to be inserted for warm standby.
1 is a central operation room 2 is a machine room such as a reactor 3 is a plant general control device 4 is a control rod operation handle group 5 is a manual stop button 6 for a reactor 6 is a telephone 7 is a control machine 8 such as a scram 8 is a main measuring device 9 is other measurement The device 10 is a recording device 11 is a control auxiliary device of the present invention 12 is a related local government, a supervisory agency FAX
13 is a person in charge of release, mobile phone 14 is a control rod operation handle group 15 is a reactor manual stop button 16 is a power supply command center FAX
Reference numeral 20 denotes a computer 21; signal transmission / reception control unit 22: image and voice; print display 23: lamp switch operation unit 24: green lamp 25: red lamp 26: measured quantity input device 29: manual input key 40: control rod 41 Is the fuel rod 42, the control rod {71} to {103} for the standby state for warm standby is a flowchart step.

Claims (10)

本発明は、原子力発電所における主測定器(8)とその他測定器(9)からの監視対象機器からの測定量を、測定量入力装置(26)を介してコンピュータ(20)に常時入力することによって演算、信号送受信制御部(21)に内蔵されているソフトウエアーによって所定値以内であるかどうかを演算し、異常を判別するとプラント総合制御装置(3)の制御棒操作ハンドル群(14)及び原子炉手動停止ボタン(15)を制御することにより原子炉出力を制御するとともに、画像、音声、印刷表示器(22)とランプスイッチ操作器(23)と外部の関連自治体、監督官庁FAX(12)と解除責任者携帯電話(13)と電力供給指令所FAX(16)への警告送信を制御して状況を連絡する。問題が把握され問題がないことが判明した場合は解除暗証番号を手入力キー(29)に入力し正常監視に戻す。ランプスイッチ操作器(23)は測定量が正常ならば対象機器が正常であることを緑ランプ(24)点滅で知らせ、異常ならば赤ランプ(25)を点滅させて知らせる。According to the present invention, a measured amount from a monitoring target device from a main measuring device (8) and other measuring devices (9) in a nuclear power plant is constantly input to a computer (20) via a measured amount input device (26). In this way, it is calculated whether or not the value is within a predetermined value by software built in the signal transmission / reception control unit (21), and if an abnormality is determined, the control rod operation handle group (14) of the plant integrated control device (3) In addition to controlling the reactor power by controlling the reactor manual stop button (15), an image, a sound, a print display (22), a lamp switch operation device (23), an external related local government, a regulatory agency FAX ( 12), the release manager controls the transmission of warnings to the mobile phone (13) and the power supply command center FAX (16) to notify the situation. If the problem is grasped and it is found that there is no problem, the release password is input to the manual input key (29) to return to normal monitoring. If the measured amount is normal, the lamp switch operating device (23) informs that the target device is normal by blinking the green lamp (24), and if abnormal, blinks the red lamp (25) to inform. 本発明は、原子力発電所における下記運転支援に関する方法と操作マニュアル文書である。コンピュータに監視対象機器に設置した測定器からのスクラムには至らない主測定量やその他測定量を常時入力し、監視対象機器に異常がなければ緑ランプを点滅させる。測定量から異常であるとコンピュータに内蔵するソフトウエアーが演算し判断すると緑ランプは消え赤ランプを点滅させる。異常が短時間で終了し、偶然であると判断した場合は赤ランプ点滅を消し、緑ランプを再び点滅させる。異常が進展した場合は解除責任者携帯電話と電力供給指令所FAXへ一定時間例えば24時間以内に制御棒操作ハンドル群を制御してゼロ出力温態待機にせよとの警報を画像、音声、印刷表示器に発する。所定時間内に事象が把握できて問題がないことが判明した場合には所長等の解除責任者から知らされた暗証番号を手入力キー入力により警報は解除され正常運転とみなし通常監視に戻る。放置された場合は解除責任者携帯電話へ一定時間例えば48時間以内に原子炉手動停止ボタンを押して原子炉手動停止にせよとの警報を画像、音声、印刷表示器に発する。事象が把握できて問題がないことが判明した場合には所長等の解除責任者から知らされた暗証番号を手入力キー入力により警報は解除するが、制御棒を原子炉から取り出して出力を上昇させる準備を発信して監視は終了する。所定の48時間以上放置された場合は原子炉手動停止ボタンを押して原子炉手動停止にせよとの警告を発する。監視は終了する。The present invention is a method and an operation manual document relating to the following driving support in a nuclear power plant. The main measurement quantity and other measurement quantities that do not reach the scrum from the measuring instrument installed on the monitored device are always input to the computer, and the green lamp blinks if there is no abnormality in the monitored device. When the software built into the computer calculates and determines that the measured value is abnormal, the green lamp goes out and the red lamp blinks. If it is determined that the abnormality is completed in a short time and it is accidental, the blinking of the red lamp is turned off and the green lamp is blinked again. If the abnormality progresses, an image, sound, and print warning are sent to the person in charge of release and the power supply command center FAX to control the control rod operation handle group within a certain period of time, for example, 24 hours, and to wait for zero output warm state. Emits on the display. If the event can be grasped within a predetermined time and it is found that there is no problem, the alarm is canceled by manually inputting the personal identification number notified by the manager in charge of cancellation such as the director and the operation is regarded as normal operation and the operation returns to the normal monitoring. If left unattended, a warning is issued on the image, sound, and print display to the release manager's mobile phone by pressing the reactor manual stop button within a certain period of time, for example, 48 hours, to stop the reactor manually. If the event can be grasped and there is no problem, the alarm is released by manual key input of the PIN issued by the director in charge of release, such as the director, but the output is increased by removing the control rod from the reactor The preparation is sent and the monitoring ends. If the reactor has been left for more than a predetermined 48 hours, a warning is issued to press the reactor manual stop button to stop the reactor manually. Monitoring ends. 請求項1および請求項2における異常判別の条件として、試験運転中に観測対象機器に設置した検出器の検出値A(t)を記録取得し、その期間での最大値を1.0〜2.0倍にしたAU0と最小値を1.0〜0.5倍にしたAL0を異常判別の条件とする。
なお、100%出力、75%出力、50%出力で記録取得したAU0とAL0の値から、出力の2次関数とすることにより任意出力での異常判別の条件とする。
As a condition for the abnormality determination in claims 1 and 2, a detection value A (t) of a detector installed on the observation target device is recorded and acquired during the test operation, and the maximum value in the period is set to 1.0 to 2 AU0 that has been increased by a factor of 0.0 and AL0 whose minimum value has been increased by a factor of 1.0 to 0.5 are set as conditions for abnormality determination.
It should be noted that a condition for determining an abnormality at an arbitrary output is obtained by forming a quadratic function of the output from the values of AU0 and AL0 recorded and obtained at the 100% output, the 75% output, and the 50% output.
請求項1および請求項2における異常判別の条件として、試験運転中に観測対象機器に設置した検出器の検出値A(t) を記録取得し、単位時間当たりの平均値A0を求め、A0の1.0〜2.0倍を上限値AUM0としA0の1.0〜0.5倍を下限値ALM0として異常判別の条件とする。
なお、100%出力、75%出力、50%出力で記録取得したAUM0とALM0の値から、出力の2次関数とすることにより任意出力での異常判別の条件とする。
As conditions for the abnormality determination in claims 1 and 2, a detection value A (t) of a detector installed in the observation target device is recorded and acquired during the test operation, and an average value A0 per unit time is obtained. 1.0 to 2.0 times the upper limit value AUM0 and 1.0 to 0.5 times A0 as the lower limit value ALM0, which are the conditions for abnormality determination.
It should be noted that the condition of the abnormality determination at an arbitrary output is determined by making a quadratic function of the output from the values of AUM0 and ALM0 recorded and acquired at 100% output, 75% output, and 50% output.
請求項3および請求項4において、試験運転後の定常運転に入ってからの値を記録取得することにより、異常判別の条件を更新する。In the third and fourth aspects, the condition for abnormality determination is updated by recording and acquiring a value obtained after the steady operation after the test operation is started. 請求項1および請求項2において、その他測定器(9)として原子炉等機械室(2)にマイクロフォンを設置し、原子炉等機械室(2)に納められている全機器の異常を音波により監視する。なお、指向性マイクロフォンの方向をかえることにより異常な機器の場所を絞りこむ。In Claims 1 and 2, a microphone is installed in a machine room (2) such as a reactor as the other measuring device (9), and abnormalities of all the devices stored in the machine room (2) such as the reactor are detected by sound waves. Monitor. The location of the abnormal device is narrowed down by changing the direction of the directional microphone. 請求項1および請求項2において、主測定器(8)として沸騰水型原子炉における炉内構造物であるシュラウド部材や炉心指示板、また加圧水型原子炉における炉内構造物である原子炉容器上部蓋や上部指示板や下部指示板や炉心バッフル部材や熱遮蔽板に振動検出器を設置することにより既存亀裂の進展を請求項4により監視し、新規亀裂の発生を請求項3により監視する。3. A shroud member and a core indicator plate which are internal structures in a boiling water reactor as a main measuring device (8), and a reactor vessel which is an internal structure in a pressurized water reactor according to claim 1 or 2. By installing a vibration detector on the upper lid, the upper indicator, the lower indicator, the core baffle member and the heat shield, the progress of an existing crack is monitored by claim 4, and the occurrence of a new crack is monitored by claim 3. . 請求項7において、前回定期点検と監視終了後の点検検査結果と監視装置での監視結果とを比べることにより亀裂に関する相関関係を求めること。8. The correlation according to claim 7, wherein the correlation between the previous periodic inspection and the inspection and inspection result after the end of the monitoring and the monitoring result by the monitoring device are compared. 請求項1および請求項2において、沸騰水型原子炉のゼロ出力温態待機状態にするための温態待機用挿入予定制御棒(42)を当該運転中のパターンに属する制御棒とすること。3. The control rod (42) according to claim 1 or 2, wherein the hot-water standby insertion planned control rod (42) for bringing the boiling water reactor into a zero-output hot standby state is a control rod belonging to the operating pattern. 請求項1および請求項2において、異常状態入力回数が設定値以上になったら赤ランプ(25)に点滅スイッチ入れを発信し異常状態を示す。最初に異常を感知してからの総入力回数が設定値以下で、異常状態入力回数が最初の設定値の約2倍以上になったら警報を発信する。最初に異常を感知してからの総入力回数が設定値以上で、異常状態入力回数が最初の設定値の約2倍以下であるなら正常とみなし緑ランプ(24)を点滅させる。In claim 1 and claim 2, when the number of abnormal state inputs exceeds a set value, a blinking switch-on is transmitted to a red lamp (25) to indicate an abnormal state. An alarm is issued when the total number of inputs after the first detection of an abnormality is equal to or less than the set value and the number of abnormal state inputs is about twice or more the initial set value. If the total number of inputs after the first detection of the abnormality is equal to or greater than the set value and the number of abnormal state inputs is less than about twice the initial set value, it is regarded as normal and the green lamp (24) blinks.
JP2003031867A 2003-02-10 2003-02-10 Reactor operation support method and apparatus for nuclear power generation Expired - Fee Related JP3965498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003031867A JP3965498B2 (en) 2003-02-10 2003-02-10 Reactor operation support method and apparatus for nuclear power generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003031867A JP3965498B2 (en) 2003-02-10 2003-02-10 Reactor operation support method and apparatus for nuclear power generation

Publications (2)

Publication Number Publication Date
JP2004240905A true JP2004240905A (en) 2004-08-26
JP3965498B2 JP3965498B2 (en) 2007-08-29

Family

ID=32958289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003031867A Expired - Fee Related JP3965498B2 (en) 2003-02-10 2003-02-10 Reactor operation support method and apparatus for nuclear power generation

Country Status (1)

Country Link
JP (1) JP3965498B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006189442A (en) * 2004-12-30 2006-07-20 Global Nuclear Fuel Americas Llc Reactor reload licensing analysis system
JP2017062207A (en) * 2015-09-25 2017-03-30 三菱重工業株式会社 Abnormality sign monitoring system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110955229B (en) * 2019-12-04 2021-04-02 中国原子能科学研究院 Comprehensive test platform for drum stick system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006189442A (en) * 2004-12-30 2006-07-20 Global Nuclear Fuel Americas Llc Reactor reload licensing analysis system
JP2017062207A (en) * 2015-09-25 2017-03-30 三菱重工業株式会社 Abnormality sign monitoring system
US10504631B2 (en) 2015-09-25 2019-12-10 Mitsubishi Heavy Industries, Ltd. Plant abnormality prediction detection system

Also Published As

Publication number Publication date
JP3965498B2 (en) 2007-08-29

Similar Documents

Publication Publication Date Title
EP2840577B1 (en) Central control device of nuclear power plant
CN106448764B (en) Nuclear power station spent fuel reservoir monitors system, method
KR100191566B1 (en) Indicator validation method in control complex of nuclear power plant
JP2004240905A (en) Operation support method and device of reactor for nuclear power generation
WO1996036970A1 (en) Nuclear reactor coolant level monitoring system
KR20150145000A (en) Operating system for plant protection system of nuclear power plant and Method of operating using the same
JP2012230524A (en) Plant monitoring control system
JPH0720275A (en) Reactor control rod monitoring controlling system
CN108520788A (en) A kind of processing system and method for nuclear power plant&#39;s unit starting and alarm of stopping transport
JP2922374B2 (en) Nuclear power plant accident response support system
CN110706834A (en) Reactor core cooling monitoring signal validity processing method and device
KR0166613B1 (en) Advanced nuclear plant control complex
JPH06201892A (en) Nuclear power plant accident management support system
JPH0560560B2 (en)
CN113885067A (en) Air pollution monitoring system and method for nuclear power plant reactor factory building
Joha et al. ReDICS: 5 years’ operation experiences and its technology
Check Checksource takes approximately 1 minute. I
Hanson et al. Assessing information needs and instrument availability for a pressurized water reactor during severe accidents
JPH05232283A (en) Measuring equipment of radioactive substance released on accident of nuclear power plant
Wang et al. Interfaces between Emergency State Classification and Operating Procedures in Nuclear Power Plants
Reactor Oak Ridge National Laboratory
Hanson et al. Information needs for severe accident management
JPH0552987A (en) Digital measurement and control device for reactor power plant
UNIT Selected Safety-Related Events
JPH08233990A (en) Reactor safety system and its functioning state indication method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070510

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees