JP2004239701A - Weight fall buffer in rigidometer of ground - Google Patents

Weight fall buffer in rigidometer of ground Download PDF

Info

Publication number
JP2004239701A
JP2004239701A JP2003027807A JP2003027807A JP2004239701A JP 2004239701 A JP2004239701 A JP 2004239701A JP 2003027807 A JP2003027807 A JP 2003027807A JP 2003027807 A JP2003027807 A JP 2003027807A JP 2004239701 A JP2004239701 A JP 2004239701A
Authority
JP
Japan
Prior art keywords
ground
coil
rigidity
weight
reaction force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003027807A
Other languages
Japanese (ja)
Other versions
JP3987441B2 (en
Inventor
Masaki Kamiura
正樹 上浦
Etsuo Sekine
悦夫 関根
Haruki Okano
晴樹 岡野
Takahiro Fujio
高弘 藤生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Tokyo Sokki Kenkyujo Co Ltd
Original Assignee
Railway Technical Research Institute
Tokyo Sokki Kenkyujo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute, Tokyo Sokki Kenkyujo Co Ltd filed Critical Railway Technical Research Institute
Priority to JP2003027807A priority Critical patent/JP3987441B2/en
Publication of JP2004239701A publication Critical patent/JP2004239701A/en
Application granted granted Critical
Publication of JP3987441B2 publication Critical patent/JP3987441B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable coping with rigid ground in a wide range without exchanging shock absorbing material and further improve measurement precision, in an apparatus for measuring rigidity of a ground based on reaction force from the ground and displacement of the ground to the impact force which is generated by dropping a weight 3 and transmitted to the ground A through the shock absorbing material. <P>SOLUTION: A compound coil spring 19 having a plurality of upper and lower coils different in spring rate is used as the shock absorbing material. On a substrate of low rigidity, a reaction force waveform which is ready in buffering action of the coil of small spring rate can be obtained. Also on a ground of high rigidity, a reaction force waveform which is ready in buffering action of a coil of large spring rate can be obtained. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、道路や軌道等の地盤の剛性を測定する装置に関し、特に、重錘を落下させ、その衝撃力を利用して地盤の剛性を測定する重錘落下式の剛性測定装置における重錘落下緩衝装置に関する。
【0002】
【従来の技術】
地盤の剛性を測定する方法としては、古くから平板載荷試験といわれる方法が知られている。これは、地盤上に置かれる直径30cmの円形載荷板に荷重を与え、荷重の大きさと載荷板(地盤)の変位との関係から地盤の剛性を測定する方法であり、地盤の剛性を評価する値として、荷重強さ(載荷荷重を載荷板の面積で除した値)〜変位曲線から得た変位0.125cmの時の荷重強さを0.125cmで除して得られる値(K値)を求めている。然し、平板載荷試験では、載荷板に与える荷重の反力を受ける重機等の大きな反力装置が必要で、試験時間も数時間を要する。
【0003】
そこで、重錘落下式の剛性測定装置を用いて地盤の剛性をより簡便に測定することも従来行われている。この剛性測定装置は、地盤に載荷板を介して載置される荷重計上に重錘を落下させて、重錘による衝撃力を荷重計と載荷板とを介して地盤に伝達し、この衝撃力に対する地盤からの反力を荷重計で検出すると共に、変位検出手段で地盤の変位を検出するように構成されている。そして、地盤の剛性を評価するK値として、平板載荷試験と同様に、地盤変位が所定値である時の荷重強さ(荷重計による地盤反力の計測値を載荷板の面積で除した値)を前記所定値で除した値を求めている。
【0004】
また、重錘落下式の剛性測定装置では、急激な衝撃によるデータ波形の乱れや衝撃力によるバウンド等で地盤反力の計測値がばらつくことを防止するため、衝撃力の伝達経路に緩衝材を配置し、地盤に重錘の衝撃力が緩衝材で緩衝されつつ伝達されるようにしている。そして、従来は、緩衝材としてゴム材を用いている。
【0005】
ここで、地盤反力は、緩衝材による緩衝作用の影響で山形の波形を描くようにして変化し、この波形のピーク値を地盤反力の計測値として上記K値を求めている。この場合、測定条件を整えるには、各種剛性の地盤において反力波形の立ち上がり開始からピークまでの時間(ピーク時間)が所定範囲に収まるようにし、更に、緩衝材が線形変形域(弾性域)で緩衝作用を営んでいる状態でピークに達するようにすることが望まれる。
【0006】
然し、ゴム材の変形特性は基本的に非線形であって、弾性域が狭いため、地盤の剛性に応じて頻繁にゴム材を取り換えることが必要になり、更に、同質、同形状のゴム材であっても、個々のゴム材で特性に差を生じ、得られるデータがばらつきやすく、非常に扱いにくいものであった。また、地盤の剛性測定は屋外で行うのが殆どであるが、ゴム材は気温の影響を受けやすいため、気温によってデータがばらつくことがあり、更に、ゴム材は比較的早い段階から経年劣化を生じ、耐久性の面でも問題があった。
【0007】
そこで、上記の問題を解消するために、弾性域が広く、気温の影響も受けにくく、耐久性にも優れたコイルばねを緩衝材として用いることが考えられている。然し、道路や軌道等の施工現場では、地盤の剛性が場所毎に大きく異なるため、コイルばねの弾性域をもってしても対応できず、ゴム材ほどではないにしろ、地盤状況に応じてばね定数の異なるコイルばねに取り換えざるを得なくなる。即ち、地盤反力が大きくなる高剛性の地盤ではばね定数の大きなコイルばねを用い、地盤反力が小さくなる低剛性の地盤ではばね定数の小さなコイルばねを用いることが必要になる。
【0008】
また、本願発明者は、地盤に伝達される衝撃力を当初は低く抑えて、地盤を安定させることがより正確なデータを得るために有効であることを知見するに至った。
【0009】
なお、本出願に関連する先行技術文献としては例えば次のようなものがある。
【0010】
【特許文献】
特許第2506282号
【0011】
【発明が解決しようとする課題】
本発明は、以上の点に鑑み、広範囲の剛性の地盤に緩衝材を取り換えずに対処でき、更に、測定精度も向上し得るようにした地盤の剛性測定装置における重錘落下緩衝装置を提供することをその課題としている。
【0012】
【課題を解決するための手段】
本発明の地盤の剛性測定装置における重錘落下緩衝装置は、上記課題を解決するために、重錘を落下させ、該重錘による衝撃力を緩衝材を介して地盤に伝達して、この衝撃力に対する地盤からの反力と地盤の変位とに基づいて地盤の剛性を測定する装置において、前記緩衝材として、ばね定数の異なる上下複数のコイル部分を有する複合コイルばねを用いることを特徴とする。
【0013】
ここで、比較的(相対的に)低剛性の地盤の測定に適したコイル部分と、該低剛性の地盤よりも高剛性の地盤の測定に適したコイル部分との少なくとも2つのコイル部分を有する複合コイルばねを緩衝材として用い、前記高剛性の地盤の測定に適したコイル部分のばね定数を、前記低剛性の地盤の測定に適したコイル部分のばね定数よりも大きく設定しておく。このようにすることにより、低剛性の地盤では、ばね定数の小さなコイル部分が緩衝作用を営む状態で反力波形がピークになり、高剛性の地盤では、ばね定数の大きなコイル部分が緩衝作用を営む状態で反力波形がピークになる。そして、高剛性の地盤で反力が大きくなっても、ばね定数の大きなコイル部分の緩衝作用により反力波形の立ち上がりが急になるため、ピーク時間は低剛性の地盤と同様に所定範囲に収まる。従って、広範囲の剛性の地盤に緩衝材を取り換えずに対処できる。
【0014】
また、地盤からの反力の立ち上がり当初の所定期間、複数のコイル部分のうちの最小のばね定数のコイル部分による緩衝作用が営まれ、その後他のコイル部分による緩衝作用を受けつつ地盤からの反力がピークに達するように複合コイルばねを構成しておけば、地盤に伝達される衝撃力が当初は低く抑えられる。そのため、地盤を安定させてより正確なデータを得ることができ、測定精度が向上する。上記した比較的剛性の低い地盤の測定に適した比較的小さなばね定数のコイル部分と、比較的剛性の高い地盤の測定に適した比較的大きなばね定数のコイル部分との2つのコイル部分を有する複合コイルばねを用いる場合、高剛性の地盤では、比較的小さなばね定数のコイル部分(最小のばね定数のコイル部分)の緩衝作用により、地盤に伝達される衝撃力を当初は低く抑えることができる。また、比較的小さなばね定数のコイル部分よりも更にばね定数の小さなコイル部分を付加することにより、低剛性の地盤でも、地盤に伝達される衝撃力を当初は低く抑えることができる。
【0015】
尚、上記した複合コイルばねは、ばね定数の異なるそれぞれ独立した複数のコイルばねを繋ぎ合わせて構成することができ、この場合、各コイルばねが上記各コイル部分となる。また、不等ピッチコイルばねで複合コイルばねを構成しても良く、この場合、ピッチの異なる各部分で上記各コイル部分が構成される。
【0016】
また、本発明では、「地盤」は、路盤、路面、地面、舗装面等を総称的に意味するものである。そして、本発明の剛性測定装置は、例えば鉄道等の枕木の下の路盤や、道路、構造物の建設前の更地、構造物内の地面、空港の路面等の剛性を測定する場合に適用可能である。
【0017】
【発明の実施の形態】
図1は、地盤の剛性を測定する重錘落下式剛性測定装置を示している。この装置は、円板状の載荷板1を介して地盤A上に載置される荷重計2と、荷重計2上に落下させる重錘3と、重錘3を荷重計2の上方で係脱可能に係止する係止機構4とを備えている。
【0018】
荷重計2は、金属製の円筒状の起歪体5と、その上下両端に装着した天板部材6及び底板部材7とを備えるロードセル状のものであり、底板部材7の下面に載荷板1が固着されている。起歪体5の内周面には、図示省略したひずみゲージが貼着されており、荷重計2に作用する上下方向の荷重で発生する起歪体5のひずみにより、ひずみゲージを介して荷重に応じた荷重信号が出力される。
【0019】
また、荷重計2の内部には、底板部材7の中心部に位置させて上下方向の加速度を検出する加速度センサ8が固定されている。そして、加速度センサ8から出力される加速度信号を荷重信号と共に外部のデータ処理装置9に送信し、加速度センサ8で検出された加速度を2回積分することで地盤Aの上下方向の変位を求めるようにしている。尚、加速度センサ8に代えて速度センサを設け、速度センサで検出された速度を1回積分することにより地盤Aの上下方向の変位を求めることも可能である。
【0020】
荷重計2の天板部材6上には円板状の補助板10が固設されており、この補助板10に立設したガイドロッド11に前記重錘3を上下動自在に外挿している。重錘3は、その上端部に固定したノブ12を把持して持ち上げられるようになっている。
【0021】
前記係止機構4は、ガイドロッド11に位置調整自在に取り付けられる支持部材13に軸14を介して揺動可能に軸着された操作レバー15を備えており、この操作レバー15の下端に、重錘3の上端部に固定した筒体16の上端のフランジ16aに係合する係止片17を設けて、重錘3を上方位置に係止できるようにしている。操作レバー15は、係止片17がフランジ16aに係合する方向にばね18で付勢されている。そして、操作レバー15の上部を把持して、図の矢印Pの向きに操作レバー15を揺動させることにより、係止片17がフランジ16aから離脱して、重錘3が荷重計2に向けて落下するようにしている。
【0022】
重錘3が荷重計2に落下すると、重錘3による衝撃力が荷重計2と載荷板1とを介して地盤Aに伝達され、この衝撃力に対する地盤Aからの反力を荷重計2が受けて、この反力が計測されると共に、地盤Aの変位が計測される。
【0023】
また、地盤Aに対する衝撃力の伝達経路には、地盤Aに急激な衝撃が加わらないように、本発明の重錘落下緩衝装置を構成する緩衝材が配置されている。本実施形態では、荷重計2上の補助板10の上面に、ガイドロッド11を囲うようにして後記詳述する複合コイルばね19から成る複数の緩衝材を配置している。これら緩衝材の緩衝作用により地盤Aの反力と変位は、図4に例示する如く、山形の波形を描くように変化する。そして、反力と変位のピーク値をそれぞれの計測値とし、変位の計測値が所定値zsになるように重錘3の質量や落下高さを調整して、この時の荷重強さ(反力の計測値を載荷板1の面積で除した値)を前記所定値zsで除して地盤の剛性を評価する値(K値)を求める。但し、重錘3の質量や落下高さを調整しても、前記所定値に正確に一致した変位を得ることは困難である。そこで、重錘3の質量や落下高さを変化させて、前記所定値を挟む変位を得るような測定を行い、比例配分でK値を求めている。また、変位の所定値zsは、直径30cmの載荷板を用いて行う平板載荷試験の0.125cmを基準にしており、載荷板1の直径が30cmでないときは、載荷板1の直径をφsとして、0.125cmに直径30cmの載荷板との直径比(φs/30)を乗じた値を変位の所定値zsに設定している。
【0024】
ここで、測定条件を整えるには、各種剛性の地盤において変位の計測値が所定値zsになるような測定を行った時の反力波形の立ち上がり開始からピークまでの時間(ピーク時間TP)が所定範囲(6〜10msec程度)に収まるようにし、更に、緩衝材が線形変形域(弾性域)で緩衝作用を営んでいる状態でピークに達するようにすることが望まれる。
【0025】
そこで、本実施形態では、緩衝材として、図2に示す如く、上側の第1のコイル部分19aと、これよりもばね定数の大きな下側の第2のコイル部分19bとを有する複合コイルばね19を用いている。尚、第1と第2のコイル部分19a,19bは上下逆に配置しても良い。このような複合コイルばね19を用いると、地盤反力が比較的小さな領域では、図2(b)に示す如く、主として第1のコイル部分19aが弾性変形してこれによる緩衝作用が営まれ、地盤反力が大きくなって第1のコイル部分19aが完全に圧縮された後、図2(c)に示す如く、第2のコイル部分19cのみが弾性変形してこれによる緩衝作用が営まれる。そのため、高剛性の地盤での測定を行うと、地盤反力は、図4に示す如く、立ち上がり当初の所定期間、第1のコイル部分19aによる緩衝作用で緩やかに上昇し、その後第2のコイル部分19bによる緩衝作用を受けつつ急上昇してピークに達するような波形を描く。
【0026】
ここで、第1のコイル部分19aのばね定数は、比較的剛性の低い地盤での測定に適した比較的小さな値、即ち、比較的剛性の低い地盤において変位の計測値が所定値zsになるような測定を行った時に、第1のコイル部分19aが緩衝作用を営む状態で反力波形がピークになり、且つ、ピーク時間TPが所定範囲に収まるような値に設定されている。また、第2のコイル部分19bのばね定数は、比較的剛性の高い地盤での測定に適した比較的大きな値、即ち、比較的剛性の高い地盤において変位の計測値が所定値zsになるような測定を行った時に、第1のコイル部分19aが緩衝作用を営む状態で反力波形がピークになり、且つ、ピーク時間TPが所定範囲に収まるような値に設定されている。そのため、広範囲の剛性の地盤に緩衝材を取り換えずに対処できる。更に、高剛性の地盤における測定では、地盤に伝達される衝撃力が第1のコイル部分19aの緩衝作用により当初は低く抑えられるため、地盤を安定させてより正確なデータを得ることができ、測定精度が向上する。低剛性の地盤では、地盤自体の緩衝作用も得られるため、当初の衝撃力を緩衝材で低く抑えなくてもよいが、必要であれば、第1のコイル部分19aよりもばね定数の小さなコイル部分を複合コイルばね19に付加すればよい。
【0027】
尚、上記実施形態では、第1と第2の各コイル部分19a,19bをそれぞれ独立したコイルばねで構成し、これら2つのコイルばねを溶接等で繋ぎ合わせて複合コイルばね19を製作している。然し、複合コイルばね19はこれに限られるものではなく、例えば、図3に示すように、不等ピッチコイルばねで複合コイルばね19を構成してもよい。この場合、ピッチの狭い部分がばね定数の小さな第1のコイル部分19a、ピッチの広い部分がばね定数の大きな第2のコイル部分19bになる。
【0028】
また、上記実施形態では、ガイドロッド11を囲うようにして複数の複合コイルばね19を配置したが、コイル径を大きくした単一の複合コイルばねをその内周空間にガイドロッド11が遊挿されるように配置することも可能である。
【図面の簡単な説明】
【図1】本発明に係わる剛性測定装置の一実施形態の全体構成を示す図。
【図2】(a)図1の剛性測定装置における重錘落下緩衝装置の緩衝材として用いた複合コイルばねを示す図、(b)複合コイルばねの低荷重状態を示す図、(c)複合コイルばねの高荷重状態を示す図。
【図3】複合コイルばねの他の実施形態を示す図。
【図4】図1の剛性測定装置で測定した地盤の反力と変位の波形を示す図。
【符号の説明】
A…地盤 2…荷重計 3…重錘 19…複合コイルばね 19a…ばね定数の小さなコイル部分 19b…ばね定数の大きなコイル部分
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a device for measuring the rigidity of the ground such as a road or a track, and more particularly, to a weight in a weight drop-type rigidity measuring device that drops a weight and measures the rigidity of the ground using the impact force. The present invention relates to a fall buffer.
[0002]
[Prior art]
As a method for measuring the rigidity of the ground, a method called a flat plate loading test has been known for a long time. This is a method in which a load is applied to a circular loading plate having a diameter of 30 cm placed on the ground, and the rigidity of the ground is measured from the relationship between the magnitude of the load and the displacement of the loading plate (ground), and the rigidity of the ground is evaluated. As the value, a value obtained by dividing the load strength (value obtained by dividing the applied load by the area of the loading plate) at a displacement of 0.125 cm obtained from the displacement curve by 0.125 cm (K value) (K value) Seeking. However, in the flat plate loading test, a large reaction force device such as a heavy machine which receives a reaction force of the load applied to the loading plate is required, and the test time is also several hours.
[0003]
Therefore, it has been conventionally performed to more simply measure the rigidity of the ground using a weight drop type rigidity measuring device. This stiffness measuring device drops a weight on a load scale placed on the ground via a loading plate, and transmits the impact force of the weight to the ground via the load meter and the loading plate. , And a displacement of the ground is detected by displacement detecting means. As the K value for evaluating the rigidity of the ground, the load strength when the ground displacement is a predetermined value (the value obtained by dividing the measured value of the ground reaction force by the load meter by the area of the loading plate, as in the flat plate loading test). ) Divided by the predetermined value.
[0004]
In addition, in the weight drop type stiffness measuring device, a cushioning material is installed in the transmission path of the impact force to prevent the measured value of the ground reaction force from fluctuating due to disturbance of the data waveform due to sudden impact or bounce due to impact force. It is arranged so that the impact force of the weight is transmitted to the ground while being cushioned by the cushioning material. Conventionally, a rubber material is used as a cushioning material.
[0005]
Here, the ground reaction force changes in such a manner as to draw a mountain-shaped waveform under the influence of the buffering action of the cushioning material, and the above-mentioned K value is obtained by using the peak value of this waveform as a measured value of the ground reaction force. In this case, in order to adjust the measurement conditions, the time from the start of the rise of the reaction force waveform to the peak (peak time) falls within a predetermined range on the ground having various stiffnesses, and the cushioning material has a linear deformation range (elastic range). It is desired that the peak be reached in the state where the buffering action is performed.
[0006]
However, the deformation characteristics of rubber materials are basically non-linear and the elastic range is narrow, so it is necessary to frequently replace the rubber material according to the rigidity of the ground. Even so, there was a difference in characteristics among the individual rubber materials, and the obtained data was easy to vary and was very difficult to handle. In most cases, the measurement of ground stiffness is performed outdoors, but since rubber materials are easily affected by temperature, data may vary depending on temperature, and rubber materials may deteriorate over time from a relatively early stage. And there was also a problem in terms of durability.
[0007]
Therefore, in order to solve the above-mentioned problem, it has been considered to use a coil spring having a wide elastic range, being hardly affected by air temperature, and having excellent durability as a cushioning material. However, at construction sites such as roads and tracks, the rigidity of the ground varies greatly from place to place, so it is not possible to cope with the elastic range of the coil spring. It has to be replaced with a different coil spring. That is, it is necessary to use a coil spring having a large spring constant in a high-rigid ground in which the ground reaction force is large, and to use a coil spring having a small spring constant in a low-rigid ground in which the ground reaction force is small.
[0008]
In addition, the inventor of the present application has come to realize that it is effective to suppress the impact force transmitted to the ground at first and stabilize the ground to obtain more accurate data.
[0009]
Prior art documents related to the present application include, for example, the following.
[0010]
[Patent Document]
Patent No. 2506282
[Problems to be solved by the invention]
In view of the above points, the present invention provides a weight falling buffer in a ground rigidity measuring device capable of coping with a wide range of rigid ground without replacing the cushioning material and further improving measurement accuracy. That is the challenge.
[0012]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the weight drop buffering device in the ground rigidity measuring device of the present invention drops the weight, and transmits the impact force of the weight to the ground via the cushioning material. In a device for measuring the rigidity of the ground based on a reaction force from the ground to the force and a displacement of the ground, a composite coil spring having a plurality of upper and lower coil portions having different spring constants is used as the cushioning material. .
[0013]
Here, there are at least two coil portions, a coil portion suitable for measurement of a relatively (relatively) low rigidity ground and a coil portion suitable for measurement of a high rigidity ground than the low rigidity ground. A composite coil spring is used as a cushioning material, and a spring constant of the coil portion suitable for the measurement of the ground with high rigidity is set to be larger than a spring constant of the coil portion suitable for the measurement of the ground with low rigidity. In this way, on low-stiffness ground, the reaction force waveform peaks while the coil portion having a small spring constant performs a buffering action, and on the high-stiffness ground, the coil portion having a large spring constant has a buffering action. The reaction force peaks in the running state. And, even if the reaction force becomes large in the ground of high rigidity, the rising of the reaction force waveform becomes steep due to the buffering action of the coil portion having a large spring constant, so that the peak time falls within a predetermined range similarly to the ground of low rigidity. . Therefore, it is possible to cope with a ground having a wide range of rigidity without replacing the cushioning material.
[0014]
Also, during a predetermined period at the beginning of the rise of the reaction force from the ground, a buffer action is performed by the coil part having the minimum spring constant of the plurality of coil parts, and thereafter, the reaction from the ground is performed while being buffered by the other coil parts. If the composite coil spring is configured so that the force reaches a peak, the impact force transmitted to the ground can be initially suppressed. Therefore, more accurate data can be obtained by stabilizing the ground, and the measurement accuracy is improved. It has two coil portions, a coil portion having a relatively small spring constant suitable for measurement of the ground having relatively low rigidity and a coil portion having a relatively large spring constant suitable for measurement of ground having relatively high rigidity. When a composite coil spring is used, the impact force transmitted to the ground can be initially suppressed to a low level by the buffering action of the coil part having a relatively small spring constant (the coil part having the minimum spring constant) on the ground having high rigidity. . In addition, by adding a coil portion having a smaller spring constant than a coil portion having a relatively small spring constant, it is possible to initially suppress the impact force transmitted to the ground even on a low-rigid ground.
[0015]
The above-described composite coil spring can be configured by connecting a plurality of independent coil springs having different spring constants. In this case, each coil spring is the above-mentioned coil portion. Further, the composite coil spring may be constituted by unequal-pitch coil springs. In this case, the coil portions are constituted by portions having different pitches.
[0016]
Further, in the present invention, the “ground” generally means a roadbed, a road surface, the ground, a pavement surface, and the like. The stiffness measuring device of the present invention can be applied to, for example, measuring the stiffness of a roadbed under a sleeper such as a railway, a road, a landslide before construction of a structure, a ground in a structure, a road surface of an airport, and the like. It is.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows a weight drop type rigidity measuring device for measuring the rigidity of the ground. This device includes a load cell 2 placed on the ground A via a disk-shaped load plate 1, a weight 3 dropped on the load cell 2, and a weight 3 attached above the load cell 2. And a locking mechanism 4 for removably locking.
[0018]
The load cell 2 is a load cell having a cylindrical strain body 5 made of metal and a top plate member 6 and a bottom plate member 7 mounted on both upper and lower ends thereof. Is fixed. A strain gauge (not shown) is attached to the inner peripheral surface of the strain generating element 5, and a load is applied via the strain gauge due to the strain of the strain generating element 5 generated by a vertical load acting on the load cell 2. Is output.
[0019]
Further, an acceleration sensor 8 that is positioned at the center of the bottom plate member 7 and detects acceleration in the vertical direction is fixed inside the load cell 2. Then, the acceleration signal output from the acceleration sensor 8 is transmitted to the external data processing device 9 together with the load signal, and the acceleration detected by the acceleration sensor 8 is integrated twice to obtain the vertical displacement of the ground A. I have to. It is also possible to provide a speed sensor instead of the acceleration sensor 8 and calculate the vertical displacement of the ground A by integrating once the speed detected by the speed sensor.
[0020]
A disk-shaped auxiliary plate 10 is fixed on the top plate member 6 of the load cell 2, and the weight 3 is externally vertically movably inserted into a guide rod 11 erected on the auxiliary plate 10. . The weight 3 can be lifted by gripping a knob 12 fixed to its upper end.
[0021]
The locking mechanism 4 includes an operation lever 15 pivotally mounted on a support member 13 attached to the guide rod 11 so as to be position-adjustable via a shaft 14. An engaging piece 17 is provided on the upper end of the weight 3 to engage with a flange 16a at the upper end of the cylindrical body 16 so that the weight 3 can be locked at an upper position. The operation lever 15 is urged by a spring 18 in a direction in which the locking piece 17 engages with the flange 16a. By gripping the upper part of the operation lever 15 and swinging the operation lever 15 in the direction of arrow P in the figure, the locking piece 17 is detached from the flange 16a, and the weight 3 is directed toward the load meter 2. To fall.
[0022]
When the weight 3 falls on the load meter 2, the impact force of the weight 3 is transmitted to the ground A via the load meter 2 and the loading plate 1, and the reaction force from the ground A to the impact force is applied to the load meter 2. Then, the reaction force is measured, and the displacement of the ground A is measured.
[0023]
In the transmission path of the impact force to the ground A, a cushioning material constituting the weight falling shock absorber of the present invention is arranged so that a sudden impact is not applied to the ground A. In the present embodiment, a plurality of cushioning members composed of a composite coil spring 19, which will be described in detail later, are arranged on the upper surface of the auxiliary plate 10 on the load cell 2 so as to surround the guide rod 11. The reaction force and displacement of the ground A change due to the cushioning action of these cushioning members so as to draw a mountain-shaped waveform as illustrated in FIG. Then, the peak value of the reaction force and the displacement are set as the respective measured values, and the mass and the drop height of the weight 3 are adjusted so that the measured value of the displacement becomes the predetermined value zs. A value (K value) for evaluating the rigidity of the ground is obtained by dividing the measured value of the force by the area of the loading plate 1) by the predetermined value zs. However, even if the weight and the drop height of the weight 3 are adjusted, it is difficult to obtain a displacement that exactly matches the predetermined value. Therefore, by changing the mass and the falling height of the weight 3, a measurement is performed to obtain a displacement sandwiching the predetermined value, and the K value is obtained by proportional distribution. The predetermined value zs of the displacement is based on 0.125 cm of a flat plate loading test performed using a loading plate having a diameter of 30 cm. When the diameter of the loading plate 1 is not 30 cm, the diameter of the loading plate 1 is set to φs. , 0.125 cm multiplied by the diameter ratio (φs / 30) with respect to the load plate having a diameter of 30 cm is set as the predetermined displacement zs.
[0024]
Here, in order to adjust the measurement conditions, the time from the start of the reaction force waveform rise to the peak (peak time TP) when the measurement of the displacement becomes the predetermined value zs on the ground having various rigidities is performed. It is desired that the peak is set within a predetermined range (about 6 to 10 msec), and furthermore, the buffer reaches a peak in a state where the cushioning material performs a buffering action in a linear deformation region (elastic region).
[0025]
Accordingly, in the present embodiment, as shown in FIG. 2, a composite coil spring 19 having an upper first coil portion 19a and a lower second coil portion 19b having a larger spring constant as a buffer, as shown in FIG. Is used. Note that the first and second coil portions 19a and 19b may be arranged upside down. When such a composite coil spring 19 is used, in a region where the ground reaction force is relatively small, the first coil portion 19a is mainly elastically deformed as shown in FIG. After the ground reaction force is increased and the first coil portion 19a is completely compressed, only the second coil portion 19c is elastically deformed as shown in FIG. Therefore, when the measurement is performed on the ground having high rigidity, as shown in FIG. 4, the ground reaction force gradually rises due to the buffering action of the first coil portion 19a for a predetermined period at the beginning of rising, and then the second coil A waveform is drawn which rises rapidly and reaches a peak while receiving the buffering effect of the portion 19b.
[0026]
Here, the spring constant of the first coil portion 19a is a relatively small value suitable for measurement on the ground having relatively low rigidity, that is, the measured value of the displacement on the ground having relatively low rigidity becomes the predetermined value zs. When such a measurement is performed, the reaction force waveform is set to a peak in a state where the first coil portion 19a performs a buffering action, and the peak time TP is set to a value that falls within a predetermined range. The spring constant of the second coil portion 19b is set to a relatively large value suitable for measurement on a relatively stiff ground, that is, the measured value of displacement on a relatively stiff ground is a predetermined value zs. When the first measurement is performed, the reaction force waveform is set to a peak value in a state where the first coil portion 19a performs the buffering action, and the peak time TP is set to a value within the predetermined range. Therefore, it is possible to deal with a wide range of rigid ground without replacing the cushioning material. Further, in the measurement on the ground having high rigidity, the impact force transmitted to the ground is initially suppressed low by the buffering action of the first coil portion 19a, so that the ground can be stabilized and more accurate data can be obtained. Measurement accuracy is improved. In the case of low rigidity ground, a buffering action of the ground itself can be obtained, so that the initial impact force does not have to be suppressed by the buffer material, but if necessary, a coil having a smaller spring constant than the first coil portion 19a may be used. The part may be added to the composite coil spring 19.
[0027]
In the above-described embodiment, the first and second coil portions 19a and 19b are formed by independent coil springs, respectively, and the two coil springs are joined by welding or the like to manufacture the composite coil spring 19. . However, the composite coil spring 19 is not limited to this. For example, as shown in FIG. 3, the composite coil spring 19 may be formed by an unequal pitch coil spring. In this case, the narrow pitch portion becomes the first coil portion 19a having a small spring constant, and the wide pitch portion becomes the second coil portion 19b having a large spring constant.
[0028]
Further, in the above embodiment, the plurality of composite coil springs 19 are arranged so as to surround the guide rod 11, but the guide rod 11 is loosely inserted into the inner circumferential space of a single composite coil spring having a larger coil diameter. It is also possible to arrange in such a way.
[Brief description of the drawings]
FIG. 1 is a diagram showing an entire configuration of an embodiment of a rigidity measuring device according to the present invention.
2A is a diagram showing a composite coil spring used as a cushioning material of a weight drop buffer in the rigidity measuring device of FIG. 1, FIG. 2B is a diagram showing a low load state of the composite coil spring, and FIG. The figure which shows the high load state of a coil spring.
FIG. 3 is a diagram showing another embodiment of the composite coil spring.
FIG. 4 is a view showing waveforms of a ground reaction force and a displacement measured by the rigidity measuring device of FIG. 1;
[Explanation of symbols]
A: Ground 2: Load cell 3: Weight 19: Composite coil spring 19a: Coil portion with a small spring constant 19b: Coil portion with a large spring constant

Claims (5)

重錘を落下させ、該重錘による衝撃力を緩衝材を介して地盤に伝達して、この衝撃力に対する地盤からの反力と地盤の変位とに基づいて地盤の剛性を測定する装置において、
前記緩衝材として、ばね定数の異なる上下複数のコイル部分を有する複合コイルばねを用いることを特徴とする地盤の剛性測定装置における重錘落下緩衝装置。
Dropping the weight, transmitting the impact force of the weight to the ground via the cushioning material, in a device for measuring the rigidity of the ground based on the reaction force from the ground and the displacement of the ground against this impact force,
A weight falling shock absorber in a ground rigidity measuring device, wherein a composite coil spring having a plurality of upper and lower coil portions having different spring constants is used as the shock absorbing material.
前記複合コイルばねは、低剛性の地盤の測定に適したコイル部分と、該低剛性の地盤よりも高剛性の地盤の測定に適したコイル部分との少なくとも2つのコイル部分を有し、その2つのコイル部分の相互作用によって高剛性の地盤から低剛性の地盤まで広範囲の剛性の地盤の剛性測定を可能としたことを特徴とする請求項1記載の地盤の剛性測定装置における重錘落下緩衝装置。The composite coil spring has at least two coil portions, a coil portion suitable for measuring a ground having low rigidity and a coil portion suitable for measuring a ground having higher rigidity than the ground having low rigidity. The weight drop buffer device in the ground rigidity measuring device according to claim 1, wherein the interaction of the two coil portions enables the rigidity of the ground having a wide range of rigidity from the ground having high rigidity to the ground having low rigidity. . 前記複合コイルばねは、地盤からの反力の立ち上がり当初の所定期間、前記複数のコイル部分のうちの最小のばね定数のコイル部分による緩衝作用が営まれ、その後他のコイル部分による緩衝作用を受けつつ地盤からの反力がピークに達するように構成されていることを特徴とする請求項1記載の地盤の剛性測定装置における重錘落下緩衝装置。The composite coil spring performs a buffering action by a coil section having a minimum spring constant of the plurality of coil sections for a predetermined period at the beginning of the rise of a reaction force from the ground, and thereafter receives a buffering action by another coil section. 2. The weight fall buffer device according to claim 1, wherein the reaction force from the ground reaches a peak. 前記複合コイルばねは、前記各コイル部分となるそれぞれ独立した複数のコイルばねを繋ぎ合わせて構成されていることを特徴とする請求項1〜3の何れか1項に記載の地盤の剛性測定装置における重錘落下緩衝装置。The ground rigidity measuring apparatus according to any one of claims 1 to 3, wherein the composite coil spring is configured by joining a plurality of independent coil springs each serving as the coil part. Weight drop shock absorber in. 前記複合コイルばねは、不等ピッチコイルばねで構成されていることを特徴とする請求項1〜3の何れか1項に記載の地盤の剛性測定装置における重錘落下緩衝装置。The weight drop buffer device according to any one of claims 1 to 3, wherein the composite coil spring is constituted by an unequal pitch coil spring.
JP2003027807A 2003-02-05 2003-02-05 Weight drop shock absorber in ground stiffness measuring device Expired - Lifetime JP3987441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003027807A JP3987441B2 (en) 2003-02-05 2003-02-05 Weight drop shock absorber in ground stiffness measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003027807A JP3987441B2 (en) 2003-02-05 2003-02-05 Weight drop shock absorber in ground stiffness measuring device

Publications (2)

Publication Number Publication Date
JP2004239701A true JP2004239701A (en) 2004-08-26
JP3987441B2 JP3987441B2 (en) 2007-10-10

Family

ID=32955429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003027807A Expired - Lifetime JP3987441B2 (en) 2003-02-05 2003-02-05 Weight drop shock absorber in ground stiffness measuring device

Country Status (1)

Country Link
JP (1) JP3987441B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007205955A (en) * 2006-02-03 2007-08-16 Railway Technical Res Inst Evaluation device and evaluation method of fwd
KR100784799B1 (en) * 2006-07-06 2007-12-14 한국철도기술연구원 Apparatus for measuring stiffness of track
KR100969993B1 (en) 2008-11-26 2010-07-15 한국건설기술연구원 Reaction spring apparatus to simulate ground reaction against pile
JP2014234693A (en) * 2013-06-05 2014-12-15 公益財団法人鉄道総合技術研究所 Quality control method of ballast track
JP2014234694A (en) * 2013-06-05 2014-12-15 公益財団法人鉄道総合技術研究所 Carrier device
JP2015010353A (en) * 2013-06-27 2015-01-19 公益財団法人鉄道総合技術研究所 Rigidity measuring apparatus
CN111024760A (en) * 2019-12-09 2020-04-17 西安近代化学研究所 Device and method for evaluating safety of explosive impact
CN112067224A (en) * 2020-09-18 2020-12-11 中煤科工开采研究院有限公司 Detection method for whole-course dynamic load response characteristic of anchor rod in drop hammer impact mode
CN113718862A (en) * 2021-08-30 2021-11-30 武汉路达建设工程检测有限公司 High leading truck that meets an emergency of second grade buffering
CN116296211A (en) * 2023-03-23 2023-06-23 江苏展旺能源科技有限公司 Lithium battery impact resistance detection device
JP7505976B2 (en) 2020-12-22 2024-06-25 株式会社前川製作所 System and method for determining excitation force

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103774512A (en) * 2014-02-18 2014-05-07 中铁第五勘察设计院集团有限公司 Dynamic ballast bed support rigidity detection instrument and detection method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007205955A (en) * 2006-02-03 2007-08-16 Railway Technical Res Inst Evaluation device and evaluation method of fwd
JP4588643B2 (en) * 2006-02-03 2010-12-01 財団法人鉄道総合技術研究所 FWD evaluation apparatus and evaluation method.
KR100784799B1 (en) * 2006-07-06 2007-12-14 한국철도기술연구원 Apparatus for measuring stiffness of track
WO2008004728A1 (en) * 2006-07-06 2008-01-10 Korea Railroad Research Institute Apparatus for measuring supporting stiffness of track
KR100969993B1 (en) 2008-11-26 2010-07-15 한국건설기술연구원 Reaction spring apparatus to simulate ground reaction against pile
JP2014234694A (en) * 2013-06-05 2014-12-15 公益財団法人鉄道総合技術研究所 Carrier device
JP2014234693A (en) * 2013-06-05 2014-12-15 公益財団法人鉄道総合技術研究所 Quality control method of ballast track
JP2015010353A (en) * 2013-06-27 2015-01-19 公益財団法人鉄道総合技術研究所 Rigidity measuring apparatus
CN111024760A (en) * 2019-12-09 2020-04-17 西安近代化学研究所 Device and method for evaluating safety of explosive impact
CN111024760B (en) * 2019-12-09 2023-03-17 西安近代化学研究所 Device and method for evaluating safety of explosive impact
CN112067224A (en) * 2020-09-18 2020-12-11 中煤科工开采研究院有限公司 Detection method for whole-course dynamic load response characteristic of anchor rod in drop hammer impact mode
JP7505976B2 (en) 2020-12-22 2024-06-25 株式会社前川製作所 System and method for determining excitation force
CN113718862A (en) * 2021-08-30 2021-11-30 武汉路达建设工程检测有限公司 High leading truck that meets an emergency of second grade buffering
CN116296211A (en) * 2023-03-23 2023-06-23 江苏展旺能源科技有限公司 Lithium battery impact resistance detection device
CN116296211B (en) * 2023-03-23 2024-04-05 江苏领安能源系统集成有限公司 Lithium battery impact resistance detection device

Also Published As

Publication number Publication date
JP3987441B2 (en) 2007-10-10

Similar Documents

Publication Publication Date Title
JP2004239701A (en) Weight fall buffer in rigidometer of ground
Thompson et al. Developments of the indirect method for measuring the high frequency dynamic stiffness of resilient elements
EP0018959B1 (en) Condition indicating device for wheeled shock absorbers
CN103384780B (en) Tunable vibration damper and manufacture and tuning methods
KR101440450B1 (en) Active damping of high speed scanning probe microscope components
US4445381A (en) Device for testing the vibration strength of a test body
JPH07505472A (en) load cell
US20060225980A1 (en) Tunable adjustable multi-element hybrid particle damper
US4116041A (en) Apparatus for bearing capacity measurement with a falling weight deflectometer
CN209247819U (en) It is a kind of for calibrating the impact test apparatus of acceleration transducer
JP2006234648A (en) Method for quick loading test of pile
JP5547791B2 (en) High-precision acceleration measuring device
KR100997018B1 (en) Measurement device of displacements and forces for endurance test of automobile
Kokavecz et al. Spring constant of microcantilevers in fundamental and higher eigenmodes
KR20230161644A (en) Sensor device for vibration measuring
JP2007163275A (en) Ground measuring method, ground measuring program and ground measuring instrument
JP2506282B2 (en) Ground support test equipment
JP2008020424A (en) Measurement precision improving method using accelerometer for compact fwd
Zhou et al. Vibration analysis of atomic force microscope cantilevers in contact resonance force microscopy using Timoshenko beam model
JP4863796B2 (en) Pile bearing capacity measurement method
JP2015010353A (en) Rigidity measuring apparatus
Ślaski et al. The influence of damping changes on vertical dynamic loads of wheel–experimental investigations
Hajialilue-Bonab et al. Procedures used for dynamically laterally loaded pile tests in a centrifuge
RU2342683C2 (en) Method for gravimetric measurements and string gravimeter
JP2005114599A (en) Load-measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070712

R150 Certificate of patent or registration of utility model

Ref document number: 3987441

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term