JP2004239163A - Water turbine facility having siphon type suction water channel and method for operating the same - Google Patents

Water turbine facility having siphon type suction water channel and method for operating the same Download PDF

Info

Publication number
JP2004239163A
JP2004239163A JP2003029287A JP2003029287A JP2004239163A JP 2004239163 A JP2004239163 A JP 2004239163A JP 2003029287 A JP2003029287 A JP 2003029287A JP 2003029287 A JP2003029287 A JP 2003029287A JP 2004239163 A JP2004239163 A JP 2004239163A
Authority
JP
Japan
Prior art keywords
water
suction
motor
generator
siphon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003029287A
Other languages
Japanese (ja)
Other versions
JP4417015B2 (en
Inventor
Hideki Jinno
秀基 神野
Kenichi Kato
賢一 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2003029287A priority Critical patent/JP4417015B2/en
Publication of JP2004239163A publication Critical patent/JP2004239163A/en
Application granted granted Critical
Publication of JP4417015B2 publication Critical patent/JP4417015B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Jet Pumps And Other Pumps (AREA)
  • Hydraulic Turbines (AREA)
  • Control Of Water Turbines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water turbine facility having a siphon type suction water channel which shortens a starting time and which simplifies a system, and to provide a method for operating the same. <P>SOLUTION: The suction duct 11 of a water turbine 12 is installed so that the suction duct 11 is once routed through the position higher than the high water level of a suction water level 1, and then the suction side end is submerged in the suction water level 1. An air purge means 20 having an opening/closing valve 21 and an air purge tube 22 is mounted at the highest position of the suction duct 11, and a check valve 15 for passing the water only in the direction of the water turbine 12 is mounted at the suction side of the suction duct 11. At the starting time, a motor-cum-generator 14 coupled to the water turbine 12 is driven as a motor to perform a pumping action. Thus, the water of a discharge duct 13 side is reversely fed toward the suction duct 11, and the air in the suction duct 11 is extracted through the air purge means 20. When the suction duct 11 is fully filled with the water, the air purge means 20 is closed to stop the pumping action, the water is automatically supplied to the water turbine 12 by the siphon action, and the operation of the water turbine is started. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、水車の吸込配管(この明細書において、水車作用時及びポンプ作用時を問わず、「吸込」及び「吐出」の呼称は水車作用時の呼び方に固定して使用する)の一部を吸込水位のHWL(ハイウォーターレベル)より高い位置を経由するように配管した上で吸込配管中の空気を抜き出し、これによって生じるサイフォンの原理を利用して水を水車に導くように構成したサイフォン型吸込水路を持つ水車設備及びその運転方法に関するものである。
【0002】
【従来の技術】
従来、サイフォン型吸込水路を持つ水車設備では、水車停止時にサイフォンを破壊するだけで確実に水の供給が停止できるので、水車停止時の水の移動を停止するための開閉弁をその吸込配管や吐出配管中に取り付けなくてもよいという利点がある。
【0003】
そしてこの水車設備の場合、水車の起動時に如何にサイフォンを形成するかが問題になるが、従来は水車の起動に先立ち、別に設置された湿式の真空ポンプで吸込配管中の空気を抜き出してサイフォンを形成していた。真空ポンプの配管は、吸込配管中の最高位置に設置される空気抜き管の後流側に接続されていて、吸込配管中の空気が完全に抜け出たことを検知した後に、空気抜き管を閉じて水車運転を開始していた。
【0004】
しかしながら上記方法でサイフォンを形成した場合、水車の補機として湿式真空ポンプの設置が不可欠になる上に、真空ポンプの口径は、水車の口径に比べてかなり小さいものが設備されるため、水車の始動に先立って、真空ポンプで水車の吸込配管中にある空気を抜き去るにはかなりの時間を要してしまうという問題点があった。
【0005】
【発明が解決しようとする課題】
本発明は上述の点に鑑みてなされたものでありその目的は、起動時間の短縮が図れ、また真空ポンプが不要でシステムの簡素化を図ることができるサイフォン型吸込水路を持つ水車設備及びその運転方法を提供することにある。
【0006】
【課題を解決するための手段】
上記問題点を解決するため本願の請求項1に記載の発明は、サイフォン型吸込水路を持つ水車設備において、前記吸込水路を形成する吸込配管の最上位置に空気抜き手段を取り付けると共に、吸込配管の前記空気抜き手段を取り付けた位置よりも吸込側に水車方向にのみ水を通す逆止弁を取り付け、さらに水車にはモータ兼発電機又はモータ及び発電機を連結したことを特徴とするサイフォン型吸込水路を持つ水車設備にある。
【0007】
また本願の請求項2に記載の発明は、前記モータ兼発電機は、水車設備始動時にはモータとして駆動して吐出配管側の水を吸込配管に向かって逆送して吸込配管中の空気を前記空気抜き手段を通して抜き出し、一方吸込配管がサイフォン作用を生じる程度まで満水して空気抜き手段を閉じた時には吸込配管から吐出配管に向かって流れる水によって発電機として発電するように構成されていることを特徴とする請求項1に記載のサイフォン型吸込水路を持つ水車設備にある。
【0008】
また本願の請求項3に記載の発明は、前記モータ及び発電機は、モータと発電機とを動力切換手段を介してそれぞれ水車に連結し、水車設備始動時にはモータを駆動して吐出配管側の水を吸込配管に向かって逆送して吸込配管中の空気を前記空気抜き手段を通して抜き出し、一方吸込配管がサイフォン作用を生じる程度まで満水して空気抜き手段を閉じた時には吸込配管から吐出配管に向かって流れる水によって発電機を駆動して発電するように構成されていることを特徴とする請求項1に記載のサイフォン型吸込水路を持つ水車設備にある。
【0009】
即ち水車の吸込側に逆止弁を取り付け、水車方向にのみ水を通すようにして、始動時にはモータ兼発電機(又はモータ及び発電機の内のモータ)をモータとして使用して、ポンプ作用運転を行ない、水車の吐出側の水を吸込側に向かって逆送して吸込配管内を加圧して、吸込配管中の空気を吸込配管中の最上部に設けられた空気抜き手段を通して抜き出し、吸込配管中が満水したことを例えば空気抜き手段から水が出ることで確認して空気抜き手段を閉じた後、ポンプ運転を停止すれば、水は自動的にサイフォン作用によって吸込配管から水車内部を通って吐出配管に流れ、水車が起動し、水車軸に接続したモータ兼発電機(又はモータ及び発電機の内の発電機)が発電機として作動して発電が行なわれる。
【0010】
ここで、ポンプ運転時に使用するモータと、水車発電時に使用する発電機とを同一のモータ兼発電機により一台で二役の働きを行なわせると、設備機械は単純化されるし、水車を逆転させてポンプ作用させることにより、小型の湿式真空ポンプを使用する場合より、短時間で吸込配管中の空気を抜き出すことができる。
【0011】
またポンプ運転時に使用するモータと、水車発電時に使用する発電機とを別々に設置する場合は、モータと発電機とをクラッチや切換ギア等の動力切換手段を介して水車に連結し、この動力切換手段によって水車に連結するモータと発電機とを切り換えれば良い。そしてこの水車設備を主として発電に用いる場合は、通常は発電機を水車に連結しておき、ポンプ作用を要する際は動力切換手段によってモータを水車に連結する。
【0012】
逆止弁は逆方向の水の流れを止める機能があればどのような機構のものでも使用できる。例えばフラップ弁、フート弁等も使用できる。簡単な構造で水車のポンプ作用時の流量の10%程度の漏れがあるような弁でも使用できる。
【0013】
空気抜き手段は、吸込配管中の空気を吸込配管中の最上部において抜くことができる機構であればどのような機構でも良く、例えば空気抜き管と開閉弁とによって構成しても良い。この空気抜き手段に吸込配管中に空気を導入する作用を兼用させれば、水車作用を停止する際に吸込配管に空気を導入してサイフォンを破壊する場合にも兼用できる。また空気抜き管中に自動空気抜き弁を設置して、水車のポンプ作用により、空気が抜けて水が同弁中を満たすと弁が閉じる機構のものを用いると、同弁が閉じた瞬間を電気信号に変換できる変換器を付属すれば、その信号を得て、同配管中の開閉弁を開閉することが可能である。開閉弁を電磁弁や電動弁にすれば自動的に閉じることが可能になるし、この信号を得て、水車に接続されたモータ兼発電機の配線を自動的に切り替えることも可能になる。またこの空気抜き手段を空気抜き専用に使用し、サイフォンを破壊する場合の空気導入管は別途取り付けても良い。また空気抜き手段を閉じるタイミングは、必ずしも吸込配管中が完全に満水した場合のみでなく、吸込配管がサイフォン作用を生じる程度まで満水した場合であっても良い。
【0014】
また本願の請求項4に記載の発明は、サイフォン型吸込水路を持つ水車設備の運転方法において、始動時に一旦前記水車をポンプとして運転して前記吸込水路を形成する吸込配管をサイフォン作用を生じる程度まで満水してから水車として運転することを特徴とするサイフォン型吸込水路を持つ水車設備の運転方法にある。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して詳細に説明する。
図1は本発明の一実施の形態にかかるサイフォン型吸込水路を持つ水車設備の全体構成図である。同図に示すようにこのサイフォン型吸込水路を持つ水車設備は、水車12の吸込側に吸込配管11を、吐出側に吐出配管13を接続して構成されている。
【0016】
ここで吸込配管11は、水車12の吸込側から一旦吸込水位1のHWL(つまりそれ以上吸込水位1が上昇しない水位)より高い位置を経由させた後にその吸込側端部を吸込水位1の液面下に没するように屈曲させて構成されている。つまりこの吸込配管11はサイフォン管を構成している。吸込配管11の最上位置には空気抜き手段20が取り付けられている。この空気抜き手段20は、この実施の形態では開閉弁21と空気抜き管(排気管)22とによって構成されている。吸込配管11の入口端(吸込端)には、水車12方向にのみ水を通す逆止弁15が設置されている。この逆止弁15は吸込配管11の入口端ではなく、より上部に設置しても良く、要は吸込配管11の空気抜き手段20を接続した位置よりも吸込側に設置すれば良い。
【0017】
水車12は立型水車であり、ケーシング内に羽根車12aを収納して構成されている。羽根車12aは吐出水位2のLWL(ローウォーターレベル)(つまりそれ以上吐出水位2が下降しない水位)より低い位置(少なくとも羽根車12aの下部が水に触れる位置)に設置されており、例え吐出水位2が最も低い水位になっても吐出側の水が揚水できる位置に設置されている。水車12の上部にはモータ兼発電機14が設置され、水車12の回転駆動軸がモータ兼発電機14の回転駆動軸に連結されている。モータ兼発電機14においては、モータ使用時には電力を供給する配線に、発電機として使用するときには電流の出力配線に、配線のみを切り替えることで同じ機器を使用できる。
【0018】
そしてこの水車設備によって水車作用を行なわせる場合は、まず吸込配管11中にサイフォンを形成させる必要があるので、まず開閉弁21を開けた状態でモータ兼発電機14をモータとして駆動して水車12をポンプ運転して、吐出配管13側の水、即ち吐出槽32内の水を吸込配管11に向かって逆送する。これによって吸込配管11中の空気を空気抜き管22から抜き出しながら吸込配管11内を水で満たしていく。そして空気抜き管22から水が出て、吸込配管11内が水で満杯になったことを確認した直後に、開閉弁21を閉止し、同時にモータ兼発電機14のモータとしての駆動(ポンプ作用)を停止してその配線を発電機用に切り換える。
【0019】
これによって吸込配管11中が水で満たされてサイフォンが形成されるので、吸込槽31内の水は吸込配管11、水車12、吐出配管13を通って吐出槽32内に流れ込み、その際水車12が回転して(水車運転)、同水車12に接続されたモータ兼発電機14が発電機として回転駆動されその発電動力が出力される。なお水車運転中は、吸込配管11の最上部は大気圧以下になるため、空気抜き管22が大気に開放される機構であるときは、前述のように水車運転中には開閉弁21を閉じておかなければならない。
【0020】
次に上記水車作用を停止させる場合は、吸込配管11中の最上部に設置した開閉弁21を開ければ、吸込配管11の最上部は大気に対して負圧になっているため、空気抜き管22から吸込配管11内に空気が導入され、サイフォン作用中の水は落ち、水車12に水が供給されなくなり停止する。
【0021】
なお上記実施の形態においては、モータ兼発電機14を設置したが、その代わりにモータと発電機とを二台別々に設置し、これらモータと発電機とを切換ギアやクラッチ等の動力切換手段で切り替えることによって、前記モータ兼発電機14と同等の機能を発揮させるように構成しても良い。ここで図2はモータ兼発電機14の代わりにモータ17と発電機18とを二台別々に設置した本発明の他の実施の形態にかかるサイフォン型吸込水路を持つ水車設備の全体構成図である。同図において前記図1に示す実施の形態と同一部分には同一符号を付してその詳細な説明は省略する。即ちこの水車設備においては、モータ兼発電機14の代わりに、水車12の上部に切換ギア19を介してモータ17と発電機18とを設置している。そして切換ギア19において通常は水車12を発電機18に連結しておき、必要に応じて切換ギア19を切り換えることで水車12をモータ17に連結する。そして図1に示す実施の形態と同様に、水車設備始動時にはモータ17を駆動して吐出配管13側の水を吸込配管11に向かって逆送して吸込配管11中の空気を空気抜き手段20を通して抜き出し、一方吸込配管11がサイフォン作用を生じる程度まで満水して空気抜き手段20を閉じた時には吸込配管11から吐出配管13に向かって流れる水によって発電機18を駆動して発電するようにする。
【0022】
図3(a),(b)はそれぞれ本発明のさらに他の実施の形態にかかる水車12部分の拡大概略断面図である。即ちこれら図3(a),(b)においても前記図2の場合と同様に、モータ17と発電機18とを二台別々に設置しているが、図3(a)においては水車12の羽根車12aの真上にモータ17と発電機18とを設置し、モータ17にクラッチ25を介して連結された回転駆動軸26を発電機18内に貫通させて羽根車12aに連結し、一方発電機18にクラッチ27を介して連結されその内部に前記回転駆動軸26を通すパイプ状の回転駆動軸28も羽根車12aに連結して構成されている。つまり両回転駆動軸26,28は2重軸となっている。そしてクラッチ25を接続してクラッチ27を切断すればモータ17が羽根車12aに連結され、クラッチ27を接続してクラッチ25を切断すれば発電機18が羽根車12aに連結される。このように構成しても、水車12に対して発電機17とモータ18とを切り換えて連結することができる。
【0023】
また図3(b)においては水車12として両吸込型の水車を用い、その羽根車12aの両端に連結した回転駆動軸26,28をそれぞれクラッチ25,27を介してモータ17と発電機18に接続して構成されている。そしてクラッチ25を接続してクラッチ27を切断すればモータ17が羽根車12aに連結され、クラッチ27を接続してクラッチ25を切断すれば発電機18が羽根車12aに連結される。このように構成しても、水車12に対して発電機17とモータ18とを切り換えて連結することができる。
【0024】
【発明の効果】
以上詳細に説明したように本発明によれば、サイフォンを形成する水路をもつ水車を逆転させてポンプ作用させ、吸込配管中の空気を排出してサイフォンを形成して水車運転を開始させるようにしたので、短時間で吸込配管中の空気を抜き出すことができ、水車の起動時間の短縮が図れる。また真空ポンプが不要でシステムの簡素が図れる。
【図面の簡単な説明】
【図1】本発明の一実施の形態にかかるサイフォン型吸込水路を持つ水車設備の全体構成図である。
【図2】本発明の他の実施の形態にかかるサイフォン型吸込水路を持つ水車設備の全体構成図である。
【図3】図3(a),(b)はそれぞれ本発明のさらに他の実施の形態にかかる水車12部分の拡大概略断面図である。
【符号の説明】
1 吸込水位
2 吐出水位
11 吸込配管
12 水車
12a 羽根車
13 吐出配管
14 モータ兼発電機
15 逆止弁
17 モータ
18 発電機
19 切換ギア(動力切換手段)
20 空気抜き手段
21 開閉弁
22 空気抜き管(排気管)
25 クラッチ(動力切換手段)
26 回転駆動軸
27 クラッチ(動力切換手段)
28 回転駆動軸
31 吸込槽
32 吐出槽
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a suction pipe of a water turbine (in this specification, the terms "suction" and "discharge" are used in a fixed manner in terms of the operation of the turbine, regardless of whether the turbine is operating or the pump is operating). The pipe is designed to pass through a position higher than the suction water level HWL (high water level), and then the air in the suction pipe is extracted, and the water is guided to the water turbine by using the principle of the siphon generated thereby. TECHNICAL FIELD The present invention relates to a water turbine facility having a siphon-type suction water channel and an operation method thereof.
[0002]
[Prior art]
Conventionally, in a water turbine facility having a siphon-type suction water channel, the water supply can be reliably stopped by simply breaking the siphon when the turbine is stopped.Therefore, an on-off valve for stopping the movement of water when the turbine is stopped is provided with a suction pipe or the like. There is an advantage that it need not be installed in the discharge pipe.
[0003]
In the case of this water turbine facility, how to form a siphon at the time of starting the water turbine is a problem.Conventionally, prior to the start of the water turbine, the air in the suction pipe is extracted by a separately installed wet vacuum pump to siphon. Had formed. The pipe of the vacuum pump is connected to the downstream side of the air vent pipe installed at the highest position in the suction pipe.After detecting that the air in the suction pipe has completely escaped, the air vent pipe is closed and the water turbine is closed. I had started driving.
[0004]
However, when a siphon is formed by the above method, it is indispensable to install a wet vacuum pump as an auxiliary device of the water turbine, and the diameter of the vacuum pump is considerably smaller than the diameter of the water turbine. Prior to starting, there is a problem that it takes a considerable amount of time to remove air in the suction pipe of the water turbine with a vacuum pump.
[0005]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and an object thereof is to provide a water turbine facility having a siphon-type suction water channel that can shorten the start-up time, and can simplify the system without the need for a vacuum pump. It is to provide a driving method.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the invention according to claim 1 of the present application is directed to a water turbine facility having a siphon-type suction water channel, wherein air suction means is attached to an uppermost position of a suction pipe forming the suction water channel, and the suction pipe has A siphon-type suction channel characterized in that a check valve that allows water to flow only in the direction of the turbine is installed on the suction side of the position where the air release means is mounted, and a motor / generator or a motor and a generator are connected to the turbine. There is in the water turbine equipment to have.
[0007]
Also, the invention according to claim 2 of the present application is characterized in that the motor / generator is driven as a motor at the time of starting the water turbine facility, and feeds back the water on the discharge pipe side toward the suction pipe to remove the air in the suction pipe. It is configured to draw out through the air bleeding means, and to generate electricity as a generator by water flowing from the suction pipe to the discharge pipe when the suction pipe is filled with water to the extent that a siphon action occurs and the air bleed means is closed. A water turbine facility having a siphon-type suction water channel according to claim 1.
[0008]
Further, the invention according to claim 3 of the present application is characterized in that the motor and the generator are connected to the water turbine through the power switching means, respectively, the motor and the generator. Water is sent back to the suction pipe to draw out the air in the suction pipe through the air bleeding means.On the other hand, when the suction pipe is filled with water to the extent that a siphon action occurs and the air bleeding means is closed, the water flows from the suction pipe to the discharge pipe. The water turbine facility having a siphon-type suction water channel according to claim 1, wherein the water generator is configured to generate power by driving a generator by flowing water.
[0009]
That is, a check valve is mounted on the suction side of the turbine to allow water to flow only in the direction of the turbine, and a motor-generator (or a motor and a motor within the generator) is used as a motor at the time of starting, so that pump operation is performed. The water on the discharge side of the turbine is sent back toward the suction side to pressurize the suction pipe, and the air in the suction pipe is extracted through the air release means provided at the top of the suction pipe. If the pump is stopped after closing the air venting means after confirming that water is full by the water coming out of the air venting means, for example, water will automatically flow from the suction pipe through the inside of the turbine to the discharge pipe by siphon action. Then, the turbine is started, and the motor / generator (or the generator in the motor and the generator) connected to the water axle operates as a generator to generate electric power.
[0010]
Here, if the motor used for pump operation and the generator used for power generation of the turbine are performed by the same motor and generator to perform a dual role, the equipment machine is simplified, and the water turbine is used. By inverting and pumping, the air in the suction pipe can be extracted in a shorter time than when a small wet vacuum pump is used.
[0011]
When a motor used for pump operation and a generator used for turbine power generation are separately installed, the motor and the generator are connected to the turbine through power switching means such as a clutch or a switching gear. What is necessary is just to switch the motor connected to the water turbine and the generator by the switching means. When the water turbine equipment is mainly used for power generation, the generator is usually connected to the water turbine, and the motor is connected to the water turbine by power switching means when a pump action is required.
[0012]
The non-return valve can be of any mechanism as long as it has the function of stopping the flow of water in the reverse direction. For example, a flap valve, a foot valve, or the like can be used. A valve having a simple structure and leaking about 10% of the flow rate when the water turbine is operated can be used.
[0013]
The air bleeding means may be any mechanism that can bleed the air in the suction pipe at the uppermost part in the suction pipe, and may be configured by, for example, an air bleed pipe and an on-off valve. If this air venting means is also used to introduce air into the suction pipe, it can also be used to break the siphon by introducing air into the suction pipe when stopping the operation of the water wheel. In addition, an automatic air release valve is installed in the air release pipe, and a mechanism that closes the valve when air is released by the water pump and water fills the valve is used. If a converter capable of converting to the above is attached, it is possible to obtain the signal and open and close the on-off valve in the pipe. If the on-off valve is an electromagnetic valve or a motor-operated valve, it can be automatically closed, and this signal can be obtained to automatically switch the wiring of the motor / generator connected to the water turbine. Further, this air bleeding means may be used exclusively for bleeding air, and an air inlet pipe for breaking the siphon may be separately provided. The timing for closing the air venting means may be not only when the suction pipe is completely filled with water, but also when the suction pipe is completely filled with siphon action.
[0014]
According to a fourth aspect of the present invention, in the method for operating a water turbine having a siphon-type suction water channel, the suction pipe which forms the suction water channel by once operating the water turbine as a pump at the time of start-up has a siphon effect. An operation method of a water turbine facility having a siphon-type suction water channel, characterized in that the water turbine is operated after being filled with water up to a maximum.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is an overall configuration diagram of a water turbine facility having a siphon-type suction channel according to an embodiment of the present invention. As shown in the figure, the water turbine facility having the siphon type suction water channel is configured by connecting a suction pipe 11 to a suction side of a water turbine 12 and a discharge pipe 13 to a discharge side.
[0016]
Here, the suction pipe 11 passes through a position higher than the HWL of the suction water level 1 (that is, a water level at which the suction water level 1 does not rise any more) from the suction side of the water wheel 12 and then moves the suction side end to the liquid of the suction water level 1 It is configured to bend below the surface. That is, the suction pipe 11 forms a siphon pipe. At the uppermost position of the suction pipe 11, an air venting means 20 is attached. In this embodiment, the air release means 20 includes an on-off valve 21 and an air release pipe (exhaust pipe) 22. A check valve 15 that allows water to flow only in the direction of the water wheel 12 is installed at the inlet end (suction end) of the suction pipe 11. The check valve 15 may be provided not at the inlet end of the suction pipe 11 but at an upper portion thereof. In short, the check valve 15 may be provided at a position closer to the suction side of the suction pipe 11 than the position to which the air release means 20 is connected.
[0017]
The water wheel 12 is a vertical water wheel, and is configured by housing an impeller 12a in a casing. The impeller 12a is installed at a position lower than the LWL (low water level) of the discharge water level 2 (that is, a water level at which the discharge water level 2 does not drop any more) (at least a position where the lower part of the impeller 12a comes into contact with water). Even if the water level 2 becomes the lowest water level, it is installed at a position where the water on the discharge side can be pumped. A motor / generator 14 is provided above the water wheel 12, and the rotary drive shaft of the water wheel 12 is connected to the rotary drive shaft of the motor / generator 14. In the motor / generator 14, the same device can be used by switching only the wiring to the power supply wiring when using the motor and the current output wiring when using as the generator.
[0018]
When a water wheel operation is performed by the water turbine equipment, it is necessary to first form a siphon in the suction pipe 11, so that the motor / generator 14 is driven as a motor with the open / close valve 21 first, and the water wheel 12 Is pumped, and the water on the discharge pipe 13 side, that is, the water in the discharge tank 32 is sent back to the suction pipe 11. Thus, the inside of the suction pipe 11 is filled with water while the air in the suction pipe 11 is extracted from the air vent pipe 22. Immediately after it is confirmed that water has come out of the air vent pipe 22 and the inside of the suction pipe 11 has been filled with water, the on-off valve 21 is closed, and at the same time, the motor / generator 14 is driven as a motor (pump action). Is stopped and the wiring is switched for the generator.
[0019]
As a result, the inside of the suction pipe 11 is filled with water to form a siphon, so that the water in the suction tank 31 flows into the discharge tank 32 through the suction pipe 11, the water wheel 12, and the discharge pipe 13, and the water wheel 12 Is rotated (water turbine operation), and the motor / generator 14 connected to the water turbine 12 is rotationally driven as a generator to output the generated power. During the operation of the water turbine, the uppermost portion of the suction pipe 11 has a pressure lower than the atmospheric pressure. Therefore, when the air vent pipe 22 is open to the atmosphere, the on-off valve 21 is closed during the operation of the water turbine as described above. I have to put it.
[0020]
Next, when stopping the operation of the water turbine, if the on-off valve 21 installed at the uppermost part of the suction pipe 11 is opened, the uppermost part of the suction pipe 11 has a negative pressure with respect to the atmosphere. Then, air is introduced into the suction pipe 11, the water during the siphon action drops, and the water is not supplied to the water turbine 12, and the water turbine 12 stops.
[0021]
In the above embodiment, the motor / generator 14 is installed. Instead, two motors and generators are separately installed, and these motors and generators are connected to power switching means such as switching gears and clutches. The switching may be performed so that the same function as the motor / generator 14 is exhibited. Here, FIG. 2 is an overall configuration diagram of a water turbine facility having a siphon-type suction water channel according to another embodiment of the present invention in which two motors 17 and generators 18 are separately provided instead of the motor / generator 14. is there. In the figure, the same parts as those of the embodiment shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted. That is, in this water turbine equipment, a motor 17 and a generator 18 are installed above a water turbine 12 via a switching gear 19 instead of the motor / generator 14. The water turbine 12 is normally connected to the generator 18 at the switching gear 19, and the water wheel 12 is connected to the motor 17 by switching the switching gear 19 as necessary. As in the embodiment shown in FIG. 1, at the time of starting the water turbine equipment, the motor 17 is driven to reversely feed the water on the discharge pipe 13 side to the suction pipe 11, and the air in the suction pipe 11 is removed through the air release means 20. On the other hand, when the suction pipe 11 is filled with water to such an extent that a siphon action is generated and the air release means 20 is closed, the generator 18 is driven by water flowing from the suction pipe 11 toward the discharge pipe 13 to generate power.
[0022]
3A and 3B are enlarged schematic cross-sectional views of a water turbine 12 according to still another embodiment of the present invention. That is, in FIGS. 3 (a) and 3 (b), two motors 17 and two generators 18 are separately installed as in the case of FIG. 2, but in FIG. A motor 17 and a generator 18 are installed right above the impeller 12a, and a rotary drive shaft 26 connected to the motor 17 via a clutch 25 is penetrated into the generator 18 and connected to the impeller 12a. A rotary drive shaft 28 connected to the generator 18 via a clutch 27 and passing the rotary drive shaft 26 therein is also connected to the impeller 12a. That is, both rotation drive shafts 26 and 28 are double shafts. When the clutch 25 is connected and the clutch 27 is disconnected, the motor 17 is connected to the impeller 12a. When the clutch 27 is connected and the clutch 25 is disconnected, the generator 18 is connected to the impeller 12a. Even with this configuration, the generator 17 and the motor 18 can be connected to the water turbine 12 by switching.
[0023]
In FIG. 3B, a double-suction type water wheel is used as the water wheel 12, and rotary drive shafts 26 and 28 connected to both ends of the impeller 12a are connected to the motor 17 and the generator 18 via clutches 25 and 27, respectively. Connected and configured. When the clutch 25 is connected and the clutch 27 is disconnected, the motor 17 is connected to the impeller 12a. When the clutch 27 is connected and the clutch 25 is disconnected, the generator 18 is connected to the impeller 12a. Even with such a configuration, the generator 17 and the motor 18 can be switched and connected to the water turbine 12.
[0024]
【The invention's effect】
As described in detail above, according to the present invention, a water wheel having a water channel forming a siphon is rotated in reverse to perform a pump action, discharge air in a suction pipe to form a siphon, and start water wheel operation. Therefore, the air in the suction pipe can be extracted in a short time, and the start-up time of the water turbine can be reduced. In addition, the system can be simplified without the need for a vacuum pump.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of a water turbine facility having a siphon-type suction channel according to an embodiment of the present invention.
FIG. 2 is an overall configuration diagram of a water turbine facility having a siphon-type suction channel according to another embodiment of the present invention.
FIGS. 3 (a) and 3 (b) are enlarged schematic sectional views of a water turbine 12 according to still another embodiment of the present invention.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 suction water level 2 discharge water level 11 suction pipe 12 water wheel 12a impeller 13 discharge pipe 14 motor / generator 15 check valve 17 motor 18 generator 19 switching gear (power switching means)
Reference Signs List 20 air release means 21 open / close valve 22 air release pipe (exhaust pipe)
25 Clutch (power switching means)
26 rotation drive shaft 27 clutch (power switching means)
28 Rotary drive shaft 31 Suction tank 32 Discharge tank

Claims (4)

サイフォン型吸込水路を持つ水車設備において、
前記吸込水路を形成する吸込配管の最上位置に空気抜き手段を取り付けると共に、吸込配管の前記空気抜き手段を取り付けた位置よりも吸込側に水車方向にのみ水を通す逆止弁を取り付け、さらに水車にはモータ兼発電機又はモータ及び発電機を連結したことを特徴とするサイフォン型吸込水路を持つ水車設備。
In a water turbine facility with a siphon type suction channel,
Attached to the uppermost position of the suction pipe that forms the suction water passage is an air release means, and a check valve that allows water to flow only in the direction of the turbine to the suction side of the suction pipe from the position where the air release means is mounted. A water turbine facility having a siphon-type suction water channel, wherein a motor / generator or a motor and a generator are connected.
前記モータ兼発電機は、水車設備始動時にはモータとして駆動して吐出配管側の水を吸込配管に向かって逆送して吸込配管中の空気を前記空気抜き手段を通して抜き出し、一方吸込配管がサイフォン作用を生じる程度まで満水して空気抜き手段を閉じた時には吸込配管から吐出配管に向かって流れる水によって発電機として発電するように構成されていることを特徴とする請求項1に記載のサイフォン型吸込水路を持つ水車設備。The motor / generator is driven as a motor at the time of starting the water turbine facility, and reversely feeds water on the discharge pipe side toward the suction pipe to extract air in the suction pipe through the air bleeding means, while the suction pipe has a siphon action. The siphon-type suction water channel according to claim 1, wherein the water is supplied from the suction pipe to the discharge pipe to generate power as a generator when the air venting means is filled with water to the extent that the water is generated. Have water turbine equipment. 前記モータ及び発電機は、モータと発電機とを動力切換手段を介してそれぞれ水車に連結し、水車設備始動時にはモータを駆動して吐出配管側の水を吸込配管に向かって逆送して吸込配管中の空気を前記空気抜き手段を通して抜き出し、一方吸込配管がサイフォン作用を生じる程度まで満水して空気抜き手段を閉じた時には吸込配管から吐出配管に向かって流れる水によって発電機を駆動して発電するように構成されていることを特徴とする請求項1に記載のサイフォン型吸込水路を持つ水車設備。The motor and the generator connect the motor and the generator to the water turbine via power switching means, respectively, and when the turbine equipment is started, the motor is driven to reversely feed the water on the discharge pipe side toward the suction pipe for suction. The air in the pipe is extracted through the air release means, while the suction pipe is filled with water to the extent that a siphon action is generated and when the air release means is closed, a generator is driven by water flowing from the suction pipe toward the discharge pipe to generate power. The water turbine facility having a siphon-type suction water channel according to claim 1, characterized in that: サイフォン型吸込水路を持つ水車設備の運転方法において、始動時に一旦前記水車をポンプとして運転して前記吸込水路を形成する吸込配管をサイフォン作用を生じる程度まで満水してから水車として運転することを特徴とするサイフォン型吸込水路を持つ水車設備の運転方法。In the method for operating a water turbine facility having a siphon-type suction water channel, it is characterized in that at the time of starting, the water turbine is once operated as a pump, and the suction pipe forming the suction water channel is filled with water to an extent that a siphon action is generated, and then the water turbine is operated as a water wheel. Method of operating water turbine equipment with siphon-type suction water channel.
JP2003029287A 2003-02-06 2003-02-06 Water turbine equipment having siphon-type suction channel and operation method thereof Expired - Fee Related JP4417015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003029287A JP4417015B2 (en) 2003-02-06 2003-02-06 Water turbine equipment having siphon-type suction channel and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003029287A JP4417015B2 (en) 2003-02-06 2003-02-06 Water turbine equipment having siphon-type suction channel and operation method thereof

Publications (2)

Publication Number Publication Date
JP2004239163A true JP2004239163A (en) 2004-08-26
JP4417015B2 JP4417015B2 (en) 2010-02-17

Family

ID=32956499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003029287A Expired - Fee Related JP4417015B2 (en) 2003-02-06 2003-02-06 Water turbine equipment having siphon-type suction channel and operation method thereof

Country Status (1)

Country Link
JP (1) JP4417015B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007056507A (en) * 2005-08-23 2007-03-08 Chugoku Electric Power Co Inc:The Water intake method and device in waterway
JP2008160949A (en) * 2006-12-22 2008-07-10 Chugoku Electric Power Co Inc:The Drainage system for cable duct
JP2015218719A (en) * 2014-05-21 2015-12-07 株式会社小松製作所 Pump unit having power generation function, and power generation and water supply system
CN113431809A (en) * 2021-07-30 2021-09-24 辽宁省果树科学研究所 Double-valve siphon water pump
JP7431137B2 (en) 2020-10-12 2024-02-14 株式会社クボタ fluid system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007056507A (en) * 2005-08-23 2007-03-08 Chugoku Electric Power Co Inc:The Water intake method and device in waterway
JP4644562B2 (en) * 2005-08-23 2011-03-02 中国電力株式会社 Water intake method in waterway
JP2008160949A (en) * 2006-12-22 2008-07-10 Chugoku Electric Power Co Inc:The Drainage system for cable duct
JP2015218719A (en) * 2014-05-21 2015-12-07 株式会社小松製作所 Pump unit having power generation function, and power generation and water supply system
JP7431137B2 (en) 2020-10-12 2024-02-14 株式会社クボタ fluid system
CN113431809A (en) * 2021-07-30 2021-09-24 辽宁省果树科学研究所 Double-valve siphon water pump

Also Published As

Publication number Publication date
JP4417015B2 (en) 2010-02-17

Similar Documents

Publication Publication Date Title
CN109296546A (en) A kind of inert vacuum auxiliary self priming pump
CN101400896B (en) Self-ventilating centrifugal pump
JP2004239163A (en) Water turbine facility having siphon type suction water channel and method for operating the same
CN201884290U (en) Self-priming pump with proximitor
CN102322424B (en) Jet self-sucking centrifugal water pump
JP3394432B2 (en) Horizontal shaft pump
JP5062788B1 (en) Hybrid pump power generation system
JP4083540B2 (en) Pump equipment with siphon break device
JPH05157038A (en) Siphon water turbine
JPS6327098Y2 (en)
JP2004257359A (en) Water wheel driving type submerged pump
CN213303843U (en) Quick portable multifunctional oil pump device
CN208966610U (en) A kind of inert vacuum auxiliary self priming pump
CN211666896U (en) Automatic start-up formula self priming pump
CN202301053U (en) Water-cooled low-abrasion pump
CN201232643Y (en) Medium-coupling vertical self-priming centrifugal pump
JP4822336B2 (en) Management operation method of vertical shaft pump
JP2006029182A (en) Process steam control device using steam turbine
JP2006233817A (en) Hydraulic machinery and draining device
JP2005048681A (en) Hydraulic power unit of water pipe mounting type
KR100716341B1 (en) An automotive vacuum generator using driving windy stream
JP2004068693A (en) Water turbine device
JP5356180B2 (en) Horizontal axis pump equipment and operation method
JP2006063887A (en) Hydraulic power drive device
JP2000220852A (en) Heat medium heating and transferring device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051202

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090717

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091125

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees