JP2004238404A - Method for laminating platy substrate and apparatus for laminating platy substrate - Google Patents

Method for laminating platy substrate and apparatus for laminating platy substrate Download PDF

Info

Publication number
JP2004238404A
JP2004238404A JP2003010908A JP2003010908A JP2004238404A JP 2004238404 A JP2004238404 A JP 2004238404A JP 2003010908 A JP2003010908 A JP 2003010908A JP 2003010908 A JP2003010908 A JP 2003010908A JP 2004238404 A JP2004238404 A JP 2004238404A
Authority
JP
Japan
Prior art keywords
adhesive
substrate
voltage
laminating
resistivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003010908A
Other languages
Japanese (ja)
Other versions
JP3911635B2 (en
Inventor
Hiroya Kaji
寛也 加治
Masahiro Nakamura
昌寛 中村
Hideo Kobayashi
秀雄 小林
Shinichi Shinohara
信一 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Origin Electric Co Ltd
Original Assignee
Origin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Origin Electric Co Ltd filed Critical Origin Electric Co Ltd
Priority to JP2003010908A priority Critical patent/JP3911635B2/en
Publication of JP2004238404A publication Critical patent/JP2004238404A/en
Application granted granted Critical
Publication of JP3911635B2 publication Critical patent/JP3911635B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Adhesives Or Adhesive Processes (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent bubbles from forming without being affected with the magnitude of resistivity of an adhesive when the adhesive is fed to substrates and the two substrates are laminated through the adhesive. <P>SOLUTION: The method for laminating the platy substrates comprises laminating a first substrate to a second substrate through an adhesive, curing the adhesive and laminating the mutual substrates. The method for laminating the platy substrates is carried out as follows. The kind of voltage or frequency applied between the substrate 1 and the substrate 2 is selected according to the magnitude of the resistivity of the adhesive 5. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【産業上の利用分野】本発明は、接着剤を介して2枚の板状基板を貼り合わせるのに最適な板状基板の貼り合わせ方法及びその装置に関する。
【0002】
【従来技術】液状の接着剤を介して2枚の板状基板を貼り合わせる従来例として、ディスク基板の貼り合わせ方法について述べる。接着剤で2枚の基板を貼り合わせる方法においては、基板間の気泡の混入が問題となる。接着剤を塗布した基板を他方の基板に貼り合わせる際、接着剤の液膜の表面が他方の基板に接液するときの接触面積が大きくなり、接着剤と基板間に小さな気泡が発生する。接着層に気泡が混入すると、データの読み取りエラー、重合阻害による接着強度の低下及び基板の金属膜の腐食の原因となる。
従来から気泡の発生を低減する貼り合わせ方法がいくつか考えられており、本出願者等によって、2枚の基板に電圧を印加して貼り合わせる方法が提案されている(例えば、特許文献1〜3参照。)。
2枚の基板に電圧を印加して貼り合わせると、その電界による静電引力で接着剤の液膜の表面が先細り、接触面積を小さくできるので、気泡の発生を防止することができ、実際にその有効性が確認されている。
【0003】
【特許文献1】
特開2001−60344号公報(第4−5頁、第5−8図)
【特許文献2】
特開2000−290602号公報(第4頁、第1−4図)
【特許文献3】
特開2001−312843号公報(第4−6頁、第2−6図)
【0004】近年、大容量化・高密度化が進んでいる光ディスクは、従来のアルミ合金で形成された反射膜から、より高反射率、高熱伝導率を有する銀合金の反射膜が利用されてきている。一方、銀合金はアルミ合金に比べて、耐食性が低いため、腐食の問題がある。そこで、銀合金の反射膜に対応したイオン濃度の低い接着剤が開発されたが、イオン濃度が低いために接着剤の抵抗率が高くなる傾向にある。
【0005】接着剤の抵抗率が高くなると、2枚の基板を貼り合わせる瞬間の一方の基板に塗布した接着剤と、他方の基板又はその基板に塗布した接着剤とで形成される間隙に所定の電圧が印加されないので、接着剤の液膜の表面が先細りせず、接着剤と基板又は接着剤と接着剤同士が接液するときの接触面積が大きくなり、気泡が発生しやすくなる。
【0006】
【発明が解決しようとする課題】上述のように、接着剤の抵抗率の大きさによって、最適な貼り合わせが実現できなくなることがある。この問題を解決するために、2枚の基板間に印加する電圧を高くすることで、接着剤の液膜の表面を先細りさせ、接液するときの接触面積を小さくして、気泡の発生を防止することができる。しかし、電圧を高く設定すると、電源のサイズが大きくなることや、基板間で放電が発生するなどの問題が生じる。
【0007】したがって、本発明は接着剤の抵抗率の大きさによって、印加電圧を大きくしないでも、最適な電圧で気泡が発生しない貼り合わせ方法及び貼り合わせ装置を提供することを目的とする。
【0008】
【課題を解決するための手段】この課題を解決するため、請求項1の発明は、接着剤を介して第1の基板と第2の基板を重ね合わせ、前記接着剤を硬化させて前記基板同士を貼り合わせる板状基板の貼り合わせ方法において、前記接着剤の抵抗率の大きさによって、前記第1と第2の基板との間に印加する電圧の種類又は周波数を選定することを特徴とする板状基板の貼り合わせ方法を提供するものである。
【0009】請求項2の発明は、上記課題を解決するため、接着剤を介して第1の基板と第2の基板を重ね合わせ、前記接着剤を硬化させて前記基板同士を貼り合わせる板状基板の貼り合わせ方法において、前記接着剤を前記第1と第2の基板の双方又は一方に塗布するとき、前記接着剤の抵抗率の大きさによって、前記第1又は第2の基板と接着剤供給ノズルとの間に印加する電圧の種類又は周波数を選定することを特徴とする板状基板の貼り合わせ方法を提供するものである。
【0010】請求項3の発明は、上記課題を解決するため、請求項1又は請求項2において、前記電圧は、前記接着剤の液膜の表面を先細り化させ、接触面積を小さくして接液させることができる大きさの電圧値であることを特徴とする板状基板の貼り合わせ方法を提供するものである。
【0011】請求項4の発明は、上記課題を解決するため、請求項1又は請求項2において、前記接着剤の抵抗率が10Ω・cm以下の場合は、交流電圧を印加して連続的に接液を行わせることを特徴とする板状基板の貼り合わせ方法を提供するものである。
【0012】請求項5の発明は、上記課題を解決するため、請求項1又は請求項2において、前記接着剤の抵抗率が10Ω・cm以上の場合は、直流電圧を印加して連続的に接液を行わせることを特徴とする板状基板の貼り合わせ方法を提供するものである。
【0013】請求項6の発明は、上記課題を解決するため、請求項1又は請求項2において、前記接着剤の抵抗率を測定し、前記抵抗率の値から交流電圧又は直流電圧のどちらかを印加することを特徴とする貼り合わせ方法を提供するものである。
【0014】請求項7の発明は、上記課題を解決するため、接着剤を介して第1の基板と第2の基板を重ね合わせ、前記接着剤を硬化させて前記基板同士を貼り合わせる板状基板の貼り合わせ方法において、前記第1又は第2の基板の一方に塗布された前記接着剤が接触する、前記第1又は第2の他方の基板の表面が絶縁材料である場合、前記第1と第2の基板との間に直流電圧を印加して貼り合わせることを特徴とする板状基板の貼り合わせ方法を提供するものである。
【0015】請求項8の発明は、上記課題を解決するため、接着剤を介して第1の基板と第2の基板を重ね合わせ、前記接着剤を硬化させて前記基板同士を貼り合わせる板状基板の貼り合わせ方法において、前記接着剤が塗布される前記第1又は第2の基板の表面が絶縁材料である場合、前記第1又は第2の基板と前記接着剤供給ノズルとの間に直流電圧を印加して貼り合わせることを特徴とする板状基板の貼り合わせ方法を提供するものである。
【0016】請求項9の発明は、上記課題を解決するため、接着剤を介して第1の基板と第2の基板を重ね合わせ、前記接着剤を硬化させて前記基板同士を貼り合わせる板状基板の貼り合わせ方法において、前記接着剤の抵抗率が10Ω・cm以下であって、前記第1と第2の基板との間、もしくは前記第1又は第2の基板と接着剤供給ノズルとの間に交流電圧を印加して接液を行わせることを特徴とする板状基板の貼り合わせ方法を提供するものである。
【0017】請求項10の発明は、上記課題を解決するため、接着剤を介して第1の基板と第2の基板を重ね合わせ、前記接着剤を硬化させて前記基板同士を貼り合わせる板状基板の貼り合わせ方法において、前記接着剤の抵抗率が10Ω・cm以上であって、前記第1と第2の基板との間、もしくは前記第1又は第2の基板と接着剤供給ノズルとの間に直流電圧を印加して接液を行わせることを特徴とする板状基板の貼り合わせ方法を提供するものである。
【0018】請求項11の発明は、上記課題を解決するため、接着剤を介して第1の基板と第2の基板を重ね合わせ、前記接着剤を硬化させて前記基板同士を貼り合わせる板状基板の貼り合わせ装置において、前記第1と第2の基板をそれぞれ支承する第1と第2の電極手段と、交流電圧を供給する交流回路と、直流電圧を供給する直流回路と、前記交流電圧と直流電圧とを切り換えて前記第1と第2の電極手段とに電圧を印加するスイッチ手段と、を備え、前記スイッチ手段で印加する電圧の種類を選定することを特徴とする板状基板の貼り合わせ装置を提供するものである。
【0019】請求項12の発明は、上記課題を解決するため、接着剤を介して第1の基板と第2の基板を重ね合わせ、前記接着剤を硬化させて前記基板同士を貼り合わせる板状基板の貼り合わせ装置において、前記第1又は第2の基板を支承する電極手段及び接着剤を供給する接着剤供給ノズルと、交流電圧を供給する交流回路と、直流電圧を供給する直流回路と、前記交流電圧と直流電圧とを切り換えて前記電極手段と接着剤供給ノズルとに電圧を印加するスイッチ手段と、を備え、前記スイッチ手段で印加する電圧の種類を選定することを特徴とする板状基板の貼り合わせ装置を提供するものである。
【0020】請求項13の発明は、上記課題を解決するため、請求項11又は請求項12において、前記交流回路はインバータ回路であり、前記直流回路は整流回路であることを特徴とする板状基板の貼り合わせ装置を提供するものである。
【0021】請求項14の発明は、上記課題を解決するため、接着剤を介して第1の基板と第2の基板を重ね合わせ、前記接着剤を硬化させて前記基板同士を貼り合わせる板状基板の貼り合わせ装置において、接着剤の抵抗率が10Ω・cm以下であって、前記第1と第2の基板との間、もしくは前記第1又は第2の基板と接着剤供給ノズルとの間に交流電圧を印加するための交流電源を備えたことを特徴とする板状基板の貼り合わせ装置を提供するものである。
【0022】請求項15の発明は、上記課題を解決するため、接着剤を介して第1の基板と第2の基板を重ね合わせ、前記接着剤を硬化させて前記基板同士を貼り合わせる板状基板の貼り合わせ装置において、前記接着剤の抵抗率が10Ω・cm以上であって、前記第1と第2の基板との間、もしくは前記第1又は第2の基板と接着剤供給ノズルとの間に直流電圧を印加するための直流電源を備えたことを特徴とする板状基板の貼り合わせ装置を提供するものである。
【0023】請求項16の発明は、上記課題を解決するため、請求項11又は請求項12において、前記接着剤の抵抗率を測定する抵抗率測定器を備えたことを特徴とする板状基板の貼り合わせ装置を提供するものである。
【0024】
【発明の実施の形態及び実施例】本発明は、接着剤を基板に塗布する際の接着剤供給ノズルと基板との間、また、接着剤を介して2枚の基板を貼り合わせる際の2枚の基板間に電圧を印加し、その電圧によって形成される電界の静電引力によって、接着剤の液膜の表面の形状を先細り化させ、接着剤が基板に接触する面積を小さくして気泡の発生を防止する際、接着剤の抵抗率によって印加する電圧の種類を選定することを特徴とする。したがって、最適な条件で接着剤を基板に接液させることができ、接着剤の塗布から基板の貼り合わせまでの全工程において気泡の発生を防止することができる。
【0025】図1により、本発明に係る貼り合わせ方法について説明する。先ず、ディスク基板、ガラス基板のような基板1に接着剤5を円環状に塗布し、基板1の支承手段である電極手段3によって、基板1上の接着剤5が塗布された面と反対の面を支承し、重ね合わせるもう一方の基板2を電極手段4で支承する。それぞれの電極手段は、交流電源6又は直流電源7、及び電圧源を切り換えて電圧を印加するスイッチ手段8に接続されている。
【0026】本実施例における貼り合わせ装置には、図6に示すようなインバータ回路11、変圧器12、整流回路13、及びスイッチ手段8で構成される電源を備え、変圧器12にて昇圧した交流電圧を、整流回路13を通さずにそのまま出力するか、又は、スイッチ手段8を動作させて整流回路13を通して整流した直流電圧を出力する。
【0027】ここで、交流電圧は、ある周波数で正負に振れる電圧であれば、正弦波、方形波、三角波でも構わない。また、直流電圧は、完全な直流である必要は無く、リプル電圧を含んだ電圧、又は直流電圧にこれよりも小さい振幅の交流電圧を重畳してなる電圧でも良い。そして、電源は、市販の直流電源又は交流電源を備え、スイッチ手段で電圧源を切り換えるようにしてもよい。また、スイッチ手段8は交流電源6、直流電源7にそれぞれ接続された一対の半導体スイッチで構成しても良い。
【0028】図2に示すように、電圧を印加して2枚の基板を接着剤で貼り合わせる場合、基板1の絶縁層を容量C1、基板2と、基板1に塗布された接着剤5とで形成される間隙を容量Cn1、接着剤5の抵抗率によって決まる抵抗をRn1、基板2の絶縁層を容量C2で表すと、気泡を発生させないで2枚の基板を接着剤5で貼り合わせるためには、間隙の容量Cn1に所定の電圧が印加される必要がある。
【0029】しかし、間隙に印加される電圧は、2枚の基板間に印加される電圧の種類、接着剤の抵抗率の大きさなどに影響され、所定の電圧が印加されない場合がある。この問題は、接着剤の抵抗率の大きさによって、交流電圧と直流電圧を使い分けることで解決することができ、効果的に間隙に所定の電圧を印加することが可能となる。
【0030】一般的に使用されている光硬化型接着剤の抵抗率は、実施例5に記載の測定方法により測定すると、約10〜1016Ω・cmの範囲となる。以下の実施例では、接着剤の抵抗率が低い場合と高い場合に分類し、それぞれにおいて、貼り合わせ方法と接着剤の供給方法について説明する。ここで、接着剤の抵抗率の大きさは、各種実験、実測結果から、抵抗率が10Ω・cm以下の低い場合と、抵抗率が10Ω・cm以上の高い場合に分類するのが好ましいことが分かった。
【0031】(実施例1)抵抗率の低い接着剤を用いて、2枚の基板を貼り合わせる方法について説明する。図1に示すような貼り合わせ装置において、2枚の基板間に交流電圧を印加して貼り合わせを行う場合、図2で示す等価回路の間隙の容量Cn1は、インピーダンス(1/(ω・Cn1))として表せられ、間隙に印加される電圧は、印加電圧をインピーダンス(1/(ω・Cn1))と接着剤の抵抗Rn1とで分担した値となる。
【0032】また、印加する交流電圧の周波数及び電圧値は、前記等価回路の各容量、接着剤の抵抗などによって決定され、周波数は、数100Hz〜数10kHzの範囲が好ましい。本実施例では、数100Hzの交流電圧を用いている。電圧値は、ピーク値が数100V〜数kVの正弦波を用いている。
【0033】接着剤の抵抗率が小さく、間隙のインピーダンスが接着剤の抵抗よりも大きくなる場合、2枚の基板を貼り合わせる際に、接着剤5と基板2との間隙に所定の電圧が印加され、その電圧によって形成される電界の静電引力によって、接着剤5の液膜の表面の形状が先細り、接着剤5が基板2に接触する面積が小さくなり、気泡の発生を防止することができる。
【0034】接着剤の塗布形状にもよるが、接着剤を円環状に塗布している場合、気泡の発生を防いで2枚の基板を貼り合わせるためには、電界の静電引力により接着剤の液膜の表面の形状が先細り、最初の一点目が接液した後、2点目以降が同様な先細り形状で連続的に接液し、全ての接着剤が接触終了する必要がある。基本的に交流電圧を印加する場合には、一定のサイクルで間隙の容量への充放電が繰り返され、最初の1点目が接液した後の2点目以降でも所定の電圧が印加される。
【0035】次に、2枚の基板間に直流電圧を印加して貼り合わせる場合について説明する。接着剤の抵抗率が小さい場合、図3に示す等価回路のように、最初の1点目が接液して上下のディスク間が接着剤の抵抗Rn1´で短絡した瞬間から、接着剤の抵抗Rn1´を通して上下の基板間の容量C0と次の2点目の間隙の容量Cn2の放電が始まり、2点目の間隙に印加された電圧が、接着剤が接液可能である最小の電圧値以下に低下してしまう。したがって、2点目以降の接着剤の液膜の表面の形状が先細りせず、接液の際に、気泡が発生してしまい、これが、直流電圧を印加する場合の大きな欠点となる。
【0036】(実施例2)次に、抵抗率の高い接着剤を用いて、2枚の基板を貼り合わせる方法について説明する。抵抗率の高い接着剤を用いて、2枚の基板間に交流電圧を印加して貼り合わせる場合、接着剤5と基板2との間隙のインピーダンスが接着剤の抵抗よりも小さくなり、間隙に十分な電圧が印加されにくくなる。
【0037】さらに、接着剤の抵抗が高いほど、2枚の基板を貼り合わせる過程で基板の間隔が狭まり、間隙の高さが変化すると、容量が大きくなり、間隙に十分な電圧が印加されにくくなる。したがって、接着剤の液膜の表面の形状が先細りせずに、接着剤が基板に接触する面積が大きくなり、気泡が発生してしまう。
【0038】このような場合、印加電圧を大きくすることで、間隙に所定の電圧が得られ、気泡を発生させないで2枚の基板を貼り合わせることができるが、接着剤の抵抗率の大きさによって、印加電圧の周波数を変化させ、例えば、抵抗率が高い場合には、設定周波数を数Hzから数10Hzに低くすることで、間隙のインピーダンスを接着剤の抵抗よりも十分に大きくし、印加電圧をそれほど大きくしないで、間隙に所定の電圧を印加することができる。ただし、この場合には、周波数を低周波まで可変しなければならず、電源装置が大幅に大型化するという問題がある。
【0039】ところで、接着剤の抵抗率が高い場合に、数100V〜数kVの直流電圧を印加すると、前述の図3と同様に、最初の1点目が接液して上下のディスク間が接着剤の抵抗Rn1´で短絡すると、接着剤の抵抗Rn1´を通して上下のディスク間の容量C0と次の2点目の間隙の容量Cn2の放電が行われる。しかし、接着剤の抵抗率が高い場合、短絡抵抗Rn1´が非常に大きくなり、容量C0とCn2の放電時間が長くなるので、接着剤が接液するのに必要な電圧が最後まで維持できる。したがって、最初の1点目が接液した後の2点目以降の接液が可能となり、気泡を発生させないで貼り合わせることができる。したがって、接着剤の抵抗率が高い場合、抵抗率の大きさを利用して、直流電圧を印加し、気泡を発生させないで最適に貼り合わせることができる。
【0040】また、2枚の基板間に直流電圧を印加する場合、間隙に印加される電圧は、接着剤の抵抗による電圧降下分だけ低い電圧となり、ほとんどの電圧が間隙に印加されるため、1点のみの接液においては、接着剤の抵抗率の大小に関わらず、交流電圧と比較して直流電圧が効果的である。
【0041】また、2枚の基板間に直流電圧を印加する場合において、基板1に塗布された接着剤5が接液する基板2の表面が金属膜のない絶縁材料であるとき、絶縁材料の高抵抗によって放電経路が形成される。したがって、接着剤の抵抗率の大小に関わらず、直流電圧においても、基板1に塗布された接着剤5と基板2との間隙の電圧が維持され、最初の1点目が接液した後の2点目以降の接液も可能となり、気泡を発生させないで貼り合わせることができる。
【0042】(実施例3)抵抗率の低い接着剤を用いて、基板に接着剤を供給する方法について説明する。図4に示すように、接着剤供給ノズル10と、基板1を支承している電極手段9との間に、交流電源6又は直流電源7により電圧を印加して、基板1に接着剤を塗布する。接着剤の塗布工程を電気的な等価回路で表すと、図5(1)及び(2)に示すように、接着剤の最初の滴下と、接着剤を円環状に塗布する2つの工程に分けられ、基本的な原理は、貼り合わせと同様である。
【0043】交流電圧を印加する場合、交流電圧の周波数及び電圧値は、等価回路に示す各容量、接着剤の抵抗率、接着剤の供給速度などによって決定され、周波数は、数100Hz〜数10kHzの範囲が好ましい。この実施例では、数100Hzの交流電圧を用いている。電圧値は、ピーク値が数100V〜数kVの正弦波を用いている。
【0044】図5(1)は、基板1に接着剤5を最初に滴下する工程を示す。接着剤供給ノズル10から滴下される接着剤5の抵抗をRn1、接着剤供給ノズル10から滴下される接着剤5と基板1との間隙のインピーダンスを(1/(ω・Cn1))とすると、接着剤供給ノズル10と基板1との間の印加電圧は、インピーダンス(1/(ω・Cn1))と接着剤5の抵抗Rn1で分担される。
【0045】接着剤5の抵抗率が低く、接着剤5と基板1とで形成される間隙のインピーダンスが、接着剤5の抵抗Rn1よりも大きい場合、間隙には十分な電圧が印加され、その電圧によって形成される電界の静電引力によって、接着剤の液膜の表面の形状が先細り、接着剤5が基板1に接触する面積が小さくなり、気泡の発生を防止することができる。
【0046】次に、接着剤5の最初の滴下から円環状に塗布する工程の等価回路を図5(2)に示す。気泡が発生しないように円環状に塗布するためには、円環状に塗布される接着剤が基板に順次接液していく瞬間の接着剤と基板との間隙で形成される容量Cn2に所定の電圧が常に印加されている必要がある。接着剤の抵抗率が低い場合において、接着剤供給ノズル10と電極手段9との間に交流電圧を印加すると、容量Cn2に連続的に十分な電圧が印加されるため、その電圧によって形成される電界の静電引力によって、接着剤の液膜の表面の形状が先細り、接着剤5が基板1に接触する面積が小さくなり、気泡の発生を防止することができる。
【0047】ところで、接着剤の抵抗率が低い場合に直流電圧を印加すると、接着剤の最初の滴下は、間隙に十分な電圧が印加されるため、接着剤の液膜の表面の形状が先細り、気泡の発生を防止できる。しかし、最初の1点目が接液した後の円環塗布では、1点目に接液した接着剤の低抵抗のために、放電経路が形成され、間隙に電圧が印加されなく、気泡が発生してしまうという問題が残る。
【0048】(実施例4)抵抗率の高い接着剤を用いて、基板に接着剤を供給する方法について説明する。交流電圧を印加する場合、最初に滴下した接着剤5と基板1とで形成される間隙のインピーダンス(1/(ω・Cn1))が、接着剤の抵抗Rn1よりも小さい場合、間隙に印加される電圧は、接着剤の抵抗Rn1との分担になるので、間隙に十分な電圧が印加されにくくなる。
【0049】さらに、接着剤5が基板1に接触する瞬間においては、接着剤5と基板1との間隙で形成される容量が大きくなり、インピーダンスは小さくなる。間隙に印加される電圧は、印加電圧を接着剤の抵抗Rn1と、間隙で形成される容量Cn1のインピーダンスとで分担した値となるため、抵抗Rn1が大きいほど間隙に電圧が印加されにくくなり、接着剤が基板に接触する面積が大きくなり、気泡が発生してしまう。
【0050】次に、接着剤の最初の滴下から円環状に塗布する場合においても、交流電圧印加で接着剤の抵抗率が高い場合、円環状に塗布される接着剤5が基板1に順次接液する瞬間の間隙に印加される電圧は、接着剤供給ノズル10と基板1との間の印加電圧を抵抗Rn1とで分担した値となり、十分な電圧が得られない。
【0051】このように接着剤の抵抗率が大きい場合は、印加電圧を大きくすることで、間隙に所定の電圧が得られ、気泡を発生させないで接着剤を塗布することができるが、基板間での放電が発生し易くなる。また、設定周波数を低くすることで、間隙の容量のインピーダンスを大きくし、印加電圧をそれほど大きくしないでも、間隙に所定の電圧を印加することができる。しかし、低周波では、電源サイズが大きくなる等の問題がある。以下に、直流電圧を印加して、接着剤を供給する方法について説明する。
【0052】接着剤を最初に滴下する工程において、直流電圧を印加する場合、ほとんど接着剤の抵抗率に影響されずに十分な電圧が間隙の容量Cn1に印加されるため、接着剤の液膜の表面の形状が先細り、接着剤が基板に接触する面積が小さくなり、気泡が発生しない。
【0053】さらに、接着剤を円環状に塗布する工程において、通常、直流電圧を印加した場合、最初の滴下で基板1に接着剤が接液した瞬間に、接着剤の抵抗Rn1及びRn2を通して接着剤供給ノズル10と基板1との間の容量C0と間隙の容量Cn2の放電が行われるが、接着剤が高抵抗率の場合、短絡抵抗Rn1及びRn2が高いので、容量C0とCn2の放電時間が長くなり、円環状に塗布される接着剤が接液するのに必要な電圧が最後まで維持できるので、連続的な接液が可能となる。したがって、気泡を発生させないで接着剤を円環状に塗布することができる。
【0054】貼り合わせと同様に、直流電圧を印加して接着剤を供給する場合、間隙に印加される電圧は、接着剤の抵抗による電圧降下分だけ低い電圧となり、ほとんどの電圧が間隙に印加されるため、1点のみの塗布においては、接着剤の抵抗率の大小に関わらず、交流電圧印加と比較して直流電圧が効果的である。
【0055】また、接着剤を塗布する基板1の表面が金属膜のない絶縁材料であるとき、絶縁材料の高抵抗によって放電経路が形成されるため、接着剤供給ノズル10と基板1との間の容量C0と間隙の容量Cn2との放電時間が長くなり、接着剤の抵抗率の大小に関わらず、間隙の電圧が持続できるため、直流電圧を印加して円環状に連続的に接着剤を塗布しても、気泡が発生しない。
【0056】接着剤の抵抗率が10〜10Ω・cmの範囲にある場合は、直流電圧又は交流電圧のどちらの電圧を印加してもよい。この場合、電圧源を2種類備えていると、抵抗率によってどちらか最適な方の電圧源を選定できるので、好都合である。
【0057】なお、上述の実施例では、インバータ回路を有する電源又は単一の直流電源及び交流電源によって構成される電圧源を備え、接着剤の抵抗率の大きさによって、印加する電圧の種類を交流電圧又は直流電圧に切り換えているが、使用する接着剤を限定し、その接着剤の抵抗率に適した電圧源のみを備えても良い。例えば、抵抗率が10Ω・cm以下の接着剤を使用する場合は、交流電源のみを備え、抵抗率が10Ω・cm以上の接着剤を使用する場合は、直流電源のみを備える。この場合、電圧源が一台で済むので、制御が容易になる、装置の簡素化が可能になるという利点がある。
【0058】接着剤の抵抗率の範囲は、接着剤の塗布量、基板間隔、基板の種類等によって変化する。さらに、気泡の発生は、接着剤の抵抗率以外にも、接着剤の粘度、雰囲気の温度や湿度などの条件にも影響する。
【0059】上述の実施例では、接着剤を基板1のみに塗布しているが、両方の基板に塗布しても構わない。
また、基板として光ディスクの基板を用いているが、薄膜シート、透明なガラス、その他の板状基板でも構わない。
【0060】(実施例5)図7により、抵抗率測定器を備えた接着剤供給及び貼り合わせ装置について説明する。接着剤を基板に塗布する前、又は接着剤で2枚の基板を貼り合わせる前に、接着剤の抵抗率を測定し、その抵抗率の値によって、印加電圧の種類を切り換えることを特徴としている。
【0061】接着剤タンク14と接着剤供給ノズル10との間に、接着剤の抵抗率測定器15を備え、接着剤5を基板1に塗布する前に接着剤5の抵抗率を測定し、抵抗率の値によって、スイッチ手段8の切り換え信号を通信ケーブル17及び18にて送信する。接着剤供給ノズル10に接続されている電源の種類を交流又は直流のどちらかに切り換え、接着剤の抵抗率が低い場合は、接着剤供給ノズルと基板1との間に交流電圧を印加し、接着剤の抵抗率が高い場合は、接着剤供給ノズルと基板1との間に直流電圧を印加して、接着剤供給タンク14から接着剤供給配管16を通して接着剤供給ノズル10から接着剤5を基板1に塗布する。同様にして、測定した抵抗率の値によって、貼り合わせ装置に接続されている電源の種類を交流又は直流のどちらかに切り換え、電圧を印加した状態で、接着剤5を塗布した基板1と基板2とを貼り合わせる。なお、電圧を印加するタイミング、印加時間は、自動で制御する。また、接着剤供給装置又は貼り合わせ装置のどちらか一方側の交流電源6、直流電源7及びスイッチ手段8を省略して共用しても良い。
【0062】また、接着剤の抵抗率が、所定の値以上になったときに、電圧の種類を自動的に切り換えるようにしても良い。抵抗率の測定は、常時行うのではなく、接着剤を交換したときなどに、選択的に行うようにしても構わない。
【0063】抵抗率測定器の一実施例を図8に示す。抵抗率測定器は、2枚の平行平板電極19、電源24、電圧計22及び電流計23によって基本的には構成される。2枚の平行平板電極間に満たされた接着剤5に流れる微小電流と電極間電圧とから抵抗を測定して接着剤の抵抗率を求めることができる。ただし、抵抗は、接着剤5の温度や吸湿量に影響されやすいため、接着剤5が満たされた抵抗率測定用接着剤タンク20を温度や湿度の調整が可能なチャンバー21等の中に設置して、接着剤5の雰囲気中の温度や湿度を一定にする必要がある。また、平行平板電極間に電圧を印加後、電流は時間とともに減衰しながら一定値に飽和する場合が多いので、一定時間、例えば1分間経過したときの値を採用するなどの条件を定める必要がある。また、印加電圧を変化させ、そのときの電流を数点測定して得られた曲線の傾きから、抵抗を求めてもよい。測定する抵抗は極めて高いので、高感度の電圧計、電流計が必要となる。さらに、接着剤の抵抗率を高精度に測定するために、抵抗率が電圧計の内部インピーダンスに比べて十分に小さい場合は、四端子法を用い、電圧計の内部インピーダンスよりも大きい場合は、二端子法を用いる。また、高感度の抵抗測定器で、直接接着剤の抵抗を測定しても良い。
【0064】平行平板電極19は、酸化しにくい材質、例えば、ニッケルやニッケルメッキした金属等を用い、電極の一方の面は、接着剤に接するように電極表面が現れており、2枚の電極の電極表面が互いに向き合うように配置する。電極の両側面及び反対の面は絶縁物により囲まれており、直接接着剤が接しないようになっている。電極間隔は、常に一定になるように固定する。本実施例では、電極間隔を2mm一定としている。そして、電極全体を接着剤の中に満たして、その電極間の接着剤の抵抗を測定する。又は、電極間に接着剤を満たして、その接着剤の抵抗を測定しても良い。
【0065】通常、電極のエッジ部の電界分布が不平等となり、正確な測定が困難となる。このようなエッジ部の不平等電界を少なくする電極構造としては、いくつか知られているが、例えば、ガード電極やロゴウスキー電極を利用することで、不平等電界の影響を小さくすることができる。
【0066】
【発明の効果】以上述べたように、本発明によれば、接着剤の抵抗率を測定し、接着剤の抵抗率の大きさによって、接着剤を基板に塗布するときに接着剤供給ノズルと基板との間に印加する電圧の種類、及び接着剤を介して2枚の基板を貼り合わせるときに基板間に印加する電圧の種類を、交流電圧又は直流電圧に切り換えることによって、最適な電圧を印加することができる。その結果、接着剤の抵抗率に影響されずに低抵抗率から高抵抗率までの接着剤に対して、接着剤の液膜の表面を先細り化させて、接着剤が基板に接液するときの接触面積を小さくすることができるため、気泡の発生を防止することができるという効果を奏する。
【0067】電圧の種類を交流電圧又は直流電圧に切り換えることで、印加する電圧をそれほど高く設定せずに最適な電圧を得ることができるため、電源サイズを小さくすることができる、また、放電の発生を防ぐことができるという効果を奏する。
【0068】使用する接着剤を限定し、その接着剤の抵抗率に適した電圧源のみを備えることで電圧源が一台で済み、制御が容易になる、装置の簡素化が可能となるという効果を奏する。
【図面の簡単な説明】
【図1】本発明の貼り合わせ方法を説明するための図である。
【図2】本発明の貼り合わせ方法を説明するための電気的等価回路図である。
【図3】抵抗率の小さい接着剤を介して2枚の基板を貼り合わせたときの電気的等価回路図である。
【図4】本発明の接着剤供給方法を説明するための図である。
【図5】本発明の接着剤供給方法を説明するための電気的等価回路図である。
【図6】本発明に係る電圧印加用の電源回路を説明するための図である。
【図7】本発明に係る抵抗率測定器を備えた接着剤供給及び貼り合わせ装置を説明するための図である。
【図8】本発明に係る抵抗率測定器を説明するための図である。
【符号の説明】
1、2−基板 3、4−電極手段
5−接着剤 6−交流電源
7−直流電源 8−スイッチ手段
9−電極手段 10−接着剤供給ノズル
11−インバータ回路 12−変圧器
13−整流回路 14−接着剤タンク
15−抵抗率測定器 16−接着剤供給配管
17、18−通信ケーブル 19−平行平板電極
20−抵抗率測定用接着剤タンク 21−チャンバー
22−電圧計 23−電流計
24−電源
[0001]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for bonding plate substrates, which are optimal for bonding two plate substrates through an adhesive.
[0002]
2. Description of the Related Art A disk substrate bonding method will be described as a conventional example in which two plate substrates are bonded via a liquid adhesive. In the method of bonding two substrates together with an adhesive, the mixing of bubbles between the substrates becomes a problem. When the substrate coated with the adhesive is bonded to the other substrate, the contact area when the surface of the liquid film of the adhesive comes into contact with the other substrate increases, and small bubbles are generated between the adhesive and the substrate. When bubbles are mixed in the adhesive layer, it causes data reading errors, a decrease in adhesive strength due to polymerization inhibition, and corrosion of the metal film on the substrate.
Conventionally, several bonding methods for reducing the generation of bubbles have been considered, and a method of applying a voltage to two substrates and bonding them together has been proposed by the present applicants (for example, Patent Documents 1 to 3). 3).
When a voltage is applied to the two substrates and bonded together, the surface of the adhesive liquid film tapers due to the electrostatic attractive force of the electric field, and the contact area can be reduced, so that the generation of bubbles can be prevented. Its effectiveness has been confirmed.
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-60344 (pages 4-5 and 5-8)
[Patent Document 2]
Japanese Unexamined Patent Publication No. 2000-290602 (page 4, Fig. 1-4)
[Patent Document 3]
Japanese Patent Laid-Open No. 2001-312843 (page 4-6, FIG. 2-6)
[0004] In recent years, optical disks whose capacity and density have been increased have used silver alloy reflective films having higher reflectivity and higher thermal conductivity than conventional reflective films made of aluminum alloys. ing. On the other hand, silver alloys have a corrosion problem because they have lower corrosion resistance than aluminum alloys. Thus, an adhesive having a low ion concentration corresponding to a silver alloy reflective film has been developed, but the resistivity of the adhesive tends to be high due to the low ion concentration.
When the resistivity of the adhesive increases, a predetermined gap is formed in the gap formed by the adhesive applied to one substrate at the moment of bonding the two substrates and the other substrate or the adhesive applied to the substrate. Thus, the surface of the liquid film of the adhesive does not taper, the contact area when the adhesive and the substrate or the adhesive and the adhesive are in contact with each other is increased, and bubbles are easily generated.
[0006]
As described above, the optimum bonding may not be realized depending on the resistivity of the adhesive. In order to solve this problem, by increasing the voltage applied between the two substrates, the surface of the liquid film of the adhesive is tapered, the contact area when contacting the liquid is reduced, and bubbles are generated. Can be prevented. However, when the voltage is set high, problems such as an increase in the size of the power supply and discharge between the substrates occur.
Accordingly, an object of the present invention is to provide a bonding method and a bonding apparatus in which bubbles are not generated at an optimum voltage even if the applied voltage is not increased depending on the resistivity of the adhesive.
[0008]
In order to solve this problem, according to the present invention, the first substrate and the second substrate are overlapped with each other through an adhesive, and the adhesive is cured to thereby form the substrate. In the method for laminating the plate-like substrates for laminating each other, the type or frequency of the voltage to be applied between the first and second substrates is selected depending on the resistivity of the adhesive. The present invention provides a method for laminating a plate substrate.
According to a second aspect of the present invention, in order to solve the above-mentioned problems, the first substrate and the second substrate are overlapped with an adhesive, the adhesive is cured, and the substrates are bonded to each other. In the method for bonding substrates, when the adhesive is applied to both or one of the first and second substrates, the first or second substrate and the adhesive depending on the resistivity of the adhesive. The present invention provides a method for laminating a plate-like substrate, wherein the type or frequency of a voltage applied between the supply nozzle and the supply nozzle is selected.
According to a third aspect of the present invention, in order to solve the above-mentioned problems, in the first or second aspect, the voltage causes the surface of the liquid film of the adhesive to be tapered to reduce the contact area. The present invention provides a method for laminating plate-like substrates, characterized by having a voltage value that can be liquefied.
According to a fourth aspect of the present invention, in order to solve the above-mentioned problems, in the first or second aspect, the adhesive has a resistivity of 10 9 In the case of Ω · cm or less, the present invention provides a method for laminating a plate-like substrate, wherein an AC voltage is applied to continuously contact the liquid.
According to a fifth aspect of the present invention, in order to solve the above-mentioned problems, in the first or second aspect, the adhesive has a resistivity of 10 8 In the case of Ω · cm or more, the present invention provides a method for laminating a plate-like substrate, characterized in that a direct current voltage is applied to continuously perform liquid contact.
According to a sixth aspect of the present invention, in order to solve the above-mentioned problems, in the first or second aspect, the resistivity of the adhesive is measured, and either the AC voltage or the DC voltage is determined from the value of the resistivity. It is intended to provide a bonding method characterized by applying the above.
According to a seventh aspect of the present invention, in order to solve the above-mentioned problems, the first substrate and the second substrate are overlapped with an adhesive, the adhesive is cured, and the substrates are bonded to each other. In the method for laminating substrates, when the surface of the first or second other substrate that contacts the adhesive applied to one of the first or second substrates is an insulating material, the first The present invention provides a method for laminating a plate-like substrate, in which a DC voltage is applied between the substrate and a second substrate.
According to an eighth aspect of the present invention, in order to solve the above-mentioned problem, the first substrate and the second substrate are overlapped with an adhesive, the adhesive is cured, and the substrates are bonded to each other. In the substrate bonding method, when the surface of the first or second substrate to which the adhesive is applied is an insulating material, a direct current is applied between the first or second substrate and the adhesive supply nozzle. The present invention provides a method for laminating a plate-like substrate, wherein a voltage is applied to perform laminating.
According to a ninth aspect of the present invention, in order to solve the above-mentioned problems, the first substrate and the second substrate are overlapped with an adhesive, the adhesive is cured, and the substrates are bonded to each other. In the method for bonding substrates, the adhesive has a resistivity of 10 9 Ω · cm or less, and applying an AC voltage between the first and second substrates or between the first or second substrate and the adhesive supply nozzle to cause liquid contact. The present invention provides a method for laminating a plate-like substrate characterized by the above.
According to a tenth aspect of the present invention, in order to solve the above-mentioned problems, the first substrate and the second substrate are overlapped with an adhesive, the adhesive is cured, and the substrates are bonded to each other. In the method for bonding substrates, the adhesive has a resistivity of 10 8 Ω · cm or more, and applying a direct current voltage between the first and second substrates or between the first or second substrate and the adhesive supply nozzle to cause liquid contact. The present invention provides a method for laminating a plate-like substrate characterized by the above.
According to an eleventh aspect of the present invention, in order to solve the above-mentioned problem, the first substrate and the second substrate are overlapped with an adhesive, the adhesive is cured, and the substrates are bonded to each other. In the substrate bonding apparatus, first and second electrode means for supporting the first and second substrates, an AC circuit for supplying an AC voltage, a DC circuit for supplying a DC voltage, and the AC voltage And a switching means for switching the DC voltage and applying a voltage to the first and second electrode means, and selecting the type of voltage to be applied by the switching means. A bonding apparatus is provided.
According to a twelfth aspect of the present invention, in order to solve the above-mentioned problems, the first substrate and the second substrate are overlapped via an adhesive, the adhesive is cured, and the substrates are bonded together. In the substrate bonding apparatus, an electrode means for supporting the first or second substrate and an adhesive supply nozzle for supplying an adhesive, an AC circuit for supplying an AC voltage, a DC circuit for supplying a DC voltage, A switching means for switching the AC voltage and the DC voltage to apply a voltage to the electrode means and the adhesive supply nozzle, and selecting the type of voltage to be applied by the switching means. A substrate bonding apparatus is provided.
A thirteenth aspect of the invention is characterized in that, in order to solve the above problems, the AC circuit is an inverter circuit and the DC circuit is a rectifier circuit in the eleventh or twelfth aspect. A substrate bonding apparatus is provided.
According to a fourteenth aspect of the present invention, in order to solve the above-mentioned problems, the first substrate and the second substrate are overlapped with an adhesive, the adhesive is cured, and the substrates are bonded to each other. In the substrate bonding apparatus, the adhesive has a resistivity of 10 9 An AC power source for applying an AC voltage between the first substrate and the second substrate or between the first or second substrate and the adhesive supply nozzle is provided. The present invention provides a laminating apparatus for a plate-like substrate.
According to a fifteenth aspect of the present invention, in order to solve the above-mentioned problems, the first substrate and the second substrate are overlapped with an adhesive, the adhesive is cured, and the substrates are bonded to each other. In the substrate bonding apparatus, the adhesive has a resistivity of 10 8 A DC power supply for applying a DC voltage between the first and second substrates or between the first or second substrate and the adhesive supply nozzle is provided. The present invention provides a laminating apparatus for a plate-like substrate.
According to a sixteenth aspect of the present invention, in order to solve the above-mentioned problems, the plate-like substrate according to the eleventh or twelfth aspect is provided with a resistivity measuring device for measuring the resistivity of the adhesive. A bonding apparatus is provided.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION The present invention relates to a method for bonding two substrates between an adhesive supply nozzle and a substrate when an adhesive is applied to the substrate, and for bonding two substrates through the adhesive. A voltage is applied between the substrates, and the surface of the adhesive liquid film is tapered by the electrostatic attraction of the electric field formed by the voltage, reducing the area where the adhesive contacts the substrate and reducing the bubbles. In order to prevent the occurrence of this, the type of voltage to be applied is selected according to the resistivity of the adhesive. Therefore, the adhesive can be brought into contact with the substrate under optimum conditions, and generation of bubbles can be prevented in all steps from application of the adhesive to bonding of the substrates.
The bonding method according to the present invention will be described with reference to FIG. First, an adhesive 5 is applied in an annular shape to a substrate 1 such as a disk substrate or a glass substrate, and is opposite to the surface on which the adhesive 5 is applied on the substrate 1 by electrode means 3 which is a support means of the substrate 1. The other substrate 2 is supported by the electrode means 4 while supporting the surface. Each electrode means is connected to AC power supply 6 or DC power supply 7 and switch means 8 for switching the voltage source and applying a voltage.
The bonding apparatus in this embodiment is provided with a power source constituted by an inverter circuit 11, a transformer 12, a rectifier circuit 13 and a switch means 8 as shown in FIG. The AC voltage is output as it is without passing through the rectifier circuit 13, or the DC voltage rectified through the rectifier circuit 13 by operating the switch means 8 is output.
Here, the AC voltage may be a sine wave, a square wave, or a triangular wave as long as the voltage swings positive and negative at a certain frequency. The direct current voltage need not be a complete direct current, and may be a voltage including a ripple voltage or a voltage obtained by superimposing an alternating current voltage having a smaller amplitude on the direct current voltage. The power source may be a commercially available DC power source or an AC power source, and the voltage source may be switched by the switch means. Further, the switch means 8 may be composed of a pair of semiconductor switches connected to the AC power source 6 and the DC power source 7, respectively.
As shown in FIG. 2, when two substrates are bonded together by applying a voltage with an adhesive, the insulating layer of the substrate 1 is a capacitor C1, the substrate 2, and the adhesive 5 applied to the substrate 1. When the gap formed by the capacitor Cn1, the resistance determined by the resistivity of the adhesive 5 is represented by Rn1, and the insulating layer of the substrate 2 is represented by the capacitor C2, the two substrates are bonded together by the adhesive 5 without generating bubbles. In this case, a predetermined voltage needs to be applied to the gap capacitor Cn1.
However, the voltage applied to the gap is influenced by the kind of voltage applied between the two substrates, the magnitude of the resistivity of the adhesive, etc., and a predetermined voltage may not be applied. This problem can be solved by properly using an AC voltage and a DC voltage depending on the resistivity of the adhesive, and a predetermined voltage can be effectively applied to the gap.
The resistivity of a commonly used photo-curing adhesive is about 10 when measured by the measuring method described in Example 5. 7 -10 16 The range is Ω · cm. In the following examples, the adhesive is classified into a case where the resistivity is low and a case where the adhesive is high, and a bonding method and an adhesive supply method will be described in each case. Here, the magnitude of the resistivity of the adhesive is 10% from various experiments and actual measurement results. 9 When the resistance is less than Ω · cm, the resistivity is 10 8 It has been found that it is preferable to classify when the resistance is higher than Ω · cm.
Example 1 A method of bonding two substrates together using an adhesive having a low resistivity will be described. In the bonding apparatus as shown in FIG. 1, when an AC voltage is applied between two substrates to perform bonding, the capacitance Cn1 of the gap in the equivalent circuit shown in FIG. 2 is impedance (1 / (ω · Cn1). )), And the voltage applied to the gap is a value obtained by sharing the applied voltage by the impedance (1 / (ω · Cn1)) and the resistance Rn1 of the adhesive.
The frequency and voltage value of the AC voltage to be applied are determined by the capacitance of the equivalent circuit, the resistance of the adhesive, etc., and the frequency is preferably in the range of several hundreds of Hz to several tens of kHz. In this embodiment, an alternating voltage of several hundred Hz is used. As the voltage value, a sine wave having a peak value of several hundreds V to several kV is used.
When the resistivity of the adhesive is small and the impedance of the gap is larger than the resistance of the adhesive, a predetermined voltage is applied to the gap between the adhesive 5 and the substrate 2 when the two substrates are bonded together. The surface of the liquid film of the adhesive 5 is tapered by the electrostatic attractive force of the electric field formed by the voltage, the area where the adhesive 5 contacts the substrate 2 is reduced, and the generation of bubbles can be prevented. it can.
Depending on the shape of the adhesive applied, in the case where the adhesive is applied in an annular shape, in order to prevent the generation of bubbles and bond the two substrates together, the adhesive is applied by electrostatic attraction of an electric field. After the surface of the liquid film tapers and the first point contacts with the liquid, the second and subsequent points continuously contact with the same tapered shape, and all the adhesives need to be contacted. Basically, when an AC voltage is applied, charging and discharging to the gap capacity are repeated in a fixed cycle, and a predetermined voltage is applied even after the second point after the first first point contacts the liquid. .
Next, a case where a direct current voltage is applied between two substrates and bonded together will be described. When the resistivity of the adhesive is small, as shown in the equivalent circuit shown in FIG. 3, the resistance of the adhesive starts from the moment when the first point contacts the liquid and the upper and lower disks are short-circuited by the adhesive resistance Rn1 ′. The discharge of the capacitance C0 between the upper and lower substrates and the capacitance Cn2 of the next second gap starts through Rn1 ′, and the voltage applied to the second gap is the minimum voltage value at which the adhesive can come into contact with the adhesive. It will drop below. Therefore, the shape of the surface of the liquid film of the adhesive after the second point does not taper, and bubbles are generated at the time of liquid contact, which is a major drawback when a DC voltage is applied.
(Embodiment 2) Next, a method for bonding two substrates together using an adhesive having a high resistivity will be described. When using an adhesive with high resistivity and applying an alternating voltage between two substrates, the impedance of the gap between the adhesive 5 and the substrate 2 becomes smaller than the resistance of the adhesive, which is sufficient for the gap. It becomes difficult to apply a large voltage.
In addition, the higher the resistance of the adhesive, the narrower the distance between the substrates in the process of bonding the two substrates, and the larger the gap, the larger the capacitance, making it difficult to apply a sufficient voltage to the gap. Become. Therefore, the surface of the adhesive liquid film does not taper, the area where the adhesive contacts the substrate increases, and bubbles are generated.
In such a case, by increasing the applied voltage, a predetermined voltage can be obtained in the gap, and the two substrates can be bonded together without generating bubbles, but the resistivity of the adhesive is large. By changing the frequency of the applied voltage, for example, when the resistivity is high, the setting frequency is lowered from several Hz to several tens of Hz, thereby making the gap impedance sufficiently larger than the resistance of the adhesive and applying A predetermined voltage can be applied to the gap without increasing the voltage so much. However, in this case, the frequency must be changed to a low frequency, and there is a problem that the power supply apparatus is greatly increased in size.
By the way, when a direct current voltage of several hundred volts to several kilovolts is applied when the resistivity of the adhesive is high, the first point is in contact with the upper and lower disks as in FIG. When a short circuit is caused by the adhesive resistance Rn1 ′, the capacitance C0 between the upper and lower disks and the capacitance Cn2 of the next second gap are discharged through the adhesive resistance Rn1 ′. However, when the adhesive has a high resistivity, the short-circuit resistance Rn1 ′ becomes very large and the discharge time of the capacitors C0 and Cn2 becomes long, so that the voltage necessary for the adhesive to come into contact with the adhesive can be maintained until the end. Accordingly, the second and subsequent points after the first first point has been in contact with the liquid can be applied, and bonding can be performed without generating bubbles. Therefore, when the resistivity of the adhesive is high, it is possible to apply the direct current voltage using the magnitude of the resistivity and optimally bond without generating bubbles.
In addition, when a DC voltage is applied between two substrates, the voltage applied to the gap is lower than the voltage drop due to the adhesive resistance, and most of the voltage is applied to the gap. In the case of contact with only one point, a DC voltage is more effective than an AC voltage regardless of the resistivity of the adhesive.
When a DC voltage is applied between the two substrates, when the surface of the substrate 2 to which the adhesive 5 applied to the substrate 1 comes into contact is an insulating material without a metal film, the insulating material A discharge path is formed by the high resistance. Therefore, regardless of the resistivity of the adhesive, the voltage of the gap between the adhesive 5 applied to the substrate 1 and the substrate 2 is maintained even at a DC voltage, and the first point after the liquid contact is made. Liquid contact after the second point is also possible, and bonding can be performed without generating bubbles.
(Embodiment 3) A method for supplying an adhesive to a substrate using an adhesive having a low resistivity will be described. As shown in FIG. 4, a voltage is applied between the adhesive supply nozzle 10 and the electrode means 9 supporting the substrate 1 by an AC power source 6 or a DC power source 7 to apply the adhesive to the substrate 1. To do. When the adhesive application process is represented by an electrical equivalent circuit, as shown in FIGS. 5 (1) and (2), the adhesive is first dropped and the adhesive is applied in an annular shape. The basic principle is the same as that of bonding.
When an AC voltage is applied, the frequency and voltage value of the AC voltage are determined by the capacitances shown in the equivalent circuit, the adhesive resistivity, the adhesive supply speed, etc., and the frequency ranges from several hundred Hz to several tens kHz. The range of is preferable. In this embodiment, an alternating voltage of several hundred Hz is used. As the voltage value, a sine wave having a peak value of several hundreds V to several kV is used.
FIG. 5 (1) shows a step of first dropping the adhesive 5 onto the substrate 1. When the resistance of the adhesive 5 dropped from the adhesive supply nozzle 10 is Rn1, and the impedance of the gap between the adhesive 5 dropped from the adhesive supply nozzle 10 and the substrate 1 is (1 / (ω · Cn1)), The applied voltage between the adhesive supply nozzle 10 and the substrate 1 is shared by the impedance (1 / (ω · Cn1)) and the resistance Rn1 of the adhesive 5.
When the resistivity of the adhesive 5 is low and the impedance of the gap formed by the adhesive 5 and the substrate 1 is larger than the resistance Rn1 of the adhesive 5, a sufficient voltage is applied to the gap. Due to the electrostatic attraction of the electric field formed by the voltage, the shape of the surface of the liquid film of the adhesive is tapered, the area where the adhesive 5 contacts the substrate 1 is reduced, and the generation of bubbles can be prevented.
Next, FIG. 5B shows an equivalent circuit of the process of applying the annular shape from the first drop of the adhesive 5. In order to apply in an annular shape so as not to generate bubbles, a predetermined capacitance Cn2 is formed in the gap between the adhesive and the substrate at the moment when the adhesive applied in the annular shape sequentially contacts the substrate. The voltage must be constantly applied. In the case where the resistivity of the adhesive is low, when an AC voltage is applied between the adhesive supply nozzle 10 and the electrode means 9, a sufficient voltage is continuously applied to the capacitor Cn2. Due to the electrostatic attractive force of the electric field, the shape of the surface of the liquid film of the adhesive is tapered, the area where the adhesive 5 contacts the substrate 1 is reduced, and the generation of bubbles can be prevented.
By the way, when a direct current voltage is applied when the resistivity of the adhesive is low, a sufficient voltage is applied to the gap for the first dropping of the adhesive, so that the shape of the surface of the liquid film of the adhesive is tapered. The generation of bubbles can be prevented. However, in the annular coating after the first point of contact with the liquid, a discharge path is formed due to the low resistance of the adhesive that has contacted the first point, and no voltage is applied to the gap, and bubbles are generated. The problem remains.
(Embodiment 4) A method for supplying an adhesive to a substrate using an adhesive having a high resistivity will be described. When an AC voltage is applied, if the impedance (1 / (ω · Cn1)) of the gap formed by the first dropped adhesive 5 and the substrate 1 is smaller than the resistance Rn1 of the adhesive, it is applied to the gap. Since the voltage to be applied is shared with the resistance Rn1 of the adhesive, it is difficult to apply a sufficient voltage to the gap.
Furthermore, at the moment when the adhesive 5 comes into contact with the substrate 1, the capacitance formed by the gap between the adhesive 5 and the substrate 1 increases and the impedance decreases. Since the voltage applied to the gap is a value obtained by sharing the applied voltage by the resistance Rn1 of the adhesive and the impedance of the capacitor Cn1 formed by the gap, the larger the resistance Rn1, the less the voltage is applied to the gap. The area where the adhesive comes into contact with the substrate is increased, and bubbles are generated.
Next, even in the case where the adhesive is applied in an annular shape from the first drop of the adhesive, the adhesive 5 applied in an annular shape sequentially contacts the substrate 1 if the adhesive has a high resistivity when an AC voltage is applied. The voltage applied to the gap at the moment of liquid application becomes a value obtained by sharing the applied voltage between the adhesive supply nozzle 10 and the substrate 1 by the resistor Rn1, and a sufficient voltage cannot be obtained.
When the resistivity of the adhesive is large as described above, a predetermined voltage can be obtained in the gap by increasing the applied voltage, and the adhesive can be applied without generating bubbles. It is easy for electric discharge to occur. Further, by lowering the set frequency, it is possible to apply a predetermined voltage to the gap without increasing the impedance of the capacitance of the gap and increasing the applied voltage so much. However, at low frequencies, there are problems such as an increase in power supply size. Hereinafter, a method for supplying an adhesive by applying a DC voltage will be described.
In the step of first dropping the adhesive, when a DC voltage is applied, a sufficient voltage is applied to the capacitance Cn1 of the gap almost without being affected by the resistivity of the adhesive. The surface shape of the taper is tapered, the area where the adhesive contacts the substrate is reduced, and bubbles are not generated.
Further, in the process of applying the adhesive in an annular shape, normally, when a DC voltage is applied, the adhesive is bonded through the resistances Rn1 and Rn2 of the adhesive at the moment when the adhesive comes into contact with the substrate 1 by the first drop. Discharge of the capacitance C0 and the gap capacitance Cn2 between the agent supply nozzle 10 and the substrate 1 is performed, but when the adhesive has a high resistivity, the short-circuit resistances Rn1 and Rn2 are high, so the discharge times of the capacitances C0 and Cn2 Since the voltage required for the adhesive applied in an annular shape to come into contact with the liquid can be maintained until the end, continuous liquid contact is possible. Therefore, the adhesive can be applied in an annular shape without generating bubbles.
As in the case of bonding, when a direct-current voltage is applied to supply the adhesive, the voltage applied to the gap is lower by the voltage drop due to the resistance of the adhesive, and most of the voltage is applied to the gap. Therefore, in the application of only one point, the DC voltage is more effective than the application of the AC voltage regardless of the resistivity of the adhesive.
Further, when the surface of the substrate 1 to which the adhesive is applied is an insulating material without a metal film, a discharge path is formed by the high resistance of the insulating material. The discharge time between the capacitance C0 and the gap capacitance Cn2 becomes longer, and the gap voltage can be maintained regardless of the resistivity of the adhesive. Therefore, the DC voltage is applied to continuously apply the adhesive in an annular shape. No bubbles are generated even when applied.
The adhesive has a resistivity of 10 8 -10 9 When it is in the range of Ω · cm, either a DC voltage or an AC voltage may be applied. In this case, if two types of voltage sources are provided, it is advantageous because the most suitable voltage source can be selected depending on the resistivity.
In the above-described embodiment, a power source having an inverter circuit or a voltage source composed of a single DC power source and an AC power source is provided, and the type of voltage to be applied is determined depending on the resistivity of the adhesive. Although the AC voltage or the DC voltage is switched, the adhesive to be used may be limited, and only a voltage source suitable for the resistivity of the adhesive may be provided. For example, the resistivity is 10 9 When using an adhesive of Ω · cm or less, it has only an AC power supply and a resistivity of 10 8 In the case of using an adhesive of Ω · cm or more, only a DC power source is provided. In this case, since only one voltage source is required, there is an advantage that the control becomes easy and the apparatus can be simplified.
The resistivity range of the adhesive varies depending on the amount of adhesive applied, the distance between the substrates, the type of substrate, and the like. Furthermore, the generation of bubbles affects not only the resistivity of the adhesive but also conditions such as the viscosity of the adhesive, the temperature and humidity of the atmosphere.
In the above embodiment, the adhesive is applied only to the substrate 1, but it may be applied to both substrates.
Further, although an optical disk substrate is used as the substrate, a thin film sheet, transparent glass, or other plate-like substrate may be used.
(Embodiment 5) Referring to FIG. 7, an adhesive supply and bonding apparatus equipped with a resistivity measuring device will be described. Before applying the adhesive to the substrate or bonding the two substrates with the adhesive, the adhesive resistivity is measured, and the type of applied voltage is switched depending on the resistivity value. .
An adhesive resistivity measuring device 15 is provided between the adhesive tank 14 and the adhesive supply nozzle 10 to measure the resistivity of the adhesive 5 before applying the adhesive 5 to the substrate 1. The switching signal of the switch means 8 is transmitted by the communication cables 17 and 18 according to the resistivity value. When the type of power source connected to the adhesive supply nozzle 10 is switched to either AC or DC, and the adhesive has a low resistivity, an AC voltage is applied between the adhesive supply nozzle and the substrate 1, When the resistivity of the adhesive is high, a direct current voltage is applied between the adhesive supply nozzle and the substrate 1, and the adhesive 5 is removed from the adhesive supply nozzle 10 through the adhesive supply pipe 16 from the adhesive supply tank 14. It is applied to the substrate 1. Similarly, depending on the measured resistivity value, the type of power source connected to the laminating apparatus is switched to either AC or DC, and the substrate is coated with the adhesive 5 in a state where a voltage is applied. 2 and pasted together. Note that the timing and application time for applying the voltage are automatically controlled. Further, the AC power source 6, the DC power source 7, and the switch means 8 on either one of the adhesive supply device or the bonding device may be omitted and shared.
Alternatively, the voltage type may be automatically switched when the adhesive resistivity exceeds a predetermined value. The resistivity measurement is not always performed, but may be selectively performed when the adhesive is replaced.
An embodiment of a resistivity measuring device is shown in FIG. The resistivity measuring device basically includes two parallel plate electrodes 19, a power source 24, a voltmeter 22 and an ammeter 23. The resistivity of the adhesive can be determined by measuring the resistance from the minute current flowing in the adhesive 5 filled between the two parallel plate electrodes and the voltage between the electrodes. However, since resistance is easily influenced by the temperature and moisture absorption amount of the adhesive 5, the resistivity measuring adhesive tank 20 filled with the adhesive 5 is installed in a chamber 21 or the like in which the temperature and humidity can be adjusted. Thus, it is necessary to keep the temperature and humidity in the atmosphere of the adhesive 5 constant. In addition, after applying a voltage between parallel plate electrodes, the current often saturates to a constant value while decaying with time. Therefore, it is necessary to set conditions such as adopting a value when a certain time, for example, 1 minute has passed. is there. Alternatively, the resistance may be obtained from the slope of a curve obtained by changing the applied voltage and measuring several points of current at that time. Since the resistance to be measured is extremely high, a highly sensitive voltmeter and ammeter are required. Furthermore, in order to measure the resistivity of the adhesive with high accuracy, when the resistivity is sufficiently small compared to the internal impedance of the voltmeter, the four-terminal method is used, and when the resistivity is larger than the internal impedance of the voltmeter, Use the two-terminal method. Further, the resistance of the adhesive may be directly measured with a highly sensitive resistance measuring instrument.
The parallel plate electrode 19 is made of a material that is difficult to oxidize, such as nickel or nickel-plated metal. The electrode surface appears on one surface of the electrode so as to be in contact with the adhesive. The electrode surfaces are arranged so as to face each other. Both side surfaces of the electrode and the opposite surface are surrounded by an insulator so that the adhesive is not in direct contact. The electrode interval is fixed so as to be always constant. In this embodiment, the electrode interval is constant at 2 mm. Then, the entire electrode is filled in the adhesive, and the resistance of the adhesive between the electrodes is measured. Alternatively, an adhesive may be filled between the electrodes, and the resistance of the adhesive may be measured.
Usually, the electric field distribution at the edge of the electrode becomes unequal, making accurate measurement difficult. There are several known electrode structures that reduce the unequal electric field at the edge, but the influence of the unequal electric field can be reduced by using, for example, a guard electrode or a Rogowski electrode.
[0066]
As described above, according to the present invention, when the adhesive resistivity is measured and the adhesive is applied to the substrate according to the magnitude of the adhesive resistivity, By switching the type of voltage applied between the substrates and the type of voltage applied between the substrates when bonding two substrates through an adhesive to AC voltage or DC voltage, the optimum voltage can be obtained. Can be applied. As a result, when the adhesive comes into contact with the substrate by tapering the surface of the adhesive liquid film against adhesives from low resistivity to high resistivity without being affected by the resistivity of the adhesive Since the contact area can be reduced, it is possible to prevent the generation of bubbles.
By switching the voltage type to an AC voltage or a DC voltage, an optimum voltage can be obtained without setting the applied voltage so high, so that the power source size can be reduced, and the discharge voltage can be reduced. There exists an effect that generation | occurrence | production can be prevented.
By limiting the adhesive to be used and providing only a voltage source suitable for the resistivity of the adhesive, only one voltage source is required, control becomes easy, and the apparatus can be simplified. There is an effect.
[Brief description of the drawings]
FIG. 1 is a view for explaining a bonding method of the present invention.
FIG. 2 is an electrical equivalent circuit diagram for explaining a bonding method of the present invention.
FIG. 3 is an electrical equivalent circuit diagram when two substrates are bonded together with an adhesive having a low resistivity.
FIG. 4 is a view for explaining an adhesive supply method of the present invention.
FIG. 5 is an electrical equivalent circuit diagram for explaining an adhesive supply method of the present invention.
FIG. 6 is a diagram for explaining a power supply circuit for voltage application according to the present invention.
FIG. 7 is a view for explaining an adhesive supply and bonding apparatus provided with a resistivity measuring device according to the present invention.
FIG. 8 is a diagram for explaining a resistivity measuring device according to the present invention.
[Explanation of symbols]
1,2-substrate 3,4-electrode means
5-Adhesive 6-AC power supply
7-DC power supply 8-Switch means
9-electrode means 10-adhesive supply nozzle
11-Inverter circuit 12-Transformer
13-rectifier circuit 14-adhesive tank
15-Resistivity measuring instrument 16-Adhesive supply piping
17, 18-Communication cable 19-Parallel plate electrode
20-Adhesive tank for resistivity measurement 21-Chamber
22-Voltmeter 23-Ammeter
24-Power supply

Claims (16)

接着剤を介して第1の基板と第2の基板を重ね合わせ、前記接着剤を硬化させて前記基板同士を貼り合わせる板状基板の貼り合わせ方法において、
前記接着剤の抵抗率の大きさによって、前記第1と第2の基板との間に印加する電圧の種類又は周波数を選定することを特徴とする板状基板の貼り合わせ方法。
In the method of laminating the first substrate and the second substrate via an adhesive, curing the adhesive, and laminating the substrates together,
A method for laminating a plate-like substrate, wherein the type or frequency of a voltage applied between the first and second substrates is selected according to the resistivity of the adhesive.
接着剤を介して第1の基板と第2の基板を重ね合わせ、前記接着剤を硬化させて前記基板同士を貼り合わせる板状基板の貼り合わせ方法において、
前記接着剤を前記第1と第2の基板の双方又は一方に塗布するとき、前記接着剤の抵抗率の大きさによって、前記第1又は第2の基板と接着剤供給ノズルとの間に印加する電圧の種類又は周波数を選定することを特徴とする板状基板の貼り合わせ方法。
In the method of laminating the first substrate and the second substrate via an adhesive, curing the adhesive, and laminating the substrates together,
When the adhesive is applied to both or one of the first and second substrates, the adhesive is applied between the first or second substrate and the adhesive supply nozzle depending on the resistivity of the adhesive. A method for laminating plate-like substrates, wherein the type or frequency of the voltage to be selected is selected.
請求項1又は請求項2において、
前記電圧は、前記接着剤の液膜の表面を先細り化させ、接触面積を小さくして接液させることができる大きさの電圧値であることを特徴とする板状基板の貼り合わせ方法。
In claim 1 or claim 2,
The said voltage is a voltage value of the magnitude | size which can taper the surface of the liquid film of the said adhesive agent, make a contact area small, and can be made to contact, The bonding method of the plate-shaped board | substrate characterized by the above-mentioned.
請求項1又は請求項2において、
前記接着剤の抵抗率が10Ω・cm以下の場合は、交流電圧を印加して連続的に接液を行わせることを特徴とする板状基板の貼り合わせ方法。
In claim 1 or claim 2,
When the adhesive has a resistivity of 10 9 Ω · cm or less, an AC voltage is applied to continuously contact the liquid, and the method for laminating a plate-like substrate is characterized in that
請求項1又は請求項2において、
前記接着剤の抵抗率が10Ω・cm以上の場合は、直流電圧を印加して連続的に接液を行わせることを特徴とする板状基板の貼り合わせ方法。
In claim 1 or claim 2,
When the adhesive has a resistivity of 10 8 Ω · cm or more, a direct current voltage is applied to continuously contact the liquid.
請求項1又は請求項2において、
前記接着剤の抵抗率を測定し、前記抵抗率の値から交流電圧又は直流電圧のどちらかを印加することを特徴とする貼り合わせ方法。
In claim 1 or claim 2,
A bonding method characterized by measuring a resistivity of the adhesive and applying either an AC voltage or a DC voltage from the resistivity value.
接着剤を介して第1の基板と第2の基板を重ね合わせ、前記接着剤を硬化させて前記基板同士を貼り合わせる板状基板の貼り合わせ方法において、
前記第1又は第2の基板の一方に塗布された前記接着剤が接触する、前記第1又は第2の他方の基板の表面が絶縁材料である場合、前記第1と第2の基板との間に直流電圧を印加して貼り合わせることを特徴とする板状基板の貼り合わせ方法。
In the method of laminating the first substrate and the second substrate via an adhesive, curing the adhesive, and laminating the substrates together,
When the surface of the other substrate of the first or second contact with the adhesive applied to one of the first or second substrate is an insulating material, the first and second substrates A method for laminating a plate-like substrate, characterized in that a DC voltage is applied between them for laminating.
接着剤を介して第1の基板と第2の基板を重ね合わせ、前記接着剤を硬化させて前記基板同士を貼り合わせる板状基板の貼り合わせ方法において、
前記接着剤が塗布される前記第1又は第2の基板の表面が絶縁材料である場合、前記第1又は第2の基板と前記接着剤供給ノズルとの間に直流電圧を印加して貼り合わせることを特徴とする板状基板の貼り合わせ方法。
In the method of laminating the first substrate and the second substrate via an adhesive, curing the adhesive, and laminating the substrates together,
When the surface of the first or second substrate to which the adhesive is applied is an insulating material, a direct current voltage is applied between the first or second substrate and the adhesive supply nozzle for bonding. A method for laminating a plate-like substrate.
接着剤を介して第1の基板と第2の基板を重ね合わせ、前記接着剤を硬化させて前記基板同士を貼り合わせる板状基板の貼り合わせ方法において、
前記接着剤の抵抗率が10Ω・cm以下であって、前記第1と第2の基板との間、もしくは前記第1又は第2の基板と接着剤供給ノズルとの間に交流電圧を印加して接液を行わせることを特徴とする板状基板の貼り合わせ方法。
In the method of laminating the first substrate and the second substrate via an adhesive, curing the adhesive, and laminating the substrates together,
The adhesive has a resistivity of 10 9 Ω · cm or less, and an AC voltage is applied between the first and second substrates, or between the first or second substrate and the adhesive supply nozzle. A method for laminating a plate-like substrate, wherein the liquid contact is performed by applying.
接着剤を介して第1の基板と第2の基板を重ね合わせ、前記接着剤を硬化させて前記基板同士を貼り合わせる板状基板の貼り合わせ方法において、
前記接着剤の抵抗率が10Ω・cm以上であって、前記第1と第2の基板との間、もしくは前記第1又は第2の基板と接着剤供給ノズルとの間に直流電圧を印加して接液を行わせることを特徴とする板状基板の貼り合わせ方法。
In the method of laminating the first substrate and the second substrate via an adhesive, curing the adhesive, and laminating the substrates together,
The adhesive has a resistivity of 10 8 Ω · cm or more, and a DC voltage is applied between the first and second substrates or between the first or second substrate and the adhesive supply nozzle. A method for laminating a plate-like substrate, wherein the liquid contact is performed by applying.
接着剤を介して第1の基板と第2の基板を重ね合わせ、前記接着剤を硬化させて前記基板同士を貼り合わせる板状基板の貼り合わせ装置において、
前記第1と第2の基板をそれぞれ支承する第1と第2の電極手段と、
交流電圧を供給する交流回路と、
直流電圧を供給する直流回路と、
前記交流電圧と直流電圧とを切り換えて前記第1と第2の電極手段とに電圧を印加するスイッチ手段と、
を備え、前記スイッチ手段で印加する電圧の種類を選定することを特徴とする板状基板の貼り合わせ装置。
In a laminating apparatus for a plate-like substrate in which the first substrate and the second substrate are overlapped via an adhesive, and the adhesive is cured to bond the substrates together.
First and second electrode means for supporting the first and second substrates, respectively;
An AC circuit for supplying AC voltage;
A DC circuit for supplying a DC voltage;
Switch means for switching the AC voltage and the DC voltage to apply a voltage to the first and second electrode means;
And a plate-type substrate laminating apparatus, wherein the type of voltage applied by the switch means is selected.
接着剤を介して第1の基板と第2の基板を重ね合わせ、前記接着剤を硬化させて前記基板同士を貼り合わせる板状基板の貼り合わせ装置において、
前記第1又は第2の基板を支承する電極手段及び接着剤を供給する接着剤供給ノズルと、
交流電圧を供給する交流回路と、
直流電圧を供給する直流回路と、
前記交流電圧と直流電圧とを切り換えて前記電極手段と接着剤供給ノズルとに電圧を印加するスイッチ手段と、
を備え、前記スイッチ手段で印加する電圧の種類を選定することを特徴とする板状基板の貼り合わせ装置。
In a laminating apparatus for a plate-like substrate in which the first substrate and the second substrate are overlapped via an adhesive, and the adhesive is cured to bond the substrates together.
An electrode supply means for supporting the first or second substrate and an adhesive supply nozzle for supplying an adhesive;
An AC circuit for supplying AC voltage;
A DC circuit for supplying a DC voltage;
Switch means for switching the AC voltage and the DC voltage to apply a voltage to the electrode means and the adhesive supply nozzle;
And a plate-type substrate laminating apparatus, wherein the type of voltage applied by the switch means is selected.
請求項11又は請求項12において、
前記交流回路はインバータ回路であり、
前記直流回路は整流回路である
ことを特徴とする板状基板の貼り合わせ装置。
In claim 11 or claim 12,
The AC circuit is an inverter circuit;
The plate substrate bonding apparatus, wherein the DC circuit is a rectifier circuit.
接着剤を介して第1の基板と第2の基板を重ね合わせ、前記接着剤を硬化させて前記基板同士を貼り合わせる板状基板の貼り合わせ装置において、
接着剤の抵抗率が10Ω・cm以下であって、前記第1と第2の基板との間、もしくは前記第1又は第2の基板と接着剤供給ノズルとの間に交流電圧を印加するための交流電源を備えたことを特徴とする板状基板の貼り合わせ装置。
In a laminating apparatus for a plate-like substrate in which the first substrate and the second substrate are overlapped via an adhesive, and the adhesive is cured to bond the substrates together.
The adhesive has a resistivity of 10 9 Ω · cm or less, and an AC voltage is applied between the first and second substrates or between the first or second substrate and the adhesive supply nozzle. An apparatus for laminating a plate-like substrate, comprising an alternating current power supply for performing the above.
接着剤を介して第1の基板と第2の基板を重ね合わせ、前記接着剤を硬化させて前記基板同士を貼り合わせる板状基板の貼り合わせ装置において、
前記接着剤の抵抗率が10Ω・cm以上であって、前記第1と第2の基板との間、もしくは前記第1又は第2の基板と接着剤供給ノズルとの間に直流電圧を印加するための直流電源を備えたことを特徴とする板状基板の貼り合わせ装置。
In a laminating apparatus for a plate-like substrate in which the first substrate and the second substrate are overlapped via an adhesive, and the adhesive is cured to bond the substrates together.
The adhesive has a resistivity of 10 8 Ω · cm or more, and a DC voltage is applied between the first and second substrates or between the first or second substrate and the adhesive supply nozzle. A plate-like substrate laminating apparatus comprising a DC power source for applying voltage.
請求項11又は請求項12において、
前記接着剤の抵抗率を測定する抵抗率測定器を備えたことを特徴とする板状基板の貼り合わせ装置。
In claim 11 or claim 12,
A plate-like substrate bonding apparatus comprising a resistivity measuring device for measuring the resistivity of the adhesive.
JP2003010908A 2002-12-10 2003-01-20 Plated substrate bonding method and plated substrate bonding apparatus Expired - Lifetime JP3911635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003010908A JP3911635B2 (en) 2002-12-10 2003-01-20 Plated substrate bonding method and plated substrate bonding apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002357504 2002-12-10
JP2003010908A JP3911635B2 (en) 2002-12-10 2003-01-20 Plated substrate bonding method and plated substrate bonding apparatus

Publications (2)

Publication Number Publication Date
JP2004238404A true JP2004238404A (en) 2004-08-26
JP3911635B2 JP3911635B2 (en) 2007-05-09

Family

ID=32964470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003010908A Expired - Lifetime JP3911635B2 (en) 2002-12-10 2003-01-20 Plated substrate bonding method and plated substrate bonding apparatus

Country Status (1)

Country Link
JP (1) JP3911635B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008015969A (en) * 2006-07-10 2008-01-24 Dainippon Printing Co Ltd Method of manufacturing conductive member for contactless data carrier, and device
JP2010024321A (en) * 2008-07-17 2010-02-04 Origin Electric Co Ltd Method for producing junction member and device for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008015969A (en) * 2006-07-10 2008-01-24 Dainippon Printing Co Ltd Method of manufacturing conductive member for contactless data carrier, and device
JP2010024321A (en) * 2008-07-17 2010-02-04 Origin Electric Co Ltd Method for producing junction member and device for producing the same

Also Published As

Publication number Publication date
JP3911635B2 (en) 2007-05-09

Similar Documents

Publication Publication Date Title
Yatsuzuka et al. Fundamental characteristics of electrostatic wafer chuck with insulating sealant
JPS6232468B2 (en)
JP2001208784A (en) Insulation resistance measuring method and insulation resistance measuring apparatus for capacitor
JP3911635B2 (en) Plated substrate bonding method and plated substrate bonding apparatus
CN206440782U (en) A kind of paper oil insulation interface charge measuring table
US20010035250A1 (en) Method and apparatus for bonding optical disc substrates together, and method for supplying liquid material
US20080283192A1 (en) Method and apparatus for bonding optical disc substrates together, and method for supplying liquid material
JP2001004682A (en) Space charge measuring method
JP3914702B2 (en) Cell for measuring the moving amount / charge amount and mobility of charged particles in liquid and liquid developer
JPH11264812A (en) Wet type device for measuring amount of charge of minute particle
JPS60201366A (en) Destaticizing and electrifying method
Tam et al. Reduction of friction between a tape and a smooth surface by acoustic excitation
JPS63132268A (en) Discharging device
JP2006145504A (en) Toner current detector and toner current detection method
JP2007115769A (en) Instrument for measuring electric characteristics
JPS60243674A (en) Electrostatically charging device
KR20010005829A (en) electrostatic adhesion tester for thin film conductors
Deng et al. A nanosecond high voltage pulse generator for measuring space charge distribution
JPS60142367A (en) Electrostatic charging device
JPH038300A (en) Ac corona discharge electricity remover
Xiaohui et al. A new nondestructive test technique using partial discharge method
JPH02108B2 (en)
JPS6381374A (en) Corona discharger
JPS5946848A (en) Method for measuring hydrogen bonding strength and intermolecular force of liquid by electrical conduction of proton
JPS6250856A (en) Electostatic charger

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3911635

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term