JP2004238226A - Anatase nano-crystal, thin film of the same and method of manufacturing them - Google Patents

Anatase nano-crystal, thin film of the same and method of manufacturing them Download PDF

Info

Publication number
JP2004238226A
JP2004238226A JP2003026910A JP2003026910A JP2004238226A JP 2004238226 A JP2004238226 A JP 2004238226A JP 2003026910 A JP2003026910 A JP 2003026910A JP 2003026910 A JP2003026910 A JP 2003026910A JP 2004238226 A JP2004238226 A JP 2004238226A
Authority
JP
Japan
Prior art keywords
anatase
thin film
axis orientation
nano
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003026910A
Other languages
Japanese (ja)
Inventor
Takayoshi Sasaki
佐々木高義
Katsutoshi Fukuda
福田勝利
Jun Watanabe
遵 渡辺
Izumi Nakai
泉 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2003026910A priority Critical patent/JP2004238226A/en
Publication of JP2004238226A publication Critical patent/JP2004238226A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a novel anatase nano-crystal having orientation in the c-axial direction and a nano level thickness, a crystal thin film of the same and a simple and low cost manufacturing method of them. <P>SOLUTION: The anatase crystal having orientation in the c-axial direction or its thin film is obtained and recovered by using a titania nano-sheet obtained by peeling a layered titanium oxide in nano-level thickness as a starting material, laminating the titania nano-sheet on an optional substrate treated with a cationic polymer solution with controlled thickness and heating. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、紫外線遮断コーティング材や光電変換用薄膜、超親水性薄膜、光触媒などへの活用が期待されるc軸配向性アナターゼナノ結晶とその薄膜、及びこれらの製造方法に関する。
【0002】
【従来の技術】
アナターゼは、バンドキャップが3.2eVとルチル3.0eVよりわずかに大きい半導体物質として、紫外線カットコーティング、太陽電池、光触媒、光誘起超親水性薄膜など多岐にわたる用途に使用されている。その優れた性能を極力発揮せしめ、性能の更なる向上を図るため、配向性のあるアナターゼを用いることが知られており、とりわけc軸配向面は他の配向面に比べて良い光特性を示すことが報告されている(例えば、非特許文献1参照)。
【0003】
これに対し、配向性アナターゼを得る手段として通常知られた手段は、分子線エピタキシー(MBE)や有機金属気相成長法(MOCVD)などの気相法が挙げられ、基板上に膜状に気相成長させることによって得られるものである(非特許文献2、3参照)。しかしながら、これら気相法によりアナターゼを配向させて得るためには、使用する基板としてアナターゼの格子面間隔に近い格子面間隔を有する結晶を選択し、使用しなければならず、そのため、使用する基板材料は、極めて限定されたものとならざるを得ず、入手しようとする配向性アナターゼのコストアップの原因の一つともなっていた。加えて、大面積のものを得ることは技術的に困難である、と言った問題もあった。
【0004】
また、アナターゼ結晶薄膜は、チタン化合物(例えば、四塩化チタン、チタンアルコキシドやチタンイソプロポキシドなど)を加水分解して得られたチタニアゾルを基板上に塗布し、加熱することによって得られることが知られている(非特許文献4参照)が、これら特定のチタン化合物を用いる加水分解法では、アナターゼナノ結晶の配向性を制御することは困難なことであった。
【0005】
【非特許文献1】Jpn.J.Appl.Phys.2000,39,169−171.
【非特許文献2】Chen et al.J.Vac.Sci.Technol.A 1993,11,2419−2429.
【非特許文献3】Sugimura et al.Jpa.J.Appl.Phys.1997,36,7358−7359.
【非特許文献4】Wang et al.Chem.Mater.1999,11,3113−3120.
【0006】
【発明が解決しようとする課題】
本発明は、従来のアナターゼ結晶ないしはその薄膜とは異なり、特定方向、すなわちc軸方向に配向性を持たせた、ナノレベルの厚みを有する新規なアナターゼナノ結晶とその結晶薄膜、及びこれらの簡便でコストの低い製造方法を提供しようというものである。
【0007】
【課題を解決するための手段】
そのため本発明者らにおいては、鋭意研究した結果、層状チタン酸化物をナノレベルの厚さで剥離することによって得られるチタニアナノシートTi1−δO(0≦δ≦0.15)を出発物質として用い、このチタニアナノシートをカチオン性ポリマー溶液で処理した任意の基板上に吸着させることによって、基板上に二次元格子を持った酸化チタンを、数原子層レベルに厚さを制御して積層させることが可能であること、そして、この制御された厚さに積層してなる試料を加熱することによって、簡単にc軸方向に配向してなるアナターゼナノ結晶へと変換することができ、アナターゼナノ結晶薄膜体を得ることができることを知見したものである。本発明はこの一連の知見に基づいてなされたものであり、以下(1)ないし(6)に記載するとおりの構成を講じてなるものである。
【0008】
(1) 粒子サイズが高さ20nm×横サイズ500nm以下の形状異方性を持ち、c軸配向性を有することを特徴としたアナターゼナノ結晶。
(2) 層状チタン酸化物結晶をナノレベルの厚さに剥離して得られる、チタン原子と酸素原子とが二次元に束縛されたチタニアナノシートを初期物質として用い、加熱し、アナターゼ構造に変換して得られてなる、前記(1)項に記載のc軸配向性を有するアナターゼナノ結晶。
(3) 層状チタン酸化物結晶をナノレベルの厚さに剥離して得られる、チタン原子と酸素原子とが二次元に束縛されたチタニアナノシートを初期物質として用い、一層ないし三層膜状に基板上に吸着し、加熱し、アナターゼ構造に変換してc軸配向性を有するアナターゼ結晶薄膜を得ることを特徴とした、c軸配向性を有するアナターゼナノ結晶薄膜。
(4) 層状チタン酸化物結晶をナノレベルの厚さに剥離して得られる、チタン原子と酸素原子とが二次元に束縛されたチタニアナノシートを初期物質として用い、加熱してアナターゼに変換し、粒子サイズが高さ20nm×横サイズ500nm以下の形状異方性を持ち、c軸配向性を有するアナターゼナノ結晶を得、回収することを特徴とする、粒子サイズが高さ20nm×横サイズ500nm以下の形状異方性を持ち、c軸配向性を有するアナターゼナノ結晶の製造方法。
(5) 層状チタン酸化物結晶をナノレベルの厚さに剥離して得られる、チタン原子と酸素原子とが二次元に束縛されたチタニアナノシートを初期物質として用い、任意の基板上に一層ないし三層膜状に吸着し、加熱してアナターゼに変換し、c軸配向性を有するアナターゼ結晶薄膜を得、回収することを特徴とした、c軸配向性を有するアナターゼナノ結晶薄膜の製造方法。
【0009】
本発明で出発物質として使用するチタニアナノシートは、以下のプロセスによって入手することが出きる。まず層状チタン酸化物を用意する。層状チタン酸化物としては、レピドクロサイト型チタン酸塩CsTi2−x/4(ここで0.5≦x≦1)、K0.8Ti1.73Li0.27、三チタン酸塩(NaTi)、四チタン酸塩(KTi)、五チタン酸塩(CsTi11)などが挙げられる。 これらのチタン酸塩を酸処理して水素型(HTi2−x/4・nHO、HTi・nHO、HTi・nHO、HTi11・nHO)に変換した後、これを本発明者らが発明した「チタニアゾルとその製造方法」(特許文献1)を用いて適当なアミンなどの水溶液中で振盪させることによって層状チタン酸化物を剥離し、ゾル化することによって入手する。
【0010】
次いで、この得られた剥離ゾル、すなわち平板状チタニアナノシートを、本発明者らが発明した「チタニア超薄膜及びその製造方法」(特許文献2)に開示した方法を用いて、チタニアナノシートとカチオン性ポリマーとを自己組織化的に基板上に製膜し、これを加熱することによってチタニアナノシートをアナターゼに変換する。この手法を用いることにより、従来の気相法より簡便、かつ大面積に低コストでc軸配向性のアナターゼ薄膜を製造することを可能とするものである。
【0011】
【特許文献1】特許第2、671、949号明細書
【特許文献2】特開2001−270022号公報
【0012】
実際の手順は、基板をポリカチオン溶液に浸した後に、純水で洗浄し、ナノシートコロイド溶液に浸す。このとき、ナノシートを基本的にモノレイヤー(厚み1nm以下)で基板面に吸着させる。さらに、ナノシートを複数層積層させる場合には、再びポリカチオン溶液に浸し、純水洗浄後、ナノシートコロイド溶液に浸す。この過程を繰り返すことによって、ナノシートの積層枚数を制御する。
【0013】
チタニアナノシートは高い結晶性を持っており、二層のチタン/酸素原子層とその上下に1層ずつの酸素の原子層から構成されており、厚みが0.45nmと極端に薄いナノ物質である。この物質は電荷を帯びており、自己組織化反応の技術を活用すれば一層単位つまりチタン原子層2層単位での制御が可能である。
基板は水溶液中で安定なものであれば基本的に問題なく、大きさも原理的に制限がない。さらに、本発明では、基板の結晶面を選ぶ必要がないという大きな利点がある。例えば、石英ガラス、Siウェハー、マイカ板、グラファイト板、アルミナ板、透明電極基板等を、具体例として挙げることができる。
【0014】
アナターゼは酸化物結晶であるため、加熱処理は、基本的に大気中で行う。適当な加熱速度、望ましくは3℃/min〜8℃/minの温度勾配で加熱していき、任意の時間保持することによって、c軸配向アナターゼナノ結晶を作製する。 このとき、保持時間を調節することによって、c軸配向アナターゼナノ粒子の結晶成長を制御することができ、高さ20nm、横サイズ500nmまで結晶を成長させることができる。
【0015】
本発明では、チタニアナノシートが限られたチタン原子層数から構成されている構造的特徴を利用している。まず、アナターゼのユニットセルを構築するのに必要となるチタンの原子層数程度もしくは、それより少ないチタン原子層状態のチタニアナノシート超薄膜を初期物質として用い、バルクの酸化チタンから大きく加熱特性を変化させることによって、アナターゼc軸配向性ナノ結晶を製造する。
【0016】
すなわち、バルクでは400℃付近でアナターゼに相転移するのに対し、図1に示すように、チタンの原子数を制限した超薄膜では、600℃の高温領域までナノシート構造が変化しない。これは、ナノシート中のチタンがその結晶構造によって束縛を受けているために、低温領域(600℃以下)では、物質の拡散が小さくアナターゼの成長核を形成するためのチタン原子が足りないために起きる現象である。これをさらに高温領域(600℃以上)に到達させることによって、原子の拡散を促進して、アナターゼの結晶核を生成し成長させる。
【0017】
このとき、チタニアナノシートを土台としてアナターゼ結晶核が生成するため、使用する基板に依存せずに図2に示すような面内にアナターゼの200しか回折線を示さないc軸配向性のアナターゼナノ結晶が生成されることとなる。そのため、従来、c軸配向性アナターゼを製膜することができなかった基板に対しても製膜することが可能である。
【0018】
本発明では、製膜の方法として、チタニアナノシートとカチオン性ポリマーの自己組織化反応以外に、ディップコートやLangmuir−Blodgett製膜法などを用いることができる。
【0019】
アナターゼは、光触媒能の高い物質として、紫外線カットコーティング、太陽電池、光触媒、光誘起超親水性薄膜など多岐にわたって応用され、特に、c軸配向面は他の配向面に比べて良い光特性を示すことは(0002)に記載しているとおりである。本発明によるc軸配向アナターゼ型ナノ結晶とその薄膜及びこれらの製造方法はこのような用途に非常に有効な手法であるとともに、簡便で低コスト、基板を選ばないなど大きな工業的効果が期待される。
【0020】
以下、本発明を実施例に基づいて具体的に説明する。但し、これらの実施例は、あくまでも本発明を容易に理解するための一助として開示するためのものであって、本発明をこれによって限定する趣旨ではない。
【0021】
実施例1;
炭酸セシウム(CsCO)と二酸化チタン(TiO)を1:2.65のモル比に混合し、800℃で2日間焼成することにより,斜方晶のチタン酸セシウム(組成式Cs0.7Ti1.825)を合成した。この粉末を1N−塩酸水溶液中で3日間攪拌した後、濾過、風乾して層状チタン酸粉末(H0.7Ti1.825・nHO)を得た。
得られた各種層状チタン酸粉末0.4gをテトラブチルアンモニウム水酸化物溶液100cmに加えて室温で1週間程度振盪し(150rpm)し、乳白色のチタニアゾルTi0.91を得た。これらを50倍に希釈した溶液と、ポリエチレンイミン水溶液(濃度2.5gdm−3)をpH9に調整した。
【0022】
4cm×1cm程度のSiウェハー板もしくは石英ガラス板を、塩酸/メタノール1:1混合溶液に30分間浸した後、Milli−Q純水で十分に洗浄した。次に、濃硫酸に30分間浸し、再びMilli−Q純水で良く洗浄した。
このようにして洗浄・前処理を行った基板を上記のポリエチレンイミン溶液に20分間浸漬させ、基板表面にポリエチレンイミンを吸着させた後にMilli−Q純水で洗浄した。次に、上記のチタニアゾル溶液に20分間浸し、Milli−Q純水で洗浄することによって、チタニアナノシートを基板上に吸着させた超薄膜を合成した。
【0023】
上記の超薄膜を5℃/minで昇温していき、それぞれ600℃、700℃、800℃、900℃で1時間保持した後放冷した試料を、全反射X線吸収微細構造(XAFS;X−ray Absorption Fine Structure)分析、X線面内回折測定、原子間力顕微鏡(AFM;Atomic Force Microscope)観察を行い、チタニアナノシートの加熱特性を調べた。
【0024】
図1は、Ti0.91を用いて合成した超薄膜の加熱処理後のX線吸収端構造パターン(XANES;X−ray Absorption Near Edge Structure)を示している。図中の破線で示したエネルギー近辺に着目すると、600℃まではナノシート構造が保持されていること、700℃よりアナターゼの生成が始まり、900℃でほぼアナターゼ単一相に変化することがわかった。
また、図2に示したX線面回折パターンは、チタニアナノシートは600℃の加熱処理を行っても、ナノシート構造を失わないことを示している。また、700℃、800℃の加熱処理を行うと、チタニアナノシートとアナターゼの混合相になるが、その生成したアナターゼは200反射のみを示し、c軸方向の成分を含む回折線はほとんど検出されない。これは、生成したアナターゼがc軸配向しているためである。ここで、アナターゼの200反射はナノシートの48.3°付近のピークと大変近い位置に観測されるが、図2中のプロファイルの拡大図に示すように、わずかに低角側に観測されるため、識別することが可能である。
加熱処理による超薄膜の変化の過程をAFMによって図3に示す。チタニアナノシートは、単層または二層のとき600℃まで加熱してもナノシート構造に変化が起きないが、700℃の加熱処理によって、ナノサイズの形状異方性を持ったアナターゼの生成が一部見られる。これはナノシートが二層以上重なった部分から優先的にアナターゼへの変化が始まるためである。800℃加熱処理では、重なった部分のほとんどがアナターゼに変化することがわかるが、この段階ではまだ単層のナノシートが構造を変化させずに残る。この拡大図には生成したアナターゼの外形の一例を示してあり、粒子の横サイズが100nm程度、平均の厚みが4nm程度のナノ粒子であることがわかる。さらに、900℃加熱を行うと、単層・多層を問わずほぼすべてのナノシートがアナターゼに変化した。
【0025】
実施例2;
単斜晶のチタン酸化物HTi・nHOとHTi11・nHOを、実施例1と同様の方法にて剥離ゾル化した、四チタン酸型ナノシートTi0.89及び五チタン酸型ナノシートTi0.90が分散した溶液を濃度0.08gdm−3、pH9に調整した。次いで、実施例1と同様の手法を用いて、Siウェハー上に上記のチタニアナノシートを吸着させ超薄膜を合成し、これを5℃/minの昇温速度で加熱し、800℃で1時間保持した。これらのナノシートもまた、図4、5のAFM像に示すように実施例1同様ナノサイズの粒子状のアナターゼが生成した。
【0026】
【発明の効果】
アナターゼ結晶は、紫外線カットコーティング、太陽電池、光触媒、光誘起超親水性薄膜など多岐にわたる用途に供され、利用され、特にc軸配向面は、優れた作用効果を奏するものと大いに期待されている。
本発明は、このように期待されているc軸配向性を有するアナターゼナノ結晶、あるいはその薄膜を、層状チタン酸化物結晶を剥離して得られる薄片状酸化チタン(チタニアナノシート)を、基板上に吸着させ、チタニアナノシートが一層または二、三層程度に制御した後に、通常のアナターゼの相転移の温度(およそ400℃)より、300℃以上高い温度で加熱することにより得るものである。
従来の物理蒸着法・化学蒸着法などの気相法やゾルゲル法などから得られた結晶とは、形状、大きさや配向性が異なった二次元異方性を持つ新規なc軸配向性アナターゼナノ結晶が得られ、コスト的にも、そして大型化が図れるという点で技術的にも優れており、その意義は極めて大きい。
【図面の簡単な説明】
【図1】実施例1のチタニアナノシートを加熱した時のXANESスペクトルを示すグラフである。
【図2】実施例1のチタニアナノシートを加熱した時のX線面回折パターンと48°付近のピークの拡大図を示すグラフである。
【図3】実施例1のチタニアナノシート超薄膜の加熱後のAFM形態観察像を示すグラフである。
【図4】実施例2の四チタン酸型チタニアナノシート超薄膜の800℃加熱後のAFM形態観察像を示すグラフである。
【図5】実施例2の五チタン酸型チタニアナノシート超薄膜の800℃加熱後のAFM形態観察像を示すグラフである。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to c-axis oriented anatase nanocrystals expected to be used for ultraviolet blocking coating materials, photoelectric conversion thin films, superhydrophilic thin films, photocatalysts, and the like, and thin films thereof, and methods for producing them.
[0002]
[Prior art]
Anatase is used as a semiconductor material having a band gap of 3.2 eV or slightly higher than that of rutile 3.0 eV in a wide variety of applications such as ultraviolet cut coating, solar cells, photocatalysts, and photoinduced superhydrophilic thin films. It is known that an anatase having an orientation is used in order to exhibit its excellent performance as much as possible and to further improve the performance. In particular, the c-axis orientation surface shows better optical characteristics than other orientation surfaces. (For example, see Non-Patent Document 1).
[0003]
On the other hand, a means generally known as a means for obtaining oriented anatase includes a gas phase method such as molecular beam epitaxy (MBE) and metal organic chemical vapor deposition (MOCVD), and forms a film-shaped gas on a substrate. It is obtained by phase growth (see Non-Patent Documents 2 and 3). However, in order to obtain anatase oriented by these gas phase methods, a crystal having a lattice spacing close to the lattice spacing of anatase must be selected and used as a substrate to be used. The material had to be extremely limited, which was one of the causes of the cost increase of the oriented anatase to be obtained. In addition, there was a problem that obtaining a large area was technically difficult.
[0004]
Also, it is known that an anatase crystal thin film can be obtained by applying a titania sol obtained by hydrolyzing a titanium compound (for example, titanium tetrachloride, titanium alkoxide, titanium isopropoxide, etc.) on a substrate and heating the substrate. However, in the hydrolysis method using these specific titanium compounds, it has been difficult to control the orientation of the anatase nanocrystals.
[0005]
[Non-Patent Document 1] Jpn. J. Appl. Phys. 2000, 39, 169-171.
[Non-Patent Document 2] Chen et al. J. Vac. Sci. Technol. A 1993, 11, 2419-2429.
[Non-Patent Document 3] Sugimura et al. Jpa. J. Appl. Phys. 1997, 36, 7358-7359.
[Non-Patent Document 4] Wang et al. Chem. Mater. 1999, 11, 3113-3120.
[0006]
[Problems to be solved by the invention]
The present invention provides a novel anatase nanocrystal having a nano-level thickness and a crystal thin film having a nano-level thickness, which is different from a conventional anatase crystal or a thin film thereof, and is oriented in a specific direction, that is, a c-axis direction. And to provide a low-cost manufacturing method.
[0007]
[Means for Solving the Problems]
Therefore, the present inventors have conducted intensive studies and have found that a titania nanosheet Ti 1- δO 2 (0 ≦ δ ≦ 0.15) obtained by exfoliating a layered titanium oxide with a nano-level thickness is used as a starting material. By using this titania nanosheet adsorbed on an arbitrary substrate treated with a cationic polymer solution, titanium oxide with a two-dimensional lattice can be laminated on the substrate by controlling the thickness to several atomic layers. By heating the sample laminated to this controlled thickness, it can be easily converted to an anatase nanocrystal oriented in the c-axis direction. It has been found that a thin film body can be obtained. The present invention has been made based on this series of findings, and has a configuration as described in the following (1) to (6).
[0008]
(1) Anatase nanocrystals having a shape anisotropy of a particle size of 20 nm in height × 500 nm in horizontal size or less and having c-axis orientation.
(2) Titanium nanosheets in which titanium and oxygen atoms are two-dimensionally constrained, obtained by exfoliating a layered titanium oxide crystal to a nano-level thickness, are used as an initial substance, heated, and converted to an anatase structure. The anatase nanocrystal having the c-axis orientation according to the above (1), which is obtained by:
(3) A titania nanosheet in which titanium atoms and oxygen atoms are two-dimensionally constrained, obtained by exfoliating a layered titanium oxide crystal to a nano-level thickness, is used as an initial material, and the substrate is formed into a one-layer or three-layer film. An anatase nanocrystalline thin film having a c-axis orientation, wherein the nanocrystalline thin film has a c-axis orientation by being adsorbed thereon, heated, and converted into an anatase structure to obtain an anatase crystalline thin film having a c-axis orientation.
(4) using a titania nanosheet in which titanium atoms and oxygen atoms are two-dimensionally constrained, obtained by exfoliating a layered titanium oxide crystal to a nanometer-level thickness, and converting it to anatase by heating; The particle size has a shape anisotropy of height 20 nm × width 500 nm or less, and an anatase nanocrystal having c-axis orientation is obtained and collected, and the particle size is height 20 nm × width 500 nm or less. A method for producing anatase nanocrystals having shape anisotropy and c-axis orientation.
(5) A titania nanosheet in which titanium atoms and oxygen atoms are two-dimensionally constrained, obtained by exfoliating a layered titanium oxide crystal to a nano-level thickness, is used as an initial material, and one to three layers are formed on an arbitrary substrate. A method for producing an anatase nanocrystalline thin film having c-axis orientation, comprising adsorbing in a layered form, heating to convert to anatase, obtaining and recovering an anatase crystal thin film having c-axis orientation.
[0009]
The titania nanosheet used as a starting material in the present invention can be obtained by the following process. First, a layered titanium oxide is prepared. Examples of the layered titanium oxide include lepidocrocite type titanate Cs x Ti 2-x / 4 O 4 (here, 0.5 ≦ x ≦ 1), K 0.8 Ti 1.73 Li 0.27 O 4 , Trititanate (Na 2 Ti 3 O 7 ), tetratitanate (K 2 Ti 4 O 9 ), pentatitanate (Cs 2 Ti 5 O 11 ), and the like. These titanates acid treatment to hydrogen form (H x Ti 2-x / 4 O 4 · nH 2 O, H 2 Ti 3 O 7 · nH 2 O, H 2 Ti 4 O 9 · nH 2 O, After conversion into H 2 Ti 5 O 11 .nH 2 O), this is shaken in an aqueous solution of a suitable amine or the like using “titania sol and its production method” (Patent Document 1) invented by the present inventors. In this way, the layered titanium oxide is peeled off to obtain a sol.
[0010]
Next, the obtained release sol, that is, a plate-like titania nanosheet, is treated with a titania nanosheet and a cationic titania nanosheet by the method disclosed in “Ultra-thin titania thin film and method for producing the same” invented by the present inventors (Patent Document 2). A polymer is self-assembled into a film on a substrate, and the titania nanosheet is converted to anatase by heating. By using this method, it is possible to manufacture a c-axis oriented anatase thin film more simply and more economically in a large area than the conventional gas phase method.
[0011]
[Patent Document 1] Japanese Patent No. 2,671,949 [Patent Document 2] Japanese Patent Application Laid-Open No. 2001-270022
The actual procedure is that the substrate is immersed in a polycation solution, then washed with pure water, and immersed in a nanosheet colloid solution. At this time, the nanosheet is basically adsorbed on the substrate surface as a monolayer (thickness of 1 nm or less). Furthermore, when laminating a plurality of nanosheets, the sheet is immersed again in a polycation solution, washed with pure water, and then immersed in a nanosheet colloid solution. By repeating this process, the number of stacked nanosheets is controlled.
[0013]
Titania nanosheets have high crystallinity and are composed of two layers of titanium / oxygen and one layer of oxygen above and below it, and are extremely thin nanomaterials with a thickness of 0.45 nm. . This substance is charged and can be controlled in units of one layer, that is, in units of two titanium atomic layers, by utilizing the technology of the self-assembly reaction.
There is basically no problem if the substrate is stable in an aqueous solution, and the size is not limited in principle. Further, the present invention has a great advantage that it is not necessary to select the crystal plane of the substrate. For example, quartz glass, a Si wafer, a mica plate, a graphite plate, an alumina plate, a transparent electrode substrate, and the like can be given as specific examples.
[0014]
Since anatase is an oxide crystal, the heat treatment is basically performed in the atmosphere. Heating is performed at an appropriate heating rate, desirably at a temperature gradient of 3 ° C./min to 8 ° C./min, and maintained for an arbitrary time to produce c-axis oriented anatase nanocrystals. At this time, by adjusting the holding time, the crystal growth of the c-axis oriented anatase nanoparticles can be controlled, and the crystal can be grown to a height of 20 nm and a horizontal size of 500 nm.
[0015]
In the present invention, a structural feature in which the titania nanosheet is composed of a limited number of titanium atomic layers is used. First, using ultra-thin titania nanosheets in the titanium atomic layer state, which is about the number of atomic layers of titanium necessary to construct an anatase unit cell, or less, changes the heating characteristics significantly from bulk titanium oxide. This produces an anatase c-axis oriented nanocrystal.
[0016]
That is, while the bulk undergoes a phase transition to anatase at around 400 ° C., as shown in FIG. 1, in an ultrathin film with a limited number of titanium atoms, the nanosheet structure does not change up to a high temperature range of 600 ° C. This is because the titanium in the nanosheet is bound by its crystal structure, and in the low temperature region (600 ° C. or lower), the diffusion of the substance is small, and titanium atoms for forming the growth nucleus of anatase are insufficient. It is a phenomenon that occurs. By further reaching the high temperature region (600 ° C. or higher), the diffusion of atoms is promoted to generate and grow anatase crystal nuclei.
[0017]
At this time, since the anatase crystal nucleus is generated based on the titania nanosheet, the c-axis oriented anatase nanocrystal having only 200 anatase diffraction lines in the plane as shown in FIG. Is generated. Therefore, it is possible to form a film even on a substrate on which c-axis oriented anatase could not be formed conventionally.
[0018]
In the present invention, a dip coating, a Langmuir-Blodgett film forming method, or the like can be used as a film forming method other than the self-assembly reaction between the titania nanosheet and the cationic polymer.
[0019]
Anatase is a photocatalytic substance with a wide range of applications, including UV-cut coatings, solar cells, photocatalysts, and photo-induced superhydrophilic thin films. In particular, the c-axis oriented surface shows better optical properties than other oriented surfaces. This is as described in (0002). The c-axis oriented anatase nanocrystals and their thin films according to the present invention and their production methods are very effective methods for such applications, and are expected to have great industrial effects such as simple, low cost, and no choice of substrate. You.
[0020]
Hereinafter, the present invention will be specifically described based on examples. However, these examples are provided for the purpose of easily understanding the present invention, and are not intended to limit the present invention.
[0021]
Example 1;
Cesium carbonate (Cs 2 CO 3 ) and titanium dioxide (TiO 2 ) are mixed at a molar ratio of 1: 2.65 and fired at 800 ° C. for 2 days to obtain orthorhombic cesium titanate (composition formula Cs 0 0.7 Ti 1.825 O 4 ) was synthesized. This powder was stirred in a 1N aqueous hydrochloric acid solution for 3 days, then filtered and air-dried to obtain a layered titanic acid powder (H 0.7 Ti 1.825 O 4 .nH 2 O).
0.4 g of the obtained various layered titanic acid powders was added to 100 cm 3 of a tetrabutylammonium hydroxide solution, and shaken at room temperature for about one week (150 rpm) to obtain a milky white titania sol Ti 0.91 O 2 . A solution obtained by diluting them 50-fold and an aqueous solution of polyethyleneimine (concentration: 2.5 gdm −3 ) were adjusted to pH 9.
[0022]
A Si wafer plate or quartz glass plate of about 4 cm × 1 cm was immersed in a hydrochloric acid / methanol 1: 1 mixed solution for 30 minutes, and then sufficiently washed with Milli-Q pure water. Next, it was immersed in concentrated sulfuric acid for 30 minutes, and washed well with Milli-Q pure water again.
The substrate thus washed and pre-treated was immersed in the above-mentioned polyethylene imine solution for 20 minutes, and after adsorbing polyethylene imine on the substrate surface, the substrate was washed with Milli-Q pure water. Next, the substrate was immersed in the titania sol solution for 20 minutes and washed with Milli-Q pure water to synthesize an ultrathin film in which the titania nanosheet was adsorbed on the substrate.
[0023]
The above ultra-thin film was heated at a rate of 5 ° C./min, kept at 600 ° C., 700 ° C., 800 ° C., and 900 ° C. for 1 hour, and allowed to cool, and then subjected to total reflection X-ray absorption fine structure (XAFS; X-ray Absorption Fine Structure (X-ray Absorption) analysis, X-ray in-plane diffraction measurement, and atomic force microscopy (AFM) observation were performed to examine the heating characteristics of the titania nanosheet.
[0024]
FIG. 1 shows an X-ray absorption edge structure pattern (XANES; X-ray Absorption Near Edge Structure) of an ultrathin film synthesized using Ti 0.91 O 2 after heat treatment. Focusing on the vicinity of the energy indicated by the broken line in the figure, it was found that the nanosheet structure was maintained up to 600 ° C., and that anatase generation started at 700 ° C. and changed to a single anatase phase at 900 ° C. .
The X-ray plane diffraction pattern shown in FIG. 2 shows that the titania nanosheet does not lose its nanosheet structure even when subjected to a heat treatment at 600 ° C. When a heat treatment at 700 ° C. or 800 ° C. is performed, a mixed phase of titania nanosheet and anatase is formed, but the generated anatase shows only 200 reflections, and almost no diffraction line containing a component in the c-axis direction is detected. This is because the generated anatase is c-axis oriented. Here, the 200 reflection of anatase is observed at a position very close to the peak around 48.3 ° of the nanosheet, but as shown in the enlarged view of the profile in FIG. , It is possible to identify.
FIG. 3 shows the process of changing the ultrathin film by the heat treatment using AFM. Titania nanosheets do not change their nanosheet structure when heated up to 600 ° C when they are single-layer or two-layer, but heat treatment at 700 ° C partially generates nano-sized anatase with shape anisotropy. Can be seen. This is because the change to anatase starts preferentially from the portion where two or more nanosheets overlap. It can be seen that the heat treatment at 800 ° C. changes most of the overlapped portions to anatase, but at this stage, a single-layer nanosheet remains without changing the structure. This enlarged view shows an example of the outer shape of the generated anatase, and it can be seen that the nanoparticles have a lateral size of about 100 nm and an average thickness of about 4 nm. Furthermore, when heated at 900 ° C., almost all nanosheets, whether single-layer or multi-layer, were changed to anatase.
[0025]
Example 2;
Monotitanium titanium oxides H 2 Ti 4 O 9 .nH 2 O and H 2 Ti 5 O 11 .nH 2 O were exfoliated into a sol in the same manner as in Example 1 to form a tetratitanic acid-type nanosheet Ti The solution in which 0.89 O 2 and the pentatitanic acid type nanosheet Ti 0.90 O 2 were dispersed was adjusted to a concentration of 0.08 gdm −3 and a pH of 9. Then, using the same method as in Example 1, the above titania nanosheet was adsorbed on a Si wafer to synthesize an ultrathin film, which was heated at a rate of 5 ° C./min and held at 800 ° C. for 1 hour. did. These nanosheets also produced nano-sized particulate anatase as in Example 1, as shown in the AFM images of FIGS.
[0026]
【The invention's effect】
Anatase crystals are used in a wide variety of applications such as ultraviolet cut coatings, solar cells, photocatalysts, and photoinduced superhydrophilic thin films, and are used. .
The present invention provides a flaky titanium oxide (titania nanosheet) obtained by exfoliating a layered titanium oxide crystal of an anatase nanocrystal having the expected c-axis orientation or a thin film thereof on a substrate. It is obtained by heating at a temperature 300 ° C. or more higher than the normal phase transition temperature of anatase (approximately 400 ° C.) after adsorbing and controlling the titania nanosheets to have one or two or three layers.
A new c-axis oriented anatase nanocrystal with two-dimensional anisotropy that differs in shape, size, and orientation from crystals obtained by conventional vapor deposition methods such as physical vapor deposition and chemical vapor deposition, and sol-gel methods It is technically excellent in that a crystal can be obtained, and it is possible to increase the size and cost, and its significance is extremely large.
[Brief description of the drawings]
FIG. 1 is a graph showing an XANES spectrum when the titania nanosheet of Example 1 was heated.
FIG. 2 is a graph showing an X-ray surface diffraction pattern and an enlarged view of a peak around 48 ° when the titania nanosheet of Example 1 is heated.
FIG. 3 is a graph showing an AFM morphological observation image of a titania nanosheet ultrathin film of Example 1 after heating.
FIG. 4 is a graph showing an AFM morphological observation image of the ultrathin tetratitanate-type titania nanosheet of Example 2 after heating at 800 ° C.
FIG. 5 is a graph showing an AFM morphology observation image of the ultra-thin titanate-type titania nanosheet thin film of Example 2 after heating at 800 ° C.

Claims (5)

粒子サイズが高さ20nm×横サイズ500nm以下の形状異方性を持ち、c軸配向性を有することを特徴としたアナターゼナノ結晶。Anatase nanocrystals having a shape anisotropy of a particle size of 20 nm in height × 500 nm in horizontal size or less and having c-axis orientation. 層状チタン酸化物結晶をナノレベルの厚さに剥離して得られる、チタン原子と酸素原子とが二次元に束縛されたチタニアナノシートを初期物質として用い、加熱し、アナターゼ構造に変換して得られてなる、請求項1記載のc軸配向性を有するアナターゼナノ結晶。Using a titania nanosheet in which titanium atoms and oxygen atoms are two-dimensionally constrained and obtained by exfoliating the layered titanium oxide crystal to a nano-level thickness, heating and converting it to an anatase structure An anatase nanocrystal having a c-axis orientation according to claim 1. 層状チタン酸化物結晶をナノレベルの厚さに剥離して得られる、チタン原子と酸素原子とが二次元に束縛されたチタニアナノシートを初期物質として用い、これを一層ないし三層膜状に基板上に吸着し、加熱し、アナターゼ構造に変換してc軸配向性を有するアナターゼ結晶薄膜を得ることを特徴とした、c軸配向性を有するアナターゼナノ結晶薄膜。Titanium nanosheets in which titanium atoms and oxygen atoms are two-dimensionally constrained, obtained by exfoliating a layered titanium oxide crystal to a nano-level thickness, are used as an initial material, and this is formed on a substrate in a one- or three-layer film form. An anatase nanocrystalline thin film having a c-axis orientation, wherein the anatase nanocrystalline thin film has a c-axis orientation. 層状チタン酸化物結晶をナノレベルの厚さに剥離して得られる、チタン原子と酸素原子とが二次元に束縛されたチタニアナノシートを初期物質として用い、加熱してアナターゼに変換し、粒子サイズが高さ20nm×横サイズ500nm以下の形状異方性を持ち、c軸配向性を有するアナターゼナノ結晶を得、回収することを特徴とする、粒子サイズが高さ20nm×横サイズ500nm以下の形状異方性を持ち、c軸配向性を有するアナターゼナノ結晶の製造方法。Using a titania nanosheet in which titanium atoms and oxygen atoms are two-dimensionally constrained, obtained by exfoliating the layered titanium oxide crystal to a nano-level thickness, and converting it to anatase by heating, the particle size is reduced. An anatase nanocrystal having a shape anisotropy of a height of 20 nm × horizontal size of 500 nm or less and having c-axis orientation is obtained and collected. A method for producing an anatase nanocrystal having anisotropy and c-axis orientation. 層状チタン酸化物結晶をナノレベルの厚さに剥離して得られるチタン原子と酸素原子とが二次元に束縛されたチタニアナノシートを初期物質として用い、これを任意の基板上に一層ないし三層膜状に吸着し、加熱してアナターゼに変換し、c軸配向性を有するアナターゼ結晶薄膜を得、回収することを特徴とした、c軸配向性を有するアナターゼナノ結晶薄膜の製造方法。Titanium nanosheets in which titanium atoms and oxygen atoms obtained by exfoliating a layered titanium oxide crystal to a nanometer thickness are two-dimensionally bound are used as an initial substance, and this is used as a single-layer or three-layer film on any substrate. A method for producing an anatase nanocrystalline thin film having a c-axis orientation, characterized in that the anatase nanocrystalline thin film having a c-axis orientation is obtained by collecting and collecting an anatase crystal thin film having a c-axis orientation.
JP2003026910A 2003-02-04 2003-02-04 Anatase nano-crystal, thin film of the same and method of manufacturing them Pending JP2004238226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003026910A JP2004238226A (en) 2003-02-04 2003-02-04 Anatase nano-crystal, thin film of the same and method of manufacturing them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003026910A JP2004238226A (en) 2003-02-04 2003-02-04 Anatase nano-crystal, thin film of the same and method of manufacturing them

Publications (1)

Publication Number Publication Date
JP2004238226A true JP2004238226A (en) 2004-08-26

Family

ID=32954784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003026910A Pending JP2004238226A (en) 2003-02-04 2003-02-04 Anatase nano-crystal, thin film of the same and method of manufacturing them

Country Status (1)

Country Link
JP (1) JP2004238226A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007094244A1 (en) * 2006-02-13 2007-08-23 National Institute For Materials Science Nano-sized ultrathin film dielectric, process for producing the same and nano-sized ultrathin film dielectric device
JP2009013038A (en) * 2007-07-09 2009-01-22 National Institute Of Advanced Industrial & Technology Super-hydrophilic/hydrophobic patternized surface, anatase tio2 crystal pattern and their preparation methods
WO2009031332A1 (en) * 2007-09-05 2009-03-12 National Institute For Materials Science Substrate for crystal growth and method for crystal growth using the substrate
US8048511B2 (en) 2005-03-09 2011-11-01 Central Japan Railway Company Titanium oxide coating agent and titanium oxide film forming method
CN102616840A (en) * 2012-04-01 2012-08-01 温普红 Method for preparing transition metal oxide nano single crystal with specific exposed crystal faces through stripping nanosheets
JP2012255916A (en) * 2011-06-09 2012-12-27 National Institute For Materials Science Magnetic optical material, magnetic optical element, and manufacturing method of magnetic optical material
KR101625446B1 (en) 2015-05-15 2016-05-30 서강대학교산학협력단 2 TiO TWO DIMENSIONAL TiO FILM AND PREPARING METHOD OF THE SAME
JP2021095306A (en) * 2019-12-17 2021-06-24 国立研究開発法人理化学研究所 Aerogel and its manufacturing method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8048511B2 (en) 2005-03-09 2011-11-01 Central Japan Railway Company Titanium oxide coating agent and titanium oxide film forming method
WO2007094244A1 (en) * 2006-02-13 2007-08-23 National Institute For Materials Science Nano-sized ultrathin film dielectric, process for producing the same and nano-sized ultrathin film dielectric device
JP2009013038A (en) * 2007-07-09 2009-01-22 National Institute Of Advanced Industrial & Technology Super-hydrophilic/hydrophobic patternized surface, anatase tio2 crystal pattern and their preparation methods
WO2009031332A1 (en) * 2007-09-05 2009-03-12 National Institute For Materials Science Substrate for crystal growth and method for crystal growth using the substrate
JP2009062216A (en) * 2007-09-05 2009-03-26 National Institute For Materials Science Substrate for crystal growth and crystal growing method using the same
JP2012255916A (en) * 2011-06-09 2012-12-27 National Institute For Materials Science Magnetic optical material, magnetic optical element, and manufacturing method of magnetic optical material
CN102616840A (en) * 2012-04-01 2012-08-01 温普红 Method for preparing transition metal oxide nano single crystal with specific exposed crystal faces through stripping nanosheets
KR101625446B1 (en) 2015-05-15 2016-05-30 서강대학교산학협력단 2 TiO TWO DIMENSIONAL TiO FILM AND PREPARING METHOD OF THE SAME
JP2021095306A (en) * 2019-12-17 2021-06-24 国立研究開発法人理化学研究所 Aerogel and its manufacturing method
JP7498452B2 (en) 2019-12-17 2024-06-12 国立研究開発法人理化学研究所 Aerogel and its manufacturing method

Similar Documents

Publication Publication Date Title
Kakiuchi et al. Fabrication of mesoporous ZnO nanosheets from precursor templates grown in aqueous solutions
Miyauchi et al. Super-hydrophilic and transparent thin films of TiO 2 nanotube arrays by a hydrothermal reaction
JP5403497B2 (en) Crystal growth substrate and crystal growth method using the same
Soundarrajan et al. Controlled (110) and (101) crystallographic plane growth of single crystalline rutile TiO 2 nanorods by facile low cost chemical methods
JP3726140B2 (en) High-grade titania nanosheet ultrathin film and method for producing the same
Pawar et al. Synthesis and characterization of nanocrystalline TiO 2 thin films
EP2411143A1 (en) Highly reactive photocatalytic material and manufacturing thereof
WO2010143344A1 (en) Metal nanosheet and method for producing the same
Gonullu et al. The characteristic evolution of TiO2/Al2O3 bilayer films produced by ALD: Effect of substrate type and wide range annealing temperature
JP5205675B2 (en) Photocatalyst nanosheet and photocatalyst material
JP2004238226A (en) Anatase nano-crystal, thin film of the same and method of manufacturing them
JP5360982B2 (en) Titanium dioxide device, method for producing multi-needle titanium dioxide particles, and method for producing multi-needle titanium dioxide particle coating
JP4941980B2 (en) Tungsten oxide nanosheet and manufacturing method thereof
Shinde et al. Time dependent facile hydrothermal synthesis of TiO 2 nanorods and their photoelectrochemical applications
Sadeghzadeh-Attar et al. Template-based growth of TiO₂ nanorods by sol-gel process
Riazian Nanostructural characterization and lattice strain of TiO2-Al2O3-SiO2 coating on glass and Si (100) substrates
Kim et al. Hydrothermal synthesis of titanate nanotubes followed by electrodeposition process
Rahmani et al. Fabrication and characterization of ZnO/TiO 2 multilayers, deposited via spin coating method
Wu et al. Facile fabrication and optical property of β-Bi 2 O 3 with novel porous nanoring and nanoplate superstructures
JP4104899B2 (en) Porous titanium oxide thin film and method for producing the same
KR101449643B1 (en) Fabrication Method of Metal Oxide Nanotube
Pawar et al. Microstructural, optical and electrical studies on sol gel derived TiO2 thin films
JP4973050B2 (en) Manufacturing method of crystalline oxide film of composite oxide
Riazian Synthesis and nano structural study on TiO2-NiO-SiO2 composite
Noua et al. Effect of Withdrawal Speed on the Structural, Optical and Morphological Properties of NiO Thin Films Obtained by Sol-Gel Dip Coating Method

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20030205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20030901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070723

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071009

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071203

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080111