【0001】
【発明の属する技術分野】
本発明は、被溶接部材同士の溶接対象部位を該溶接対象部位に沿って移動させながら溶接用レーザ光を該溶接対象部位に照射することにより、上記被溶接部材同士を溶接するレーザ溶接方法及びレーザ溶接装置に関するものである。
【0002】
【従来の技術】
線状の溶接対象部位にて被溶接部材同士を溶接する方法としては、該溶接対象部位に沿って上記溶接対象部位を移動させながらレーザ光を上記溶接対象部位に照射することにより、上記被溶接部材同士を溶接するレーザ溶接が知られている。ここで、溶接対象部位とは、被溶接部材の溶接される対象となる部位であって溶接前の部位をいい、溶接部位とは、上記溶接対象部位を溶接してビード形成された部位であって溶接後の部位をいう。又、溶接進行方向とは、被溶接部材が溶接用レーザ光の照射を受けて該被溶接部材上に次々と新たな溶接部位が形成されて行く方向をいう。このレーザ溶接は、レーザ光を集光して高密度のエネルギを得て、小さい範囲にだけを狙って照射できることから、比較的小さい被溶接部材同士を溶接する場合等、溶接対象部位に対して照射されるレーザ光の位置や範囲に高い精度が要求される場合に多用されている。
【0003】
従来のレーザ溶接にあっては、上記被溶接部材同士を突き合わせ等して線状に延びる上記溶接対象部位に沿って移動させながら、連続発振若しくはパルス発振する一つのレーザ装置からのレーザ光を上記溶接対象部位に集光して照射する。このとき、溶接対象部位は、レーザ光の照射を受けている部位が加熱されて溶融し、そして該部位がレーザ光の照射領域から外れると冷却されて凝固し、被溶接部材同士が溶接されることとなる。
【0004】
しかしながら、レーザ溶接は、レーザ光のエネルギ密度が高いことから、他の溶接方法に比べて溶接対象部位の加熱時間が短く被溶接部材に対する加熱範囲が小さいので、被溶接部材にてレーザ光の照射領域から熱が半径方向にあまり広がらずに、レーザ光の照射を受けた部位のみが急激に加熱されて溶融した後にその隣接部位からの吸熱の影響を受けて急激に自然冷却されて凝固するため、溶接部位で熱収縮が急激に起こって応力が生じ、溶接後の溶接部位にクラックが発生しまうという問題があった。
【0005】
かかる問題を解決する手段として、レーザ光の照射を受けた部位が冷却される際の冷却速度を低下させる方法が考えられる。かかる方法として、従来では、溶接用のレーザ光がパルス発振である場合には、一つのレーザ装置から溶接対象部位の同一位置に複数のパルスのレーザ光を各パルス間で休止時間を設けて順次照射することにより、レーザ光の照射を受けた部位が冷却される際の冷却速度を低下させる方法が知られている(例えば、特許文献1参照)。
【0006】
【特許文献1】
特開平10−137955号公報(図1、図2、図3(a)〜(c)、図4〜6)
【0007】
【発明が解決しようとする課題】
上記特許文献1に係る従来の方法では、複数のパルスのレーザ光が一つのレーザ装置から発振されていることから、一つの照射領域に対し繰り返し照射されるレーザ光の各パルスの強度が同じに設定されている。この各パルスの強度は上記照射領域を溶融可能とする強度であるため、このパルスが休止時間の間隔をもって繰り返し上記照射領域に照射されることによって、レーザ光の照射領域は各パルス間の休止時間で一時的に冷却されるものの重畳的に高強度のレーザ光による加熱を受けることとなる。
【0008】
したがって、上記照射領域からその隣接(非照射)部位への熱の伝達を考慮しても、上記照射領域と上記隣接部位との温度差は依然として大きくそして急激に変化するため、上記照射領域は、上記隣接部位の熱によって溶融温度以上から再結晶温度以下まで冷却されるが、それが徐々に行われず急激に自然冷却されて凝固する。つまり、上記照射領域の凝固時に急激な熱収縮を生じて溶接後の溶接部位のクラックが発生するおそれがある。
【0009】
特に、モリブデン材やタングステン材等を被溶接部材として用いた場合、溶接後の溶接部位の熱収縮によりクラックが生じやすい。そのため、従来では、モリブデン材やタングステン材等にはレーザ溶接があまり用いられていなかった。したがって、モリブデン材から例えばパイプ状の部材を製造する場合には、板状のモリブデン材の両端部を突き合わせて円筒状としこの突合せ部位を溶接対象部位として溶接してパイプ状の部材とすることは行われず、丸棒状のモリブデン材の内径及び外径を切削又は研磨等して作成していたため、歩留まりが悪く、コストが高いものとなっていた。
【0010】
また、かかる従来の方法では、各パルス間について休止時間をとらなければならず、またレーザ光の一つの照射領域に対して複数のパルスを照射して溶接した後でなければレーザ光を次の照射領域に照射して溶接できないので、スポット一箇所あたりにかかる時間が長く、溶接時間が長くなってしまう。また、このようなレーザ光の照射をするためには、複数のパルスからなるレーザ光ごとの周期に同期して、被溶接部材を断続的に移動させる等の機構が必要となるため、装置が複雑となったり、コスト高となる。
【0011】
そこで、本発明は、上述の課題に鑑みてなされたものであり、クラックの生じやすいモリブデン材等の被溶接部材であっても、クラックを生じることなくレーザ溶接でき、更に溶接時間の長時間化を防止できるレーザ溶接方法及びレーザ溶接装置の提供を目的とする。
【0012】
【課題を解決するための手段】
本出願によれば、上記目的を達成する方法の発明は、被溶接部材同士の溶接対象部位を該溶接対象部位に沿って移動させながら溶接用レーザ光を該溶接対象部位に照射することにより、上記被溶接部材同士を溶接するレーザ溶接方法において、溶接用レーザ光の照射領域に対して溶接部位の溶接進行方向の後方側にて上記照射領域に近接若しくは重複して、溶接用レーザ光によって被溶接部材が加熱される温度よりも低い温度で、上記被溶接部材を除冷加熱することにより、溶接用レーザ光の照射後の溶接部位の冷却速度を低下させることを特徴としている。ここで、除冷加熱とは、溶接後に溶接温度から大気によって急激に冷却されずに、徐々に降温するように溶接温度以下で加熱することをいう。
【0013】
かかる方法の発明にあっては、溶接進行方向で溶接用レーザ光の照射領域に対して後方側にて上記照射領域に近接若しくは重複させて被溶接部材が除冷加熱されるので、溶接用レーザ光の照射を受けた部位は被溶接部材の移動に伴い溶接用レーザ光の照射領域を出た直後に除冷加熱される。すなわち、上記部位は、溶接後に急に大気に触れて急冷されるのではなく、溶接温度以下での加熱を受けながらゆっくりと温度低下して徐々に冷却される。その際、除冷加熱の温度は、溶接用レーザ光によって被溶接部材が加熱される温度よりも低くなっているので、溶接用レーザ光の照射を受け終えた溶接部位は、その隣接部位への熱の伝熱放散による低下温度が除冷加熱による上昇温度よりも大きく、溶接用レーザ光による加熱温度よりも低い温度で徐々に冷却される。したがって、溶接部位は、溶接用レーザ光の照射を受け終えた後に上記除冷加熱を受けながら冷却されることによって、被溶接部材の溶融温度から再結晶温度まで降下する間の冷却速度が低下するので、溶接部位の凝固時の熱収縮が緩和されて、溶接後の溶接部位のクラックの発生が防止される。更には、溶接用レーザ光による加熱と除冷加熱用レーザ光等による除冷加熱とを同時に行うことができるので、溶接時間の長時間化が防止される。
【0014】
又、本出願によれば、上記目的を達成する装置の発明は、溶接部材同士の溶接対象部位に溶接用レーザ光を発する溶接用レーザ手段を有し、上記溶接対象部位に沿って上記溶接対象部位を移動させながら該溶接用レーザ手段からの溶接用レーザ光を上記溶接対象部位に発することにより上記被溶接部材同士を溶接するレーザ溶接装置において、溶接用レーザ光の照射領域に対して溶接部位の溶接進行方向の後方側にて上記溶接部位を除冷加熱する除冷加熱手段を有し、該除冷加熱手段は、上記照射領域に近接若しくは重複して、溶接用レーザ光によって被溶接部材が加熱される温度よりも低い温度で、上記被溶接部材を除冷加熱することにより、溶接用レーザ光の照射後の溶接部位の冷却速度を低下せしめるようになっていることを特徴としている。
【0015】
かかる装置の発明にあっては、除冷加熱手段が溶接進行方向で溶接用レーザ光の照射領域に対して後方側にて上記照射領域に近接若しくは重複させて被溶接部材を除冷加熱するので、溶接用レーザ光の照射を受けた部位は被溶接部材の移動に伴い溶接用レーザ光の照射領域を出た直後に除冷加熱される。その際、除冷加熱手段による除冷加熱の温度は、溶接用レーザ光によって被溶接部材が加熱される温度よりも低く設定されているので、溶接用レーザ光の照射を受け終えた溶接部位は、その隣接部位への熱の伝熱放散による低下温度が除冷加熱による上昇温度よりも大きく、溶接用レーザ光による加熱温度よりも低い温度で徐々に冷却される。したがって、溶接部位は、溶接用レーザ光の照射を受け終えた後に上記除冷加熱を受けながら冷却されることによって、被溶接部材の溶融温度から再結晶温度まで降下する間の冷却速度が低下するので、溶接部位の凝固時の熱収縮が緩和されて、溶接後の溶接部位のクラックの発生が防止される。更には、溶接用レーザ光による加熱と除冷加熱用レーザ光等による除冷加熱とを同時に行うことができるので、溶接時間の長時間化が防止される。
【0016】
本発明においては、除冷加熱手段はレーザ光により除冷加熱を行う除冷加熱用レーザ手段とすることができる。こうすることにより、除冷に必要な範囲だけを除冷加熱用レーザ手段からのレーザ光によって加熱できるので、無駄なエネルギを消費することなく効率的に除冷加熱を行える。
【0017】
又、溶接用レーザ手段からの溶接用レーザ光がスポットで時間的に断続に行われる場合であっても、被溶接部材の移動を溶接用レーザ光の照射タイミングと同期させて断続して行うことなく連続して行うことができるので、装置が簡単、低コストとなる。
【0018】
更に、除冷加熱手段の除冷加熱は時間的に連続して行われるようにすると、溶接用レーザ光による加熱との同期を図る必要がなく、除冷加熱が時間的に断続して行われる場合よりも装置が簡単、低コストとなる。
【0019】
又、溶接用レーザ手段の溶接用レーザ光は溶接部位の面に対して直角に照射され、除冷加熱用レーザ手段のレーザ光は溶接用レーザ光の照射領域に対して溶接進行方向で後方側から上記溶接部位の面に対して傾斜角をもって照射されるようにすることができる。こうすることにより、除冷加熱用レーザ光の照射領域でのエネルギ密度を低下させ、除冷加熱用レーザ光による加熱温度を溶接用レーザ光による加熱温度よりも容易に低くすることができる。また、溶接用レーザ光の射出ヘッドと除冷加熱用レーザ光の射出ヘッドとを溶接進行方向に並べ一つの支持部材で支持して一体化して構成できるので、両射出ヘッドの光軸同士のなす角度が予め正確に設定されて両射出ヘッドが上記支持部材に取り付けられていれば、装置の組立て時に、一方の射出ヘッドの光軸を設定すれば他方の射出ヘッドの光軸も同時に設定でき、設定時の手間が省ける。
【0020】
更に、本発明は溶接部位の溶融温度と再結晶温度との間の温度で該溶接部位の冷却速度を有効的に冷却速度を低下せしめることができるので、被溶接部材として、例えば、急激に冷却して再結晶化した場合には、組織が脆くなってクラックの生じやすいモリブデン材やタングステン材には特に有効である。
【0021】
又、被溶接部材における、溶接用レーザ光の照射領域と除冷加熱部位とへ、不活性ガスが連続的に供給されるようになっていると、溶融された溶接部位が凝固する際に溶接部位が酸素と結合することがないので、溶接部位の酸化を防止でき、溶接後の溶接部位の強度低下を防止できる。
【0022】
【発明の実施の形態】
以下、本発明の実施の形態に関して、添付図面に基づき説明する。
【0023】
本実施形態は、被溶接部材としての帯状のモリブデン材をその長手方向を軸線として円筒状に成形せしめ、その突合せ部を溶接対象部位として本発明による溶接方法で溶接してモリブデン管とするものであり、板状のモリブデン材からモリブデン管を製造することを可能とするものである。ここで、モリブデン材とは、純モリブデン、或いはモリブデンを主成分とする合金である。
【0024】
図1(A)は、本発明の実施の形態にかかる装置の概略構成を示す図であり、図1(B)は、かかる装置における被溶接部材の断面の変化を順次示す図である。
【0025】
図1に示す本実施形態装置は、帯状のモリブデン材Mをその長手方向を軸線として円筒状に成形せしめた後に、その突合せ部を溶接対象部位として溶接するための溶接用レーザ装置1と、該溶接用レーザ装置1によって溶接された溶接部位を除冷加熱するための除冷加熱用レーザ装置2とを備えている。
【0026】
本実施形態では、図示しない搬送手段によって帯状のモリブデン材Mが長手方向を移動方向Xとして移動されている。したがって、固定配置された上記溶接用レーザ装置1は相対的には、この移動方向Xに移動するモリブデン材Mに対し上記移動方向Xと逆方向に移動する。つまり、モリブデン材Mの溶接対象部位に沿って進行しながら上記溶接用レーザ装置1によって形成される溶接部位の溶接進行方向は上記移動方向Xと逆方向である。
【0027】
このモリブデン材Mの移動方向Xで上記溶接用レーザ装置1に対して上流側(図1(A)にて左側)には、言い換えすれば、溶接進行方向で上記溶接用レーザ装置1に対して前方側には、帯状のモリブデン材Mをその長手方向を軸線として円筒状に成形せしめる成形装置3が配設されている。また、モリブデン材Mの移動方向Xで上記除冷加熱用レーザ装置2によるモリブデン材Mの除冷加熱部位に対して下流側(図1(A)にて右側)には、円筒状のモリブデン材Mの外周面との間に隙間を形成する管状をなし、この隙間を通じてモリブデン材Mの溶接部位へ該溶接部位の酸化防止のための不活性ガスたるアルゴンを供給するためのアルゴン供給管4が配設されている。
【0028】
溶接用レーザ装置1には、該溶接用レーザ装置1で発振されたレーザ光を溶接用レーザ光L1として射出する溶接用レーザ光射出ヘッド6が光ファイバ5を介して接続されている。本実施形態では、溶接用レーザ装置1は、円筒状のモリブデン材Mの突合せ部を溶接可能な出力で、時間的に断続したパルスのレーザ光を発振する装置である。溶接用レーザ光射出ヘッド6は、円筒状のモリブデン材Mの溶接部位の面に対して直角に照射する姿勢に保たれるように支持部材9に支持されている。
【0029】
除冷加熱用レーザ装置2には、該除冷加熱用レーザ装置2で発振されたレーザ光を除冷加熱用レーザ光L2として射出する除冷加熱用レーザ光射出ヘッド8が光ファイバ7を介して接続されている。本実施形態では、除冷加熱用レーザ装置2は、時間的に連続したレーザ光を発振する装置であって、溶接用レーザ装置1よりも低い出力となっている。除冷加熱用レーザ光射出ヘッド8は、除冷加熱用レーザ光L2をモリブデン材Mの移動方向Xでモリブデン材Mの溶接部位の面に対して傾斜角θをなし下流側(すなわち、溶接進行方向にあっては後方側)から照射する姿勢に保たれるように、支持部材9に溶接用レーザ光射出ヘッド6と共に支持されている。したがって、溶接部位に至近する部位に向けレーザ光を照射するにも拘らず、除冷加熱用レーザ光射出ヘッド8は溶接用レーザ射出ヘッド6と干渉することなく設置できる。
【0030】
このように、本実施形態では、溶接用レーザ光射出ヘッド6と除冷加熱用レーザ光射出ヘッド8とをモリブデン材の搬送方向Xに並べ前後して一つの支持部材9で支持して一体化して構成している。したがって、溶接用レーザ光射出ヘッド6及び除冷加熱用レーザ光射出ヘッド8の両射出ヘッドの光軸同士のなす角度が予め正確に設定されて該両射出ヘッドが支持部材9に取り付けることによって、装置の組立て時に、一方の射出ヘッドの光軸を設定すれば他方の射出ヘッドの光軸も同時に設定でき、設定時の手間が省ける。
【0031】
ここで、円筒状のモリブデン材Mに対する溶接用レーザ光L1の照射領域と除冷加熱用レーザ光L2の照射領域との関係について説明する。図2は、図1の装置における溶接用レーザ光L1の照射領域と除冷加熱用レーザ光L2の照射領域との位置関係を示す図である。
【0032】
図2に示すように、除冷加熱用レーザ光L2の照射領域AL2が、モリブデン材Mの移動方向で溶接用レーザ光L1の照射領域AL1に一部重複している。なお、除冷加熱用レーザ光L2の照射領域AL2が、照射領域AL1に重複していなくても、モリブデン材Mの移動方向で溶接用レーザ光L1の照射領域AL1に対して下流側(すなわち、溶接進行方向にあっては後方側)で該照射領域AL1に近接していればよい。このような照射領域AL1と照射領域AL2との相対位置関係を維持したまま、溶接用レーザ光L1及び除冷加熱用レーザ光L2が円筒状のモリブデン材Mの突合せ部に沿って照射されることにより、該突合せ部の両側に一定の幅をもって延びる溶接部位MXが形成され、モリブデン材Mがモリブデン管M1となる。
【0033】
本実施形態の具体的数値例を示せば、溶接用レーザ光L1の直径は0.3mmであり、除冷加熱用レーザ光L2の直径は0.6mmである。溶接用レーザ光L1は溶接部位MXの面に対し直角に照射され、除冷加熱用レーザ光L2は溶接部位MXの面に対しモリブデン材Mの移動方向下流側(すなわち、溶接進行方向にあっては後方側)から約45°の傾斜角(θ)をもって照射される。
【0034】
かかる照射条件のもとで、溶接用レーザ光L1の照射領域AL1は直径0.3mm(=XL1)の円をなし、除冷加熱用レーザ光L2の照射領域AL2はモリブデン材Mの移動方向Xに長径約0.9mm(=XL2)、その直角方向に短径約0.6mmの楕円をなしている。
【0035】
このように、本実施形態では、除冷加熱用レーザ光L2の直径が溶接用レーザ光L1の直径よりも大きくなっている。したがって、溶接用レーザ装置1の発振出力と除冷加熱用レーザ装置2の発振出力とが同程度であっても、除冷加熱用レーザL2の光照射領域AL2では溶接用レーザ光L1の照射領域AL1よりも直径、すなわち面積が大きくなるのでエネルギ密度が低くなっている。加えて、除冷加熱用レーザ光L2が傾斜角をもって溶接部位MXに照射されることにより、除冷加熱用レーザ光L2の照射領域AL2の面積がその分でも大きくなっているので、照射領域AL2でのエネルギ密度は更に低くなっている。このように除冷加熱用レーザ光L2が傾斜角をもって溶接部位MXに照射されていれば、仮に、溶接用レーザ光L1の直径と除冷加熱用レーザ光L2の直径とが同じであっても、照射領域AL2でのエネルギ密度を照射領域AL1でのエネルギ密度よりも低くすることができる。
【0036】
こうして、照射領域AL2は、除冷加熱用レーザ光L2の照射を受けて除冷加熱される。又、モリブデン管M1は、モリブデン材Mの移動に伴い、照射領域AL2の熱が図2に示すBの領域(XB=約3mm)へ放熱されて徐々に低下する。
【0037】
なお、照射領域AL2の大きさ、除冷加熱用レーザ光L2のエネルギ密度等の条件は、被溶接部材の材質(例えば溶融温度、再結晶温度等)、溶接用レーザ光の強度等にあわせて設定する。また、照射領域AL2は、モリブデン材Mの移動方向Xに沿って複数隣接して位置していてもよい。その際、各領域での加熱温度は下流側(すなわち、溶接進行方向にあっては後方側)に向けて順次低くすると、溶接部位の冷却速度を溶融温度と再結晶温度との間で有効的に低下させることができる。
【0038】
成形装置3は、図1(B)の▲1▼〜▲6▼に示すごとく帯状のモリブデン材Mをその長手方向を軸線として円筒状に徐々に幅方向に湾曲せしめて、帯状のモリブデン材Mの長手方向に延びる両側端面を突き合わせる複数の成形ロール対3A〜3Eからなる。
【0039】
アルゴン供給管4は、モリブデン材Mの移動方向Xで除冷加熱用レーザ光L2の照射領域に対して下流側(すなわち、溶接進行方向にあっては後方側)で、円筒状のモリブデン材Mを囲うように形成された筒状をなし、導入口4Aからモリブデン材Mの溶接部位の酸化防止のための不活性ガスとしてアルゴンガスが導入されるようになっている。アルゴン供給管4内に導入されたアルゴンガスは、上記導入口4Aによって上記搬送方向Xで上流方向に向けて注入されるため、上記搬送方向Xでアルゴン供給管4の上流側にて円筒状のモリブデン材Mの外周面とアルゴン注入部4の内周面との間の環状の隙間から、溶接用レーザ光L1の照射領域と除冷加熱用レーザ光L2の照射領域へ向けて供給される。なお、不活性ガスとしては、アルゴンの他、窒素ガス等の各種不活性ガスであってもよい。
【0040】
次に、本実施形態にかかる装置の動作について説明する。
【0041】
▲1▼ 帯状のモリブデン材Mは、図1(A)に示す成形装置3の成形ローラ対3A〜3Eによって順次挟持搬送されることにより、図1(B)に示す▲1▼〜▲6▼のごとくモリブデン材Mの長手方向を軸線として徐々に円筒状に成形される。
【0042】
▲2▼ 成形装置3を通過した円筒状のモリブデン材Mの突合せ部に対し、溶接用レーザ光射出ヘッド6から射出された溶接用レーザ光L1が照射される。溶接用レーザ光L1の照射領域AL1は、溶接用レーザ光L1の照射を受けることによって溶融し、図1(B)に示す▲7▼のごとく上記突合せ部が溶接されてモリブデン管M1となる。
【0043】
▲3▼ 溶接用レーザ光L1の照射を受けた溶接部位は、モリブデン材Mの移動に伴い溶接用レーザ光L1の照射領域AL1を出た直後に、除冷加熱用レーザ光射出ヘッド8から射出された除冷加熱用レーザ光L2の照射を受けながら除冷加熱される。すなわち、上記溶接部位は、溶接後に急に大気に触れて急冷されるのではなく、溶接温度以下での加熱を受けながらゆっくりと温度低下して徐々に冷却される。
【0044】
その際、溶接用レーザ光L1によってモリブデン材Mが加熱される温度よりも低い温度で加熱用レーザ光L2による除冷加熱がなされるように、除冷加熱用レーザ光L1の照射領域AL2におけるエネルギ密度が設定されている。こうすることによって、溶接用レーザ光L1の照射を受け終えた溶接部位は、その隣接部位への熱の伝熱放散による低下温度が除冷加熱による上昇温度よりも大きく、溶接用レーザ光L1による加熱温度よりも低い温度で徐々に冷却される。したがって、溶接用レーザ光L1の照射後の上記溶接部位は、上記除冷加熱を受けることによって、モリブデン材Mの溶融温度から再結晶温度まで降下する間の冷却速度を小さくするので、溶接部位の凝固時の熱収縮を緩和して、溶接後の溶接部位のクラックの発生を防止できる。
【0045】
▲4▼ 溶接用レーザ光L1の照射領域と除冷加熱用レーザ光L2の照射領域とへ、アルゴン注入部4内からアルゴンが連続的に供給される。これにより、モリブデン管M1の溶接部位が溶融状態から凝固する際に該溶接部位が大気中の酸素と結合せず、溶接部位の酸化が防止され、溶接後の溶接部位の強度低下が防止される。
【0046】
かくして、上述の▲1▼〜▲4▼により、板状のモリブデン材Mからモリブデン管M1を製造できる。
【0047】
なお、本発明は上述の実施形態に限られるものではなく、例えば、溶接用レーザ光の照射は、上述の実施形態では時間的に断続したパルスで行われているが、時間的に連続して行われていてもよい。又、溶接用レーザ装置としては、被溶接部材の溶接部位を溶接可能な温度に加熱できるものであれば、種類に限定はなく、YAGレーザ、炭酸ガスレーザ等の各種レーザを用いることができる。
【0048】
又、除冷加熱は時間的に断続に行われてもよい。その際、除冷加熱のタイミングは、溶接用レーザ光をパルスした場合には溶接用レーザ光の照射タイミングに同期させる。又、除冷加熱用レーザ装置としては、溶接用レーザ光の照射後の部位を再結晶温度以上溶融温度以下で加熱できるものであれば、各種レーザを用いることができる。また、除冷加熱はレーザに限らず、例えば電磁誘導加熱等の他の加熱手段であってもよい。
【0049】
更に、本実施形態では被溶接部材としてモリブデン材を用いたが、溶接後の急冷によりクラックの生じやすく従来から溶接が困難であった他の金属材料、例えばタングステン材等にも本発明は適用可能である。
【0050】
【発明の効果】
以上説明したように、本願発明によれば、除冷加熱の温度が溶接用レーザ光によって被溶接部材が加熱される温度よりも低いので、溶接用レーザ光の照射を受け終えた溶接部位は、その隣接部位への熱の伝熱放散による低下温度が除冷加熱による上昇温度よりも大きい。したがって、上記溶接部位は溶接用レーザ光による加熱温度よりも低い温度で徐々に冷却されるため、被溶接部材の溶融温度から再結晶温度まで降下する間の冷却速度を低下させることができ、溶接部位の凝固時の熱収縮を緩和して、溶接後の溶接部位のクラックの発生を防止できる。その際、溶接部位に対する溶接用レーザ光の照射領域の進行方向で該照射領域に対して後方側にて上記照射領域に近接若しくは重複させて被溶接部材を除冷加熱するので、加熱と除冷加熱とを同時に行い、溶接用レーザ光のスポット一箇所あたりにかかる溶接時間の長期化を防止できる。
【図面の簡単な説明】
【図1】(A)は、本発明の実施の形態にかかるレーザ溶接装置の概略構成を示す図であり、(B)は、(A)に示す装置における被溶接部材の移動方向に対して直角な面での断面形状の変化を被溶接部材の移動方向での各位置ごとに示す図である。
【図2】図1の装置における溶接用レーザ光の照射領域と除冷加熱用レーザ光の照射領域との位置関係を示す図である。
【符号の説明】
1 溶接用レーザ装置(溶接用レーザ手段)
2 除冷加熱用レーザ装置(除冷加熱用レーザ手段)
M モリブデン材(被溶接部材)
MX 溶接部位
L1 溶接用レーザ光
L2 除冷加熱用レーザ光[0001]
BACKGROUND OF THE INVENTION
The present invention provides a laser welding method for welding the welded members to each other by irradiating the welded laser beam with the welding laser beam while moving the welded sites between the welded members along the weld target site. The present invention relates to a laser welding apparatus.
[0002]
[Prior art]
As a method of welding the members to be welded at a linear welding target site, the welding target site is irradiated with laser light while moving the welding target site along the welding target site. Laser welding for welding members is known. Here, the welding target part is a part to be welded of the member to be welded and is a part before welding, and the welding part is a part formed by beading the above welding target part. The part after welding. Further, the welding progress direction refers to a direction in which new welding parts are successively formed on the member to be welded by receiving the welding laser beam. In this laser welding, a laser beam is condensed to obtain a high-density energy, and irradiation can be aimed at only a small range. It is often used when high accuracy is required for the position and range of the irradiated laser beam.
[0003]
In conventional laser welding, the laser beam from one laser device that continuously oscillates or pulse oscillates while moving along the welding target portion extending linearly by butting the members to be welded together. Condensed and irradiated on the part to be welded. At this time, the part to be welded is heated and melted at the part that has been irradiated with the laser beam, and when the part is out of the laser beam irradiation region, it is cooled and solidified, and the members to be welded are welded together. It will be.
[0004]
However, in laser welding, since the energy density of laser light is high, the heating time for the welding target part is short compared to other welding methods, and the heating range for the welded member is small. Because the heat does not spread so much in the radial direction from the region, only the part irradiated with laser light is rapidly heated and melted, and then it is naturally cooled and solidified suddenly under the influence of heat absorption from the adjacent part. There is a problem that heat contraction occurs suddenly in the welded part, resulting in stress and cracks in the welded part after welding.
[0005]
As a means for solving such a problem, a method of reducing a cooling rate when a portion irradiated with laser light is cooled can be considered. As such a method, conventionally, when the laser beam for welding is pulse oscillation, a plurality of laser beams are sequentially provided from one laser device at the same position of the site to be welded with a pause time between each pulse. There is known a method for reducing the cooling rate when the portion irradiated with laser light is cooled by irradiation (see, for example, Patent Document 1).
[0006]
[Patent Document 1]
Japanese Patent Laid-Open No. 10-137955 (FIGS. 1, 2, 3A to 3C, 4 to 6)
[0007]
[Problems to be solved by the invention]
In the conventional method according to Patent Document 1, since a plurality of pulses of laser light are oscillated from one laser device, the intensity of each pulse of the laser light repeatedly irradiated to one irradiation region is the same. Is set. Since the intensity of each pulse is such that the irradiation area can be melted, the irradiation area of the laser beam is changed to a pause time between the pulses by repeatedly irradiating the irradiation area with a pause time interval. Although it is temporarily cooled, it is superposedly heated by the high-intensity laser beam.
[0008]
Therefore, even if heat transfer from the irradiated region to the adjacent (non-irradiated) site is taken into account, the temperature difference between the irradiated region and the adjacent site is still large and changes rapidly. Although it is cooled from the melting temperature or higher to the recrystallization temperature or lower by the heat of the adjacent portion, it is not gradually carried out but suddenly naturally cooled and solidified. That is, there is a risk that a rapid thermal contraction occurs during solidification of the irradiated region, and cracks in the welded part after welding occur.
[0009]
In particular, when a molybdenum material, a tungsten material, or the like is used as a member to be welded, cracks are likely to occur due to thermal contraction of the welded portion after welding. Therefore, conventionally, laser welding has not been often used for molybdenum materials, tungsten materials, and the like. Therefore, when manufacturing, for example, a pipe-shaped member from a molybdenum material, it is possible to butt both ends of a plate-shaped molybdenum material to form a cylindrical shape and weld the butt portion as a welding target portion to obtain a pipe-shaped member. However, since the inner and outer diameters of the round bar-shaped molybdenum material were cut or polished, the yield was poor and the cost was high.
[0010]
Further, in such a conventional method, a pause time must be taken between each pulse, and the laser beam is not transferred to the next unless the laser beam is irradiated with a plurality of pulses and welded. Since the irradiation region cannot be irradiated and welded, the time required for each spot is long and the welding time becomes long. In addition, in order to irradiate such laser light, a mechanism such as intermittently moving the member to be welded in synchronism with the period of each laser beam composed of a plurality of pulses is necessary. It becomes complicated and expensive.
[0011]
Accordingly, the present invention has been made in view of the above-described problems, and even a welded member such as a molybdenum material that is prone to cracking can be laser-welded without causing cracks, and further lengthening the welding time. It is an object of the present invention to provide a laser welding method and a laser welding apparatus that can prevent the above.
[0012]
[Means for Solving the Problems]
According to the present application, the invention of the method for achieving the above object is to irradiate the welding target part with the laser beam for welding while moving the welding target part between the members to be welded along the welding target part. In the laser welding method for welding the members to be welded to each other, the laser beam for welding is covered with the laser beam for welding close to or overlapping the irradiation region on the rear side in the welding progress direction of the welding portion with respect to the irradiation region of the welding laser beam. It is characterized in that the cooling rate of the welded portion after irradiation of the welding laser beam is reduced by removing and heating the welded member at a temperature lower than the temperature at which the welding member is heated. Here, the cooling removal heating means heating at a temperature equal to or lower than the welding temperature so that the temperature is gradually lowered after welding without being rapidly cooled by the atmosphere from the welding temperature.
[0013]
In the invention of this method, since the member to be welded is heated to be cooled by being close to or overlapping with the irradiation region on the rear side with respect to the irradiation region of the welding laser beam in the welding progress direction, the welding laser The part irradiated with light is subjected to cooling and heating immediately after leaving the irradiation region of the welding laser beam as the member to be welded moves. That is, the part is not rapidly cooled by contact with the atmosphere after welding, but is gradually cooled by gradually lowering the temperature while being heated below the welding temperature. At that time, since the temperature of the decooling heating is lower than the temperature at which the member to be welded is heated by the laser beam for welding, the welded part that has been irradiated with the laser beam for welding is directed to the adjacent part. The cooling temperature is gradually lowered at a temperature lower than the rising temperature due to the heat removal and lower than the heating temperature due to the laser beam for welding. Therefore, the welding part is cooled while being subjected to the above-described cooling heat after having been irradiated with the laser beam for welding, so that the cooling rate is lowered while the welding part is lowered from the melting temperature to the recrystallization temperature. Therefore, the thermal contraction at the time of solidification of the welded part is relaxed, and the occurrence of cracks in the welded part after welding is prevented. Furthermore, since the heating with the laser beam for welding and the cooling with the laser beam for cooling removal can be performed at the same time, it is possible to prevent a long welding time.
[0014]
Further, according to the present application, an invention of an apparatus that achieves the above object has welding laser means for emitting a laser beam for welding to a welding target portion between welding members, and the welding target along the welding target portion. In a laser welding apparatus for welding the members to be welded by emitting welding laser light from the welding laser means to the welding target part while moving the part, the welding part to the irradiation region of the welding laser light A cooling / heating means for removing and heating the welded portion on the rear side in the welding direction of the welding, and the cooling / heating means close to or overlaps the irradiation region and is welded by a laser beam for welding. The cooling rate of the welded part after irradiation with the laser beam for welding is reduced by removing and heating the member to be welded at a temperature lower than the temperature at which the metal is heated. There.
[0015]
In the invention of such an apparatus, since the cooling and heating means cools and heats the member to be welded by approaching or overlapping the irradiation region on the rear side with respect to the irradiation region of the laser beam for welding in the welding progress direction. The portion that has been irradiated with the welding laser beam is subjected to cooling and heating immediately after leaving the irradiation region of the welding laser beam as the member to be welded moves. At that time, the temperature of the cooling by the cooling heating means is set to be lower than the temperature at which the member to be welded is heated by the welding laser beam. Then, the temperature is lowered gradually at a temperature lower than the temperature rise due to heat removal by cooling and lower than the temperature raised by the laser beam for welding. Therefore, the welding part is cooled while being subjected to the above-described cooling heat after having been irradiated with the laser beam for welding, so that the cooling rate is lowered while the welding part is lowered from the melting temperature to the recrystallization temperature. Therefore, the thermal contraction at the time of solidification of the welded part is relaxed, and the occurrence of cracks in the welded part after welding is prevented. Furthermore, since the heating with the laser beam for welding and the cooling with the laser beam for cooling removal can be performed at the same time, it is possible to prevent a long welding time.
[0016]
In the present invention, the cooling and heating means can be a cooling and heating laser means for performing cooling and heating with a laser beam. By doing so, only the range necessary for cooling can be heated by the laser light from the laser means for cooling and heating, so that cooling and heating can be performed efficiently without consuming wasteful energy.
[0017]
Further, even when the welding laser beam from the welding laser means is intermittently performed at the spot, the movement of the member to be welded is performed intermittently in synchronization with the irradiation timing of the welding laser beam. Therefore, the apparatus is simple and low cost.
[0018]
Further, when the cooling removal heating of the cooling removal heating means is performed continuously in time, it is not necessary to synchronize with the heating by the welding laser beam, and the cooling cooling heating is performed intermittently in time. The device is simpler and less expensive than the case.
[0019]
The laser beam for welding of the laser means for welding is irradiated at right angles to the surface of the welding site, and the laser light for the laser means for cooling and heating is rearward in the welding progress direction with respect to the irradiation area of the laser beam for welding. To the surface of the welded part with an inclination angle. By doing so, the energy density in the irradiation region of the laser light for cooling and heating can be reduced, and the heating temperature by the laser light for cooling and heating can be easily made lower than the heating temperature by the laser beam for welding. In addition, since the welding laser beam injection head and the cooling-cooling heating laser beam emission head are arranged in the welding progress direction and supported by a single support member, they can be configured integrally. If the angle is accurately set in advance and both ejection heads are attached to the support member, when the optical axis of one ejection head is set when the apparatus is assembled, the optical axis of the other ejection head can be set simultaneously. Saves you the trouble of setting.
[0020]
Furthermore, the present invention can effectively reduce the cooling rate of the welded part at a temperature between the melting temperature and the recrystallization temperature of the welded part. Thus, when recrystallized, it is particularly effective for molybdenum materials and tungsten materials that are brittle in structure and easily cracked.
[0021]
In addition, if an inert gas is continuously supplied to the welding laser beam irradiation region and the cooling and heating portion of the member to be welded, welding is performed when the molten welding portion solidifies. Since the part does not bond with oxygen, oxidation of the welded part can be prevented, and a decrease in strength of the welded part after welding can be prevented.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
[0023]
In the present embodiment, a strip-shaped molybdenum material as a member to be welded is formed into a cylindrical shape with the longitudinal direction as an axis, and the butt portion is welded by a welding method according to the present invention as a welding target portion to form a molybdenum pipe. Yes, it is possible to manufacture a molybdenum tube from a plate-like molybdenum material. Here, the molybdenum material is pure molybdenum or an alloy containing molybdenum as a main component.
[0024]
FIG. 1A is a diagram showing a schematic configuration of a device according to an embodiment of the present invention, and FIG. 1B is a diagram sequentially showing changes in a cross section of a member to be welded in such a device.
[0025]
The apparatus of the present embodiment shown in FIG. 1 includes a welding laser apparatus 1 for welding a band-shaped molybdenum material M into a cylindrical shape with the longitudinal direction as an axis, and then welding the butted portion as a welding target portion, A laser apparatus 2 for cooling and heating for removing and heating the welded portion welded by the welding laser apparatus 1 is provided.
[0026]
In this embodiment, the strip-shaped molybdenum material M is moved with the longitudinal direction as the moving direction X by a conveying means (not shown). Accordingly, the welding laser device 1 fixedly arranged moves in a direction opposite to the moving direction X relative to the molybdenum material M moving in the moving direction X. That is, the welding progress direction of the welding part formed by the welding laser device 1 while proceeding along the welding target part of the molybdenum material M is opposite to the moving direction X.
[0027]
On the upstream side (left side in FIG. 1 (A)) with respect to the welding laser device 1 in the movement direction X of the molybdenum material M, in other words, with respect to the welding laser device 1 in the welding progress direction. Formed on the front side is a molding apparatus 3 for molding the strip-shaped molybdenum material M into a cylindrical shape with the longitudinal direction as the axis. Further, in the moving direction X of the molybdenum material M, on the downstream side (right side in FIG. 1A) of the molybdenum material M by the laser device 2 for cooling and heating, on the downstream side (right side in FIG. 1A) is a cylindrical molybdenum material. An argon supply pipe 4 for forming a gap between the outer peripheral surface of M and an argon gas as an inert gas for preventing oxidation of the welded portion of the molybdenum material M through the gap is provided. It is arranged.
[0028]
A welding laser light emitting head 6 that emits laser light oscillated by the welding laser apparatus 1 as welding laser light L <b> 1 is connected to the welding laser apparatus 1 via an optical fiber 5. In the present embodiment, the welding laser apparatus 1 is an apparatus that oscillates a laser beam of intermittent pulses with an output capable of welding a butt portion of a cylindrical molybdenum material M. The laser beam emission head 6 for welding is supported by the support member 9 so as to be maintained in a posture to irradiate at a right angle to the surface of the welded portion of the cylindrical molybdenum material M.
[0029]
In the laser apparatus 2 for cooling and heating, a laser beam emitting head 8 for cooling and heating that emits the laser beam oscillated by the laser apparatus 2 for cooling and heating as laser light L2 for cooling and heating is provided via an optical fiber 7. Connected. In the present embodiment, the laser apparatus 2 for cooling and heating is an apparatus that oscillates temporally continuous laser light, and has a lower output than the welding laser apparatus 1. The laser light emitting head 8 for cooling and heating is configured to make the laser beam L2 for cooling and cooling at an inclination angle θ with respect to the surface of the welded portion of the molybdenum material M in the moving direction X of the molybdenum material M (that is, welding progress). The support member 9 is supported together with the welding laser beam emission head 6 so as to be maintained in a posture of irradiation from the rear side in the direction. Therefore, the laser light emission head 8 for cooling and heating can be installed without interfering with the laser emission head 6 for welding, although the laser light is irradiated toward the part close to the welding part.
[0030]
As described above, in this embodiment, the laser beam emission head 6 for welding and the laser beam emission head 8 for heat removal / cooling are arranged in the conveying direction X of the molybdenum material, and are supported and integrated by one support member 9. Are configured. Therefore, the angle formed by the optical axes of both the welding laser beam ejection head 6 and the laser beam ejection head 8 for cooling and heating is accurately set in advance, and the both ejection heads are attached to the support member 9. If the optical axis of one ejection head is set at the time of assembling the apparatus, the optical axis of the other ejection head can also be set at the same time, saving the trouble of setting.
[0031]
Here, the relationship between the irradiation area | region of the laser beam L1 for welding with respect to the cylindrical molybdenum material M and the irradiation area | region of the laser beam L2 for a cooling cooling heating is demonstrated. FIG. 2 is a diagram showing the positional relationship between the irradiation region of the welding laser beam L1 and the irradiation region of the laser beam L2 for cooling cooling in the apparatus of FIG.
[0032]
As shown in FIG. 2, the irradiation area A of the laser beam L2 for cooling and heating is used. L2 Is an irradiation area A of the laser beam L1 for welding in the moving direction of the molybdenum material M. L1 Is partially duplicated. In addition, irradiation area A of laser light L2 for cooling and heating L2 Is irradiation area A L1 Even if they do not overlap with each other, the irradiation region A of the welding laser beam L1 in the moving direction of the molybdenum material M L1 The irradiation area A on the downstream side (that is, the rear side in the welding progress direction) L1 As long as it is close to. Such an irradiation area A L1 And irradiation area A L2 The laser beam L1 for welding and the laser beam L2 for decooling and heating are irradiated along the butted portion of the cylindrical molybdenum material M while maintaining the relative positional relationship with each other. Welded part M extending with width X And the molybdenum material M is the molybdenum tube M. 1 It becomes.
[0033]
If the specific numerical example of this embodiment is shown, the diameter of the laser beam L1 for welding will be 0.3 mm, and the diameter of the laser beam L2 for cooling removal heating will be 0.6 mm. The laser beam L1 for welding is a welding part M X The laser beam L2 for cooling and heating is irradiated at a right angle to the surface of X Is irradiated with an inclination angle (θ) of about 45 ° from the downstream side in the moving direction of the molybdenum material M (that is, the rear side in the welding progress direction).
[0034]
Under such irradiation conditions, the irradiation region A of the welding laser beam L1 L1 Is 0.3mm in diameter (= X L1 ) And the irradiation area A of the laser light L2 for cooling and heating. L2 Is about 0.9 mm of major axis in the moving direction X of the molybdenum material M (= X L2 ), An ellipse having a minor axis of about 0.6 mm is formed in the perpendicular direction.
[0035]
Thus, in this embodiment, the diameter of the laser beam L2 for cooling and heating is larger than the diameter of the laser beam L1 for welding. Therefore, even if the oscillation output of the welding laser device 1 and the oscillation output of the laser device for cooling removal 2 are approximately the same, the light irradiation region A of the laser for cooling removal L2 is the same. L2 Then, irradiation area A of laser beam L1 for welding L1 Since the diameter, that is, the area becomes larger than the energy density, the energy density is lowered. In addition, the laser beam L2 for cooling and heating has an inclination angle and the welding part M X Irradiation region A of laser light L2 for cooling and heating by being irradiated L2 Since the area of the region is larger by that amount, the irradiation region A L2 The energy density at is even lower. In this way, the laser beam L2 for cooling and heating has an inclination angle and the welding part M X If the diameter of the laser beam L1 for welding and the diameter of the laser beam L2 for heat removal are the same, the irradiation region A L2 Energy density at irradiation area A L1 It can be made lower than the energy density at.
[0036]
Thus, irradiation area A L2 Is cooled by being irradiated with laser light L2 for cooling and heating. Molybdenum tube M 1 As the molybdenum material M moves, the irradiation area A L2 The heat of the region B shown in FIG. B = About 3 mm) and the heat gradually decreases.
[0037]
Irradiation area A L2 The conditions such as the size of the laser beam and the energy density of the laser beam L2 for cooling and heating are set according to the material of the member to be welded (for example, the melting temperature, the recrystallization temperature, etc.), the intensity of the laser beam for welding, and the like. In addition, irradiation area A L2 May be located adjacent to each other along the moving direction X of the molybdenum material M. At that time, if the heating temperature in each region is gradually lowered toward the downstream side (that is, the rear side in the welding progress direction), the cooling rate of the welded portion is effective between the melting temperature and the recrystallization temperature. Can be lowered.
[0038]
As shown in (1) to (6) of FIG. 1 (B), the forming apparatus 3 is configured to bend the strip-shaped molybdenum material M gradually in the width direction in a cylindrical shape with the longitudinal direction as the axis, thereby forming the strip-shaped molybdenum material M. It comprises a plurality of forming roll pairs 3A to 3E that abut both end faces extending in the longitudinal direction.
[0039]
The argon supply pipe 4 is a cylindrical molybdenum material M on the downstream side (that is, the rear side in the welding progress direction) with respect to the irradiation region of the laser light L2 for cooling and removing in the moving direction X of the molybdenum material M. And an argon gas is introduced as an inert gas for preventing oxidation of the welded portion of the molybdenum material M from the introduction port 4A. Since the argon gas introduced into the argon supply pipe 4 is injected toward the upstream side in the transport direction X through the introduction port 4A, it is cylindrical on the upstream side of the argon supply pipe 4 in the transport direction X. From the annular gap between the outer peripheral surface of the molybdenum material M and the inner peripheral surface of the argon injection part 4, the laser beam is supplied toward the irradiation region of the welding laser beam L1 and the irradiation region of the laser beam L2 for cooling and heating. The inert gas may be various inert gases such as nitrogen gas in addition to argon.
[0040]
Next, the operation of the apparatus according to the present embodiment will be described.
[0041]
(1) The strip-shaped molybdenum material M is sequentially sandwiched and conveyed by the pair of forming rollers 3A to 3E of the forming apparatus 3 shown in FIG. 1 (A), so that (1) to (6) shown in FIG. 1 (B). As described above, the molybdenum material M is gradually formed into a cylindrical shape with the longitudinal direction as the axis.
[0042]
{Circle around (2)} The welding laser beam L <b> 1 emitted from the welding laser beam emission head 6 is irradiated to the butted portion of the cylindrical molybdenum material M that has passed through the molding device 3. Irradiation area A of welding laser beam L1 L1 Is melted by receiving the laser beam L1 for welding, and the butt portion is welded as shown in FIG. 1 It becomes.
[0043]
(3) The welding region that has been irradiated with the welding laser beam L1 is irradiated with the welding laser beam L1 as the molybdenum material M moves. L1 Immediately after exiting, the heat is removed and cooled while being irradiated with the laser light L2 for cooling and cooling emitted from the laser beam emitting head 8 for cooling and heating. That is, the welded part is not rapidly cooled by being exposed to the atmosphere after welding, but is gradually cooled by gradually lowering the temperature while being heated below the welding temperature.
[0044]
At that time, the irradiation region A of the laser light L1 for cooling and heating is used so that the cooling with the laser beam L2 is performed at a temperature lower than the temperature at which the molybdenum material M is heated by the welding laser beam L1. L2 The energy density at is set. In this way, the welded part that has been irradiated with the laser beam L1 for welding has a lower temperature due to heat transfer to the adjacent part than the raised temperature due to heat removal by the cooling laser beam L1. It is gradually cooled at a temperature lower than the heating temperature. Therefore, since the welding site after irradiation with the laser beam L1 for welding is subjected to the above-described cooling cooling, the cooling rate during the fall from the melting temperature of the molybdenum material M to the recrystallization temperature is reduced. The thermal contraction during solidification can be alleviated, and the occurrence of cracks in the welded part after welding can be prevented.
[0045]
(4) Argon is continuously supplied from the argon injection part 4 to the irradiation region of the laser beam L1 for welding and the irradiation region of the laser beam L2 for cooling cooling. As a result, the molybdenum tube M 1 When the welded part is solidified from the molten state, the welded part does not combine with oxygen in the atmosphere, so that the welded part is prevented from being oxidized and the strength of the welded part after welding is prevented from being lowered.
[0046]
Thus, from the above-mentioned (1) to (4), the plate-like molybdenum material M to the molybdenum tube M 1 Can be manufactured.
[0047]
Note that the present invention is not limited to the above-described embodiment. For example, the irradiation of the laser beam for welding is performed with temporally intermittent pulses in the above-described embodiment. It may be done. The welding laser device is not particularly limited as long as the welding part of the member to be welded can be heated to a weldable temperature, and various lasers such as a YAG laser and a carbon dioxide gas laser can be used.
[0048]
Further, the cooling removal heating may be performed intermittently over time. At that time, the timing of the cooling and cooling is synchronized with the irradiation timing of the welding laser beam when the welding laser beam is pulsed. Various lasers can be used as the laser apparatus for cooling and heating as long as the part after irradiation with the welding laser beam can be heated at a recrystallization temperature or higher and a melting temperature or lower. Further, the cooling removal heating is not limited to the laser, and may be other heating means such as electromagnetic induction heating.
[0049]
Furthermore, in this embodiment, molybdenum material is used as a member to be welded. However, the present invention can also be applied to other metal materials, such as tungsten material, which have been difficult to weld conventionally due to rapid cooling after welding. It is.
[0050]
【The invention's effect】
As described above, according to the present invention, since the temperature of the cooling removal heating is lower than the temperature at which the member to be welded is heated by the welding laser beam, the welded part that has finished receiving the welding laser beam is: The temperature drop due to heat transfer to the adjacent part is higher than the temperature rise due to heat removal. Therefore, since the welded part is gradually cooled at a temperature lower than the heating temperature by the laser beam for welding, the cooling rate can be lowered while the temperature is lowered from the melting temperature of the member to be welded to the recrystallization temperature. Heat shrinkage at the time of solidification of the part can be relieved, and generation of cracks in the welded part after welding can be prevented. At that time, since the member to be welded is cooled by heating in the direction of travel of the irradiation region of the laser beam for welding to the welding region and in the vicinity of or overlapping with the irradiation region behind the irradiation region, the heating and cooling are performed. Heating is performed at the same time, and it is possible to prevent an increase in welding time per spot of the laser beam for welding.
[Brief description of the drawings]
FIG. 1A is a view showing a schematic configuration of a laser welding apparatus according to an embodiment of the present invention, and FIG. 1B is a view showing a moving direction of a member to be welded in the apparatus shown in FIG. It is a figure which shows the change of the cross-sectional shape in a perpendicular | vertical surface for every position in the moving direction of a to-be-welded member.
FIG. 2 is a diagram showing a positional relationship between an irradiation area of a welding laser beam and an irradiation area of a laser beam for cooling removal heating in the apparatus of FIG.
[Explanation of symbols]
1 Laser equipment for welding (laser means for welding)
2 Laser equipment for cooling and heating (laser means for cooling and heating)
M Molybdenum material (member to be welded)
M X Welded part
L1 Laser beam for welding
L2 Laser light for cooling and heating