JP2004237267A - Photocatalyst activated by visible light - Google Patents
Photocatalyst activated by visible light Download PDFInfo
- Publication number
- JP2004237267A JP2004237267A JP2003064162A JP2003064162A JP2004237267A JP 2004237267 A JP2004237267 A JP 2004237267A JP 2003064162 A JP2003064162 A JP 2003064162A JP 2003064162 A JP2003064162 A JP 2003064162A JP 2004237267 A JP2004237267 A JP 2004237267A
- Authority
- JP
- Japan
- Prior art keywords
- visible light
- particles
- photocatalyst
- fine particles
- titanium oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011941 photocatalyst Substances 0.000 title claims abstract description 75
- 229910052751 metal Inorganic materials 0.000 claims abstract description 58
- 239000002184 metal Substances 0.000 claims abstract description 58
- 238000010521 absorption reaction Methods 0.000 claims abstract description 40
- 229910052737 gold Inorganic materials 0.000 claims abstract description 38
- 239000002245 particle Substances 0.000 claims abstract description 35
- 239000011163 secondary particle Substances 0.000 claims abstract description 28
- 229910052709 silver Inorganic materials 0.000 claims abstract description 24
- 229910052802 copper Inorganic materials 0.000 claims abstract description 22
- 230000001747 exhibiting effect Effects 0.000 claims abstract description 7
- 150000002739 metals Chemical class 0.000 claims abstract description 6
- 239000010419 fine particle Substances 0.000 claims description 82
- 239000002923 metal particle Substances 0.000 abstract description 32
- 238000002156 mixing Methods 0.000 abstract description 9
- 230000003197 catalytic effect Effects 0.000 abstract description 5
- 230000000694 effects Effects 0.000 abstract description 5
- 230000001699 photocatalysis Effects 0.000 abstract description 5
- 229910052697 platinum Inorganic materials 0.000 abstract description 5
- 229910052703 rhodium Inorganic materials 0.000 abstract description 3
- 230000004913 activation Effects 0.000 abstract 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 54
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 52
- 239000000243 solution Substances 0.000 description 41
- 239000010931 gold Substances 0.000 description 38
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 32
- 239000000084 colloidal system Substances 0.000 description 26
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 25
- 239000010949 copper Substances 0.000 description 23
- 238000000862 absorption spectrum Methods 0.000 description 19
- 239000000203 mixture Substances 0.000 description 18
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 14
- 239000007864 aqueous solution Substances 0.000 description 14
- 238000000034 method Methods 0.000 description 14
- 239000002253 acid Substances 0.000 description 13
- 238000003756 stirring Methods 0.000 description 13
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 12
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 12
- 239000010944 silver (metal) Substances 0.000 description 11
- 150000004685 tetrahydrates Chemical class 0.000 description 11
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 10
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 10
- 229960000999 sodium citrate dihydrate Drugs 0.000 description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 9
- 229910001111 Fine metal Inorganic materials 0.000 description 9
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical group [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 9
- 239000004332 silver Substances 0.000 description 8
- 238000010992 reflux Methods 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 6
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 6
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 6
- 238000001816 cooling Methods 0.000 description 4
- 230000031700 light absorption Effects 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 238000009835 boiling Methods 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- MPTQRFCYZCXJFQ-UHFFFAOYSA-L copper(II) chloride dihydrate Chemical compound O.O.[Cl-].[Cl-].[Cu+2] MPTQRFCYZCXJFQ-UHFFFAOYSA-L 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- SDLBJIZEEMKQKY-UHFFFAOYSA-M silver chlorate Chemical compound [Ag+].[O-]Cl(=O)=O SDLBJIZEEMKQKY-UHFFFAOYSA-M 0.000 description 3
- 229910000033 sodium borohydride Inorganic materials 0.000 description 3
- 239000012279 sodium borohydride Substances 0.000 description 3
- 230000002194 synthesizing effect Effects 0.000 description 3
- 210000002268 wool Anatomy 0.000 description 3
- XNDZQQSKSQTQQD-UHFFFAOYSA-N 3-methylcyclohex-2-en-1-ol Chemical compound CC1=CC(O)CCC1 XNDZQQSKSQTQQD-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 150000004687 hexahydrates Chemical class 0.000 description 2
- 230000003301 hydrolyzing effect Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 229910052741 iridium Inorganic materials 0.000 description 2
- 229910052745 lead Inorganic materials 0.000 description 2
- 150000002736 metal compounds Chemical class 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 229910004613 CdTe Inorganic materials 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 229960004106 citric acid Drugs 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000012770 industrial material Substances 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910001510 metal chloride Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 125000000914 phenoxymethylpenicillanyl group Chemical group CC1(S[C@H]2N([C@H]1C(=O)*)C([C@H]2NC(COC2=CC=CC=C2)=O)=O)C 0.000 description 1
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000000365 skull melting Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000007847 structural defect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000003832 thermite Substances 0.000 description 1
Images
Landscapes
- Catalysts (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、可視光にて活性化可能な光触媒に関する。
【0002】
【従来の技術】
従来、光触媒としてはアナターゼやルチル型の酸化チタンが知られているが、約380nm以下の紫外線でしか活性化しないため、太陽光または紫外線放射ランプ等を用いる必要があった。このため、光触媒が活性化できる波長を可視光領域にまで広げる研究が活発に行われている。
【0003】例えば、様々な金属を光触媒にドーピングしたりイオン注入する試み(特開平9−192496号公報や表面化学20巻2号60〜65項1999年など)や、酸素欠陥または構造欠陥を発生させて可視光活性化させる試み(工業材料48巻6号26〜44項2000年など)が行われている。しかし、吸収波長が限られており、高活性を示す可視光活性光触媒は得られていない。
【0004】特開平11−104500号公報には、可視光領域でプラズマ共鳴による吸収(プラズモン吸収)を示すクラスター状態の金属を光触媒物質中に分散させた光触媒が記載されている。しかし、金属微粒子が媒体となる光触媒中に分散しているため、媒体との相互作用を誘起し光電場による分極に影響を与え、プラズモン吸収が不鮮明になる欠点がある。また、プラズモン吸収はそれぞれの金属に固有の波長しか吸収できないため、例えば、媒体中または空気中で安定で明確なプラズモン吸収を示す金属であるAg,Au,Cuの微粒子の場合、420、520、570nm付近の波長は吸収できるが、600〜800nmの領域の光では活性化できない欠点がある。
【0005】特開平10−146531号公報には、平均粒径1〜10nmの金属微粒子を光触媒表面に担持する事により触媒活性を向上させた光触媒が記載されているが、紫外線による活性向上のみしか得られていない。
【0006】一方、光触媒中に半導体微粒子を分散させて、半導体微粒子のサブバンド吸収を利用した可視光活性光触媒も報告されている。しかし、吸収強度が低く、 CdSe、CdTe等の半導体のように、690、760nm付近の光を吸収できるが、水の存在下で光をあてると自己溶解現象を起こし、光触媒表面を覆ってしまうような不安定なものがほとんどで、高活性な可視光活性光触媒は得られていない。
【0007】
【発明が解決しようとしている課題】
本発明の目的は、可視光領域の光を効率良く吸収して高い触媒活性を示す可視光活性光触媒を提供することにある。
【0008】
【課題を解決するための手段】
明確なプラズモン吸収を示す金属としては、Li,Na,K,Au,Ag,Cuなどが知られているが、媒体中または空気中で安定な金属としてはAu、AgおよびCuが挙げられる。これらの金属のプラズモン吸収波長は520、420、570nmである。このようなプラズモン吸収は、一般に数nm〜数十nm程度の金属微粒子において見られる。しかし、これらの金属微粒子を2個以上凝集させて二次粒子化すると異なる吸収波長ピークが出現し、Auは520と720nm、Agは420と620nm、Cuは570と800nmの吸収波長ピークを示すことが判った。
【0009】また、AuとAgからなる二次粒子には520と420nmの吸収ピークの他に660nmの吸収ピークが出現し、AgとCuからなる二次粒子には420と570nmの吸収ピークの他に690nmの吸収ピークが出現し、AuとCuからなる二次粒子には520と570nmの吸収ピークの他に760nmの吸収ピークが出現し、AuとAgとCuからなる二次粒子には520と420と570nmの吸収ピークの他に700nmの吸収ピークが出現することが判った。
【0010】このように、Au,Ag,Cuなどの金属微粒子を2個以上凝集させた二次粒子化金属微粒子を光触媒中に分散または光触媒表面に担持することにより、可視光領域の光を効率良く吸収して活性化できる可視光活性光触媒が得られることを見い出した。
【0011】二次粒子化金属微粒子は、光触媒中に分散させても可視光域の光を吸収して光触媒活性を示すが、光触媒表面に担持した方が活性が高いことを確認した。詳しい触媒反応機構は不明だが、光触媒中に分散させた金属微粒子は媒体との相互作用により、光電場による分極に影響が生じることが考えられ、また、金属微粒子で分極した電荷が実際に反応が起こる光触媒表面に十分に達していない事が考えられる。金属微粒子を光媒触表面に担持した場合は、プラズマ共鳴により金属微粒子表面に生じた分極の電荷が光触媒に有効に移行して光触媒表面に電子と正孔を生じるため、高い活性が得られると考えられる。
【0012】さらに、金属微粒子の組成や粒径を変化させることによってプラズモン吸収ピークを変化させることができる。Au,Ag,またはCuに、Pt、Rh、Pd、Ir、Zn、PbまたはBi等の金属を30重量%まで混合して合金化することによりプラズモン吸収波長ピークを約50nm長波長側にシフトさせることが可能であることを見い出した。このように合金化した金属微粒子を二次粒子化した場合に新たに発生する吸収ピークも同様に長波長側にシフトすることも見い出した。
【0013】Au,AgおよびCuの微粒子の粒径を、60nm以上にするとプラズモン吸収ピークが長波長側にシフトし、170nm以上になるとプラズモン吸収ピークが見られなくなることも見い出した。このような60〜160nmの粒径の金属微粒子を二次粒子化した場合に発生する吸収ピークも同様に長波長側にシフトすることも見い出した。
【0014】以下、本発明の詳細について説明する。光触媒にはチタンテトライソプロポキシドを加水分解して合成した酸化チタン粉末を用いたが、これ以外にも、粉砕により粉末化したのもや、テルミット法やCVD等で合成した酸化チタン粉末やコーティング膜、チョコラルスキー法やスカル・メルティング法等で合成された酸化チタン単結晶や多結晶も用いる事ができる。Au,Ag,Cuの金属微粒子の合成には多くの方法が提案されており、どのような方法で合成した金属微粒子を用いても良い。例えば、クエン酸、アスコルビン酸、PVA、ポリビニルピロリドン等のコロイド安定化剤を加えた水溶液中で金属塩化物等の金属化合物を還元する方法等がある。金属微粒子の粒径を変化させるには、コロイド安定化剤や金属化合物の濃度を変化させる事により7.5nmから180nm以上の粒径の金属微粒子が得られる。
【0015】金属微粒子を二次粒子化するには、塩や電解質を少量添加する方法や、一度乾燥凝集させたものを再度分散させる再分散法などを用いる事ができる。例えば、Au微粒子が分散したコロイド溶液に硝酸アルミニウムを0.002〜0.005%程度添加する事により2から3個のAu微粒子が凝集した二次粒子分散コロイド溶液が得られる。
【0016】二次粒子化金属微粒子を酸化チタン光触媒上に担持する方法としては、酸化チタン分散溶液に二次粒子化金属微粒子コロイド溶液を混合して酸化チタンに吸着担持させたのち乾燥させる方法や、粉末状酸化チタンに二次粒子化金属微粒子コロイド溶液を含浸または噴霧させたのち乾燥させる方法等を用いて担持できる。
【0017】二次粒子化した金属微粒子を酸化チタン光触媒中に分散させる方法としては、二次粒子化金属微粒子オルガノゾルにチタンテトライソプロポキシドを加えた後、加水分解して、二次粒子化金属微粒子分散酸化チタン光触媒を合成する方法等を用いる事ができる。二次粒子化金属微粒子オルガノゾルは、エタノール等の有機溶媒中で二次粒子化金属微粒子を合成する方法や、一度乾燥凝集した金属微粒子を有機溶媒中で再分散させる方法等で作成できる。
【0018】
【発明の実施の形態】
発明の実施の形態を実施例にもとづき説明する。
【0019】金属微粒子の粒径や凝集状態は透過型電子顕微鏡にて測定した。可視光活性光触媒の吸収スペクトルはダブルモノクロメータ可視紫外近赤外分光光度計を用いて測定した。
【0020】本発明の実施例および比較例で用いる酸化チタンコロイド溶液は、エタノール200ccに純水0.72gを加えて良く混合した後、チタンテトライソプロポキシド6.26gを添加し、10℃で撹拌してゆっくりと加水分解を行うことにより作成した。
【0021】可視光活性光触媒の浄化能力測定には、シリカウール2.5gに本発明の可視光活性光触媒を0.1g担持したものを用いた。外表面を紫外線吸収膜で覆った1lガラス容器中に、アセトアルデヒドを3000ppm含有させた標準空気(酸素21%、窒素79%)と可視光活性光触媒担持シリカウールを密閉し、紫外線カットガラスを介して40Wの白熱灯を照射した。アセトアルデヒドの濃度変化はガスクロマトグラフにて測定した。比較にはシリカウール2.5gに酸化チタンのみを0.1g担持したものを用いた。
【0022】実施例1
95gの純水にテトラクロロ金酸4水和物20.59mgを加えて加熱し、還流沸騰させながら、5gの純水にクエン酸ナトリウム2水和物58.8mgを溶解した水溶液を加え、10分間撹拌した後、室温まで冷却した。その後、硝酸アルミニウム9水和物5mgを加えて撹拌し、2次粒子化金庫微粒子コロイド溶液を作成した。この2次粒子化金属微粒子コロイド溶液と酸化チタンコロイド溶液100ccとを混合し、酸化チタン粒子上に二次粒子化金微粒子を吸着担持して可視光活性光触媒を作成した。可視光域での吸収スペクトルを測定した結果を図1に示す。酸化チタン上に担持した二次粒子化金微粒子は、約40nmの金微粒子が2から3個凝集した二次粒子を形成していた。
【0023】実施例2
テトラクロロ金酸4水和物20.59mgの代わりに塩素酸銀9.57mgを用いたこと以外は、実施例1と同様にして、酸化チタン粒子上に二次粒子化銀微粒子を吸着担持して可視光活性光触媒を作成した。可視光域での吸収スペクトルを測定した結果を図1に示す。酸化チタン上に担持した二次粒子化銀微粒子は、約40nmの銀微粒子が2から3個凝集した二次粒子を形成していた。
【0024】実施例3
90gの純水に塩化銅(II)二水和物8.52mgと分子量10000のポリビニルピロリドン55.5mgを加えて十分に容解した後、水素化ホウ素ナトリウム3.78mgを純水10gに溶解した水溶液を加えて良く撹拌した。その後、硝酸アルミニウム9水和物5mgを加えて撹拌し、2次粒子化金属微粒子コロイド溶液を作成した。この2次粒子化金属微粒子コロイド溶液と酸化チタンコロイド溶液100ccとを混合し、酸化チタン粒子上に二次粒子化銅微粒子を吸着担持して可視光活性光触媒を作成した。可視光域での吸収スペクトルを測定した結果を図1に示す。酸化チタン上に担持した二次粒子化銅微粒子は、約35nmの銅微粒子が2から3個凝集した二次粒子を形成していた。
【0025】実施例4
95gの純水にテトラクロロ金酸4水和物20.59mgを加えて加熱し、還流沸騰させながら、5gの純水にクエン酸ナトリウム2水和物58.8mgを溶解した水溶液を加え、10分間撹拌した後、室温まで冷却して金微粒子コロイドを得た。95gの純水に塩素酸銀9.57mgを加えて加熱し、還流沸騰させながら、5gの純水にクエン酸ナトリウム2水和物58.8mgを溶解した水溶液を加え、10分間撹拌した後、室温まで冷却して銀微粒子コロイドを得た。得られた金微粒子コロイドと銀微粒子コロイドを混合した後、硝酸アルミニウム9水和物10mgを加えて撹拌し、2次粒子化金属微粒子コロイド溶液を作成した。この2次粒子化金属微粒子コロイド溶液と酸化チタンコロイド溶液200ccとを混合し、酸化チタン粒子上に二次粒子化金属微粒子を吸着担持して可視光活性光触媒を作成した。可視光域での吸収スペクトルを測定した結果を図2に示す。酸化チタン上に担持した金と銀の複合二次粒子化金属微粒子は、約40nmの金属微粒子が2から3個凝集した二次粒子を形成していた。
【0026】実施例5
95gの純水にテトラクロロ金酸4水和物20.59mgを加えて加熱し、還流沸騰させながら、5gの純水にクエン酸ナトリウム2水和物58.8mgを溶解した水溶液を加え、10分間撹拌した後、室温まで冷却して金微粒子コロイドを得た。90gの純水に塩化銅(II)二水和物8.52mgと分子量10000のポリビニルピロリドン55.5mgを加えて十分に溶解した後、水素化ホウ素ナトリウム3.78mgを純水10gに溶解した水溶液を加えて良く撹拌して銅微粒子コロイドを得た。得られた金微粒子コロイドと銅微粒子コロイドを混合した後、硝酸アルミニウム9水和物10mgを加えて撹拌し、2次粒子化金属微粒子コロイド溶液を作成した。この2次粒子化金属微粒子コロイド溶液と酸化チタンコロイド溶液200ccとを混合し、酸化チタン粒子上に二次粒子化金属微粒子を吸着担持して可視光活性光触媒を作成した。可視光域での吸収スペクトルを測定した結果を図2に示す。酸化チタン上に担持した金と銅の複合二次粒子化金属微粒子は、約35nmの金属微粒子が2から3個凝集した二次粒子を形成していた。
【0027】実施例6
95gの純水に塩素酸銀9.57mgを加えて加熱し、還流沸騰させながら、5gの純水にクエン酸ナトリウム2水和物58.8mgを溶解した水溶液を加え、10分間撹拌した後、室温まで冷却して銀微粒子コロイドを得た。90gの純水に塩化銅(II)二水和物8.52mgと分子量10000のポリビニルピロリドン55.5mgを加えて十分に溶解した後、水素化ホウ素ナトリウム3.78mgを純水10gに溶解した水溶液を加えて良く撹拌して銅微粒子コロイドを得た。得られた銀微粒子コロイドと銅微粒子コロイドを混合した後、硝酸アルミニウム9水和物10mgを加えて撹拌し、2次粒子化金属微粒子コロイド溶液を作成した。この2次粒子化金属微粒子コロイド溶液と酸化チタンコロイド溶200cc液とを混合し、酸化チタン粒子上に二次粒子化金属微粒子を吸着担持して可視光活性光触媒を作成した。可視光域での吸収スペクトルを測定した結果を図2に示す。酸化チタン上に担持した銀と銅の複合二次粒子化金属微粒子は、約35nmの金属微粒子が2から3個凝集した二次粒子を形成していた。
【0028】実施例7
95gの純水にテトラクロロ金酸4水和物69.49mgを加えて加熱し、還流沸騰させながら、5gの純水にクエン酸ナトリウム2水和物29.4mgを溶解した水溶液を加え、10分間撹拌した後、室温まで冷却した。その後、硝酸アルミニウム9水和物5mgを加えて撹拌し、2次粒子化金属微粒子コロイド溶液を作成した。この2次粒子化金属微粒子コロイド溶液と酸化チタンコロイド溶液100ccとを混合し、酸化チタン粒子上に二次粒子化金微粒子を吸着担持して可視光活性光触媒を作成した。可視光域での吸収スペクトルを測定した結果を図3に示す。酸化チタン上に担持した二次粒子化金微粒子は、約60nmの金微粒子が2から3個凝集した二次粒子を形成していた。
【0029】実施例8
95gの純水にテトラクロロ金酸4水和物1.32gを加えて加熱し、還流沸騰させながら、5gの純水にクエン酸ナトリウム2水和物14.7mgを溶解した水溶液を加え、10分間撹拌した後、室温まで冷却した。その後、硝酸アルミニウム9水和物5mgを加えて撹拌し、2次粒子化金属微粒子コロイド溶液を作成した。この2次粒子化金属微粒子コロイド溶液と酸化チタンコロイド溶液100ccとを混合し、酸化チタン粒子上に二次粒子化金微粒子を吸着担持して可視光活性光触媒を作成した。可視光域での吸収スペクトルを測定した結果を図3に示す。酸化チタン上に担持した二次粒子化金微粒子は、約160nmの金微粒子が2から3個凝集した二次粒子を形成していた。
【0030】実施例9
合成後の金属微粒子の組成が金70重量%、白金30重量%となる様に、95gの純水にテトラクロロ金酸4水和物14.37mgとヘキサクロロ白金酸6水和物7.83mgを加えて加熱し、還流沸騰させながら、5gの純水にクエン酸ナトリウム2水和物58.8mgを溶解した水溶液を加え、10分間撹拌した後、室温まで冷却した。その後、硝酸アルミニウム9水和物5mgを加えて撹拌し、2次粒子化金属微粒子コロイド溶液を作成した。この2次粒子化金属微粒子コロイド溶液と酸化チタンコロイド溶液100ccとを混合し、酸化チタン粒子上に二次粒子化金属微粒子を吸着担持し、可視光活性光触媒を作成した。可視光域での吸収スペクトルを測定した結果を図3に示す。酸化チタン上に担持した二次粒子化金属微粒子は、約40nmの金属微粒子が2から3個凝集した二次粒子を形成していた。
【0031】実施例10
79.3gのエタノールに分子量10000のポリビニルピロリドン55.5mgとテトラクロロ金酸4水和物20.59mgを加えて加熱し、10分間還流沸騰させた後、室温まで冷却した。その後、硝酸アルミニウム9水和物5mgを加えて撹拌し、2次粒子化金属微粒子コロイド溶液を作成した。この2次粒子化金属微粒子コロイド溶液にチタンテトライソプロポキシド3.13gを加えて良く混合した後、エタノール100ccと純水0.36gを添加し、10℃で撹拌してゆっくりと加水分解を行い、酸化チタン粒子中に2次粒子化金微粒子が分散した可視光活性光触媒を作成した。可視光域での吸収スペクトルを測定した結果を図3に示す。酸化チタン中に分散した二次粒子化金微粒子は、約40nmの金微粒子が2から3個凝集した二次粒子を形成していた。
【0032】比較例1
95gの純水にテトラクロロ金酸4水和物1.58gを加えて加熱し、還流沸騰させながら、5gの純水にクエン酸ナトリウム2水和物10mgを溶解した水溶液を加え、10分間撹拌した後、室温まで冷却した。その後、硝酸アルミニウム9水和物5mgを加えて撹拌し、2次粒子化金属微粒子コロイド溶液を作成した。この2次粒子化金属微粒子コロイド溶液と酸化チタンコロイド溶液100ccとを混合し、酸化チタン粒子上に二次粒子化金微粒子を吸着担持して可視光活性光触媒を作成した。可視光域での吸収スペクトルを測定した結果を図4に示す。酸化チタン上に担持した二次粒子化金微粒子は、約170nmの金微粒子が2から3個凝集した二次粒子を形成していた。
【0033】比較例2
合成後の金属微粒子の組成が金60重量%、白金40重量%となる様に、95gの純水にテトラクロロ金酸4水和物12.31mgとヘキサクロロ白金酸6水和物10.42mgを加えて加熱し、還流沸騰させながら、5gの純水にクエン酸ナトリウム2水和物58.8mgを溶解した水溶液を加え、10分間撹拌した後、室温まで冷却した。その後、硝酸アルミニウム9水和物5mgを加えて撹拌し、2次粒子化金属微粒子コロイド溶液を作成した。この2次粒子化金属微粒子コロイド溶液と酸化チタンコロイド溶液100ccとを混合し、酸化チタン粒子上に二次粒子化金属微粒子を吸着担持し、可視光活性光触媒を作成した。可視光域での吸収スペクトルを測定した結果を図4に示す。酸化チタン上に担持した二次粒子化金属微粒子は、約40nmの金属微粒子が2から3個凝集した二次粒子を形成していた。
【0034】比較例3
エタノール100ccに純水0.36gを加えて良く混合した後、チタンテトライソプロポキシド3.13gを添加し、10℃で撹拌してゆっくりと加水分解を行い、酸化チタン光触媒を作成した。得られた酸化チタン光触媒の可視光域での吸収スペクトルを測定した結果を図4に示す。
【0035】比較例4
79.3gのエタノールに分子量10000のポリビニルピロリドン55.5mgとテトラクロロ金酸4水和物20.59mgを加えて加熱し、10分間還流沸騰させた後、室温まで冷却して金属微粒子コロイド溶液を作成した。この金属微粒子コロイド溶液にチタンテトライソプロポキシド3.13gを加えて良く混合した後、エタノール100ccと純水0.36gを添加し、10℃で撹拌してゆっくりと加水分解を行い、酸化チタン粒子中に金微粒子が分散した光触媒を作成した。可視光域での吸収スペクトルを測定した結果を図4に示す。酸化チタン中に分散した金微粒子の粒径は約40nmであった。
【0036】実施例1から3で作成した可視光活性光触媒の浄化能力測定を行った結果を図5に、実施例4から6で作成した可視光活性光触媒の浄化能力測定を行った結果を図6に、実施例7から10で作成した可視光活性光触媒の浄化能力測定を行った結果を図7に、比較例1から4で作成した光触媒および可視光活性光触媒の浄化能力測定を行った結果を図8に示す。このように、実施例1から10の可視光活性光触媒は、可視光にて高い光触媒活性を示した。一方、比較例1から4の光触媒は、可視光にて低い光触媒活性を示した。
【0037】
【発明の効果】
以上説明した様に、プラズモン吸収を示すAu、Ag、Cuの金属微粒子が2個以上凝集した二次粒子を、酸化チタン等の光触媒中に分散または光触媒表面に担持する事により、今まで吸収が困難であった600〜800nmの光を吸収して高い触媒活性を示す可視光活性光触媒を作成した。
【0038】Au,Ag,またはCuに、 Pt、Rh、Pd、Ir、Zn、PbまたはBi等の金属を30重量%まで混合して合金化することによりプラズモン吸収波長ピークを約50nm長波長側にシフトさせることが可能であり、このように合金化した金属微粒子を二次粒子化した場合に新たに発生する吸収ピークも同様に長波長側にシフトすることも見い出した。
【0039】さらに、Au,AgまたはCuの微粒子の粒径を、60nm以上160nm以下にすることにより、波長吸収ピークが最大で約100nm長波長側にシフトし、このように粒径を多きくした金属微粒子を二次粒子化した場合に新たに発生する吸収ピークも同様に長波長側にシフトすることも見い出した。これらの可視光活性光触媒を組み合わせる事により、可視光域全体で効率良く光を吸収でき、高い触媒活性を示す可視光活性光触媒を作成できる。この可視光活性光触媒は可視光で活性化できるため、蛍光灯や白熱灯の様に紫外線をほとんど含まない光源でも使用でき、近年問題となっているシックハウス症候群の原因物質や悪臭等を、室内の光だけで分解除去できる様になる。
【図面の簡単な説明】
【図1】実施例1、2、3の可視光吸収スペクトルを示す図である。
【図2】実施例4、5、6の可視光吸収スペクトルを示す図である。
【図3】実施例7、8、9、10の可視光吸収スペクトルを示す図である。
【図4】比較例1、2、3、4の可視光吸収スペクトルを示す図である。
【図5】実施例1、2、3の可視光活性光触媒のアセトアルデヒド浄化能力測定結果を示す図である。
【図6】実施例4、5、6の可視光活性光触媒のアセトアルデヒド浄化能力測定結果を示す図である。
【図7】実施例7、8、9、10の可視光活性光触媒のアセトアルデヒド浄化能力測定結果を示す図である。
【図8】比較例1、2、3、4の光触媒のアセトアルデヒド浄化能力測定結果を示す図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a photocatalyst that can be activated by visible light.
[0002]
[Prior art]
Conventionally, anatase or rutile type titanium oxide has been known as a photocatalyst, but since it is activated only by ultraviolet rays of about 380 nm or less, it was necessary to use sunlight or an ultraviolet radiation lamp. For this reason, research has been actively conducted to extend the wavelength at which the photocatalyst can be activated to the visible light region.
For example, attempts to dope various metals into a photocatalyst or perform ion implantation (Japanese Patent Application Laid-Open No. 9-192496, Surface Chemistry, Vol. 20, No. 60-65, 1999, etc.), or to generate oxygen defects or structural defects Attempts have been made to activate visible light (industrial materials Vol. 48, No. 6, pp. 26-44, 2000, etc.). However, the absorption wavelength is limited, and a visible light active photocatalyst showing high activity has not been obtained.
Japanese Patent Application Laid-Open No. 11-104500 describes a photocatalyst in which a metal in a cluster state exhibiting absorption by plasma resonance (plasmon absorption) in the visible light region is dispersed in a photocatalytic substance. However, since the metal fine particles are dispersed in the photocatalyst serving as a medium, there is a disadvantage that the interaction with the medium is induced to affect the polarization due to the electric field, and the plasmon absorption becomes unclear. Further, since plasmon absorption can only absorb a wavelength specific to each metal, for example, in the case of fine particles of Ag, Au, and Cu, which are stable and clear plasmon absorption in a medium or air, 420, 520, Although the wavelength around 570 nm can be absorbed, there is a drawback that it cannot be activated by light in the region of 600 to 800 nm.
Japanese Patent Application Laid-Open No. Hei 10-146531 discloses a photocatalyst in which the catalytic activity is improved by supporting fine metal particles having an average particle size of 1 to 10 nm on the photocatalyst surface. Not obtained.
On the other hand, there has been reported a visible light active photocatalyst in which semiconductor fine particles are dispersed in a photocatalyst and utilizing the sub-band absorption of the semiconductor fine particles. However, it has a low absorption intensity and can absorb light near 690 and 760 nm like semiconductors such as CdSe and CdTe. However, when light is applied in the presence of water, a self-dissolution phenomenon occurs and the photocatalyst surface is covered. Most of them are unstable and no highly active visible light active photocatalyst has been obtained.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to provide a visible light active photocatalyst that efficiently absorbs light in the visible light region and exhibits high catalytic activity.
[0008]
[Means for Solving the Problems]
Li, Na, K, Au, Ag, Cu, and the like are known as metals exhibiting clear plasmon absorption. Au, Ag, and Cu are listed as metals stable in a medium or in air. The plasmon absorption wavelengths of these metals are 520, 420, and 570 nm. Such plasmon absorption is generally found in metal fine particles of several nm to several tens nm. However, when two or more of these metal fine particles are agglomerated to form secondary particles, different absorption wavelength peaks appear; Au shows absorption wavelength peaks of 520 and 720 nm, Ag shows 420 and 620 nm, and Cu shows absorption wavelength peaks of 570 and 800 nm. I understood.
The secondary particles of Au and Ag have an absorption peak of 660 nm in addition to the absorption peaks of 520 and 420 nm, and the secondary particles of Ag and Cu have absorption peaks of 420 and 570 nm. An absorption peak of 690 nm appears, secondary particles of Au and Cu have an absorption peak of 760 nm in addition to the absorption peaks of 520 and 570 nm, and secondary particles of Au, Ag and Cu have an absorption peak of 520 nm. It was found that an absorption peak at 700 nm appeared in addition to the absorption peaks at 420 and 570 nm.
[0010] As described above, by dispersing or carrying on the photocatalyst the secondary particulate metal fine particles obtained by aggregating two or more metal fine particles such as Au, Ag, and Cu, the light in the visible light region can be efficiently emitted. It has been found that a visible light active photocatalyst that can be well absorbed and activated is obtained.
Although the secondary metal particles are dispersed in the photocatalyst, they absorb light in the visible light range and exhibit photocatalytic activity, but it has been confirmed that the activity is higher when supported on the photocatalyst surface. Although the detailed catalytic reaction mechanism is unknown, it is considered that the fine metal particles dispersed in the photocatalyst may affect the polarization due to the electric field due to the interaction with the medium, and the charge polarized by the fine metal particles may actually react. It is conceivable that the photocatalyst surface does not reach the surface sufficiently. When the metal fine particles are carried on the surface in contact with the optical medium, the charge of polarization generated on the surface of the metal fine particles due to plasma resonance is effectively transferred to the photocatalyst to generate electrons and holes on the photocatalyst surface, so that high activity is obtained. Conceivable.
Further, the plasmon absorption peak can be changed by changing the composition and the particle size of the metal fine particles. Au, Ag, or Cu is mixed with a metal such as Pt, Rh, Pd, Ir, Zn, Pb, or Bi up to 30% by weight and alloyed to shift the plasmon absorption wavelength peak to a longer wavelength of about 50 nm. Has found that it is possible. It has also been found that when the alloyed metal fine particles are converted into secondary particles, the newly generated absorption peak similarly shifts to longer wavelengths.
It has also been found that when the particle size of the fine particles of Au, Ag and Cu is 60 nm or more, the plasmon absorption peak shifts to the longer wavelength side, and when it is 170 nm or more, the plasmon absorption peak disappears. It has also been found that the absorption peak generated when such metal fine particles having a particle size of 60 to 160 nm are converted into secondary particles is similarly shifted to the longer wavelength side.
Hereinafter, the present invention will be described in detail. For the photocatalyst, titanium oxide powder synthesized by hydrolyzing titanium tetraisopropoxide was used.In addition to this, titanium oxide powder or a coating film synthesized by pulverization, thermite method, CVD, etc. Titanium oxide single crystals or polycrystals synthesized by the Czochralski method or the skull melting method can also be used. Many methods have been proposed for synthesizing Au, Ag, and Cu metal fine particles, and metal fine particles synthesized by any method may be used. For example, there is a method of reducing a metal compound such as a metal chloride in an aqueous solution to which a colloid stabilizer such as citric acid, ascorbic acid, PVA, or polyvinylpyrrolidone is added. In order to change the particle size of the metal fine particles, metal fine particles having a particle size of 7.5 nm to 180 nm or more can be obtained by changing the concentration of the colloid stabilizer or the metal compound.
In order to convert the metal fine particles into secondary particles, a method of adding a small amount of a salt or an electrolyte or a redispersion method of re-dispersing once dried and agglomerated particles can be used. For example, by adding about 0.002 to 0.005% of aluminum nitrate to a colloid solution in which Au fine particles are dispersed, a secondary particle-dispersed colloidal solution in which two to three Au fine particles are aggregated can be obtained.
As a method for supporting the secondary particulate metal fine particles on the titanium oxide photocatalyst, a method of mixing a secondary particulate metal fine particle colloidal solution with a titanium oxide dispersed solution, adsorbing and supporting the titanium oxide on the titanium oxide photocatalyst, and drying. Alternatively, the powdery titanium oxide may be supported by impregnating or spraying the colloidal solution of the secondary metal particles into fine particles, followed by drying.
As a method for dispersing the secondary fine metal particles in the titanium oxide photocatalyst, titanium tetraisopropoxide is added to the secondary fine metal organosol and then hydrolyzed to form the secondary fine metal particles. A method of synthesizing a fine particle-dispersed titanium oxide photocatalyst or the like can be used. The secondary particle-formed metal fine particle organosol can be prepared by a method of synthesizing the secondary particle-formed metal fine particles in an organic solvent such as ethanol or a method of re-dispersing once dried and aggregated metal fine particles in an organic solvent.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be described based on examples.
The particle size and the state of aggregation of the metal fine particles were measured with a transmission electron microscope. The absorption spectrum of the visible light active photocatalyst was measured using a double monochromator visible ultraviolet near infrared spectrophotometer.
The titanium oxide colloid solution used in the examples and comparative examples of the present invention was mixed with 200 cc of ethanol, 0.72 g of pure water and mixed well, and then 6.26 g of titanium tetraisopropoxide was added. It was prepared by stirring and slowly hydrolyzing.
In the measurement of the purifying ability of the visible light active photocatalyst, a silica wool having 2.5 g of the visible light active photocatalyst of the present invention supported thereon was used. Standard air (21% oxygen, 79% nitrogen) containing 3000 ppm of acetaldehyde and silica wool supporting a visible light active photocatalyst are sealed in a 1-liter glass container whose outer surface is covered with an ultraviolet absorbing film, and the ultraviolet light cut glass is used to seal the air. A 40 W incandescent lamp was applied. The change in the concentration of acetaldehyde was measured by gas chromatography. For comparison, a sample in which only 0.1 g of titanium oxide was supported on 2.5 g of silica wool was used.
20.59 mg of tetrachloroauric acid tetrahydrate was added to 95 g of pure water, and the mixture was heated and refluxed, and an aqueous solution obtained by dissolving 58.8 mg of sodium citrate dihydrate in 5 g of pure water was added thereto. After stirring for minutes, the mixture was cooled to room temperature. Thereafter, 5 mg of aluminum nitrate 9-hydrate was added and stirred to prepare a secondary particle safe colloidal solution. The colloidal solution of the secondary particulate metal fine particles and 100 cc of the titanium oxide colloid solution were mixed, and the secondary particulate gold fine particles were adsorbed and carried on the titanium oxide particles to prepare a visible light active photocatalyst. FIG. 1 shows the result of measuring the absorption spectrum in the visible light region. The secondary particle-formed gold fine particles supported on titanium oxide formed secondary particles in which two to three gold fine particles of about 40 nm were aggregated.
In the same manner as in Example 1 except that 9.57 mg of silver chlorate was used instead of 20.59 mg of tetrachloroauric acid tetrahydrate, secondary silver particles were adsorbed and supported on titanium oxide particles. Thus, a visible light active photocatalyst was prepared. FIG. 1 shows the result of measuring the absorption spectrum in the visible light region. The secondary silver fine particles supported on the titanium oxide formed secondary particles in which two to three silver fine particles of about 40 nm were aggregated.
To 90 g of pure water, 8.52 mg of copper (II) chloride dihydrate and 55.5 mg of polyvinylpyrrolidone having a molecular weight of 10,000 were added and sufficiently dissolved, and 3.78 mg of sodium borohydride was dissolved in 10 g of pure water. The aqueous solution was added and stirred well. Thereafter, 5 mg of aluminum nitrate 9-hydrate was added and stirred to prepare a colloidal solution of secondary particulate metal fine particles. The colloidal solution of the secondary particulate metal fine particles and 100 cc of the titanium oxide colloid solution were mixed, and the secondary particulate copper fine particles were adsorbed and supported on the titanium oxide particles to prepare a visible light active photocatalyst. FIG. 1 shows the result of measuring the absorption spectrum in the visible light region. The secondary particulate copper fine particles supported on the titanium oxide formed secondary particles in which two to three copper fine particles of about 35 nm were aggregated.
20.59 mg of tetrachloroauric acid tetrahydrate was added to 95 g of pure water, and the mixture was heated and refluxed, and an aqueous solution obtained by dissolving 58.8 mg of sodium citrate dihydrate in 5 g of pure water was added thereto. After stirring for minutes, the mixture was cooled to room temperature to obtain a colloidal gold particle. 9.57 mg of silver chlorate was added to 95 g of pure water, and the mixture was heated and refluxed, and an aqueous solution of 58.8 mg of sodium citrate dihydrate dissolved in 5 g of pure water was added thereto while stirring under reflux, followed by stirring for 10 minutes. After cooling to room temperature, a silver fine particle colloid was obtained. After mixing the obtained colloidal gold particles and colloidal silver particles, 10 mg of aluminum nitrate nonahydrate was added and stirred to prepare a secondary particulate metal colloid solution. The colloidal solution of the secondary metal particles and 200 cc of the titanium oxide colloid solution were mixed, and the secondary metal particles were adsorbed and carried on the titanium oxide particles to prepare a visible light active photocatalyst. FIG. 2 shows the result of measuring the absorption spectrum in the visible light region. The composite metal particles of gold and silver supported on titanium oxide were formed into secondary particles in which two to three metal fine particles of about 40 nm were aggregated.
20.59 mg of tetrachloroauric acid tetrahydrate was added to 95 g of pure water, and the mixture was heated and refluxed, and an aqueous solution obtained by dissolving 58.8 mg of sodium citrate dihydrate in 5 g of pure water was added thereto. After stirring for minutes, the mixture was cooled to room temperature to obtain a colloidal gold particle. To 90 g of pure water, 8.52 mg of copper (II) chloride dihydrate and 55.5 mg of polyvinylpyrrolidone having a molecular weight of 10,000 were added and sufficiently dissolved, and then an aqueous solution in which 3.78 mg of sodium borohydride was dissolved in 10 g of pure water. Was added and stirred well to obtain a copper fine particle colloid. After mixing the obtained gold fine particle colloid and copper fine particle colloid, 10 mg of aluminum nitrate 9 hydrate was added and stirred to prepare a secondary fine particle metal colloid solution. The colloidal solution of the secondary metal particles and 200 cc of the titanium oxide colloid solution were mixed, and the secondary metal particles were adsorbed and carried on the titanium oxide particles to prepare a visible light active photocatalyst. FIG. 2 shows the result of measuring the absorption spectrum in the visible light region. The composite secondary metal particles of gold and copper supported on titanium oxide formed secondary particles in which two to three metal particles of about 35 nm were aggregated.
9.57 mg of silver chlorate was added to 95 g of pure water, and the mixture was heated and refluxed, and an aqueous solution of 58.8 mg of sodium citrate dihydrate dissolved in 5 g of pure water was added thereto while stirring under reflux, followed by stirring for 10 minutes. After cooling to room temperature, a silver fine particle colloid was obtained. To 90 g of pure water, 8.52 mg of copper (II) chloride dihydrate and 55.5 mg of polyvinylpyrrolidone having a molecular weight of 10,000 were added and sufficiently dissolved, and then an aqueous solution in which 3.78 mg of sodium borohydride was dissolved in 10 g of pure water. Was added and stirred well to obtain a copper fine particle colloid. After mixing the obtained silver fine particle colloid and the copper fine particle colloid, 10 mg of aluminum nitrate nonahydrate was added and stirred to prepare a secondary fine particle metal colloid solution. The colloidal solution of the secondary metal particles and the 200 cc solution of the titanium oxide colloid solution were mixed, and the secondary metal particles were adsorbed and carried on the titanium oxide particles to prepare a visible light active photocatalyst. FIG. 2 shows the result of measuring the absorption spectrum in the visible light region. The composite secondary metal particles of silver and copper supported on titanium oxide formed secondary particles in which two to three metal particles of about 35 nm were aggregated.
To 95 g of pure water, 69.49 mg of tetrachloroauric acid tetrahydrate was added, and the mixture was heated and refluxed, and an aqueous solution of 29.4 mg of sodium citrate dihydrate dissolved in 5 g of pure water was added thereto. After stirring for minutes, the mixture was cooled to room temperature. Thereafter, 5 mg of aluminum nitrate 9-hydrate was added and stirred to prepare a colloidal solution of secondary particulate metal fine particles. The colloidal solution of the secondary particulate metal fine particles and 100 cc of the titanium oxide colloid solution were mixed, and the secondary particulate gold fine particles were adsorbed and carried on the titanium oxide particles to prepare a visible light active photocatalyst. FIG. 3 shows the result of measuring the absorption spectrum in the visible light region. The secondary particle-formed gold fine particles supported on the titanium oxide formed secondary particles in which two to three gold particles of about 60 nm were aggregated.
Embodiment 8
To 95 g of pure water, 1.32 g of tetrachloroauric acid tetrahydrate was added and heated, and while refluxing and boiling, an aqueous solution in which 14.7 mg of sodium citrate dihydrate was dissolved in 5 g of pure water was added. After stirring for minutes, the mixture was cooled to room temperature. Thereafter, 5 mg of aluminum nitrate 9-hydrate was added and stirred to prepare a colloidal solution of secondary particulate metal fine particles. The colloidal solution of the secondary particulate metal fine particles and 100 cc of the titanium oxide colloid solution were mixed, and the secondary particulate gold fine particles were adsorbed and carried on the titanium oxide particles to prepare a visible light active photocatalyst. FIG. 3 shows the result of measuring the absorption spectrum in the visible light region. The secondary particle-formed gold fine particles supported on titanium oxide formed secondary particles in which two to three gold particles of about 160 nm were aggregated.
Embodiment 9
To 37 g of pure water, 14.37 mg of tetrachloroauric acid tetrahydrate and 7.83 mg of hexachloroplatinic acid hexahydrate were added to 95 g of pure water so that the composition of the synthesized metal fine particles would be 70% by weight of gold and 30% by weight of platinum. In addition, while heating and reflux boiling, an aqueous solution in which 58.8 mg of sodium citrate dihydrate was dissolved in 5 g of pure water was added, followed by stirring for 10 minutes and then cooling to room temperature. Thereafter, 5 mg of aluminum nitrate 9-hydrate was added and stirred to prepare a colloidal solution of secondary particulate metal fine particles. The colloidal solution of the secondary metal particles and 100 cc of the titanium oxide colloid solution were mixed, and the secondary metal particles were adsorbed and carried on the titanium oxide particles to prepare a visible light active photocatalyst. FIG. 3 shows the result of measuring the absorption spectrum in the visible light region. The secondary fine metal particles supported on titanium oxide formed secondary particles in which two to three metal fine particles of about 40 nm were aggregated.
Embodiment 10
To 79.3 g of ethanol, 55.5 mg of polyvinylpyrrolidone having a molecular weight of 10,000 and 20.59 mg of tetrachloroauric acid tetrahydrate were added, heated, boiled under reflux for 10 minutes, and then cooled to room temperature. Thereafter, 5 mg of aluminum nitrate 9-hydrate was added and stirred to prepare a colloidal solution of secondary particulate metal fine particles. After adding 3.13 g of titanium tetraisopropoxide to the colloidal solution of the secondary metal particles and mixing well, 100 cc of ethanol and 0.36 g of pure water were added, and the mixture was stirred at 10 ° C. and slowly hydrolyzed. Then, a visible light active photocatalyst in which secondary fine particles of gold were dispersed in titanium oxide particles was prepared. FIG. 3 shows the result of measuring the absorption spectrum in the visible light region. The secondary fine-particled gold fine particles dispersed in the titanium oxide formed secondary particles in which two to three gold fine particles of about 40 nm were aggregated.
Comparative Example 1
1.58 g of tetrachloroauric acid tetrahydrate was added to 95 g of pure water, and the mixture was heated and refluxed, and an aqueous solution obtained by dissolving 10 mg of sodium citrate dihydrate in 5 g of pure water was added thereto, followed by stirring for 10 minutes. Then, it was cooled to room temperature. Thereafter, 5 mg of aluminum nitrate 9-hydrate was added and stirred to prepare a colloidal solution of secondary particulate metal fine particles. The colloidal solution of the secondary particulate metal fine particles and 100 cc of the titanium oxide colloid solution were mixed, and the secondary particulate gold fine particles were adsorbed and carried on the titanium oxide particles to prepare a visible light active photocatalyst. FIG. 4 shows the result of measuring the absorption spectrum in the visible light region. The secondary fine-particled gold fine particles supported on titanium oxide formed secondary particles in which two to three gold fine particles of about 170 nm were aggregated.
Comparative Example 2
12.31 mg of tetrachloroauric acid tetrahydrate and 10.42 mg of hexachloroplatinic acid hexahydrate were added to 95 g of pure water so that the composition of the synthesized metal fine particles would be 60% by weight of gold and 40% by weight of platinum. In addition, while heating and reflux boiling, an aqueous solution in which 58.8 mg of sodium citrate dihydrate was dissolved in 5 g of pure water was added, followed by stirring for 10 minutes and then cooling to room temperature. Thereafter, 5 mg of aluminum nitrate 9-hydrate was added and stirred to prepare a colloidal solution of secondary particulate metal fine particles. The colloidal solution of the secondary metal particles and 100 cc of the titanium oxide colloid solution were mixed, and the secondary metal particles were adsorbed and carried on the titanium oxide particles to prepare a visible light active photocatalyst. FIG. 4 shows the result of measuring the absorption spectrum in the visible light region. The secondary fine metal particles supported on titanium oxide formed secondary particles in which two to three metal fine particles of about 40 nm were aggregated.
Comparative Example 3
After adding 0.36 g of pure water to 100 cc of ethanol and mixing well, 3.13 g of titanium tetraisopropoxide was added, and the mixture was stirred at 10 ° C. and slowly hydrolyzed to prepare a titanium oxide photocatalyst. FIG. 4 shows the result of measuring the absorption spectrum in the visible light region of the obtained titanium oxide photocatalyst.
Comparative Example 4
To 79.3 g of ethanol, 55.5 mg of polyvinylpyrrolidone having a molecular weight of 10,000 and 20.59 mg of tetrachloroauric acid tetrahydrate were added, heated and boiled under reflux for 10 minutes, and then cooled to room temperature to obtain a colloidal solution of fine metal particles. Created. After adding 3.13 g of titanium tetraisopropoxide to the metal fine particle colloid solution and mixing well, 100 cc of ethanol and 0.36 g of pure water were added, and the mixture was stirred at 10 ° C. and slowly hydrolyzed to obtain titanium oxide particles. A photocatalyst in which gold fine particles were dispersed was prepared. FIG. 4 shows the result of measuring the absorption spectrum in the visible light region. The particle size of the fine gold particles dispersed in the titanium oxide was about 40 nm.
FIG. 5 shows the results of measuring the purifying ability of the visible light active photocatalysts prepared in Examples 1 to 3, and FIG. 5 shows the results of measuring the purifying ability of the visible light active photocatalysts prepared in Examples 4 to 6. 6 shows the results of measuring the purifying ability of the visible light active photocatalysts prepared in Examples 7 to 10, and FIG. 7 shows the results of measuring the purifying ability of the photocatalysts and visible light active photocatalysts produced in Comparative Examples 1 to 4. Is shown in FIG. Thus, the visible light active photocatalysts of Examples 1 to 10 exhibited high photocatalytic activity in visible light. On the other hand, the photocatalysts of Comparative Examples 1 to 4 exhibited low photocatalytic activity in visible light.
[0037]
【The invention's effect】
As described above, by absorbing secondary particles of two or more metal particles of Au, Ag, and Cu exhibiting plasmon absorption in a photocatalyst such as titanium oxide or by carrying the particles on the photocatalyst surface, the absorption has been achieved up to now. A visible light-active photocatalyst was prepared that absorbs light of 600 to 800 nm, which was difficult, and exhibits high catalytic activity.
By mixing a metal such as Pt, Rh, Pd, Ir, Zn, Pb or Bi with Au, Ag, or Cu up to 30% by weight and alloying the same, the plasmon absorption wavelength peak becomes about 50 nm longer wavelength side. It has also been found that the absorption peak newly generated when the metal fine particles thus alloyed are converted into secondary particles also shifts to the longer wavelength side.
Further, by setting the particle size of the fine particles of Au, Ag, or Cu to 60 nm or more and 160 nm or less, the wavelength absorption peak shifts up to a longer wavelength of about 100 nm at the maximum, and thus the particle size is increased. It was also found that the absorption peak newly generated when the metal fine particles were converted into secondary particles similarly shifted to the longer wavelength side. By combining these visible light active photocatalysts, light can be efficiently absorbed in the entire visible light region, and a visible light active photocatalyst exhibiting high catalytic activity can be produced. Since this visible light active photocatalyst can be activated by visible light, it can be used even with a light source that hardly contains ultraviolet rays such as fluorescent lamps and incandescent lamps. It can be decomposed and removed only by light.
[Brief description of the drawings]
FIG. 1 is a diagram showing visible light absorption spectra of Examples 1, 2, and 3.
FIG. 2 is a view showing visible light absorption spectra of Examples 4, 5, and 6.
FIG. 3 is a diagram showing visible light absorption spectra of Examples 7, 8, 9, and 10.
FIG. 4 is a view showing visible light absorption spectra of Comparative Examples 1, 2, 3, and 4.
FIG. 5 is a graph showing the results of measuring the acetaldehyde purification ability of the visible light active photocatalysts of Examples 1, 2, and 3.
FIG. 6 is a graph showing the results of measuring the acetaldehyde purification ability of the visible light active photocatalysts of Examples 4, 5, and 6.
FIG. 7 is a graph showing the results of measuring the acetaldehyde purification ability of the visible light active photocatalysts of Examples 7, 8, 9, and 10.
FIG. 8 is a diagram showing the results of measuring the acetaldehyde purification ability of the photocatalysts of Comparative Examples 1, 2, 3, and 4.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003064162A JP3790222B2 (en) | 2003-02-04 | 2003-02-04 | Visible light active photocatalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003064162A JP3790222B2 (en) | 2003-02-04 | 2003-02-04 | Visible light active photocatalyst |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004237267A true JP2004237267A (en) | 2004-08-26 |
JP3790222B2 JP3790222B2 (en) | 2006-06-28 |
Family
ID=32959117
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003064162A Expired - Lifetime JP3790222B2 (en) | 2003-02-04 | 2003-02-04 | Visible light active photocatalyst |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3790222B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007190528A (en) * | 2006-01-23 | 2007-08-02 | Doshisha | Metal particulate fixed photocatalyst substance and its production method |
JP2008104996A (en) * | 2006-10-27 | 2008-05-08 | Central Japan Railway Co | Photocatalyst, coating liquid for forming photocatalyst and method for manufacturing photocatalyst |
JP2012217970A (en) * | 2011-04-13 | 2012-11-12 | Toyota Motor Corp | Catalyst for exhaust purification |
KR101249885B1 (en) * | 2011-03-16 | 2013-04-03 | 한국광기술원 | Photocatalyst water purifier using plasmon |
JP2014169210A (en) * | 2013-03-05 | 2014-09-18 | Hokkaido Univ | Hydrogen generator and hydrogen generation method |
JP2014195797A (en) * | 2013-03-07 | 2014-10-16 | 学校法人神奈川大学 | Preparation method of visible light-responsive photocatalyst and visible light-responsive photocatalyst intermediate, usage of visible light-responsive photocatalyst, and visible light-responsive photocatalyst |
WO2015146830A1 (en) * | 2014-03-26 | 2015-10-01 | 新日鉄住金化学株式会社 | Photocatalyst and method for producing same |
-
2003
- 2003-02-04 JP JP2003064162A patent/JP3790222B2/en not_active Expired - Lifetime
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007190528A (en) * | 2006-01-23 | 2007-08-02 | Doshisha | Metal particulate fixed photocatalyst substance and its production method |
JP2008104996A (en) * | 2006-10-27 | 2008-05-08 | Central Japan Railway Co | Photocatalyst, coating liquid for forming photocatalyst and method for manufacturing photocatalyst |
KR101249885B1 (en) * | 2011-03-16 | 2013-04-03 | 한국광기술원 | Photocatalyst water purifier using plasmon |
JP2012217970A (en) * | 2011-04-13 | 2012-11-12 | Toyota Motor Corp | Catalyst for exhaust purification |
JP2014169210A (en) * | 2013-03-05 | 2014-09-18 | Hokkaido Univ | Hydrogen generator and hydrogen generation method |
JP2014195797A (en) * | 2013-03-07 | 2014-10-16 | 学校法人神奈川大学 | Preparation method of visible light-responsive photocatalyst and visible light-responsive photocatalyst intermediate, usage of visible light-responsive photocatalyst, and visible light-responsive photocatalyst |
WO2015146830A1 (en) * | 2014-03-26 | 2015-10-01 | 新日鉄住金化学株式会社 | Photocatalyst and method for producing same |
JPWO2015146830A1 (en) * | 2014-03-26 | 2017-04-13 | 新日鉄住金化学株式会社 | Photocatalyst and method for producing the same |
Also Published As
Publication number | Publication date |
---|---|
JP3790222B2 (en) | 2006-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Jo et al. | Synthesis of MoS2 nanosheets loaded ZnO–g-C3N4 nanocomposites for enhanced photocatalytic applications | |
Han et al. | Efficient self‐assembly synthesis of uniform CdS spherical nanoparticles‐Au nanoparticles hybrids with enhanced photoactivity | |
Hu et al. | Hydrothermal synthesis of well-dispersed ultrafine N-doped TiO2 nanoparticles with enhanced photocatalytic activity under visible light | |
Liu et al. | In situ synthesis of plasmonic Ag@ AgI/TiO2 nanocomposites with enhanced visible photocatalytic performance | |
TWI476043B (en) | Photocatalytic materials and process for producing the same | |
Miao et al. | Origin of enhanced photocatalytic activity of F-doped CeO2 nanocubes | |
WO2015146830A1 (en) | Photocatalyst and method for producing same | |
Lazau et al. | Photocatalytic activity of undoped and Ag-doped TiO2-supported zeolite for humic acid degradation and mineralization | |
Li et al. | Preparation, characterization and photocatalytic activity of Bi2O3–MgO composites | |
Benhebal et al. | Photodegradation of phenol and benzoic acid by sol–gel-synthesized alkali metal-doped ZnO | |
Štengl et al. | In3+‐doped TiO2 and TiO2/In2S3 nanocomposite for photocatalytic and stoichiometric degradations | |
Chen et al. | Synthesis of ZnO and Au tethered ZnO pyramid-like microflower for photocatalytic degradation of orange II | |
de Moraes et al. | Facile preparation of Bi-doped ZnO/β-Bi2O3/Carbon xerogel composites towards visible-light photocatalytic applications: Effect of calcination temperature and bismuth content | |
Mohamed et al. | Photodeposition of Ag nanoparticles on mesoporous LaNaTaO3 nanocomposites for promotion H2 evolution | |
Karidas et al. | Photodegradation of methylene blue (MB) using cerium-doped zinc oxide nanoparticles | |
Chong et al. | Facile synthesis of single crystalline rhenium (VI) trioxide nanocubes with high catalytic efficiency for photodegradation of methyl orange | |
JP3790222B2 (en) | Visible light active photocatalyst | |
JP5219137B2 (en) | Dendritic substances and structures containing them | |
Meng et al. | Novel CuO/Bi2WO6 heterojunction with enhanced visible light photoactivity | |
Nakamura et al. | Fabrication of solid-solution gold–platinum nanoparticles with controllable compositions by high-intensity laser irradiation of solution | |
Liu et al. | One-pot synthesis of flower-like Bi2WO6/BiOCOOH microspheres with enhanced visible light photocatalytic activity | |
Benz et al. | Controlled growth of ultrasmall Cu2O clusters on TiO2 nanoparticles by atmospheric-pressure atomic layer deposition for enhanced photocatalytic activity | |
Lv et al. | Novel Pd-loaded urchin-like (NH4) xWO3/WO3 as an efficient visible-light-driven photocatalyst for partial conversion of benzyl alcohol | |
JP2009131761A (en) | Photocatalytic body | |
TWI272250B (en) | Visible light-activated photocatalyst and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050824 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051101 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051227 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060314 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060317 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100407 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100407 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110407 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120407 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130407 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |