JP2004237051A - Blood vessel visualizing method and apparatus - Google Patents

Blood vessel visualizing method and apparatus Download PDF

Info

Publication number
JP2004237051A
JP2004237051A JP2003068898A JP2003068898A JP2004237051A JP 2004237051 A JP2004237051 A JP 2004237051A JP 2003068898 A JP2003068898 A JP 2003068898A JP 2003068898 A JP2003068898 A JP 2003068898A JP 2004237051 A JP2004237051 A JP 2004237051A
Authority
JP
Japan
Prior art keywords
light
blood
blood vessel
skin
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003068898A
Other languages
Japanese (ja)
Inventor
Hiroki Ogawa
洋輝 小川
Jun Kikuchi
純 菊地
Yasuhiro Horiike
靖浩 堀池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003068898A priority Critical patent/JP2004237051A/en
Publication of JP2004237051A publication Critical patent/JP2004237051A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150015Source of blood
    • A61B5/15003Source of blood for venous or arterial blood
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150053Details for enhanced collection of blood or interstitial fluid at the sample site, e.g. by applying compression, heat, vibration, ultrasound, suction or vacuum to tissue; for reduction of pain or discomfort; Skin piercing elements, e.g. blades, needles, lancets or canulas, with adjustable piercing speed
    • A61B5/150106Means for reducing pain or discomfort applied before puncturing; desensitising the skin at the location where body is to be pierced
    • A61B5/15016Means for reducing pain or discomfort applied before puncturing; desensitising the skin at the location where body is to be pierced by accessories for bringing the piercing element into the body, e.g. through rotation of the piercing element
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150206Construction or design features not otherwise provided for; manufacturing or production; packages; sterilisation of piercing element, piercing device or sampling device
    • A61B5/150236Pistons, i.e. cylindrical bodies that sit inside the syringe barrel, typically with an air tight seal, and slide in the barrel to create a vacuum or to expel blood
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150206Construction or design features not otherwise provided for; manufacturing or production; packages; sterilisation of piercing element, piercing device or sampling device
    • A61B5/150244Rods for actuating or driving the piston, i.e. the cylindrical body that sits inside the syringe barrel, typically with an air tight seal, and slides in the barrel to create a vacuum or to expel blood
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150374Details of piercing elements or protective means for preventing accidental injuries by such piercing elements
    • A61B5/150381Design of piercing elements
    • A61B5/150389Hollow piercing elements, e.g. canulas, needles, for piercing the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150374Details of piercing elements or protective means for preventing accidental injuries by such piercing elements
    • A61B5/150381Design of piercing elements
    • A61B5/150503Single-ended needles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150748Having means for aiding positioning of the piercing device at a location where the body is to be pierced
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/153Devices specially adapted for taking samples of venous or arterial blood, e.g. with syringes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4887Locating particular structures in or on the body
    • A61B5/489Blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/42Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests having means for desensitising skin, for protruding skin to facilitate piercing, or for locating point where body is to be pierced
    • A61M5/427Locating point where body is to be pierced, e.g. vein location means using ultrasonic waves, injection site templates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/46Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests having means for controlling depth of insertion

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Hematology (AREA)
  • Vascular Medicine (AREA)
  • Dermatology (AREA)
  • Anesthesiology (AREA)
  • Manufacturing & Machinery (AREA)
  • Pain & Pain Management (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem of an unavoidable physical pain of a person to be taken blood who is compelled to put on a tourniquet and distend the blood vessel for confirming the position of the blood vessel in collecting the blood from the person. <P>SOLUTION: At least, a light containing wavelength components of at least 600-1,200 nm is applied on the skin surface for obtaining am image of the blood vessel right under the skin of the person and confirming the puncture position of a blood collecting needle. The spatial distribution of the intensity of the reflected light of the light once entering into the body and intruding deeper than the blood vessel is observed. This method can reduce the effects of the light directly reflected on the skin surface and the light entering into the body but reflected to the outside from the body before reaching the blood vessel. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明はヒトの皮下にある血管から中空の針を介して体外へと血液を採取する際の血管可視化方法ならびに装置に関する。
【0002】
【従来の技術】
従来、注射法による静脈血の採取は、駆血帯と呼ばれる弾力性を有するゴム状の紐を腕に巻きつけ、一時的に血流を制限したときに皮膚上に浮き出た静脈を狙い、注射針を当該静脈に穿刺し、その後に減圧吸引して血液を注射筒に引き込んでいた。
【0003】
また近年、微小な採血用針を備え、微細な溝流路や種々の分析器、分析装置を配置した数mmから数cm四方のチップ状血液分析装置が開発されている。(特開2001−258868)このようなチップ状の血液分析装置の針を被験者の皮膚に穿刺し、皮下の血管から血液を採取してこれをチップ上に引き込み、そこで血液中の種々の生化学物質(ナトリウム、カリウムイオン、グルコース、尿素窒素、クレアチニンなど)の濃度を分析する。当該チップは人々が自宅で用い、健康管理に役立てることを想定して開発されたものである。
【0004】
【発明が解決しようとする課題】
通常の血液採取時に用いられる駆血帯は、上でも述べたように皮膚上に血管を浮き出させて、採血を行う人が注射針を穿刺する部位を特定するために行っている。この駆血帯を腕に巻きつけ、圧迫することは注射針を穿刺したときの疼痛とともに被血液採取者に及ぼす苦痛の一つである。
【0005】
また、チップ状の血液分析装置においては、まず、できるだけ穿刺時の疼痛を抑制するために針の径が細くなっている(例えば外径100μm、内径50μm)ために、剛性(挫屈強度)が非常に低くなっている。このような強度低下を実効的に緩和するために、針の全長は短くすることが望まれ、またこのような要望は採取時に針内部に残留し、分析に用いられない血液量を少なくするという観点からも重要である。このように針の長さが短くなると、チップ自体も採血時に皮膚近傍まで近寄ることになり、当該チップは被験者自らが採血を行うことを想定しているので、血管を肉眼で見ることが困難となるという問題があった。
【0006】
また特願2001−319992に示されているように、針を皮膚に穿刺する際に、痛みを緩和する目的で針近傍の皮膚の雰囲気を減圧として皮膚を盛り上げ、そのとき針を自動的に皮膚に穿刺させる場合には、特に血管を見ることが難しくなり、場合によっては針を血管へと導くことができずに採血ができないという問題があった。
【0007】
上述のように、通常の注射による採血時の駆血帯による不快感の抑制や、チップ状の血液分析装置を用いたときの採血者である被験者が血管位置を確認しながら確実に採血するためには、針を皮膚に穿刺する際に血管位置を何らかの手法で監視しなければならない。
【0008】
このような目的でこれまでいくつかの血管可視化の手法が公知となっている。これらの公知例の多くは、体外から体内へと光を導き、その反射光や透過光から血管情報を得るというものである。例えば比較的厚さが小さい指や手の甲などに波長が700から1200nmの近赤外光を照射し、その裏側にCCD(Charge Coupled Device)のような撮像素子を配置して体内を透過してくる光の強度の空間分布を観察する。(特開平8−164124)このような近赤外光は、比較的人体を構成する水や血液中のヘモグロビンなどによる吸収係数が小さく透過しやすいため用いられることが多い。また血管部を透過してくる光は血液中の水やヘモグロビン濃度が他の部位よりも高いために透過してくる光は吸収により強度が弱くなっているために像は暗くなるが、その他の部分を透過してくる光は比較的吸収されずに強度が強いので明るい像が得られる。したがって血管像が得られることになる。
【0009】
上で述べたような近赤外光の透過による血管像の導出は、実際には光源の強度の制約から指や手の甲などの比較的肉厚が薄い部分でのみしか用いることができない。特によく採血時に用いられる上腕や前腕部では十分な強度の光を透過させることは難しい。そこで光を人体に照射して一旦侵入してから再度照射表面から反射してくる光を撮像素子によって捉え血管像を得るという方法も公知となっている。(特開平8−164125)このような反射光を用いた場合、直接皮膚表面で反射してくる光の強度が強く、一旦人体に入り込んでから再度人体から反射して出てくる光強度は比較的弱いので、血管情報を含む光(一旦人体に入り込んでから反射してきた光)のみを捉えるために、本公知例の場合光を照射する皮膚表面に液体を塗布して直接反射光を低減するようにしている。また400から600nmと600から800nmと波長の異なる2種類の光を皮膚に照射して、前者が後者に比較して一旦体内に侵入してから再度反射してくる光の成分が少ないことを利用し、両者で得られた画像を引き算して血管像を得るという方法も公知になっている。(特開平8−164123)
【0010】
以上述べたように光を用いて血管像を得る場合に、透過法では適用可能な部位が限られるという問題があった。また反射法を用いた場合には皮膚表面から直接反射してくる光を抑制するために皮膚表面に液体を塗布するというような煩雑な手間を要したり、2種類の光源、フィルター、ダイクロックミラー、画像解析機構などから構成される高価、複雑な装置が必要されるという問題があった。
【0011】
本発明が解決すべき課題は、被採血者に肉体的な負荷をかけることなく皮下の血管位置を安価な装置を用い、的確に把握する手段を提供することにある。
【0012】
【課題を解決するための手段】
上述したように光を体内へと導き血管像を得る場合、像を得る部位を選ばない反射法を用いるほうが望ましい。図1にはヒトの前腕部101にLED(Light Emitting Diode)102を光源として照射し、そのとき反射してくる光をCCD(Charge Coupled Device)104などの撮像素子によって捉え、その像をモニタ105に表示するシステムを示している。このとき用いる光の波長は、比較的皮膚の色素、血中ヘモグロビン、水などの皮膚や血管を構成する化合物に由来する吸収係数が低い600から1200nmのものを用いる。図2にはこのときの体内での光の伝播の様子を模式的に示している。ここで既述の語句と同一のものは同じ符号を用いている。(以下、同様)このように照射された光は皮膚表面で反射した光204と一旦体内へと侵入して拡散、反射しながら再度体外へと反射してくる光205とがあり、両者がCCD104によって捉えられる。この205の光のように皮膚表面近傍の血管(多くは静脈)下に一旦浸透してから再度皮膚外へと反射してくる光に血管情報が含まれ、血管部分では水、ヘモグロビンに由来する光吸収がその他の部分よりも大きいために、血管像は黒くモニタ上に浮き上がる。しかしながら実際には直接反射光204の強度が大きいために205のような光の情報はこれに重畳して隠れてしまい、モニタ上には血管像は現れない。
【0013】
そこで本発明者らは簡易かつ安価にこの直接光の影響を低減するために、図3に示すような直接反射光遮光装置301を用い直接反射光を抑制することを試みた。この装置は貫通穴302にLED102が挿入されており、これを図4に示すように血管観察部位近傍の皮膚表面に押し当てる。このとき直接反射光遮光装置301の少なくとも表面はLED102が放射する光の波長に対して透過性を有さないような材料を用いることが望ましい。図4においてLED102を照射すると、図2の場合と同様に光は一旦体内へと浸透する成分と皮膚表面で直接反射する成分とに分かれるが、このような装置301を用いた場合には装置自身が、直接反射光204を遮光するためにCCD104に捉えられることは無い。また、一旦体内に浸透するものの皮膚表面直下の血管下まで到達せずに反射してしまう光401は同様に装置自身に遮光され、体外に出ることは無い。結局体外へと放射される光は一旦体内へと浸透してから皮膚表面直下の血管下まで到達してから再度体外へと出てくるもの205であり、この光はCCDカメラ104に捉えられ、血管部は水、ヘモグロビン等に由来する吸収のため光強度が弱く、それ以外の部位は比較的光強度が強いためにモニタ105上には血管像が暗く浮き出ることになる。そしてこの血管像を見ながら注射針を血管部へと導けば、容易に穿刺、採血することができる。
【0014】
実際の血管像はLEDの放射光強度、CCDカメラレンズの絞り、当該CCDの感度およびゲインに加えて、図5に示す直接反射光遮光装置301の直接光遮光領域501の長さを適切に設定することで良好なものを得ることができる。特にこの直接光遮光領域長は上でも述べたように、皮膚表面で直接反射する光と一旦体内に浸透するものの皮膚表面直下の血管下まで到達せずに反射し、再度体外へと放射される光を遮蔽して、皮膚表面直下の血管下まで到達してから再度体外へと出てくる光は遮蔽しないように設定すれば良い。これらの直接反射光等の遮蔽すべき光は、直接反射光遮光装置における直接光遮光領域501を含む皮膚と接する面(LEDの貫通穴を除く)にLEDが放射する光を吸収するようなフィルタ膜を貼っておけばより確実に除去することができる。
【0015】
【発明の実施の形態】
図6には本発明の実施形態の一例を示す。図4と同様にLED102を取り付けた直接反射光遮光装置301をヒトの前腕部101に固定バンド601により取り付け、当該LEDを照射したときにCCDカメラ104によって捉えられる血管像をモニタ105に映し出す。図示はしていないが、より鮮明な血管像を得るためにCCDカメラ104により得られた画像をソフトウエア的あるいはハードウエア的に処理してからモニタ105上に表示しても良い。これにより血管位置を確認しながら採血用の注射器602を血管近傍に導き、注射針603を皮膚に穿刺し血管内に到達させ採血を行う。
【0016】
【実施例】
〔第一の実施例〕
図6に示した直接反射光遮光装置を用いた血管観察装置によりヒトの前腕内側の静脈血管を観察しながら注射針を当該血管に導き採血することを試みた。まず、LEDとしては放射中心波長850nm、半値幅40nmの近赤外光を放射するものを用い、また図示はしていないがCCDカメラのレンズ前に800nm以下の波長の光をカットし、それ以上の波長の光を透過させるフィルタを取り付けた。このような波長のLEDを選択した理由は、まず上でも述べたように700から1200nm程度の波長の光は体内を透過しやすいこと、通常の安価なCCD素子は500から600nm程度の波長に最も高い感度を有し、波長の増加に伴い感度が減少していくためなどである。またカメラにフィルターを取り付けることによって、室内の蛍光灯下においても可視光の影響を受けることなく血管観察することが可能となり、特に観察部位周辺を暗くする必要が無くなる。
【0017】
このようにして血管像を図6に示すようにモニタ105に映し出し、適当な血管を標的にして注射器602の注射針603を当該血管へと皮膚を穿刺して導く。このとき用いた針のサイズは23ゲージであり、このようにして血管内に針を導いてから注射器の筒内を陰圧として静脈血を筒内へと約5cc採取することができた。
【0018】
また図7に示すような注射器とLEDを取り付けた直接反射光遮光装置301を一体とした装置を用いて、同様に血管観察を行いながら採血することを試みた。同図において、直接反射光遮光装置301には当該装置の小型化のためにチップLED701(放射中心波長:860nm、半値幅:40nm)を用いており、また注射筒702とガイドレール704を介して接続されており、当該注射筒は直接反射光遮光装置を固定しているとガイドレールに沿って(図中の矢印方向に)移動することができる。またここで用いた注射針603は23ゲージのものを用いた。
【0019】
図8(A)に示す断面図のように、図7に示した注射器とLEDを取り付けた直接反射光遮光装置を一体とした装置をヒトの前腕部の皮膚表面801に設置する。このとき注射器の先端の針603はまだ皮膚に触れないような位置にセットしておき、この状態でLED701を点灯してCCDカメラ104によって血管203の像と針603の像を捉え、図には示していないがモニタ上にこれらを示して両者の位置関係から針が血管を穿刺できるような位置に注射器とLEDを取り付けた直接反射光遮光装置一体とした装置を皮膚801上で移動させる。このようにしてから同図(B)に示すように、ガイドレール704に沿って注射器を皮膚側へと押し出し、針603を標的である血管に穿刺し、血管内へと導いた後にシリンジ703を引いて注射筒702内に血液を吸引採取することができた。
【0020】
従来は駆血帯を用い血管を怒張させて採血していたが、このように本発明の血管の可視化装置を用いることで駆血帯を用いることなく採血することが可能となった。また以上の例ではLED素子を皮膚近傍の直接反射光遮光装置内に配置して照射していたが、LED等の照明装置を皮膚の遠隔に配置し、そこから光ファイバ等で直接反射光遮光装置内へと接続して皮膚表面に光を照射しても良い。
【0021】
〔第二の実施例〕
図9に示すようなチップ状の血液分析装置上に無痛針901(外径:100μm、内径:60μm)を介して血液を導入することを試みた。当該チップは2枚のポリカーボネート基板を張り合わせ構成されており、その中には血液の流路902、血液中のナトリウムイオン、カリウムイオン、グルコース、尿素窒素濃度を電気化学的にセンシングするセンサ電極903、およびセンサ出力の電気信号を出力する電極パッド904等から構成される。チップサイズは2cm角である。
【0022】
次に図10(A)に示すようにスライダ1001にチップ1002を載せて、これをホルダ本体1003にはめ込み、このホルダ本体と一体となっているシリンダ1004内にチップ先端の無痛針901がセットされるようにする。またこれまでの実施例と同様に直接反射光遮光装置301をヒトの上腕から前腕部の内側に設置して皮膚直下の血管像とともに上述のホルダにセットしたチップ先端の無痛針901との位置関係をCCDカメラ104によって捉え、図中には示していないがモニタ上でこれを確認する。このとき皮膚に放射する光の光源には図6と同じLEDを用いている。この両者の位置関係から、チップが搭載されている採血用ホルダの位置を調整し、無痛針を血管直上へと導きシリンダ1004を皮膚表面と接触させる。その後にシリンダ内排気ホース1005を介して排気し、シリンダ1004内を減圧とすると皮膚はシリンダ1004に吸い付くとともにシリンダ内へと撓む。すると無痛針901が皮膚を穿刺して自動的に体内へと侵入する。このとき無痛針が血管まで到達していれば、採血用吸引ホース1006を介してチップ内流路を減圧とし、血管から血液をチップ内へと導くことができる。もし血管まで針が到達していなければ同図(B)に示すようにスライダ1001を皮膚側へと押し、スポンジ1007を撓ませながら無痛針901をより深く体内へと導き血管まで到達させた後に上述と同様にして血液をチップ上に導く。
【0023】
以上のような手順により採血を試みたところチップ上に約4μlの血液を導入することができた。またこのようなチップ状の血液分析装置に血液を血管から導入する際には、そのチップサイズが比較的小さくまた針の長さが通常の注射法における採血針よりも短いために、CCDカメラで無痛針および血管像を観察する空間的余裕がない場合がある。またモニタに映し出される血管像は暗いので、その上に針が重なると、針が明瞭に確認できず、血管像と針の位置関係が確認できないことがある。このような場合、図11に示すようにシリンダ104にチップLED701を取り付けて、これを点灯して無痛針901に光を照射して針が明瞭に見えるようにする。またこのようなチップLEDの代わりに光ファイバを用い、光を導いて来て針に照射してもよい。さらに血管像と針の位置関係を観察するためにCCDカメラ自体は遠隔に設置しておき、そこから数mm径程度の大きさのファイバスコープ1101を皮膚近傍まで持って行き、これらの像を観察してもよい。
【0024】
また図12には直接反射光遮光装置301をホルダ本体1003に取り付けた場合について示している。またこれに加えてファイバスコープ1101もホルダ本体に取り付け血管像と針の位置関係を観察できるようになっている。シリンダ1004に取り付けてある針照明用のチップLED701は針の見え具合から放射強度を調節すればよい。このようにして血管像を見ながらホルダの位置を血管上に針が位置するように設置した後に、上で述べた手順で採血を行ったところ、チップ上に約4μlの血液を導くことができた。
【0025】
次に図13には無痛針901の周りを蔽っているシリンダ1004の先端が斜めにカットしてある場合について示している。この場合は図10とは異なり無痛針が皮膚表面に対して垂直に刺さるのではなく、斜めに刺さるという違いがある。ここではカット角を45°とし、これまでと同様な手順で血管像と針の位置関係を確認して針が血管に刺さるような位置に血管を設置してから採血を行った。この結果約4μlの血液をチップ上の流路に導くことができた。またこのように針を皮膚表面に対し斜めに穿刺する場合においても、垂直に穿刺した場合と同様に直接反射光遮光装置301をホルダ本体1003に取り付けても良い。この場合、図7に示した注射器と直接反射光遮光装置を一体とした場合と同様にホルダを直接反射光遮光装置に対して可動としても良い。さらに図13においてCCD104の代わりにファイバスコープ等で血管像と針を観察しても良く、やはりこのファイバスコープをホルダ本体と一体化して装置をコンパクトにしても良い。
【0026】
【発明の効果】
以上説明したとおり、通常の注射法により採血を行う場合に本発明の血管可視化方法ならびに装置を用いることで、従来のように駆血帯を用いることなく血管位置を確認し、確実に採血針を血管に導き、採血を行うことが可能となった。これにより被採血者に駆血帯装着時の肉体的な苦痛を及ぼすことなく採血できる。また無痛針を装備したチップ血液分析装置上にも、当該無痛針の位置と血管の位置を確認しながら採血を行うことで、より確実に採血を行うことができるようになった。したがって、家庭で各人が本発明により簡単に採血を行い、当該血液の分析を行うことで、健康管理ができる。
【図面の簡単な説明】
【図1】光反射法による血管像可視化装置を説明する図である。
【図2】光を人体に投射したときの体内での光の伝播の様子を説明する図である。
【図3】本発明の直接反射光遮光装置の一例を説明する図である。
【図4】本発明の直接反射光遮光装置を用いヒトの血管像を観察したときの様子を示す図である。
【図5】本発明の直接反射光遮光装置の側面図を示したものである。
【図6】本発明の直接反射光遮光装置を用いヒトの血管像を観察しながら注射法により採血を行う様子を示す図である。
【図7】本発明の直接反射光遮光装置と従来の注射器を一体化した装置を示す図である。
【図8】図7で示した装置を用いて採血を行う様子を示す図である。
【図9】チップ状血液分析装置を示す図である
【図10】図9に示したチップ状血液分析装置上に本発明の直接反射光遮光装置を用い、血液を導入する手順を説明する図である。
【図11】図9に示したチップ状血液分析装置上に本発明の直接反射光遮光装置を用い、血液を導入する様子を説明する図である。
【図12】図9に示したチップ状血液分析装置上に本発明の直接反射光遮光装置を用い、血液を導入する様子を説明する図である。
【図13】図9に示したチップ状血液分析装置上に本発明の直接反射光遮光装置を用い、血液を導入する様子を説明する図である。
【符号の説明】
101 ヒトの前腕部
102 LED
103 電源
104 CCDカメラ
105 モニタ
106 腕の像
201 皮膚
202 骨
203 血管
204 直接反射光
205 内部浸透後反射してきた光
301 直接反射光遮光装置
302 貫通穴
401 血管下まで到達せず反射する光
402 血管像
403 直接反射光遮光装置の像
501 直接光遮蔽領域
601 固定バンド
602 注射器
603 注射針
701 チップLED
702 注射筒
703 シリンジ
704 ガイドレール
801 皮膚表面
901 無痛針
902 流路
903 センサ電極
904 電極パッド
1001 スライダ
1002 チップ
1003 ホルダ本体
1004 シリンダ
1005 シリンダ内排気ホース
1006 採血用吸引ホース
1007 スポンジ
1101 ファイバスコープ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for visualizing a blood vessel when blood is collected from a blood vessel under the human skin through a hollow needle to the outside of the body.
[0002]
[Prior art]
Conventionally, venous blood is collected by the injection method by wrapping an elastic rubber-like cord called a tourniquet around an arm and aiming at a vein that has emerged on the skin when blood flow was temporarily restricted. A needle was punctured into the vein, and then the blood was drawn into the syringe by vacuum suction.
[0003]
In recent years, a chip-shaped blood analyzer having a size of several mm to several cm square, which is provided with a fine needle for collecting blood and has a fine groove channel, various analyzers, and analyzers, has been developed. (Japanese Patent Application Laid-Open No. 2001-258868) The needle of such a chip-shaped blood analyzer is punctured into the skin of a subject, blood is collected from a subcutaneous blood vessel, and the blood is drawn onto the chip. Analyze the concentration of substances (sodium, potassium ions, glucose, urea nitrogen, creatinine, etc.). The chip has been developed for people to use at home and for health management.
[0004]
[Problems to be solved by the invention]
The tourniquet used at the time of ordinary blood collection is used to raise a blood vessel above the skin and to specify a site where a person who collects blood punctures the injection needle as described above. Wrapping and squeezing the tourniquet around the arm is one of the pains to be given to a blood recipient together with the pain when puncturing the injection needle.
[0005]
Further, in the chip-shaped blood analyzer, first, the diameter of the needle is reduced (for example, outer diameter 100 μm, inner diameter 50 μm) in order to suppress pain at the time of puncturing as much as possible, so that rigidity (buckling strength) is reduced. It is very low. In order to effectively mitigate such a decrease in strength, it is desirable to shorten the entire length of the needle, and such a demand is that the amount of blood that remains in the needle at the time of collection and is not used for analysis is reduced. It is important from a viewpoint. When the length of the needle is shortened in this manner, the tip itself comes close to the skin at the time of blood collection, and it is difficult to see blood vessels with the naked eye because the chip assumes that the subject himself collects blood. There was a problem of becoming.
[0006]
Further, as shown in Japanese Patent Application No. 2001-319992, when a needle is punctured into the skin, the skin is raised by reducing the atmosphere of the skin near the needle for the purpose of relieving pain, and the needle is automatically placed on the skin at that time. In particular, it is difficult to see a blood vessel, and in some cases, there is a problem that a needle cannot be guided to the blood vessel and blood cannot be collected.
[0007]
As described above, to suppress discomfort due to the tourniquet at the time of blood collection by normal injection, and to ensure that the subject who is a blood collector when using the chip-shaped blood analyzer confirms the blood vessel position while collecting blood. Therefore, the position of the blood vessel must be monitored in some way when the needle is punctured into the skin.
[0008]
For this purpose, several techniques for visualizing blood vessels have been known. In many of these known examples, light is guided from outside the body to the body, and blood vessel information is obtained from reflected light or transmitted light. For example, near-infrared light having a wavelength of 700 to 1200 nm is applied to a finger or a back of a hand having a relatively small thickness, and an image pickup device such as a CCD (Charge Coupled Device) is arranged on the back side of the light to pass through the body. Observe the spatial distribution of light intensity. (Japanese Patent Application Laid-Open No. 8-164124) Such near-infrared light is often used because it has a relatively small absorption coefficient due to water and hemoglobin in blood constituting the human body and is easily transmitted. The light transmitted through the blood vessels is higher in water and hemoglobin concentration in blood than other parts, and the transmitted light is weakened by absorption, so the image becomes darker. Light transmitted through the portion is relatively not absorbed and has a high intensity, so that a bright image can be obtained. Therefore, a blood vessel image is obtained.
[0009]
Derivation of a blood vessel image by transmission of near-infrared light as described above can be actually used only in a relatively thin portion such as a finger or the back of a hand due to the limitation of the intensity of a light source. In particular, it is difficult to transmit light of sufficient intensity in the upper arm or forearm portion often used for blood collection. Therefore, a method of irradiating a human body with light, invading the human body once, and then capturing light reflected from the irradiated surface again by an image sensor to obtain a blood vessel image is also known. When such reflected light is used, the intensity of the light directly reflected on the skin surface is strong, and the light intensity which enters the human body once and is reflected again from the human body is compared. In order to catch only light containing blood vessel information (light that has once entered the human body and reflected), in the case of this known example, a liquid is applied to the surface of the skin to be irradiated with light to reduce directly reflected light. Like that. In addition, the skin is irradiated with two types of light having different wavelengths from 400 to 600 nm and from 600 to 800 nm, and the former uses less light components that once enter the body and then reflect again compared to the latter. A method of obtaining a blood vessel image by subtracting the images obtained by both methods is also known. (JP-A-8-164123)
[0010]
As described above, when a blood vessel image is obtained using light, there is a problem in that the applicable portion is limited in the transmission method. In addition, when the reflection method is used, complicated work such as applying a liquid to the skin surface is required to suppress light directly reflected from the skin surface, and two types of light sources, a filter, and a dichroic are required. There is a problem that an expensive and complicated device including a mirror and an image analysis mechanism is required.
[0011]
The problem to be solved by the present invention is to provide a means for accurately grasping the position of a subcutaneous blood vessel by using an inexpensive apparatus without imposing a physical load on a blood sampling subject.
[0012]
[Means for Solving the Problems]
As described above, when light is guided into the body to obtain a blood vessel image, it is preferable to use a reflection method that does not select a site where the image is obtained. In FIG. 1, a human forearm 101 is irradiated with an LED (Light Emitting Diode) 102 as a light source, and light reflected at that time is captured by an image sensor such as a CCD (Charge Coupled Device) 104, and the image thereof is displayed on a monitor 105. Shows the system to be displayed. The wavelength of the light used at this time is 600 to 1200 nm, which has a relatively low absorption coefficient derived from compounds constituting skin and blood vessels, such as skin pigment, blood hemoglobin, and water. FIG. 2 schematically shows how light propagates in the body at this time. Here, the same reference numerals are used for the same components as those described above. Light emitted in this manner includes light 204 reflected on the skin surface and light 205 that once enters the body, diffuses, reflects, and then reflects out of the body again. Caught by The light that once penetrates under blood vessels (mostly veins) near the surface of the skin like the light 205 and then reflects out of the skin again contains blood vessel information, and the blood vessel portion is derived from water and hemoglobin Since the light absorption is larger than that of the other portions, the blood vessel image appears black on the monitor. However, actually, since the intensity of the directly reflected light 204 is large, light information such as 205 is superimposed and hidden on this, and a blood vessel image does not appear on the monitor.
[0013]
In order to reduce the influence of the direct light easily and inexpensively, the present inventors have tried to suppress the direct reflected light by using a direct reflected light shielding device 301 as shown in FIG. In this device, the LED 102 is inserted into the through hole 302, and is pressed against the skin surface near the blood vessel observation site as shown in FIG. At this time, it is desirable that at least the surface of the direct reflection light shielding device 301 be made of a material that does not have transparency to the wavelength of light emitted by the LED 102. When the LED 102 is illuminated in FIG. 4, the light is separated into a component that once penetrates into the body and a component that is directly reflected on the skin surface, as in the case of FIG. 2. However, since the reflected light 204 is directly shielded, it is not captured by the CCD 104. In addition, the light 401 that once penetrates into the body but is reflected without reaching below the blood vessel just below the skin surface is similarly blocked by the device itself and does not go out of the body. Eventually, the light emitted outside the body once penetrates into the body, reaches below the blood vessel just below the skin surface, and then comes out of the body again, and this light is captured by the CCD camera 104, The blood vessel part has a low light intensity due to absorption derived from water, hemoglobin, and the like, and the other parts have a relatively high light intensity, so that a blood vessel image appears dark on the monitor 105. Then, by guiding the injection needle to the blood vessel portion while viewing the blood vessel image, puncturing and blood collection can be easily performed.
[0014]
In the actual blood vessel image, the length of the direct light shielding area 501 of the direct reflection light shielding device 301 shown in FIG. 5 is appropriately set in addition to the intensity of the emitted light of the LED, the aperture of the CCD camera lens, the sensitivity and the gain of the CCD. By doing so, a good product can be obtained. In particular, as described above, the length of the direct light-shielding region is, as described above, light directly reflected on the skin surface and once penetrates into the body, but is reflected without reaching below the blood vessel immediately below the skin surface and radiated outside the body again. It may be set so that light is shielded and light coming out of the body after reaching the blood vessel directly below the skin surface is not blocked again. The light to be shielded such as the directly reflected light is filtered by a filter that absorbs the light emitted by the LED on the surface (excluding the through hole of the LED) including the direct light shielding region 501 in the direct reflected light shielding device. If a film is attached, it can be more reliably removed.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 6 shows an example of the embodiment of the present invention. As in FIG. 4, the direct-reflection light shielding device 301 to which the LED 102 is attached is attached to the human forearm 101 with the fixing band 601, and a blood vessel image captured by the CCD camera 104 when the LED is irradiated is displayed on the monitor 105. Although not shown, the image obtained by the CCD camera 104 may be processed by software or hardware to obtain a clearer blood vessel image, and then displayed on the monitor 105. Thus, the blood collection syringe 602 is guided near the blood vessel while confirming the blood vessel position, and the injection needle 603 is pierced into the skin to reach the inside of the blood vessel to collect blood.
[0016]
【Example】
[First embodiment]
While observing the vein blood vessel inside the human forearm using the blood vessel observation device using the direct reflection light blocking device shown in FIG. 6, an attempt was made to guide the injection needle to the blood vessel and collect blood. First, as the LED, an LED that emits near-infrared light having an emission center wavelength of 850 nm and a half-value width of 40 nm is used. Also, although not shown, light having a wavelength of 800 nm or less is cut in front of the lens of the CCD camera. The filter which transmits light of the wavelength of was attached. The reason for choosing an LED with such a wavelength is that, as described above, light with a wavelength of about 700 to 1200 nm is easily transmitted through the body, and ordinary inexpensive CCD elements have the most wavelengths of about 500 to 600 nm. This is because it has high sensitivity, and the sensitivity decreases as the wavelength increases. Further, by attaching a filter to the camera, it is possible to observe blood vessels without being affected by visible light even under a fluorescent lamp in a room, and it is not necessary to particularly darken the periphery of the observation site.
[0017]
In this way, the blood vessel image is projected on the monitor 105 as shown in FIG. 6, and the injection needle 603 of the syringe 602 is guided to the appropriate blood vessel by puncturing the skin into the blood vessel. The size of the needle used at this time was 23 gauge, and after introducing the needle into the blood vessel in this way, about 5 cc of venous blood could be collected into the cylinder by applying a negative pressure to the cylinder of the syringe.
[0018]
In addition, an attempt was made to collect blood while observing blood vessels using an apparatus in which a direct-reflection light shielding device 301 equipped with a syringe and an LED as shown in FIG. 7 was integrated. In the same figure, a chip LED 701 (radiation center wavelength: 860 nm, half width: 40 nm) is used for the direct reflection light shielding device 301 in order to reduce the size of the device, and via a syringe barrel 702 and a guide rail 704. The syringe barrel is connected, and can move along the guide rail (in the direction of the arrow in the figure) when the reflected light shielding device is directly fixed. The injection needle 603 used here had a gauge of 23.
[0019]
As shown in the cross-sectional view of FIG. 8A, a device in which the syringe shown in FIG. 7 and the direct-reflection light shielding device to which the LED is attached is integrated is placed on the skin surface 801 of the human forearm. At this time, the needle 603 at the tip of the syringe is set at a position where it does not touch the skin yet, and in this state, the LED 701 is turned on, and the image of the blood vessel 203 and the image of the needle 603 are captured by the CCD camera 104. Although not shown, these are shown on the monitor, and the device that integrates the direct-reflection light shielding device with the syringe and the LED is moved on the skin 801 to a position where the needle can puncture the blood vessel based on the positional relationship between them. After that, as shown in FIG. 13B, the syringe is pushed out to the skin side along the guide rail 704, the needle 603 is punctured into the target blood vessel, and the syringe 703 is introduced after being guided into the blood vessel. By pulling, the blood was able to be sucked and collected in the syringe 702.
[0020]
Conventionally, blood collection was performed by using a tourniquet to inflate blood vessels, but by using the blood vessel visualization apparatus of the present invention, blood can be collected without using a tourniquet. In the above example, the LED element is placed in the direct reflection light blocking device near the skin for irradiation. However, an illumination device such as an LED is placed in the remote location of the skin, and the reflected light is directly blocked by an optical fiber from there. Light may be applied to the skin surface by connecting to the inside of the device.
[0021]
[Second embodiment]
An attempt was made to introduce blood through a painless needle 901 (outside diameter: 100 μm, inside diameter: 60 μm) onto a chip-shaped blood analyzer as shown in FIG. The chip is configured by laminating two polycarbonate substrates, in which a flow path 902 for blood, a sensor electrode 903 for electrochemically sensing the concentration of sodium ion, potassium ion, glucose, and urea nitrogen in blood; And an electrode pad 904 that outputs an electric signal of a sensor output. The chip size is 2 cm square.
[0022]
Next, as shown in FIG. 10A, a tip 1002 is placed on a slider 1001 and fitted into a holder body 1003. A painless needle 901 at the tip of the tip is set in a cylinder 1004 integrated with the holder body. So that Further, similarly to the previous embodiments, the direct reflection light shielding device 301 is installed from the upper arm to the forearm of the human, and the positional relationship with the painless needle 901 at the tip of the tip set in the holder together with the blood vessel image just below the skin. Is captured by the CCD camera 104, and this is confirmed on a monitor, not shown in the figure. At this time, the same LED as that in FIG. 6 is used as a light source of light emitted to the skin. From the positional relationship between the two, the position of the blood collection holder on which the chip is mounted is adjusted, and the painless needle is guided just above the blood vessel to bring the cylinder 1004 into contact with the skin surface. After that, the air is exhausted through the in-cylinder exhaust hose 1005 to reduce the pressure in the cylinder 1004. Then, the painless needle 901 punctures the skin and automatically enters the body. At this time, if the painless needle has reached the blood vessel, it is possible to reduce the pressure in the flow path in the chip via the blood-collecting suction hose 1006 and to guide blood from the blood vessel into the chip. If the needle has not reached the blood vessel, the painless needle 901 is guided deeper into the body while reaching the blood vessel while pushing the slider 1001 toward the skin side and bending the sponge 1007 as shown in FIG. Blood is directed onto the chip as described above.
[0023]
When an attempt was made to collect blood by the above procedure, about 4 μl of blood could be introduced onto the chip. When blood is introduced from a blood vessel into such a chip-shaped blood analyzer, the size of the tip is relatively small and the length of the needle is shorter than that of a blood sampling needle in a normal injection method. There may not be enough room to observe painless needles and blood vessel images. In addition, since the blood vessel image projected on the monitor is dark, if a needle overlaps the blood vessel image, the needle cannot be clearly confirmed, and the positional relationship between the blood vessel image and the needle may not be confirmed. In such a case, a chip LED 701 is attached to the cylinder 104 as shown in FIG. 11 and is turned on to irradiate the painless needle 901 with light so that the needle can be clearly seen. Alternatively, an optical fiber may be used instead of such a chip LED to guide light and irradiate the needle. In order to observe the positional relationship between the blood vessel image and the needle, the CCD camera itself is installed remotely, and a fiberscope 1101 having a diameter of about several mm is taken from there to the vicinity of the skin to observe these images. May be.
[0024]
FIG. 12 shows a case where the direct reflected light shielding device 301 is attached to the holder main body 1003. In addition, the fiberscope 1101 is also attached to the holder main body so that the positional relationship between the blood vessel image and the needle can be observed. The needle LED 701 for needle illumination attached to the cylinder 1004 may adjust the radiation intensity based on the appearance of the needle. After setting the holder so that the needle is positioned on the blood vessel while observing the blood vessel image in this way, blood collection was performed by the above-described procedure, and approximately 4 μl of blood could be guided onto the chip. Was.
[0025]
Next, FIG. 13 shows a case where the tip of the cylinder 1004 covering the periphery of the painless needle 901 is cut obliquely. In this case, unlike FIG. 10, there is a difference that the painless needle is not stabbed perpendicularly to the skin surface but is stabbed diagonally. Here, the cut angle was set to 45 °, the positional relationship between the blood vessel image and the needle was confirmed in the same procedure as before, the blood vessel was set at a position where the needle pierces the blood vessel, and blood was collected. As a result, about 4 μl of blood could be guided to the channel on the chip. Further, even when the needle is punctured obliquely to the skin surface in this way, the direct reflected light shielding device 301 may be attached to the holder main body 1003 as in the case of puncturing the skin vertically. In this case, the holder may be movable with respect to the direct reflection light blocking device as in the case where the syringe and the direct reflection light blocking device shown in FIG. 7 are integrated. Further, in FIG. 13, the blood vessel image and the needle may be observed with a fiber scope or the like instead of the CCD 104, and the fiber scope may be integrated with the holder body to make the apparatus compact.
[0026]
【The invention's effect】
As described above, when blood is collected by a normal injection method, the blood vessel visualization method and apparatus of the present invention are used to confirm the position of the blood vessel without using a tourniquet as in the past, and to surely use the blood collection needle. It led to blood vessels, and blood could be collected. As a result, blood can be collected without giving the blood-collected person physical pain when wearing the tourniquet. In addition, blood can be collected more reliably on a chip blood analyzer equipped with a painless needle by checking the position of the painless needle and the position of the blood vessel. Therefore, health care can be performed by each person easily collecting blood at home according to the present invention and analyzing the blood.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a blood vessel image visualization device using a light reflection method.
FIG. 2 is a diagram illustrating a state of light propagation in a body when light is projected on a human body.
FIG. 3 is a diagram illustrating an example of the direct reflection light blocking device of the present invention.
FIG. 4 is a diagram showing a state when a blood vessel image of a human is observed using the direct reflection light blocking device of the present invention.
FIG. 5 shows a side view of the direct reflection light shielding device of the present invention.
FIG. 6 is a diagram showing a state in which blood is collected by an injection method while observing a blood vessel image of a human using the direct reflection light shielding device of the present invention.
FIG. 7 is a view showing a device in which the direct reflection light shielding device of the present invention and a conventional syringe are integrated.
8 is a diagram showing a state in which blood is collected using the device shown in FIG. 7;
FIG. 9 is a view showing a chip-shaped blood analyzer. FIG. 10 is a view for explaining a procedure for introducing blood using the direct reflection light shielding device of the present invention on the chip-shaped blood analyzer shown in FIG. It is.
FIG. 11 is a diagram illustrating a state in which blood is introduced using the direct reflection light blocking device of the present invention on the chip-shaped blood analyzer shown in FIG. 9;
FIG. 12 is a diagram illustrating a state where blood is introduced using the direct reflection light blocking device of the present invention on the chip-shaped blood analyzer shown in FIG. 9;
FIG. 13 is a diagram illustrating a state in which blood is introduced using the direct reflection light blocking device of the present invention on the chip-shaped blood analyzer shown in FIG. 9;
[Explanation of symbols]
101 Human forearm 102 LED
103 Power supply 104 CCD camera 105 Monitor 106 Image of arm 201 Skin 202 Bone 203 Blood vessel 204 Direct reflected light 205 Light reflected after internal penetration 301 Direct reflected light blocking device 302 Through hole 401 Light 402 reflected without reaching below blood vessel Blood vessel Image 403 Image 501 of direct reflection light shielding device Direct light shielding area 601 Fixed band 602 Syringe 603 Injection needle 701 Chip LED
702 Syringe 703 Syringe 704 Guide rail 801 Skin surface 901 Painless needle 902 Channel 903 Sensor electrode 904 Electrode pad 1001 Slider 1002 Chip 1003 Holder body 1004 Cylinder 1005 Cylinder exhaust hose 1006 Blood sampling suction hose 1007 Sponge 1101 Fiberscope

Claims (18)

少なくとも600から1200nmの波長成分を含み、かつ少なくとも一つの光源から発せられた光を人体に照射したときの反射光から照射した部位近傍の皮膚直下の血管像を得る血管可視化方法であって、特に反射してきた光の内、皮膚表面での直接反射光および人体に侵入するものの皮膚直下の血管まで到達せず反射して再び体外へと出射してくる光を排除し、人体に侵入して皮膚直下の血管より深部まで到達してから反射して再び体外に出射してくる光の強度の空間分布を撮像素子によって捉え、これを表示装置に表示することを特徴とする血管可視化方法。A blood vessel visualization method that includes a wavelength component of at least 600 to 1200 nm, and obtains a blood vessel image immediately below the skin in the vicinity of an irradiated area from reflected light when the human body is irradiated with light emitted from at least one light source, particularly Of the reflected light, the light directly reflected on the skin surface and enters the human body, but does not reach the blood vessels directly under the skin but is reflected and rejects the light that exits the body again. A blood vessel visualization method characterized in that a spatial distribution of the intensity of light that reaches deeper than a blood vessel immediately below, reflects, and emerges from the body again is captured by an image sensor and displayed on a display device. 少なくとも600から1200nmの波長成分を含む光を放射する少なくとも一つの光源を構成要素として含み、当該光源から放射される波長の光をほとんど透過しないような材料で少なくとも表面の一部が構成される直接反射光遮光装置であって、特に当該直接反射光遮光装置を構成する一つの面を人体の皮膚表面と接触させ、光源から光を放射したときにその大部分は皮膚表面に至るようにし、このとき皮膚表面から直接反射する光および人体に侵入するものの皮膚直下の血管まで到達せず反射して再び体外へと出射してくる光の少なくとも一部を直接反射光遮光装置の皮膚と接している面、あるいは直接反射光遮光装置と皮膚に囲まれる空間によって遮り、再び体外に放射されることの無いようにし、一方光源から放射され皮膚表面を経て人体に侵入し、皮膚直下の血管より深部まで到達してから反射して再び体外に出射してくる光の大部分は遮ることなく体外に放射させることを特徴とする直接反射光遮光装置。A direct component comprising at least one light source that emits light containing a wavelength component of at least 600 to 1200 nm, and at least part of the surface being made of a material that hardly transmits light of a wavelength emitted from the light source. A reflected light shielding device, in particular, one surface constituting the direct reflected light shielding device is brought into contact with the skin surface of a human body, and when light is emitted from a light source, most of the light reaches the skin surface. Sometimes at least part of the light directly reflected from the skin surface and the light that enters the human body but does not reach the blood vessels directly under the skin but is reflected and emitted outside the body again is in direct contact with the skin of the reflected light shielding device. Surface, or a direct-reflected light-shielding device and a space surrounded by the skin, so that it is not radiated outside the body again, while the skin surface is radiated from the light source. Te invade the human body, the reflected light shading device directly for causing emitted outside the body without the majority of the light coming emitted again outside reflected after reaching from deep vessel intercepts just below the skin. 少なくとも600から1200nmの波長成分を含む光を放射する光源から、当該光源から放射される波長の光をほとんど透過しないような材料で少なくとも表面一部が構成される直接反射光遮光装置に光を導き、当該直接反射光遮光装置を構成する一つの面を人体の皮膚表面と接触させたときに、光源から放射された光の大部分は皮膚表面に至るようにし、このとき皮膚表面から直接反射する光および人体に侵入するものの皮膚直下の血管まで到達せず反射して再び体外へと出射してくる光の少なくとも一部を直接反射光遮光装置の皮膚と接している面、あるいは直接反射光遮光装置と皮膚に囲まれる空間によって遮り、再び体外に放射されることの無いようにし、一方光源から放射され皮膚表面を経て人体に侵入し、皮膚直下の血管より深部まで到達してから反射して再び体外に出射してくる光の大部分は遮ることなく体外に放射させることを特徴とする直接反射光遮光装置。Light is guided from a light source that emits light containing a wavelength component of at least 600 to 1200 nm to a directly reflected light shielding device having at least a portion of a surface made of a material that hardly transmits light of a wavelength emitted from the light source. When one surface constituting the direct reflection light shielding device is brought into contact with the skin surface of a human body, most of the light emitted from the light source is made to reach the skin surface, and at this time, the light is directly reflected from the skin surface At least part of the light that enters the human body, but does not reach the blood vessels directly under the skin but reflects and exits the body again, at least a portion of the light-shielding device that is in direct contact with the skin, or the light-shielding device that directly reflects light It is blocked by the space surrounded by the device and the skin so that it does not radiate out of the body again, while it is radiated from the light source and invades the human body through the skin surface, and from the blood vessels just below the skin The directly reflected light shading device, characterized in that the majority of the light coming emitted again outside reflected from reach the parts are to be radiated to the outside without interrupting. 前記請求項3において、特に光源から直接反射光遮光装置へと光を導くために光ファイバを用いることを特徴とする直接反射光遮光装置。4. The direct reflection light shielding device according to claim 3, wherein an optical fiber is used to guide light from the light source directly to the reflection light shielding device. 前記請求項2または3に記載の直接反射光遮光装置の皮膚と接する面の少なくとも一部は、光源から放射される波長の光を吸収するような材料で表面が覆われていることを特徴とする直接反射光遮光装置。At least a part of the surface of the direct-reflection light-shielding device according to claim 2 or 3 that is in contact with the skin is covered with a material that absorbs light having a wavelength emitted from a light source. Direct light blocking device. 前記請求項2または3に記載の直接反射光遮光装置により、体外へと反射放射してきた光の強度の空間分布を撮像素子によって捉え、これを表示装置に表示することで皮下の血管像を得ることを特徴とする血管可視化装置。The spatial distribution of the intensity of the light reflected and radiated out of the body is captured by an image sensor by the direct reflection light shielding device according to claim 2 or 3, and the image is displayed on a display device to obtain a subcutaneous blood vessel image. A blood vessel visualizing device, characterized in that: 前記請求項6に記載の撮像素子に入射する光の波長範囲を透過し、かつ少なくとも当該波長範囲よりも短波長側の光を吸収するようなフィルタを当該撮像素子の光の入射する部位の前に配置することを特徴とする血管可視化装置。7. A filter that transmits a wavelength range of light incident on the image sensor according to claim 6 and absorbs at least light on a shorter wavelength side than the wavelength range in front of a portion of the image sensor where light is incident. A blood vessel visualization device, which is disposed in a blood vessel. 前記請求項6に記載の撮像素子に入射する光の波長範囲を透過し、かつ当該波長範囲以外の光を吸収するようなフィルタを当該撮像素子の光の入射する部位の前に配置することを特徴とする血管可視化装置。A filter that transmits a wavelength range of light incident on the image sensor according to claim 6 and absorbs light outside the wavelength range is disposed in front of a portion of the image sensor where light enters. Characteristic blood vessel visualization device. 前記請求項1に記載の血管可視化方法により血管位置を確認しながら注射器と一体となった採血針の穿刺位置を決定し、針を皮下の血管へと導き、採血を行うことを特徴とする採血方法。A blood collection method comprising: determining a puncture position of a blood collection needle integrated with a syringe while confirming a blood vessel position by the blood vessel visualization method according to claim 1, guiding the needle to a subcutaneous blood vessel, and performing blood collection. Method. 前記請求項2または3に記載の直接反射光遮光装置と採血針を装備した注射器が一体となっていることを特徴とする採血装置。A blood collection device, wherein the direct reflection light shielding device according to claim 2 or 3 and a syringe equipped with a blood collection needle are integrated. 前記請求項10に記載の注射器が直接反射光遮光装置を固定したときに当該直接反射光遮光装置に対して可動であることを特徴とする採血装置。A blood collection device, wherein the syringe according to claim 10 is movable with respect to the direct reflection light blocking device when the direct reflection light blocking device is fixed. 前記請求項1に記載の血管可視化方法により血管位置を確認しながら採血針の穿刺位置を決定し、針を皮下の血管へと導き、当該採血針と一体となった血液分析装置上に血液を導くことを特徴とする採血方法。The puncturing position of the blood collection needle is determined while confirming the blood vessel position by the blood vessel visualization method according to claim 1, the needle is guided to a subcutaneous blood vessel, and the blood is collected on a blood analyzer integrated with the blood collection needle. A blood collection method characterized by guiding. 前記請求項9または12に記載の採血方法において、主に採血針に光を照射し、血管と針の位置関係を明瞭にすることを特徴とする採血方法。13. The blood collection method according to claim 9 or 12, wherein the blood collection needle is mainly irradiated with light to clarify the positional relationship between the blood vessel and the needle. 前記請求項6に記載の血管可視化装置と、採血針と一体となった血液分析装置を少なくとも構成要素と含むことを特徴とする採血装置。A blood collection device comprising: the blood vessel visualization device according to claim 6; and a blood analysis device integrated with a blood collection needle as at least a component. 前記請求項14において、採血針を照射する光源を構成要素として含むことを特徴とする採血装置。15. The blood collection device according to claim 14, further comprising a light source for irradiating the blood collection needle as a component. 前記請求項15において、採血針を照射する光源は、採血針と一体となった血液分析装置を支持するホルダと一体となっていることを特徴とする採血装置。16. The blood collection device according to claim 15, wherein a light source for irradiating the blood collection needle is integrated with a holder that supports a blood analyzer integrated with the blood collection needle. 前記請求項14において、血管可視化装置を構成する直接反射光遮光装置は、特に採血針と一体となった血液分析装置を支持するホルダと一体となっていることを特徴とする採血装置。15. The blood collection device according to claim 14, wherein the direct reflection light blocking device constituting the blood vessel visualization device is particularly integrated with a holder that supports the blood analyzer integrated with the blood collection needle. 前記請求項14において、血管可視化装置を構成する撮像素子もしくは撮像素子に光を導く光ファイバの一端が、特に採血針と一体となった血液分析装置を支持するホルダと一体となっていることを特徴とする採血装置。In the above-mentioned claim 14, one end of an image pickup device constituting the blood vessel visualization device or one end of an optical fiber for guiding light to the image pickup device is particularly integrated with a holder supporting a blood analyzer integrated with a blood collection needle. Characterized blood collection device.
JP2003068898A 2003-02-06 2003-02-06 Blood vessel visualizing method and apparatus Pending JP2004237051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003068898A JP2004237051A (en) 2003-02-06 2003-02-06 Blood vessel visualizing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003068898A JP2004237051A (en) 2003-02-06 2003-02-06 Blood vessel visualizing method and apparatus

Publications (1)

Publication Number Publication Date
JP2004237051A true JP2004237051A (en) 2004-08-26

Family

ID=32959361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003068898A Pending JP2004237051A (en) 2003-02-06 2003-02-06 Blood vessel visualizing method and apparatus

Country Status (1)

Country Link
JP (1) JP2004237051A (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006049194A1 (en) * 2004-11-02 2006-05-11 Nitto Boseki Co., Ltd. Blood vessel position detection device
WO2007105495A1 (en) 2006-03-13 2007-09-20 Olympus Medical Systems Corp. Scattering medium inside observing device, imaging system, imaging method, and endoscope
WO2007078447A3 (en) * 2006-01-10 2007-12-21 Venous Light Llc Micro vein enhancer
JP2008302114A (en) * 2007-06-11 2008-12-18 Fujitsu Ltd Blood vessel image picking-up apparatus
WO2009049633A1 (en) * 2007-10-17 2009-04-23 Novarix Ltd. Vein navigation device
GB2474266A (en) * 2009-10-09 2011-04-13 Stratos Sofos Tourniquet carrying a light emitting device
US7983738B2 (en) 2006-01-10 2011-07-19 Accuvein, Llc Three dimensional imaging of veins
US8255040B2 (en) 2006-06-29 2012-08-28 Accuvein, Llc Micro vein enhancer
JP2012532682A (en) * 2009-07-09 2012-12-20 ベクトン・ディキンソン・アンド・カンパニー System and method for visualizing the penetration of a needle into a body
CN102846308A (en) * 2011-06-28 2013-01-02 克里斯蒂数字系统美国有限公司 Method and apparatus for detection of catheter location for intravenous access
US8380291B2 (en) 2006-06-29 2013-02-19 Accuvein Inc. Scanned laser vein contrast enhancer
US8463364B2 (en) 2009-07-22 2013-06-11 Accuvein Inc. Vein scanner
US8489178B2 (en) 2006-06-29 2013-07-16 Accuvein Inc. Enhanced laser vein contrast enhancer with projection of analyzed vein data
US8594770B2 (en) 2006-06-29 2013-11-26 Accuvein, Inc. Multispectral detection and presentation of an object's characteristics
WO2013180126A1 (en) * 2012-05-29 2013-12-05 国立大学法人高知大学 Artery visualization device and artery imaging device
US8665507B2 (en) 2006-06-29 2014-03-04 Accuvein, Inc. Module mounting mirror endoscopy
US8730321B2 (en) 2007-06-28 2014-05-20 Accuvein, Inc. Automatic alignment of a contrast enhancement system
US9061109B2 (en) 2009-07-22 2015-06-23 Accuvein, Inc. Vein scanner with user interface
WO2016091956A1 (en) * 2014-12-09 2016-06-16 twistid GmbH & Co. KG Application device
CN106061386A (en) * 2014-01-29 2016-10-26 贝克顿·迪金森公司 Wearable electronic device for enhancing visualization during insertion of an invasive device
US9492117B2 (en) 2006-01-10 2016-11-15 Accuvein, Inc. Practitioner-mounted micro vein enhancer
US9782079B2 (en) 2012-08-02 2017-10-10 Accuvein, Inc. Device for detecting and illuminating the vasculature using an FPGA
US9854977B2 (en) 2006-01-10 2018-01-02 Accuvein, Inc. Scanned laser vein contrast enhancer using a single laser, and modulation circuitry
WO2018226050A1 (en) * 2017-06-07 2018-12-13 Samsung Electronics Co., Ltd. Method and system for stereo-visual localization of object
US10238294B2 (en) 2006-06-29 2019-03-26 Accuvein, Inc. Scanned laser vein contrast enhancer using one laser
US10376147B2 (en) 2012-12-05 2019-08-13 AccuVeiw, Inc. System and method for multi-color laser imaging and ablation of cancer cells using fluorescence
US10813588B2 (en) 2006-01-10 2020-10-27 Accuvein, Inc. Micro vein enhancer
US11253198B2 (en) 2006-01-10 2022-02-22 Accuvein, Inc. Stand-mounted scanned laser vein contrast enhancer
US11278240B2 (en) 2006-01-10 2022-03-22 Accuvein, Inc. Trigger-actuated laser vein contrast enhancer
WO2023053808A1 (en) * 2021-09-29 2023-04-06 株式会社日立製作所 Blood collection system and blood collection method
WO2023153319A1 (en) * 2022-02-09 2023-08-17 テルモ株式会社 Blood vessel visualization device, blood vessel puncture system, and blood vessel visualization system
WO2023153320A1 (en) * 2022-02-09 2023-08-17 テルモ株式会社 Blood vessel visualization member, blood vessel visualization device, blood vessel puncture system, and blood vessel visualization system

Cited By (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006049194A1 (en) * 2004-11-02 2006-05-11 Nitto Boseki Co., Ltd. Blood vessel position detection device
US11109806B2 (en) 2006-01-10 2021-09-07 Accuvein, Inc. Three dimensional imaging of veins
US11638558B2 (en) 2006-01-10 2023-05-02 Accuvein, Inc. Micro vein enhancer
US11172880B2 (en) 2006-01-10 2021-11-16 Accuvein, Inc. Vein imager with a dual buffer mode of operation
US9492117B2 (en) 2006-01-10 2016-11-15 Accuvein, Inc. Practitioner-mounted micro vein enhancer
JP2009523038A (en) * 2006-01-10 2009-06-18 アキュベイン エルエルシー Small vein image enhancer
US11484260B2 (en) 2006-01-10 2022-11-01 Accuvein, Inc. Patient-mounted micro vein enhancer
US7983738B2 (en) 2006-01-10 2011-07-19 Accuvein, Llc Three dimensional imaging of veins
US8073531B2 (en) 2006-01-10 2011-12-06 Accuvein, Llc Micro vein enhancer
US8150500B2 (en) 2006-01-10 2012-04-03 Accuvein Inc. Micro vein enhancer
US11399768B2 (en) 2006-01-10 2022-08-02 Accuvein, Inc. Scanned laser vein contrast enhancer utilizing surface topology
US11357449B2 (en) 2006-01-10 2022-06-14 Accuvein, Inc. Micro vein enhancer for hands-free imaging for a venipuncture procedure
US9788787B2 (en) 2006-01-10 2017-10-17 Accuvein, Inc. Patient-mounted micro vein enhancer
US8295904B2 (en) 2006-01-10 2012-10-23 Accuvein, Llc Micro vein enhancer
US11278240B2 (en) 2006-01-10 2022-03-22 Accuvein, Inc. Trigger-actuated laser vein contrast enhancer
US11253198B2 (en) 2006-01-10 2022-02-22 Accuvein, Inc. Stand-mounted scanned laser vein contrast enhancer
US11191482B2 (en) 2006-01-10 2021-12-07 Accuvein, Inc. Scanned laser vein contrast enhancer imaging in an alternating frame mode
US11642080B2 (en) 2006-01-10 2023-05-09 Accuvein, Inc. Portable hand-held vein-image-enhancing device
US8478386B2 (en) 2006-01-10 2013-07-02 Accuvein Inc. Practitioner-mounted micro vein enhancer
WO2007078447A3 (en) * 2006-01-10 2007-12-21 Venous Light Llc Micro vein enhancer
US9125629B2 (en) 2006-01-10 2015-09-08 Accuvein, Inc. Vial-mounted micro vein enhancer
US10813588B2 (en) 2006-01-10 2020-10-27 Accuvein, Inc. Micro vein enhancer
US10617352B2 (en) 2006-01-10 2020-04-14 Accuvein, Inc. Patient-mounted micro vein enhancer
US10500350B2 (en) 2006-01-10 2019-12-10 Accuvein, Inc. Combination vein contrast enhancer and bar code scanning device
US8712498B2 (en) 2006-01-10 2014-04-29 Accuvein Inc. Micro vein enhancer
US10470706B2 (en) 2006-01-10 2019-11-12 Accuvein, Inc. Micro vein enhancer for hands-free imaging for a venipuncture procedure
US8750970B2 (en) 2006-01-10 2014-06-10 Accu Vein, Inc. Micro vein enhancer
US8818493B2 (en) 2006-01-10 2014-08-26 Accuvein, Inc. Three-dimensional imaging of veins
US10258748B2 (en) 2006-01-10 2019-04-16 Accuvein, Inc. Vein scanner with user interface for controlling imaging parameters
US9949688B2 (en) 2006-01-10 2018-04-24 Accuvein, Inc. Micro vein enhancer with a dual buffer mode of operation
US9854977B2 (en) 2006-01-10 2018-01-02 Accuvein, Inc. Scanned laser vein contrast enhancer using a single laser, and modulation circuitry
JP2015083160A (en) * 2006-01-10 2015-04-30 アキュベイン エルエルシー Miniature vein enhancer and apparatus for imaging subcutaneous blood vessel in target area
US9042966B2 (en) 2006-01-10 2015-05-26 Accuvein, Inc. Three dimensional imaging of veins
US9044207B2 (en) 2006-01-10 2015-06-02 Accuvein, Inc. Micro vein enhancer for use with a vial holder
US9788788B2 (en) 2006-01-10 2017-10-17 AccuVein, Inc Three dimensional imaging of veins
WO2007105495A1 (en) 2006-03-13 2007-09-20 Olympus Medical Systems Corp. Scattering medium inside observing device, imaging system, imaging method, and endoscope
US8259167B2 (en) 2006-03-13 2012-09-04 Olympus Medical Systems Corp. Scattering medium internal observation apparatus, image pickup system, image pickup method and endoscope apparatus
US11051697B2 (en) 2006-06-29 2021-07-06 Accuvein, Inc. Multispectral detection and presentation of an object's characteristics
US11523739B2 (en) 2006-06-29 2022-12-13 Accuvein, Inc. Multispectral detection and presentation of an object's characteristics
US8594770B2 (en) 2006-06-29 2013-11-26 Accuvein, Inc. Multispectral detection and presentation of an object's characteristics
US9345427B2 (en) 2006-06-29 2016-05-24 Accuvein, Inc. Method of using a combination vein contrast enhancer and bar code scanning device
US8391960B2 (en) 2006-06-29 2013-03-05 Accuvein Inc. Scanned laser vein contrast enhancer
US8665507B2 (en) 2006-06-29 2014-03-04 Accuvein, Inc. Module mounting mirror endoscopy
US8489178B2 (en) 2006-06-29 2013-07-16 Accuvein Inc. Enhanced laser vein contrast enhancer with projection of analyzed vein data
US9226664B2 (en) 2006-06-29 2016-01-05 Accuvein, Inc. Scanned laser vein contrast enhancer using a single laser
US11051755B2 (en) 2006-06-29 2021-07-06 Accuvein, Inc. Scanned laser vein contrast enhancer using a retro collective mirror
US10238294B2 (en) 2006-06-29 2019-03-26 Accuvein, Inc. Scanned laser vein contrast enhancer using one laser
US8244333B2 (en) 2006-06-29 2012-08-14 Accuvein, Llc Scanned laser vein contrast enhancer
US9186063B2 (en) 2006-06-29 2015-11-17 Accu Vein, Inc. Scanned laser vein contrast enhancer using one laser for a detection mode and a display mode
US8255040B2 (en) 2006-06-29 2012-08-28 Accuvein, Llc Micro vein enhancer
US10357200B2 (en) 2006-06-29 2019-07-23 Accuvein, Inc. Scanning laser vein contrast enhancer having releasable handle and scan head
US8380291B2 (en) 2006-06-29 2013-02-19 Accuvein Inc. Scanned laser vein contrast enhancer
US8838210B2 (en) 2006-06-29 2014-09-16 AccuView, Inc. Scanned laser vein contrast enhancer using a single laser
JP2008302114A (en) * 2007-06-11 2008-12-18 Fujitsu Ltd Blood vessel image picking-up apparatus
US11132774B2 (en) 2007-06-28 2021-09-28 Accuvein, Inc. Automatic alignment of a contrast enhancement system
US10096096B2 (en) 2007-06-28 2018-10-09 Accuvein, Inc. Automatic alignment of a contrast enhancement system
US10580119B2 (en) 2007-06-28 2020-03-03 Accuvein, Inc. Automatic alignment of a contrast enhancement system
US9760982B2 (en) 2007-06-28 2017-09-12 Accuvein, Inc. Automatic alignment of a contrast enhancement system
US8730321B2 (en) 2007-06-28 2014-05-20 Accuvein, Inc. Automatic alignment of a contrast enhancement system
US9430819B2 (en) 2007-06-28 2016-08-30 Accuvein, Inc. Automatic alignment of a contrast enhancement system
US11847768B2 (en) 2007-06-28 2023-12-19 Accuvein Inc. Automatic alignment of a contrast enhancement system
US10713766B2 (en) 2007-06-28 2020-07-14 Accuvein, Inc. Automatic alignment of a contrast enhancement system
WO2009049633A1 (en) * 2007-10-17 2009-04-23 Novarix Ltd. Vein navigation device
JP2012532682A (en) * 2009-07-09 2012-12-20 ベクトン・ディキンソン・アンド・カンパニー System and method for visualizing the penetration of a needle into a body
US10518046B2 (en) 2009-07-22 2019-12-31 Accuvein, Inc. Vein scanner with user interface
USD999380S1 (en) 2009-07-22 2023-09-19 Accuvein, Inc. Vein imager and cradle in combination
US9789267B2 (en) 2009-07-22 2017-10-17 Accuvein, Inc. Vein scanner with user interface
US9061109B2 (en) 2009-07-22 2015-06-23 Accuvein, Inc. Vein scanner with user interface
US8463364B2 (en) 2009-07-22 2013-06-11 Accuvein Inc. Vein scanner
US11826166B2 (en) 2009-07-22 2023-11-28 Accuvein, Inc. Vein scanner with housing configured for single-handed lifting and use
GB2474266A (en) * 2009-10-09 2011-04-13 Stratos Sofos Tourniquet carrying a light emitting device
USD999379S1 (en) 2010-07-22 2023-09-19 Accuvein, Inc. Vein imager and cradle in combination
USD998152S1 (en) 2010-07-22 2023-09-05 Accuvein, Inc. Vein imager cradle
CN102846308A (en) * 2011-06-28 2013-01-02 克里斯蒂数字系统美国有限公司 Method and apparatus for detection of catheter location for intravenous access
US9247906B2 (en) 2011-06-28 2016-02-02 Christie Digital Systems Usa, Inc. Method and apparatus for detection of catheter location for intravenous access
EP2856940A4 (en) * 2012-05-29 2016-03-02 Univ Kochi Nat Univ Corp Artery visualization device and artery imaging device
US10349886B2 (en) 2012-05-29 2019-07-16 National University Corporation Kochi University Artery visualization device and artery imaging device
JP5626943B2 (en) * 2012-05-29 2014-11-19 国立大学法人高知大学 Arterial visualization device and arterial imaging device
JP2015033585A (en) * 2012-05-29 2015-02-19 国立大学法人高知大学 Artery visualization method, artery visualization apparatus, and artery imaging apparatus
WO2013180126A1 (en) * 2012-05-29 2013-12-05 国立大学法人高知大学 Artery visualization device and artery imaging device
US10568518B2 (en) 2012-08-02 2020-02-25 Accuvein, Inc. Device for detecting and illuminating the vasculature using an FPGA
US9782079B2 (en) 2012-08-02 2017-10-10 Accuvein, Inc. Device for detecting and illuminating the vasculature using an FPGA
US11439307B2 (en) 2012-12-05 2022-09-13 Accuvein, Inc. Method for detecting fluorescence and ablating cancer cells of a target surgical area
US10376147B2 (en) 2012-12-05 2019-08-13 AccuVeiw, Inc. System and method for multi-color laser imaging and ablation of cancer cells using fluorescence
US10376148B2 (en) 2012-12-05 2019-08-13 Accuvein, Inc. System and method for laser imaging and ablation of cancer cells using fluorescence
US10517483B2 (en) 2012-12-05 2019-12-31 Accuvein, Inc. System for detecting fluorescence and projecting a representative image
CN106061386A (en) * 2014-01-29 2016-10-26 贝克顿·迪金森公司 Wearable electronic device for enhancing visualization during insertion of an invasive device
WO2016091956A1 (en) * 2014-12-09 2016-06-16 twistid GmbH & Co. KG Application device
US11647949B2 (en) 2017-06-07 2023-05-16 Samsung Electronics Co., Ltd. Method and system for stereo-visual localization of object
WO2018226050A1 (en) * 2017-06-07 2018-12-13 Samsung Electronics Co., Ltd. Method and system for stereo-visual localization of object
WO2023053808A1 (en) * 2021-09-29 2023-04-06 株式会社日立製作所 Blood collection system and blood collection method
WO2023153319A1 (en) * 2022-02-09 2023-08-17 テルモ株式会社 Blood vessel visualization device, blood vessel puncture system, and blood vessel visualization system
WO2023153320A1 (en) * 2022-02-09 2023-08-17 テルモ株式会社 Blood vessel visualization member, blood vessel visualization device, blood vessel puncture system, and blood vessel visualization system

Similar Documents

Publication Publication Date Title
JP2004237051A (en) Blood vessel visualizing method and apparatus
US6353753B1 (en) Optical imaging of deep anatomic structures
EP1841361B1 (en) System for inserting a needle into a blood vessel
CN102481098B (en) A system and method for visualizing needle entry into a body
JP3701031B2 (en) Noninvasive blood test equipment
CA2223089C (en) Method and apparatus for detecting electro-magnetic reflection from biological tissue
JP4739242B2 (en) Imaging of embedded structures
WO2013180126A1 (en) Artery visualization device and artery imaging device
JP6047847B1 (en) Arterial visualization device
KR20210022705A (en) Detecting feedback on the treatment device
EP1744662B1 (en) Protection mechanism for spectroscopic analysis of biological tissue
KR20100033371A (en) Apparatus and method for recognizing subcutaneous vein pattern
WO2010029521A2 (en) Vein locator and associated devices
JP2000316866A (en) Recognizing method and recognizing device for blood vessel
WO2015111280A1 (en) Photoacoustic signal-processing device, photoacoustic signal-processing system, and photoacoustic signal-processing method
WO2016047143A1 (en) Photoacoustic image generation device
CN107397534A (en) A kind of integrated vein blood vessel identifying system and method
CN114469008A (en) Blood vessel puncture difficulty intelligent grading device based on blood vessel near-infrared imaging
JP6211497B2 (en) Photoacoustic image generator
CN106491096A (en) A kind of VR is imaged vein developing unit
KR20170100946A (en) Fluoroscopic apparatus and method using a sensor
JPH10234737A (en) Metabolic information measuring probe
JP2005028005A (en) Glucose concentration measuring apparatus
JP2004290226A (en) Glucose concentration measuring apparatus
JP2015029684A (en) Subject site information acquisition apparatus