JP2004236165A - Radio relay system - Google Patents

Radio relay system Download PDF

Info

Publication number
JP2004236165A
JP2004236165A JP2003024497A JP2003024497A JP2004236165A JP 2004236165 A JP2004236165 A JP 2004236165A JP 2003024497 A JP2003024497 A JP 2003024497A JP 2003024497 A JP2003024497 A JP 2003024497A JP 2004236165 A JP2004236165 A JP 2004236165A
Authority
JP
Japan
Prior art keywords
optical
signal
optical fiber
repeater
fiber transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003024497A
Other languages
Japanese (ja)
Inventor
Kazuyuki Matsumoto
一之 松本
Junpei Yoshioka
淳平 吉岡
Fuyuki Sugawara
冬樹 菅原
Takafumi Yamaguchi
尚文 山口
Takeshi Nishio
猛 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003024497A priority Critical patent/JP2004236165A/en
Publication of JP2004236165A publication Critical patent/JP2004236165A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Mobile Radio Communication Systems (AREA)
  • Optical Communication System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a radio relay system capable of facilitating maintenance by simplifying structure of a relay device, by which enhancement of reliability of the system in accordance with facilitation of the maintenance is expected and capable of further reducing power consumption of the entire system. <P>SOLUTION: In an optical fiber transmission line 3 by which one core bi-directional communication is executed by synthesizing/separating optical signals in an upward communicating direction and a downward communicating direction with a mobile station 4, a base station 1 connected with the respective relay devices 2 in one-to-one relation is provided with an optical demultiplexing synthesizer 9 for synthesizing and separating a communication signal to the respective optical fiber transmission lines 3 and an optical delay compensation device 10 for executing delay compensation of the optical signal resulting from path length of the respective optical fiber transmission lines 3. As a result, the power consumption of the entire system is reduced, scale increase is suppressed and in addition, power feed from the base station is executed by simpler equipment since structure for which power feed is required in the relay device is omitted and the radio relay system is more easily constituted. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は移動局と基地局との間で双方向の通信を実行する無線中継システムに係り、特に移動局との間で漏電同軸ケーブルを用いて無線信号を送受する中継機を備え、当該中継機と基地局との間で一心双方向の光通信を実行する無線中継システムに関するものである。
【0002】
【従来の技術】
無線通信の電波が到達しにくい通信環境下に存在する移動局と基地局との間で通信を実行するために、漏洩同軸ケーブルを介して無線信号の送受信を実行する中継機を備えた無線中継システムがある(例えば、特許文献1参照)。その主な構成としては、移動局の移動方向に沿って複数配置され、漏洩同軸ケーブルを介して移動局との間で無線信号を送受する中継機(特許文献1中の不感地中継局)と、光通信の伝送路として上り回線と下り回線の2つの光ファイバ伝送路で各中継機を従属接続する基地局(特許文献1中の地上中継局)とからなり、各中継機を介して移動局と基地局とが通信する(特許文献1の図4参照)。
【0003】
中継機を介した移動局と基地局との通信動作について簡単に説明する。
先ず、基地局から移動局に通信する場合、基地局内の高周波送信器が、移動局に送信する情報の高周波電気信号を生成する。次に、基地局内のアナログ光変調器(E/O)は、上記高周波電気信号を光信号に変換した後、下り回線用の光ファイバ伝送路に出力する。この光ファイバ伝送路に出力された光信号は、光ファイバ伝送路に介在して中継機ごとに設けられた光カップラによって各中継機側に分岐し入力される。中継機では、内部のアナログ光復調器(O/E)によって光信号が高周波電気信号に復調される。この高周波電気信号は、さらに中継機内の高周波送信器により増幅され、漏洩同軸ケーブル(LCX)から電波として外部空間に放射される。この信号を受信することにより、移動局は、基地局からの情報を得ることができる。
【0004】
次に、移動局から基地局に通信する場合、中継機が、漏洩同軸ケーブルからの信号と、下段に接続する中継機からの信号とを送信することになる。つまり、中継機には、漏洩同軸ケーブルで受信した電気信号を光変調するアナログ光変調器(E/O)と、各中継機間を逐次接続する上り回線用の光ファイバ伝送路を介して下段の中継機から送信されてきた光信号を電気信号に変換するアナログ光復調器(O/E)とが備えられている。具体的な動作としては、中継機内の高周波送信器が、移動局から漏洩同軸ケーブルを介して受信した無線信号に係る高周波電気信号を生成・増幅し、加算器に出力する。同時に、下段の中継機と上り回線用の光ファイバ伝送路に接続するアナログ光復調器が、下段の中継機から送信されてきた光信号を高周波電気信号に変換して加算器に出力する。加算器では、2つの高周波電気信号を合成して、合成した高周波電気信号をアナログ光変調器に出力する。
【0005】
アナログ光変調器は、入力した高周波電気信号を光信号に変換して上段の中継機内のアナログ光復調器に接続する上り回線用の光ファイバ伝送路に出力する。このように、上り方向の通信では、移動局から基地局に送信された信号を、漏洩同軸ケーブルを介して受信した信号と下段の中継機からの信号との合成信号を生成しながら多段に中継する方式がとられている。このあと、基地局では、上り回線用の光ファイバ伝送路を介して上記合成信号を一括して受信し、内部のアナログ光復調器によって高周波電気信号に復調する。
【0006】
上述した無線中継システムには、その構成上、後述するような不具合が発生する。例えば、基地局から移動局への下り信号を送信する場合、当該下り信号についての光信号は、光ファイバ伝送路に介在して中継機ごとに設けられた光カップラによって各中継機側に分岐し入力される。ここで、隣接する2つの中継機について考えると、両中継機に分岐・入力された光信号は、それぞれの中継機内で高周波電気信号に変換され、各漏洩同軸ケーブルから電波として放出される。このとき、両中継機の漏洩同軸ケーブルが突き合わせて配置されているような箇所では、両中継機からの信号が同時に移動局に受信されることになる。
【0007】
つまり、上記箇所では、一方の中継機の漏洩同軸ケーブルからの信号と共に、その下段の中継機の漏洩同軸ケーブルから、光カップラの間隔分の光ファイバ伝送路及び漏洩同軸ケーブル分の遅延が生じた信号が放射される。従って、移動局が受信した両中継機からの信号は、上記両信号間の位相差によって必然的に信号波形歪みが発生する。このように、漏洩同軸ケーブルの位置によっては、移動局が基地局からの情報を正常に受信できない場合がある。このような不具合は、移動局から基地局への上り方向の通信でも同様に発生する。
【0008】
上述したような不具合を解消するために、従来の無線中継システムでは、隣接した2つの中継機の漏洩同軸ケーブルが互いに突き合わさった箇所にて信号の到達時間が同等になるように、各中継機に信号の到達時間を補正する遅延補正部を設けている。具体的には、各中継機において、下り回線用の光ファイバ伝送路に接続する光カップラとアナログ光復調器(O/E)との間や、上り回線用の光ファイバ伝送路に接続するアナログ光変調器と高周波送信器との間に、到達時間差に相当する長さの遅延補正用光ファイバを挿入する。これにより、伝搬経路長に差異に起因した信号波形歪みが抑制され、移動局と基地局との間で正常な通信を実行することができる。
【0009】
【特許文献1】
特開平9−130322号公報
【0010】
【発明が解決しようとする課題】
従来の無線中継システムでは、基地局と中継機が上り回線用及び下り回線用の2つの光ファイバ伝送路を介して通信していたので、光信号の伝送経路の差異に起因した信号の波形歪みを補正する遅延補正用光ファイバを、上り回線用及び下り回線用の2つの光ファイバ伝送路に対して設ける必要があった。さらに、各中継機は、基地局に対して数珠つなぎに接続しているので、各中継機ごとに光ファイバ伝送経路の経路長が異なる。このため、上記遅延補正用光ファイバを、各中継機ごとに設ける必要もあった。このように、従来の無線中継システムでは、中継機ごとに、且つ上り回線用及び下り回線用の2つの光ファイバ伝送路に対して遅延補正用光ファイバを設けなければならないという構成上の制約があり、不可避的にシステム規模が大きくなってしまうという課題があった。
【0011】
また、上述したように、上り回線用の光ファイバ伝送路では、漏洩同軸ケーブルを介して受信した信号と下段の中継機からの信号との合成信号が伝搬する。このため、中継機は、漏洩同軸ケーブルを介して受信した高周波電気信号を一度光信号に変換してから遅延補正を実行し、補正後の光信号を再び高周波電気信号に変換して、下段の中継機から受信した信号との合成処理を行う必要がある。このように、光信号の伝送経路長の差異に起因した遅延を補正するために、電気信号から光信号への変換、光信号から電気信号への変換を複数回実行しなければならず、アナログ光変調器(E/O)やアナログ光復調器(O/E)を各中継機ごとに多数搭載する必要があった。
【0012】
従って、各中継機では、内部の変調器や復調器を動作させるために多くの電力が消費され、ひいてはシステム全体で多大な消費電力量を必要とするという課題があった。また、中継機は、基地局に対して数珠つなぎに逐次接続しているので、基地局から離れた遠方の中継機になるにつれて大量の電力を伝送する必要もある。
【0013】
この発明は上記のような課題を解決するためになされたもので、中継機と基地局との間を一心双方向通信の光ファイバ伝送路で接続し、伝送経路長の差異を補正する遅延補正部を中継機に設けずに基地局に集約させることで、システムの構成上の制約をなくしてシステム規模の増大化を抑制すると共に、中継機の構成を簡略化させることによってメンテナンスを容易化し、これに伴うシステムの信頼性の向上を期待することができ、さらには、システム全体の消費電力量を削減することができる無線中継システムを得ることを目的とする。
【0014】
【課題を解決するための手段】
この発明に係る無線中継システムは、基地局が、中継機ごとに一心双方向通信の光ファイバ伝送路を介して接続しており、中継機との間で送受する光通信信号を各光ファイバ伝送路に対して合成及び分離する光分波合成部と、中継機との間で送受される通信信号の伝搬遅延を補正する遅延補正部とを備えるものである。
【0015】
【発明の実施の形態】
実施の形態1.
図1はこの発明の実施の形態1による無線中継システムの構成を示す図であり、移動局から基地局への上り方向の通信に波長1.3μmの光信号を割り当て、基地局から移動局への下り方向の通信に波長1.5μmの光信号を割り当てた場合を示している。基地局1は、一心双方向通信の光ファイバ伝送路3を介して各中継機2と1対1の関係で接続している。また、基地局1は、高周波送信器(RF)6、アナログ光変調器(E/O)7、アナログ光復調器(O/E)8、光分波合成器(光分波合成部)9、及び光遅延補正装置(遅延補正部)10から構成される。光ファイバ伝送路3としては、例えば複数の波長の光信号の伝送に支障をきたさないように、零分散波長などの特性を適切に設定した光ファイバを用いる。
【0016】
基地局1の構成を説明すると、高周波送信器6は、移動局4とやり取りすべき通信情報を変調された高周波電気信号に変換してアナログ光変調器7に出力すると共に、アナログ光復調器8からの高周波電気信号を増幅する。アナログ光変調器7は、高周波送信器6からの高周波電気信号を下り信号である波長1.5μmの光信号に変換して光ファイバ伝送路3に出力する。アナログ光復調器8は、各中継機2からの上り信号である波長1.3μmの光信号を入力して高周波電気信号に変換し、高周波送信器6に出力する。
【0017】
光分波合成器9は、中継機2に1対1で接続する各光ファイバ伝送路3上の光信号と下り信号である波長1.5μmの光信号とを合成して中継機2側に伝搬させると共に、各光ファイバ伝送路3を伝搬する光信号から上り信号である波長1.3μmの光信号を分岐してアナログ光復調器8にそれぞれ出力する。光遅延補正装置(遅延補正部)10は、光ファイバ伝送路3ごとの経路長の差異による光信号遅延を補正する遅延補正装置であって、例えば隣接した中継機2の漏洩同軸ケーブル(LCX)5の突き合わせ点Aに光信号が到達する信号到達時間が同等となるように各中継機2に接続する光到達時間差に相当する長さの光ファイバを光ファイバ伝送路3に挿入して構成される。
【0018】
上述したように、基地局1内に各中継機2ごとの光ファイバ伝送路3の遅延を補正する光遅延補正装置10を設けたことから、中継機2には、アナログ光変調器(E/O)及びアナログ光復調器(O/E)を必要最小限の数だけ設ければよく、図2に示すように構成することができる。具体的に説明すると、中継機2は、下り信号である波長1.5μmの光信号と上り信号である波長1.3μmの光信号とが合成された波長多重通信により一心双方向通信の光ファイバ伝送路3で基地局1と1対1で接続されている。また、中継機2は、光カップラ11、アナログ光復調器(O/E)12、アナログ光変調器(E/O)13、高周波送信器(RF)14、及び漏洩同軸ケーブル(LCX)5と接続する共用器(H)15から構成される。
【0019】
光カップラ11は、光ファイバ伝送路3上を伝搬する合成信号から下り信号である波長1.5μmの光信号を分波してアナログ光復調器12に出力すると共に、アナログ光変調器13からの上り信号である波長1.3μmの光信号を光ファイバ伝送路3上の信号に合成して基地局1側に伝搬させる。アナログ光復調器12は、光カップラ11から受信した下り信号に係る光信号を高周波電気信号に変換する。また、アナログ光変調器13は、高周波送信器14からの上り信号に係る高周波電気信号を波長1.3μmの光信号に変換する。高周波送信器14は、受信した高周波電気信号を増幅し、共用器15を経由して漏洩同軸ケーブル5より移動局4に送信したり、漏洩同軸ケーブル5により受信した信号を共用器15を経由してアナログ光変調器13に出力する。
【0020】
次に動作について説明する。
先ず、基地局1から移動局4に通信する場合(下り方向通信)を説明する。
基地局1内の高周波送信器6は、移動局4に送信する情報の高周波電気信号を生成し、アナログ光変調器7に出力する。アナログ光変調器7では、上記高周波電気信号を下り信号である波長1.5μmの光信号に変換した後、光分波合成器9に出力する。光分波合成器9は、中継機2に1対1で接続する各光ファイバ伝送路3上の光信号と下り信号である波長1.5μmの光信号とを合成する。続いて、当該合成信号は、光遅延補正装置10によって各中継機2との間の伝送経路長に対応した遅延補正が行われ、光ファイバ伝送路3を介して中継機2側に伝送される。
【0021】
ここで、光遅延補正装置10が遅延補正する量は、基地局1から移動局4への下り方向通信及び移動局4から基地局1への上り方向通信のいずれでも等しい。これにより、一心双方向通信の光ファイバ伝送路3の一部に遅延補正用光ファイバを挿入して光遅延補正装置10を構成することで、下り方向及び上り方向の通信で遅延補正用光ファイバを共用することが可能になる。また、本発明では、光遅延補正装置10内の遅延補正用光ファイバによって中継機2が受信する前に各光ファイバ伝送路3上の光信号の遅延補正を行っている。このため、隣接した2つの中継機2間の漏洩同軸ケーブル5の突き合わせ点Aにおいても、移動局4は、各中継機2からの光信号の位相差による波形歪みが発生しない状態で基地局1から情報を受けることができる。
【0022】
中継機2では、光カップラ11によって光ファイバ伝送路3上を伝搬する合成信号から下り信号である波長1.5μmの光信号を分波してアナログ光復調器12に出力する。次に、アナログ光復調器12は、入力した光信号を変調された高周波電気信号に復調し、高周波送信器14に出力する。このあと、高周波送信器14は、上記高周波電気信号を増幅して共用器15を経て漏洩同軸ケーブル5から電波として外部空間に放射させる。この信号を受信することにより、移動局4は、基地局1からの情報を得ることができる。
【0023】
次に移動局4から基地局1に通信する場合(上り方向通信)を説明する。
移動局4から送信された無線通信信号は、漏洩同軸ケーブル5により電気信号として中継機2に受信される。中継機2内では、共用器15を経由して受信信号を高周波送信器14に出力し、高周波送信器14によって増幅したのちアナログ光変調器13に出力する。アナログ光変調器14では、高周波送信器14から入力した電気信号を上り信号である波長1.3μmの光信号に光変調して光カップラ11に出力する。光カップラ11は、アナログ光変調器14が光変調した波長1.3μmの光信号を光ファイバ伝送路3上の信号に合成して基地局1側に伝搬させる。
【0024】
基地局1では、光遅延補正装置10にて各光ファイバ伝送路3上の光信号に対して各中継機2との間の伝送経路長に対応した遅延補正が行われる。これにより、移動局4が突き合わせ点Aで送信した無線信号に由来する上り信号であっても、位相差に起因する波形歪みが発生することがない。光分波合成器9では、各光ファイバ伝送路3上の遅延補正後の光信号から上り信号である波長1.3μmの光信号を分岐してアナログ光復調器8にそれぞれ出力する。アナログ光復調器8では、入力した波長1.3μmの光信号を高周波電気信号に変換し、高周波送信器6に出力する。
【0025】
以上のように、この実施の形態1によれば、基地局1が、移動局4に対する上り通信方向及び下り通信方向の光信号を合成・分離して一心双方向通信が実行される光ファイバ伝送路3にて各中継機2と1対1の関係で接続され、光ファイバ伝送路3への通信信号の合成及び分離を行う光分波合成器9と、各光ファイバ伝送路3の経路長に起因した光信号の遅延補正を実行する光遅延補正装置10とを備えたので、一心双方向通信の光ファイバ伝送路3にて基地局1と中継機2が接続され、中継機ごとに光遅延補正装置を設ける必要がなくなったことから、システムの構成上の制約がなくなり、システム規模の増大化を抑制することができる。また、中継機の構成が簡略化することから、メンテナンスが容易になり、これに伴うシステムの信頼性の向上を期待することができる。
【0026】
また、一心双方向通信の光ファイバ伝送路の一部に遅延補正用光ファイバを挿入して光遅延補正装置10を構成することで、従来のように上り回線用及び下り回線用の2つの遅延補正用光ファイバを中継機ごとに設けることなく、これら遅延補正用光ファイバを利用するために必要であった変調器や復調器を省略することができることから、中継機の小型化や消費電力量の削減を実現することができ、ひいてはシステム全体の消費電力量を削減することができる。
【0027】
なお、上記実施の形態1では、下り方向の光信号の波長を1.5μmとし、上り方向の光信号の波長を1.3μmとする例を示したが、一心双方向通信が可能な任意の2波長であれば良い。
【0028】
実施の形態2.
図3はこの発明の実施の形態2による無線中継システムの構成を示す図であり、移動局から基地局への上り方向の通信に波長1.31μm、1.32μm、1.33μmの各光信号を割り当て、基地局から移動局への下り方向の通信に波長1.551μm、1.552μm、1.553μmの各光信号を割り当てた場合を示している。本実施の形態では、基地局1Aに対して幹となる光ファイバから中継機2ごとに分岐する一心多分岐の光ファイバ伝送路3で各中継機2を接続している。また、波長1.551μm、1.552μm、1.553μmの各光信号をそれぞれ伝送経路長が異なる3つの中継機2に対する下り信号として使用すると共に、波長1.31μm、1.32μm、1.33μmの各光信号をそれぞれ伝送経路長が異なる3つの中継機2からの上り信号として使用する。
【0029】
基地局1A内のアナログ光変調器7a,7b,7cは、基地局1Aから移動局4に送信された下り信号に係る高周波電気信号を、それぞれ波長1.551μm、1.552μm、1.553μmの光信号に変換し、上り方向通信用に設けられた光遅延補正装置10aに出力する。一方、アナログ光復調器8a,8b,8dでは、光遅延補正装置10bによって遅延補正された異なる3つの波長1.31μm、1.32μm、1.33μmの光信号を高周波電気信号にそれぞれ変換し、高周波送信器6に出力する。光分波合成器(光分波合成部)9aは、波長分割多重(WDM;Wave Length division multiplexing)技術を適用した一心双方向通信を実現するためのハードウェアである合波器、分波器、光アンプや必要に応じて分散補償モジュールなどから構成され、光ファイバ伝送路3に複数の光信号を多重させる。
【0030】
光遅延補正装置(遅延補正部)10a,10bは、中継機2ごとの伝送経路長の差異による光信号遅延を補正する遅延補正装置であって、それぞれ下り方向及び上り方向の通信に対応している。また、これら遅延補正装置10a,10bは、上記実施の形態1と同様に、例えば隣接した中継機2の漏洩同軸ケーブル(LCX)5の突き合わせ点Aに光信号が到達する信号到達時間が同等となるように各中継機2に接続する光到達時間差に相当する長さの光ファイバを光ファイバ伝送路3に挿入して構成される。なお、図1と同一若しくはこれに相当する構成要素には、同一符号を付し重複する説明を省略する。
【0031】
次に動作について説明する。
先ず、基地局1Aから移動局4に通信する場合(下り方向通信)を説明する。基地局1A内の高周波送信器6は、移動局4に送信する情報の高周波電気信号を生成し、下り方向通信用のアナログ光変調器7a,7b,7cに出力する。アナログ光変調器7a,7b,7cでは、上記高周波電気信号を同時に異なる3つの波長1.551μm、1.552μm、1.553μmの光信号にそれぞれ変換した後、下り方向通信用の光遅延補正装置10aに出力する。光遅延補正装置10aでは、アナログ光変調器7a,7b,7cからの光信号に対して各中継機2との間の伝送経路長に応じた長さの光ファイバを用いて遅延補正を行い、光分波合成器9aに出力する。光分波合成器9aは、遅延補正後の各光信号を波長分割多重して、光ファイバ伝送路3を介して中継機2側に伝送する。
【0032】
中継機2は、上記実施の形態1で示した図2と同様な構成を有しているが、中継機2ごとに受信すべき下り信号及び送信すべき上り信号の波長が予め設定されている。具体的に図2を用いて説明すると、中継機2は、内部の光カップラ11によって光ファイバ伝送路3上を伝搬する合成信号から自己に対応した波長の下り信号を分波してアナログ光復調器12に出力する。次に、アナログ光復調器12は、入力した光信号を変調された高周波電気信号に復調し、高周波送信器14に出力する。このあと、高周波送信器14は、上記高周波電気信号を増幅して共用器15を経て漏洩同軸ケーブル5から電波として外部空間に放射させる。この信号を受信することにより、移動局4は、基地局1Aからの情報を得ることができる。
【0033】
次に移動局4から基地局1Aに通信する場合(上り方向通信)を説明する。
図2を用いて説明すると、移動局4から送信された無線通信信号は、漏洩同軸ケーブル5により電気信号として中継機2に受信される。中継機2内では、共用器15を経由して受信信号を高周波送信器14に出力し、高周波送信器14によって増幅したのちアナログ光変調器13に出力する。アナログ光変調器13では、高周波送信器14から入力した電気信号を自己に設定された波長の光信号に光変調して光カップラ11に出力する。光カップラ11は、アナログ光変調器13が光変調した光信号を光ファイバ伝送路3上の信号に合成して基地局1A側に伝搬させる。
【0034】
基地局1Aでは、光分波合成器9aによって光ファイバ伝送路3上の光信号を各中継機2に対応した波長毎に分波した後、上り方向通信用の光遅延補正装置10bに入力する。光遅延補正装置10bでは、光分波合成器9aからの各中継機2に対応した上り信号に対して各中継機2の伝送経路長に対応した遅延補正をそれぞれ実行する。これにより、移動局4が突き合わせ点Aで送信した無線信号に由来する上り信号であっても、位相差に起因する波形歪みが発生することがない。これら遅延補正後の各光信号は、各中継機2に応じて設けられたアナログ光復調器8a,8b,8cにそれぞれ入力される。このあと、アナログ光復調器8a,8b,8cは、各光信号を高周波電気信号にそれぞれ変換し、高周波送信器6に出力する。
【0035】
以上のように、この実施の形態2によれば、基地局1Aが、移動局4に対する上り通信方向及び下り通信方向の光信号を合成・分離して一心双方向通信が実行される光ファイバ伝送路3にて各中継機2ごとに一心多分岐接続し、光ファイバ伝送路3への複数の異なる波長の光通信信号を波長分離多重する光分波合成器9aと、下り方向及び上り方向通信について各光ファイバ伝送路3の経路長に起因する光信号の遅延補正をそれぞれ実行する光遅延補正装置10a,10bとを備えたので、上記実施の形態1と同様な効果を得ることができる。また、上記実施の形態1では、複数の光ファイバ伝送路3を使用する必要があったが、波長分割多重技術を利用して1本の光ファイバ伝送路3で情報が伝送されることから、上記実施の形態1の構成中の空いている光ファイバを利用して実施の形態2のシステムを敷設することも可能であり、設置工事を単純化することができる。
【0036】
【発明の効果】
以上のように、この発明によれば、移動局と無線通信する複数の中継機が、移動局と基地局の間での通信を中継する無線中継システムにおいて、基地局が、中継機ごとに一心双方向通信の光ファイバ伝送路を介して接続し、中継機との間で送受する光通信信号を各光ファイバ伝送路に対して合成及び分離する光分波合成部と、中継機との間で送受される通信信号の伝搬遅延を補正する遅延補正部とを備えたので、中継機ごとに遅延補正部を必要とすることがなくなったことから、遅延補正部を設けるために必要であった光変調器や復調器を省略することができ、中継機の小型化や構造の簡略化に加え、その消費電力を少なくすることができるという効果がある。これにより、システム全体の消費電力の削減や規模の拡大を抑制することができる。また、中継機内の給電が必要な構成が省略されることから、基地局からの給電をより簡単な設備で実施することが可能になり、無線中継システムをより簡単に構成することができるという効果がある。
【図面の簡単な説明】
【図1】この発明の実施の形態1による無線中継システムの構成を示す図である。
【図2】図1中の中継機の構成を示す図である。
【図3】この発明の実施の形態2による無線中継システムの構成を示す図である。
【符号の説明】
1,1A 基地局、2 中継機、3 光ファイバ伝送路、4 移動局、5 漏洩同軸ケーブル(LCX)、6,14 高周波送信器(RF)、7,7a,7b,7c,13 アナログ光変調器(E/O)、8,8a,8b,8c,12 アナログ光復調器(O/E)、9,9a 光分波合成器(光分波合成部)、10,10a,10b 光遅延補正装置(遅延補正部)、11 光カップラ、15 共用器(H)。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a wireless relay system for performing two-way communication between a mobile station and a base station, and more particularly to a relay apparatus for transmitting and receiving wireless signals to and from a mobile station by using a leaky coaxial cable. The present invention relates to a wireless relay system that executes one-fiber two-way optical communication between a device and a base station.
[0002]
[Prior art]
A wireless relay equipped with a repeater for transmitting and receiving wireless signals via a leaky coaxial cable in order to perform communication between a mobile station and a base station in a communication environment where radio waves of wireless communication are difficult to reach. There is a system (for example, see Patent Document 1). Its main configuration is that a plurality of repeaters are arranged along the moving direction of the mobile station and transmit / receive a radio signal to / from the mobile station via a leaky coaxial cable (the blind spot relay station in Patent Document 1). And a base station (ground relay station in Patent Document 1) that cascade-connects each repeater with two optical fiber transmission lines, an uplink line and a downlink line, as a transmission line for optical communication, and moves via each relay unit. The station and the base station communicate (see FIG. 4 of Patent Document 1).
[0003]
The communication operation between the mobile station and the base station via the repeater will be briefly described.
First, when communicating from a base station to a mobile station, a high-frequency transmitter in the base station generates a high-frequency electric signal of information to be transmitted to the mobile station. Next, an analog optical modulator (E / O) in the base station converts the high-frequency electric signal into an optical signal and outputs the optical signal to an optical fiber transmission line for a downlink. The optical signal output to the optical fiber transmission line is branched and input to each repeater by an optical coupler provided for each repeater via the optical fiber transmission line. In the repeater, an optical signal is demodulated into a high-frequency electric signal by an internal analog optical demodulator (O / E). This high-frequency electric signal is further amplified by a high-frequency transmitter in the repeater, and is radiated from a leaky coaxial cable (LCX) to an external space as a radio wave. By receiving this signal, the mobile station can obtain information from the base station.
[0004]
Next, when communicating from the mobile station to the base station, the repeater transmits a signal from the leaky coaxial cable and a signal from the repeater connected to the lower stage. That is, an analog optical modulator (E / O) that optically modulates an electric signal received by the leaky coaxial cable and a lower optical fiber transmission line for sequentially connecting the repeaters are provided to the repeater. And an analog optical demodulator (O / E) for converting an optical signal transmitted from the repeater into an electric signal. As a specific operation, a high-frequency transmitter in a repeater generates and amplifies a high-frequency electric signal related to a radio signal received from a mobile station via a leaky coaxial cable, and outputs the signal to an adder. At the same time, an analog optical demodulator connected to the lower repeater and the upstream optical fiber transmission line converts the optical signal transmitted from the lower repeater into a high-frequency electric signal and outputs the high-frequency electric signal to the adder. The adder combines the two high-frequency electric signals and outputs the synthesized high-frequency electric signal to the analog optical modulator.
[0005]
The analog optical modulator converts the input high-frequency electrical signal into an optical signal and outputs the optical signal to an upstream optical fiber transmission line connected to an analog optical demodulator in the upper repeater. Thus, in uplink communication, a signal transmitted from a mobile station to a base station is transmitted in multiple stages while generating a composite signal of a signal received via a leaky coaxial cable and a signal from a lower repeater. The system is adopted. Thereafter, the base station collectively receives the combined signal via the optical fiber transmission line for the uplink and demodulates the combined signal into a high-frequency electric signal by the internal analog optical demodulator.
[0006]
The above-described wireless relay system has the following problems due to its configuration. For example, when transmitting a downlink signal from a base station to a mobile station, an optical signal for the downlink signal is branched to each repeater by an optical coupler provided for each repeater via an optical fiber transmission line. Is entered. Here, considering two adjacent repeaters, the optical signal branched and input to both repeaters is converted into a high-frequency electric signal in each repeater, and emitted as a radio wave from each leaky coaxial cable. At this time, in a place where the leaky coaxial cables of both repeaters are arranged in abutment, signals from both repeaters are received by the mobile station at the same time.
[0007]
In other words, in the above location, the signal from the leaky coaxial cable of one of the repeaters and the delay of the optical fiber transmission line and the leaky coaxial cable for the interval of the optical coupler were generated from the leaky coaxial cable of the lower repeater. A signal is emitted. Therefore, the signal received by the mobile station from both repeaters necessarily causes signal waveform distortion due to the phase difference between the two signals. As described above, depending on the position of the leaky coaxial cable, the mobile station may not be able to normally receive information from the base station. Such a problem similarly occurs in uplink communication from a mobile station to a base station.
[0008]
In order to solve the above-described problem, in the conventional wireless relay system, each of the repeaters is set so that the arrival time of a signal becomes equal at a place where the leaky coaxial cables of two adjacent repeaters abut each other. Is provided with a delay correction unit for correcting the arrival time of the signal. Specifically, in each repeater, an analog optical demodulator (O / E) connected between an optical coupler connected to an optical fiber transmission line for a downlink and an analog optical demodulator (O / E) connected to an optical fiber transmission line for an uplink. A delay correcting optical fiber having a length corresponding to the arrival time difference is inserted between the optical modulator and the high-frequency transmitter. As a result, signal waveform distortion caused by a difference in propagation path length is suppressed, and normal communication can be performed between the mobile station and the base station.
[0009]
[Patent Document 1]
JP-A-9-130322
[0010]
[Problems to be solved by the invention]
In the conventional wireless relay system, since the base station and the repeater communicate via two optical fiber transmission lines for the uplink and the downlink, the waveform distortion of the signal due to the difference in the transmission path of the optical signal. It is necessary to provide the delay correcting optical fiber for correcting the above two optical fiber transmission lines for the upstream line and the downstream line. Furthermore, since each repeater is connected to the base station in a daisy chain, the length of the optical fiber transmission path differs for each repeater. For this reason, it is necessary to provide the delay correcting optical fiber for each repeater. As described above, in the conventional wireless relay system, there is a restriction on the configuration that the delay compensating optical fiber must be provided for each of the repeaters and for the two optical fiber transmission lines for the uplink and the downlink. There is a problem that the system scale is inevitably increased.
[0011]
Also, as described above, in the optical fiber transmission line for the uplink, a composite signal of the signal received via the leaky coaxial cable and the signal from the lower repeater propagates. For this reason, the repeater converts the high-frequency electric signal received via the leaky coaxial cable into an optical signal once, executes delay correction, converts the corrected optical signal into a high-frequency electric signal again, and It is necessary to perform a combining process with the signal received from the repeater. As described above, in order to correct the delay caused by the difference in the transmission path length of the optical signal, the conversion from the electric signal to the optical signal and the conversion from the optical signal to the electric signal must be performed a plurality of times. It is necessary to mount a large number of optical modulators (E / O) and analog optical demodulators (O / E) for each repeater.
[0012]
Therefore, in each repeater, a large amount of power is consumed to operate the internal modulator and demodulator, and a problem that a large amount of power consumption is required in the entire system has been encountered. Further, since the repeaters are sequentially connected to the base station in a daisy chain, it is necessary to transmit a large amount of power as the repeater becomes farther away from the base station.
[0013]
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and a delay correction device for connecting a repeater and a base station with a single-fiber bidirectional communication optical fiber transmission line to correct a difference in transmission path length. By consolidating the units in the base station instead of in the repeater, it is possible to eliminate the restriction on the system configuration and suppress the increase in the system scale, and to simplify the maintenance by simplifying the configuration of the repeater, It is an object of the present invention to obtain a wireless relay system that can be expected to improve the reliability of the system accompanying this and can reduce the power consumption of the entire system.
[0014]
[Means for Solving the Problems]
In a wireless relay system according to the present invention, a base station is connected to each repeater via an optical fiber transmission line of one-fiber bidirectional communication, and transmits an optical communication signal transmitted to and received from the repeater to each optical fiber transmission line. It comprises an optical demultiplexing / combining unit that combines and separates a signal with a path, and a delay correction unit that corrects a propagation delay of a communication signal transmitted / received to / from a repeater.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1 FIG.
FIG. 1 is a diagram showing a configuration of a wireless relay system according to Embodiment 1 of the present invention. An optical signal having a wavelength of 1.3 μm is allocated to uplink communication from a mobile station to a base station, and the base station transmits the signal to the mobile station. 2 shows a case where an optical signal having a wavelength of 1.5 μm is allocated to downstream communication. The base station 1 is connected to each repeater 2 in a one-to-one relationship via an optical fiber transmission line 3 for one-core bidirectional communication. The base station 1 includes a high-frequency transmitter (RF) 6, an analog optical modulator (E / O) 7, an analog optical demodulator (O / E) 8, an optical demultiplexer / synthesizer (optical demultiplexer / synthesizer) 9 , And an optical delay correction device (delay correction unit) 10. As the optical fiber transmission line 3, for example, an optical fiber in which characteristics such as zero dispersion wavelength are appropriately set is used so as not to hinder transmission of optical signals of a plurality of wavelengths.
[0016]
The configuration of the base station 1 will be described. The high-frequency transmitter 6 converts communication information to be exchanged with the mobile station 4 into a modulated high-frequency electric signal, outputs the modulated high-frequency electric signal to the analog optical modulator 7, and outputs the analog optical demodulator 8 To amplify the high-frequency electrical signal from The analog optical modulator 7 converts a high-frequency electric signal from the high-frequency transmitter 6 into an optical signal having a wavelength of 1.5 μm, which is a downstream signal, and outputs the optical signal to the optical fiber transmission line 3. The analog optical demodulator 8 inputs an optical signal having a wavelength of 1.3 μm, which is an upstream signal from each repeater 2, converts the optical signal into a high-frequency electric signal, and outputs the high-frequency electric signal to the high-frequency transmitter 6.
[0017]
The optical demultiplexer / synthesizer 9 combines the optical signal on each optical fiber transmission line 3 connected to the repeater 2 on a one-to-one basis and an optical signal having a wavelength of 1.5 μm, which is a downstream signal, to the repeater 2. At the same time, an optical signal having a wavelength of 1.3 μm, which is an upstream signal, is branched from the optical signal propagating through each optical fiber transmission line 3 and output to the analog optical demodulator 8. The optical delay correction device (delay correction unit) 10 is a delay correction device that corrects an optical signal delay due to a difference in path length for each optical fiber transmission line 3. For example, a leaky coaxial cable (LCX) of an adjacent repeater 2 is used. 5 is inserted into the optical fiber transmission line 3 with an optical fiber having a length corresponding to the optical arrival time difference connected to each repeater 2 so that the signal arrival time at which the optical signal arrives at the butting point A of No. 5 is equal. You.
[0018]
As described above, since the optical delay correction device 10 for correcting the delay of the optical fiber transmission line 3 for each repeater 2 is provided in the base station 1, the repeater 2 includes an analog optical modulator (E / E / O) and analog optical demodulators (O / E) may be provided in the minimum number required, and can be configured as shown in FIG. More specifically, the repeater 2 is an optical fiber for one-fiber bidirectional communication by wavelength multiplex communication in which an optical signal having a wavelength of 1.5 μm as a downstream signal and an optical signal having a wavelength of 1.3 μm as an upstream signal are combined. The transmission line 3 is connected to the base station 1 on a one-to-one basis. The repeater 2 includes an optical coupler 11, an analog optical demodulator (O / E) 12, an analog optical modulator (E / O) 13, a high-frequency transmitter (RF) 14, and a leaky coaxial cable (LCX) 5. It is composed of a duplexer (H) 15 to be connected.
[0019]
The optical coupler 11 demultiplexes an optical signal having a wavelength of 1.5 μm, which is a downstream signal, from the combined signal propagating on the optical fiber transmission line 3 and outputs the demultiplexed signal to the analog optical demodulator 12. An optical signal having a wavelength of 1.3 μm, which is an upstream signal, is combined with a signal on the optical fiber transmission line 3 and propagated to the base station 1 side. The analog optical demodulator 12 converts an optical signal related to a downstream signal received from the optical coupler 11 into a high-frequency electric signal. The analog optical modulator 13 converts a high-frequency electric signal related to an upstream signal from the high-frequency transmitter 14 into an optical signal having a wavelength of 1.3 μm. The high-frequency transmitter 14 amplifies the received high-frequency electric signal and transmits the signal to the mobile station 4 from the leaky coaxial cable 5 via the duplexer 15 or the signal received by the leaky coaxial cable 5 via the duplexer 15. And outputs it to the analog optical modulator 13.
[0020]
Next, the operation will be described.
First, a case where communication is performed from the base station 1 to the mobile station 4 (downlink communication) will be described.
The high-frequency transmitter 6 in the base station 1 generates a high-frequency electric signal of information to be transmitted to the mobile station 4 and outputs the signal to the analog optical modulator 7. The analog optical modulator 7 converts the high-frequency electric signal into an optical signal having a wavelength of 1.5 μm, which is a downstream signal, and outputs the signal to the optical demultiplexer / splitter 9. The optical demultiplexer / synthesizer 9 combines the optical signal on each optical fiber transmission line 3 connected to the repeater 2 on a one-to-one basis and an optical signal having a wavelength of 1.5 μm which is a downstream signal. Subsequently, the combined signal is subjected to delay correction corresponding to the transmission path length between each repeater 2 by the optical delay correction device 10 and transmitted to the repeater 2 via the optical fiber transmission line 3. .
[0021]
Here, the amount of delay correction performed by the optical delay correction device 10 is the same for both downlink communication from the base station 1 to the mobile station 4 and uplink communication from the mobile station 4 to the base station 1. Thus, the delay correction optical fiber is inserted into a part of the optical fiber transmission line 3 of the one-fiber bidirectional communication to constitute the optical delay correction device 10, so that the delay correction optical fiber can be used for the downstream and upstream communication. Can be shared. Further, in the present invention, the delay correction of the optical signal on each optical fiber transmission line 3 is performed before the repeater 2 receives the signal by the optical fiber for delay correction in the optical delay correction device 10. Therefore, even at the butt point A of the leaky coaxial cable 5 between two adjacent repeaters 2, the mobile station 4 transmits the base station 1 in a state where the waveform distortion due to the phase difference of the optical signal from each repeater 2 does not occur. Information can be received from.
[0022]
In the repeater 2, an optical signal having a wavelength of 1.5 μm, which is a downstream signal, is demultiplexed from the combined signal propagating on the optical fiber transmission line 3 by the optical coupler 11 and output to the analog optical demodulator 12. Next, the analog optical demodulator 12 demodulates the input optical signal into a modulated high-frequency electric signal and outputs the modulated high-frequency electric signal to the high-frequency transmitter 14. Thereafter, the high-frequency transmitter 14 amplifies the high-frequency electric signal and radiates it as radio waves from the leaky coaxial cable 5 to the external space via the duplexer 15. By receiving this signal, the mobile station 4 can obtain information from the base station 1.
[0023]
Next, a case where communication is performed from the mobile station 4 to the base station 1 (uplink communication) will be described.
The wireless communication signal transmitted from the mobile station 4 is received by the repeater 2 as an electric signal by the leaky coaxial cable 5. In the repeater 2, the received signal is output to the high-frequency transmitter 14 via the duplexer 15, amplified by the high-frequency transmitter 14, and then output to the analog optical modulator 13. The analog optical modulator 14 optically modulates the electric signal input from the high-frequency transmitter 14 into an optical signal having a wavelength of 1.3 μm, which is an upstream signal, and outputs the optical signal to the optical coupler 11. The optical coupler 11 combines the 1.3 μm wavelength optical signal optically modulated by the analog optical modulator 14 with the signal on the optical fiber transmission line 3 and propagates the signal to the base station 1 side.
[0024]
In the base station 1, the optical delay correction device 10 performs delay correction on the optical signal on each optical fiber transmission line 3 in accordance with the length of the transmission path between each relay device 2. As a result, even if the uplink signal is derived from a radio signal transmitted from the mobile station 4 at the matching point A, waveform distortion due to the phase difference does not occur. The optical demultiplexer 9 branches an optical signal having a wavelength of 1.3 μm, which is an upstream signal, from the optical signal after the delay correction on each optical fiber transmission line 3 and outputs it to the analog optical demodulator 8. The analog optical demodulator 8 converts the input optical signal having a wavelength of 1.3 μm into a high-frequency electric signal and outputs the high-frequency electric signal to the high-frequency transmitter 6.
[0025]
As described above, according to the first embodiment, the base station 1 combines and separates the optical signals in the uplink communication direction and the downlink communication direction with respect to the mobile station 4 to perform one-fiber bidirectional communication. An optical demultiplexer / synthesizer 9 that is connected to each repeater 2 in a one-to-one relationship via a path 3 and that combines and separates a communication signal to / from the optical fiber transmission path 3, and a path length of each optical fiber transmission path 3 And the optical delay compensator 10 for performing the delay compensation of the optical signal caused by the optical fiber transmission line 3, the base station 1 and the repeater 2 are connected via the optical fiber transmission line 3 for one-fiber bidirectional communication, and the optical repeater is provided for each repeater. Since there is no need to provide a delay correction device, there is no restriction on the configuration of the system, and an increase in the system scale can be suppressed. In addition, since the configuration of the repeater is simplified, maintenance is facilitated, and an improvement in reliability of the system can be expected.
[0026]
Further, by constructing the optical delay compensator 10 by inserting an optical fiber for delay compensation into a part of the optical fiber transmission line of the one-fiber bidirectional communication, two delays for the uplink and the downlink can be achieved as in the related art. A modulator and a demodulator, which were necessary for using these delay correction optical fibers, can be omitted without providing a correction optical fiber for each repeater, so that the repeater can be downsized and the power consumption can be reduced. , And the power consumption of the entire system can be reduced.
[0027]
In the first embodiment, an example is described in which the wavelength of the optical signal in the downstream direction is 1.5 μm and the wavelength of the optical signal in the upstream direction is 1.3 μm. What is necessary is just two wavelengths.
[0028]
Embodiment 2 FIG.
FIG. 3 is a diagram showing a configuration of a wireless relay system according to a second embodiment of the present invention, in which each optical signal having a wavelength of 1.31 μm, 1.32 μm, and 1.33 μm is used for uplink communication from a mobile station to a base station. , And each optical signal having a wavelength of 1.551 μm, 1.552 μm, and 1.553 μm is assigned to downlink communication from the base station to the mobile station. In the present embodiment, each repeater 2 is connected to the base station 1A via a single-core multi-branch optical fiber transmission line 3 that branches from the optical fiber serving as a trunk to each repeater 2. In addition, optical signals having wavelengths of 1.551 μm, 1.552 μm, and 1.553 μm are used as downlink signals for three repeaters 2 having different transmission path lengths, respectively, and the wavelengths are 1.31 μm, 1.32 μm, and 1.33 μm. Are used as upstream signals from three repeaters 2 having different transmission path lengths.
[0029]
The analog optical modulators 7a, 7b, and 7c in the base station 1A convert the high-frequency electric signals related to the downstream signals transmitted from the base station 1A to the mobile station 4 into 1.551 μm, 1.552 μm, and 1.553 μm wavelengths, respectively. The signal is converted into an optical signal and output to an optical delay correction device 10a provided for uplink communication. On the other hand, the analog optical demodulators 8a, 8b, and 8d convert the three different optical signals of 1.31 μm, 1.32 μm, and 1.33 μm whose delays have been corrected by the optical delay corrector 10b into high-frequency electric signals, respectively. Output to the high frequency transmitter 6. The optical demultiplexer (optical demultiplexer) 9a includes a multiplexer and a demultiplexer, which are hardware for realizing single-fiber bidirectional communication to which Wavelength Division Multiplexing (WDM) technology is applied. And an optical amplifier and, if necessary, a dispersion compensation module, and multiplexes a plurality of optical signals on the optical fiber transmission line 3.
[0030]
The optical delay correction devices (delay correction units) 10a and 10b are delay correction devices that correct an optical signal delay due to a difference in transmission path length for each repeater 2, and correspond to downlink and uplink communications, respectively. I have. Further, similarly to the first embodiment, for example, the delay correction devices 10a and 10b have the same signal arrival time at which the optical signal reaches the butt point A of the leaky coaxial cable (LCX) 5 of the adjacent repeater 2. An optical fiber having a length corresponding to the light arrival time difference connected to each of the repeaters 2 is inserted into the optical fiber transmission line 3 so that the optical fiber transmission line 3 is connected. Note that components that are the same as or equivalent to those in FIG. 1 are denoted by the same reference numerals, and redundant description will be omitted.
[0031]
Next, the operation will be described.
First, a case where communication is performed from the base station 1A to the mobile station 4 (downlink communication) will be described. The high-frequency transmitter 6 in the base station 1A generates a high-frequency electric signal of information to be transmitted to the mobile station 4 and outputs the generated high-frequency electric signal to analog optical modulators 7a, 7b, 7c for downlink communication. The analog optical modulators 7a, 7b, and 7c simultaneously convert the high-frequency electrical signals into optical signals having three different wavelengths of 1.551 μm, 1.552 μm, and 1.553 μm, respectively, and then provide an optical delay correction device for downlink communication. Output to 10a. The optical delay correction device 10a performs delay correction on the optical signals from the analog optical modulators 7a, 7b, and 7c using an optical fiber having a length corresponding to the transmission path length between each of the repeaters 2. Output to the optical demultiplexer / splitter 9a. The optical demultiplexer / splitter 9a wavelength-division multiplexes each optical signal after delay correction, and transmits the optical signal to the repeater 2 via the optical fiber transmission line 3.
[0032]
The repeater 2 has the same configuration as that of FIG. 2 described in the first embodiment, but the wavelength of the downlink signal to be received and the wavelength of the uplink signal to be transmitted are preset for each repeater 2. . To be more specific, referring to FIG. 2, the repeater 2 separates a downstream signal of a wavelength corresponding to itself from an synthesized optical signal propagated on the optical fiber transmission line 3 by an internal optical coupler 11 to perform analog optical demodulation. Output to the container 12. Next, the analog optical demodulator 12 demodulates the input optical signal into a modulated high-frequency electric signal and outputs the modulated high-frequency electric signal to the high-frequency transmitter 14. Thereafter, the high-frequency transmitter 14 amplifies the high-frequency electric signal and radiates it as radio waves from the leaky coaxial cable 5 to the external space via the duplexer 15. By receiving this signal, the mobile station 4 can obtain information from the base station 1A.
[0033]
Next, a case where communication is performed from the mobile station 4 to the base station 1A (uplink communication) will be described.
Referring to FIG. 2, the wireless communication signal transmitted from the mobile station 4 is received by the repeater 2 as an electric signal through the leaky coaxial cable 5. In the repeater 2, the received signal is output to the high-frequency transmitter 14 via the duplexer 15, amplified by the high-frequency transmitter 14, and then output to the analog optical modulator 13. The analog optical modulator 13 optically modulates the electric signal input from the high-frequency transmitter 14 into an optical signal having a wavelength set for itself, and outputs the optical signal to the optical coupler 11. The optical coupler 11 combines the optical signal optically modulated by the analog optical modulator 13 with the signal on the optical fiber transmission line 3 and propagates the signal to the base station 1A.
[0034]
At the base station 1A, the optical signal on the optical fiber transmission line 3 is demultiplexed by the optical demultiplexer / combiner 9a for each wavelength corresponding to each repeater 2, and then input to the optical delay correction device 10b for uplink communication. . In the optical delay correction device 10b, delay correction corresponding to the transmission path length of each repeater 2 is performed on the upstream signal corresponding to each repeater 2 from the optical demultiplexer / combiner 9a. As a result, even if the uplink signal is derived from a radio signal transmitted from the mobile station 4 at the matching point A, waveform distortion due to the phase difference does not occur. These optical signals after the delay correction are input to analog optical demodulators 8a, 8b, and 8c provided corresponding to the respective repeaters 2. Thereafter, the analog optical demodulators 8a, 8b, and 8c convert the respective optical signals into high-frequency electric signals, and output the high-frequency electric signals to the high-frequency transmitter 6.
[0035]
As described above, according to the second embodiment, the base station 1A combines and separates the optical signals in the uplink communication direction and the downlink communication direction with respect to the mobile station 4 to perform the one-fiber bidirectional communication. A single-core multi-branch connection for each of the repeaters 2 on the path 3 and an optical demultiplexer / splitter 9a for wavelength-division multiplexing a plurality of optical communication signals of different wavelengths to the optical fiber transmission path 3; Are provided with the optical delay correction devices 10a and 10b for respectively performing the delay correction of the optical signal caused by the path length of each optical fiber transmission line 3, so that the same effect as in the first embodiment can be obtained. In the first embodiment, it is necessary to use a plurality of optical fiber transmission lines 3. However, since information is transmitted through one optical fiber transmission line 3 using a wavelength division multiplexing technique, The system according to the second embodiment can be laid using the free optical fiber in the configuration according to the first embodiment, and the installation work can be simplified.
[0036]
【The invention's effect】
As described above, according to the present invention, in a wireless relay system that relays communication between a mobile station and a base station, a plurality of relays that perform wireless communication with the mobile station An optical demultiplexing unit that connects via a two-way communication optical fiber transmission line and combines and separates optical communication signals transmitted to and received from the repeater with each optical fiber transmission line, and the repeater And a delay correction unit that corrects the propagation delay of the communication signal transmitted and received by the relay unit. This eliminates the need for a delay correction unit for each repeater, and is necessary to provide the delay correction unit. The optical modulator and the demodulator can be omitted, and there is an effect that the power consumption can be reduced in addition to the miniaturization and the simplification of the structure of the repeater. As a result, it is possible to suppress reduction in power consumption and expansion of the scale of the entire system. In addition, since the configuration that requires power supply in the repeater is omitted, power supply from the base station can be performed with simpler equipment, and the wireless relay system can be configured more easily. There is.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a wireless relay system according to a first embodiment of the present invention.
FIG. 2 is a diagram showing a configuration of a repeater in FIG.
FIG. 3 is a diagram showing a configuration of a wireless relay system according to a second embodiment of the present invention.
[Explanation of symbols]
1, 1A base station, 2 repeater, 3 optical fiber transmission line, 4 mobile station, 5 leaky coaxial cable (LCX), 6, 14 high frequency transmitter (RF), 7, 7a, 7b, 7c, 13 analog optical modulation (E / O), 8, 8a, 8b, 8c, 12 Analog optical demodulator (O / E), 9, 9a Optical demultiplexer / combiner (optical demultiplexer), 10, 10a, 10b Optical delay correction Device (delay correction unit), 11 optical coupler, 15 duplexer (H).

Claims (3)

移動局と無線通信する複数の中継機が、上記移動局と基地局の間での通信を中継する無線中継システムにおいて、
上記基地局は、
上記中継機ごとに一心双方向通信の光ファイバ伝送路を介して接続し、
上記中継機との間で送受する光通信信号を上記各光ファイバ伝送路に対して合成及び分離する光分波合成部と、
上記中継機との間で送受される通信信号の伝搬遅延を補正する遅延補正部と
を備えたことを特徴とする無線中継システム。
A plurality of repeaters that wirelessly communicate with the mobile station, in a wireless relay system that relays communication between the mobile station and the base station,
The base station is
Connected via an optical fiber transmission line for single-core bidirectional communication for each of the repeaters,
An optical demultiplexing unit that combines and separates the optical communication signals transmitted and received between the repeater and the optical fiber transmission lines,
A wireless relay system, comprising: a delay correction unit configured to correct a propagation delay of a communication signal transmitted to and received from the repeater.
遅延補正部は、中継機ごとに接続する光ファイバ伝送路にそれぞれ挿入した遅延補正用の光ファイバによって上記各中継機との間での上り方向及び下り方向通信の伝搬遅延を補正することを特徴とする請求項1記載の無線中継システム。The delay correction unit corrects the propagation delay of upstream and downstream communication with each of the repeaters by a delay correction optical fiber inserted into an optical fiber transmission line connected to each repeater. The wireless relay system according to claim 1, wherein 基地局は、幹線となる一心双方向通信の光ファイバ伝送路から一心多分岐で複数の中継機の各々と接続し、
光分波合成部は、上記光ファイバ伝送路に対して、上記各中継機への光通信信号を波長多重すると共に、上記光ファイバ伝送路上の波長多重信号から上記各中継機からの光通信信号を分離することを特徴とする請求項1記載の無線中継システム。
The base station is connected to each of the plurality of repeaters in a single-core multi-branch from a single-core bidirectional communication optical fiber transmission line serving as a trunk,
The optical demultiplexing unit wavelength-multiplexes the optical communication signal to each of the repeaters on the optical fiber transmission line, and converts the wavelength division multiplexed signal on the optical fiber transmission line into the optical communication signal from each of the repeaters. 2. The wireless relay system according to claim 1, wherein
JP2003024497A 2003-01-31 2003-01-31 Radio relay system Pending JP2004236165A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003024497A JP2004236165A (en) 2003-01-31 2003-01-31 Radio relay system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003024497A JP2004236165A (en) 2003-01-31 2003-01-31 Radio relay system

Publications (1)

Publication Number Publication Date
JP2004236165A true JP2004236165A (en) 2004-08-19

Family

ID=32953014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003024497A Pending JP2004236165A (en) 2003-01-31 2003-01-31 Radio relay system

Country Status (1)

Country Link
JP (1) JP2004236165A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008118394A (en) * 2006-11-02 2008-05-22 Kansai Electric Power Co Inc:The Wireless base station and phase difference adjustment method of wireless base station
WO2014169474A1 (en) * 2013-04-19 2014-10-23 Telefonaktiebolaget L M Ericsson (Publ) Power-saving communication system having leaky transmission lines and amplifiers to extend wireless coverage and power control unit included therein

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008118394A (en) * 2006-11-02 2008-05-22 Kansai Electric Power Co Inc:The Wireless base station and phase difference adjustment method of wireless base station
WO2014169474A1 (en) * 2013-04-19 2014-10-23 Telefonaktiebolaget L M Ericsson (Publ) Power-saving communication system having leaky transmission lines and amplifiers to extend wireless coverage and power control unit included therein
EP2987249A4 (en) * 2013-04-19 2017-06-21 Telefonaktiebolaget LM Ericsson (publ) Power-saving communication system having leaky transmission lines and amplifiers to extend wireless coverage and power control unit included therein
US9936270B2 (en) 2013-04-19 2018-04-03 Telefonaktiebolaget Lm Ericsson (Publ) Power-saving communication system having leaky transmission lines and amplifiers to extend wireless coverage and power control unit included therein

Similar Documents

Publication Publication Date Title
JP3812787B2 (en) Optical conversion repeater amplification system
US20030161637A1 (en) Bi-directional optical transmission system, and master and slave stations used therefor
CN102710361B (en) A kind of distributed base station signal transmission system and communication system
KR20010055088A (en) Optical communication apparatus
KR20070025572A (en) Radio-over-fiber link apparatus capable of stable tdd wireless service
US20120148235A1 (en) Control circuit, communication system, and control method
JP2005277569A (en) Optical transmitter and optical transmission system
JP7092993B2 (en) Optical transmission system and optical transmission method
WO2018193835A1 (en) Bidirectional optical transmission system and bidirectional optical transmission method
KR101598617B1 (en) Base station duplicating devices and duplicating method for stability in mobile communication network
KR100960110B1 (en) Optical Backhaul Network for Wireless Broadband Service
JP2004236165A (en) Radio relay system
KR101247992B1 (en) Optic Extension Equipment for RF Relay
WO2021070565A1 (en) Optical transmission device and optical communication system
JP4010759B2 (en) Optical signal communication base station, optical signal communication system, optical signal transmission method, and optical signal communication method
KR100736118B1 (en) Optical repeater for WiBro service
JP2003333014A (en) Method and system for controlling transmission of optical signal
JP2001168799A (en) Optical communication system and optical repeater used for the same
KR100322614B1 (en) An Analog Multi-drop Fiberoptic Microcell System for Noise Characteristic Enhancement
WO2017145901A1 (en) Optical communication system, optical transmission device, and optical reception device
JP7181458B2 (en) optical repeater
JP2019153945A (en) Optical radio converter, wraparound signal remover, communication network, and wraparound signal removing method
KR20100107906A (en) Analog optical repeater system of double wavelength division multiplexing type
JP2010087921A (en) Rf optical transmission system, master station device, and slave station device
JP3771426B2 (en) Optical fiber transmission system for high frequency signals using optical wavelength division multiplexing.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071025

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071025

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071025

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080108