JP2004235812A - Radio relay amplifier - Google Patents

Radio relay amplifier Download PDF

Info

Publication number
JP2004235812A
JP2004235812A JP2003020046A JP2003020046A JP2004235812A JP 2004235812 A JP2004235812 A JP 2004235812A JP 2003020046 A JP2003020046 A JP 2003020046A JP 2003020046 A JP2003020046 A JP 2003020046A JP 2004235812 A JP2004235812 A JP 2004235812A
Authority
JP
Japan
Prior art keywords
band
amplifier
output
temperature superconducting
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003020046A
Other languages
Japanese (ja)
Inventor
Noriyuki Kagaya
範行 加賀屋
Masaki Sudo
雅樹 須藤
Takashi Uchida
貴 内田
Tei Ito
悌 伊東
Shusuke Takamukai
秀典 高向
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Hitachi Kokusai Electric Inc
Original Assignee
NTT Docomo Inc
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Docomo Inc, Hitachi Kokusai Electric Inc filed Critical NTT Docomo Inc
Priority to JP2003020046A priority Critical patent/JP2004235812A/en
Publication of JP2004235812A publication Critical patent/JP2004235812A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a radio relay amplifier capable of reducing unnecessary noise out of band without degrading a signal being relayed. <P>SOLUTION: The radio relay amplifier for transmitting/relaying a received signal while amplifying comprises a receiving antenna 11, an input side band-pass filter 12 for limiting the band of the received signal, a first amplifier 13 for amplifying the output from the input side band-pass filter 12, a high temperature superconducting band-pass filter 31 for limiting the band of the output from the first amplifier 13, a cryogenic low noise amplifier 32 for amplifying the output from the high temperature superconducting band-pass filter 31, a thermal shield box 33 for thermally shielding the high temperature superconducting band-pass filter 31 and the cryogenic low noise amplifier 32, a means 24 for cooling the thermal shield box 33, a second amplifier 14 for amplifying the output from the cryogenic low noise amplifier 32, an output side band-pass filter 16 for limiting the band of the output from the second amplifier 14, and a transmission antenna 16 for transmitting the output from the output side band-pass filter 16 as a radio wave. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、自動車電話、携帯電話、無線呼出機等の各種無線サービスにおいて、山の陰等、基地局からの電波が受信できないサービス不感地帯が発生するのを防ぐために、受信信号を中継増幅して送信する無線中継増幅装置に関するものである。
【0002】
【従来の技術】
まず、従来の無線中継増幅装置について説明する。図3は、従来の無線中継増幅装置の構成例を示すブロック図である。図3に示すように、この無線中継増幅装置は、受信アンテナ11と、入力側帯域フィルタ12と、第1増幅部13と、第2増幅部14と、出力側帯域フィルタ15と、送信アンテナ16から構成される。
【0003】
次に、図3に示す従来の無線中継増幅装置の動作について説明する。受信アンテナ11は、基地局からの電波を受信できる地点、例えば山の頂上などに設置される。まず、受信アンテナ11は、基地局からの電波を受信し、その結果を受信信号として入力側帯域フィルタ12へ出力する。受信信号は、入力側帯域フィルタ12で帯域制限され、第1増幅部13で電力増幅が施され、第2増幅部14でさらに電力増幅が施され、出力側帯域フィルタ15へ出力される。出力側帯域フィルタ15は、第2増幅部14の出力の帯域制限を行い、高調波及び帯域外の不要ノイズを減衰させるとともに送信アンテナ16が受信した不要波を減衰させ、その結果を送信信号として送信アンテナ16へ出力する。送信アンテナ16は、送信信号を電波として外部へ送信する。送信アンテナ16は、電波を所望の地域へ送信できる地点に設置される。以上、図3に示すような無線中継増幅装置を用いることにより、数百mから数km離れた場所においてサービス不感地帯が発生するのを防いでいた。
【0004】
次に、図3に示した入力側帯域フィルタ12の代わりに高温超伝導帯域フィルタと極低温低雑音増幅器を備えた従来の無線中継増幅装置の構成例について説明する。図4は、従来の無線中継増幅装置の他の構成例を示すブロック図である。ここで用いる高温超伝導帯域フィルタ21は、挿入損失が極めて小さく、周波数選択度が高いという特徴を持つ。また、ここで用いる極低温低雑音増幅器22は、熱雑音の発生を抑圧するという特徴を持つ。高温超伝導帯域フィルタ21と極低温低雑音増幅器22は、例えばデュワー瓶等の熱遮蔽函23に封入されて熱遮断される。また、熱遮蔽函23内の高温超伝導帯域フィルタ21と極低温低雑音増幅器22を超伝導状態にするために、例えば数10K程度といった極めて低い温度に熱遮蔽函23を冷却する冷却手段24を備える。図4において、図3と同一符号は図3に示された対象と同一又は相当物を示しており、ここでの説明を省略する。
【0005】
次に、図4に示す従来の無線中継増幅装置の動作について説明する。受信アンテナ11は、基地局からの電波を受信し、その結果を受信信号として高温超伝導帯域フィルタ21へ出力する。受信信号は、高温超伝導帯域フィルタ21で帯域制限され、極低温低雑音増幅器22で増幅され、第1増幅部13へ出力される。極低温低雑音増幅器22の出力は、第1増幅部13と第2増幅部14と出力側帯域フィルタ15と送信アンテナ16において図3と同様の処理が施され、電波として外部へ送信される。
【0006】
ここで、無線中継増幅装置で発生する帯域外の不要ノイズについて説明する。無線中継増幅装置で発生する帯域外の不要ノイズNoutは、以下の(1)式で示される。
【0007】
Nout=kTBFG・・・(1)
【0008】
(1)式において、kはボルツマン定数、Tは絶対温度、Bは実行帯域幅、Fは無線中継増幅装置の雑音指数、Gは出力側帯域フィルタ15の帯域外減衰量に対する無線中継増幅装置の利得の比である。例えば、絶対温度が290K、実行帯域幅が4MHz、無線中継増幅装置の雑音指数が5dB、無線中継増幅装置の利得が80dB、出力側帯域フィルタ15の500kHz離調での帯域外減衰量が5dBとすると、帯域外の不要ノイズは−28dBm(4MHz)となる。
【0009】
(1)式より、帯域外の不要ノイズを低減するためには出力側帯域フィルタ15の帯域外減衰量を増加させてGの値を小さくすればよい。
【0010】
【発明が解決しようとする課題】
出力側帯域フィルタ15の帯域外減衰量を増加させるには、帯域幅を狭くする、フィルタの段数を増やす、出力側帯域フィルタ15として高温超伝導フィルタを使用するということが考えられる。しかしながら、帯域幅を狭くすると中継する信号が劣化してしまうという問題が生じる。また、フィルタの段数を増やすとフィルタの損失が増えるため増幅器の出力が増えてしまい、結果として消費電力が増加するという問題が生じる。また、出力側帯域フィルタ15として高温超伝導フィルタを使用した場合、帯域外減衰量が40dBとなり十分な値を得ることができるが、高温超伝導フィルタは常温フィルタと比較すると歪みが多く発生するため、使用することはできない。
【0011】
本発明は上述した課題に鑑みてなされたものであり、中継する信号を劣化させることなく、帯域外の不要ノイズを低減することができる無線中継増幅装置を提供することを目的とする。
【0012】
【課題を解決するための手段】
上述した目的を達成するために、本発明は、受信信号を中継増幅して送信する無線中継増幅装置において、基地局からの電波を受信する受信アンテナと、該受信アンテナで受信された受信信号を帯域制限する入力側帯域フィルタと、該入力側帯域フィルタの出力を増幅する第1の増幅器と、該第1の増幅器の出力を帯域制限する、高温超伝導体を用いた高温超伝導帯域フィルタと、該高温超伝導帯域フィルタの出力を増幅する第2の増幅器と、該第2の増幅器の出力を帯域制限する出力側帯域フィルタと、該出力側帯域フィルタの出力を電波として送信する送信アンテナとを備えたことを特徴とするものである。
【0013】
このような構成によれば、中継する信号を劣化させることなく、帯域外の不要ノイズを抑圧することができる。
【0014】
また、本発明に係る無線中継増幅装置において、前記高温超伝導帯域フィルタの出力を増幅して前記第2の増幅器へ出力する極低温低雑音増幅器を備えたことを特徴とするものである。
【0015】
このような構成によれば、無線中継増幅装置の出力の雑音をさらに低減することができる。
【0016】
また、本発明に係る無線中継増幅装置において、前記入力側帯域フィルタは、高温超伝導帯域フィルタであることを特徴とするものである。
【0017】
このような構成によれば、帯域外の不要ノイズをさらに抑圧することができる。
【0018】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して詳細に説明する。
実施の形態1.
図1は、本発明の実施の形態1に係る無線中継増幅装置の構成例を示すブロック図である。図1に示すように、本実施の形態では、図3に示した従来の無線中継増幅装置における第1増幅部13と第2増幅部14との間に、高温超伝導帯域フィルタ31と極低温低雑音増幅器32を挿入する。高温超伝導帯域フィルタ31と極低温低雑音増幅器32は、例えばデュワー瓶等の熱遮蔽函33で封入されて熱遮断される。また、図4と同様の冷却手段24を備え、冷却手段24は、熱遮蔽函33内の高温超伝導帯域フィルタ31と極低温低雑音増幅器32を超伝導状態にするために、熱遮蔽函33を冷却する。図1において、図3及び図4と同一符号は図3及び図4に示された対象と同一又は相当物を示しており、ここでの説明を省略する。
【0019】
なお、本実施の形態における第1の増幅器とは第1増幅部13のことであり、第2の増幅器とは第2増幅部14のことである。
【0020】
次に、図1に示す本発明の無線中継増幅装置の動作について説明する。まず、第1増幅部13の出力は高温超伝導帯域フィルタ31へ入力される。高温超伝導帯域フィルタ31は、第1増幅部13の出力の帯域制限を行い、その結果を極低温低雑音増幅器32へ出力する。極低温低雑音増幅器32は、高温超伝導帯域フィルタ31の出力の増幅を行い、その結果を第2増幅部14へ出力する。極低温低雑音増幅器32の出力は、第2増幅部14と出力側帯域フィルタ15と送信アンテナ16において図3と同様の処理が施され、電波として外部へ送信される。
【0021】
ここで、図3に示した従来の無線中継増幅装置と図1に示した本発明の無線中継増幅装置において発生する帯域外の不要ノイズの比較を行う。まず、図3に示した従来の無線中継増幅装置において、帯域外の不要ノイズに対する利得を考える。第1増幅部13の利得をG13、第1増幅部13の雑音指数をF13とし、第2増幅部14の利得をG14、第2増幅部14の雑音指数をF14とすると、従来の無線中継増幅装置の利得G1は以下の(2)式で表され、従来の無線中継増幅装置の雑音指数F1は以下の(3)式で表される。
【0022】
G1=G13×G14・・・(2)
【0023】
F1=F13+(F14−1)/G13・・・(3)
【0024】
次に、図1に示す本発明の無線中継増幅装置において、帯域外の不要ノイズに対する利得を考える。高温超伝導フィルタ31の帯域外減衰量が十分であれば、高温超伝導フィルタ31以前の不要ノイズは見えなくなる。例えば、高温超伝導フィルタ31以前の雑音指数をF0とすると、高温超伝導フィルタ31以前の不要ノイズはNout0=kTB(F0)(G13)となる。また、高温超伝導フィルタ31の帯域外減衰量をL31とすると、高温超伝導フィルタ31後の不要ノイズはNout01=kTB(F0)(G13/L31)となる。従って、L31>>G13であればNout01は小さくなるため、高温超伝導フィルタ31以前の不要ノイズは無視できるレベルとなる。
【0025】
極低温低雑音増幅器32の利得をG32、極低温低雑音増幅器32の雑音指数をF32とすると、本発明の無線中継増幅装置の利得G2は以下の(4)式で表され、本発明の無線中継増幅装置の雑音指数F2は以下の(5)式で表される。
【0026】
G2=G33×G14・・・(4)
【0027】
F2≒F32+(F14−1)/G32・・・(5)
【0028】
ここで、従来の無線中継増幅装置における帯域内の信号に対する利得G1’=G13×G14と、本発明の無線中継増幅装置における帯域内の信号に対する利得G2’=G13×G32×G14は、等しいとする。このとき、F1とF2は大きく違わないが、本発明の無線中継増幅装置における帯域外の不要ノイズに対する利得G2は、上述したようにG2’からG13を除いた分となり、従来の無線中継増幅装置における帯域外の不要ノイズに対する利得G1よりも小さくなる。従って、図1に示した本発明の無線中継増幅装置は、図3に示した従来の無線中継増幅装置と比較して、帯域外の不要ノイズを抑圧することが可能となる。
【0029】
本実施の形態では、高温超伝導帯域フィルタ31とともに極低温低雑音増幅器32を使用した例を示したが、極低温低雑音増幅器32の代わりに通常の増幅器を用いて構成しても良い。
【0030】
実施の形態2.
図2は、本発明の実施の形態2に係る無線中継増幅装置の構成例を示すブロック図である。図2に示すように、本実施の形態では、図1に示した本発明の無線中継増幅装置における入力側帯域フィルタ12の代わりに、高温超伝導帯域フィルタ21と極低温低雑音増幅器22を備える。高温超伝導帯域フィルタ21と極低温低雑音増幅器22及び高温超伝導帯域フィルタ31と極低温低雑音増幅器32は、例えばデュワー瓶等の熱遮蔽函53で封入されて熱遮断される。また、実施の形態1と同様の冷却手段24を備え、冷却手段24は、熱遮蔽函53内の高温超伝導帯域フィルタ21と極低温低雑音増幅器22及び高温超伝導帯域フィルタ31と極低温低雑音増幅器32を超伝導状態にするために、熱遮蔽函53を冷却する。図2において、図1及び図4と同一符号は図1及び図4に示された対象と同一又は相当物を示しており、ここでの説明を省略する。
【0031】
本実施の形態では、従来の無線中継増幅装置と比較して、帯域外の不要ノイズを抑圧することが可能となるとともに、入力側帯域フィルタ12の代わりに高温超伝導帯域フィルタ21と極低温低雑音増幅器22を用いることでさらに帯域外の不要ノイズを抑圧することができる。
【0032】
【発明の効果】
以上に詳述したように本発明によれば、中継する信号を劣化させることなく、帯域外の不要ノイズを低減することができる無線中継増幅装置を提供することができるという効果を奏する。
【図面の簡単な説明】
【図1】本発明の実施の形態1に係る無線中継増幅装置の構成例を示すブロック図である。
【図2】本発明の実施の形態2に係る無線中継増幅装置の構成例を示すブロック図である。
【図3】従来の無線中継増幅装置の構成例を示すブロック図である。
【図4】従来の無線中継増幅装置の他の構成例を示すブロック図である。
【符号の説明】
11 受信アンテナ、12 入力側帯域フィルタ、13 第1増幅部、14 第2増幅部、15 出力側帯域フィルタ、16 送信アンテナ、21,31 高温超伝導帯域フィルタ、22,32 極低温低雑音増幅器、33,53 熱遮蔽函、24 冷却手段。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relays and amplifies a received signal in various wireless services such as a mobile phone, a mobile phone, and a wireless paging device in order to prevent a service blind zone in which radio waves from a base station cannot be received, such as behind a mountain, for example. The present invention relates to a wireless relay amplifying device for transmitting data.
[0002]
[Prior art]
First, a conventional wireless relay amplifier will be described. FIG. 3 is a block diagram showing a configuration example of a conventional wireless relay amplification device. As shown in FIG. 3, the wireless relay amplifying apparatus includes a receiving antenna 11, an input-side bandpass filter 12, a first amplifying unit 13, a second amplifying unit 14, an output-side bandpass filter 15, a transmitting antenna 16 Consists of
[0003]
Next, the operation of the conventional wireless relay amplifier shown in FIG. 3 will be described. The receiving antenna 11 is installed at a point where radio waves from a base station can be received, for example, at the top of a mountain. First, the receiving antenna 11 receives a radio wave from a base station and outputs the result to the input-side bandpass filter 12 as a received signal. The received signal is band-limited by the input-side bandpass filter 12, subjected to power amplification by the first amplifier 13, further subjected to power amplification by the second amplifier 14, and output to the output-side bandpass filter 15. The output-side band-pass filter 15 limits the band of the output of the second amplifying unit 14, attenuates harmonics and unnecessary noise outside the band, attenuates unnecessary waves received by the transmission antenna 16, and uses the result as a transmission signal. Output to the transmitting antenna 16. The transmission antenna 16 transmits a transmission signal to the outside as a radio wave. The transmitting antenna 16 is installed at a point where radio waves can be transmitted to a desired area. As described above, the use of the wireless relay amplifying device as shown in FIG. 3 has prevented the occurrence of a service dead zone at a distance of several hundred meters to several kilometers.
[0004]
Next, a description will be given of a configuration example of a conventional wireless relay amplifier including a high-temperature superconducting band filter and a cryogenic low-noise amplifier in place of the input-side band filter 12 shown in FIG. FIG. 4 is a block diagram showing another configuration example of the conventional wireless relay amplification device. The high-temperature superconducting band filter 21 used here has the characteristics that the insertion loss is extremely small and the frequency selectivity is high. Further, the cryogenic low-noise amplifier 22 used here has a feature of suppressing generation of thermal noise. The high-temperature superconducting band-pass filter 21 and the cryogenic low-noise amplifier 22 are sealed in a heat shielding box 23 such as a Dewar bottle, for example, to be thermally shut off. Further, in order to make the high-temperature superconducting band filter 21 and the cryogenic low-noise amplifier 22 in the heat shielding box 23 into a superconducting state, cooling means 24 for cooling the heat shielding box 23 to an extremely low temperature, for example, about several tens of K is provided. Prepare. 4, the same reference numerals as those in FIG. 3 denote the same or corresponding components as those shown in FIG. 3, and a description thereof will be omitted.
[0005]
Next, the operation of the conventional wireless relay amplifier shown in FIG. 4 will be described. The receiving antenna 11 receives a radio wave from the base station and outputs the result to the high-temperature superconducting band filter 21 as a reception signal. The received signal is band-limited by the high-temperature superconducting band-pass filter 21, amplified by the cryogenic low-noise amplifier 22, and output to the first amplifier 13. The output of the cryogenic low-noise amplifier 22 is subjected to the same processing as in FIG. 3 in the first amplifying unit 13, the second amplifying unit 14, the output-side bandpass filter 15, and the transmitting antenna 16, and is transmitted to the outside as radio waves.
[0006]
Here, out-of-band unnecessary noise generated in the wireless relay amplification device will be described. The out-of-band unnecessary noise Nout generated in the wireless relay amplification device is expressed by the following equation (1).
[0007]
Nout = kTBFG (1)
[0008]
In equation (1), k is the Boltzmann constant, T is the absolute temperature, B is the effective bandwidth, F is the noise figure of the wireless relay amplifier, and G is the output of the wireless relay amplifier with respect to the out-of-band attenuation of the bandpass filter 15. Gain ratio. For example, the absolute temperature is 290 K, the effective bandwidth is 4 MHz, the noise figure of the wireless relay amplifying apparatus is 5 dB, the gain of the wireless relay amplifying apparatus is 80 dB, and the out-of-band attenuation of the output side band-pass filter 15 at 500 kHz detuning is 5 dB. Then, the unnecessary noise outside the band becomes -28 dBm (4 MHz).
[0009]
According to the equation (1), in order to reduce unnecessary noise outside the band, the value of G may be reduced by increasing the amount of out-of-band attenuation of the output-side band-pass filter 15.
[0010]
[Problems to be solved by the invention]
To increase the out-of-band attenuation of the output-side bandpass filter 15, it is considered that the bandwidth is narrowed, the number of filter stages is increased, and a high-temperature superconducting filter is used as the output-side bandpass filter 15. However, when the bandwidth is narrowed, there is a problem that a signal to be relayed is deteriorated. Further, when the number of stages of the filter is increased, the loss of the filter is increased, so that the output of the amplifier is increased. As a result, power consumption is increased. When a high-temperature superconducting filter is used as the output-side bandpass filter 15, the attenuation outside the band is 40 dB, which is a sufficient value. However, since the high-temperature superconducting filter generates more distortion than a normal temperature filter. , Can not be used.
[0011]
The present invention has been made in view of the above-described problems, and has as its object to provide a wireless relay amplification device that can reduce unnecessary noise outside a band without deteriorating a signal to be relayed.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a wireless relay amplifying device that relays and amplifies a received signal and transmits the received signal received by the receiving antenna with a receiving antenna that receives a radio wave from a base station. An input-side bandpass filter for band-limiting, a first amplifier for amplifying an output of the input-side bandpass filter, and a high-temperature superconducting bandpass filter using a high-temperature superconductor for band-limiting the output of the first amplifier; A second amplifier for amplifying the output of the high-temperature superconducting bandpass filter, an output-side bandpass filter for band-limiting the output of the second amplifier, and a transmitting antenna for transmitting the output of the output-side bandpass filter as radio waves. It is characterized by having.
[0013]
According to such a configuration, unnecessary noise outside the band can be suppressed without deteriorating the signal to be relayed.
[0014]
Further, in the wireless relay amplifier according to the present invention, a cryogenic low-noise amplifier for amplifying the output of the high-temperature superconducting band filter and outputting the amplified output to the second amplifier is provided.
[0015]
According to such a configuration, the noise of the output of the wireless relay amplification device can be further reduced.
[0016]
In the wireless relay amplifier according to the present invention, the input-side bandpass filter is a high-temperature superconducting bandpass filter.
[0017]
According to such a configuration, unnecessary noise outside the band can be further suppressed.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
Embodiment 1 FIG.
FIG. 1 is a block diagram illustrating a configuration example of a wireless relay amplification apparatus according to Embodiment 1 of the present invention. As shown in FIG. 1, in the present embodiment, a high-temperature superconducting band-pass filter 31 and a cryogenic temperature filter are provided between a first amplifier 13 and a second amplifier 14 in the conventional wireless relay amplifier shown in FIG. The low noise amplifier 32 is inserted. The high-temperature superconducting band-pass filter 31 and the cryogenic low-noise amplifier 32 are sealed in a heat shield box 33 such as a Dewar bottle, for example, and are thermally shut off. Further, a cooling means 24 similar to that of FIG. 4 is provided, and the cooling means 24 is provided with a heat shielding box 33 in order to bring the high-temperature superconducting bandpass filter 31 and the cryogenic low-noise amplifier 32 into a superconducting state. To cool. In FIG. 1, the same reference numerals as those in FIGS. 3 and 4 indicate the same or equivalent objects as those shown in FIGS. 3 and 4, and a description thereof will be omitted.
[0019]
Note that the first amplifier in the present embodiment refers to the first amplifying unit 13 and the second amplifier refers to the second amplifying unit 14.
[0020]
Next, the operation of the wireless relay amplifier of the present invention shown in FIG. 1 will be described. First, the output of the first amplifier 13 is input to the high-temperature superconducting bandpass filter 31. The high-temperature superconducting band filter 31 limits the band of the output of the first amplifying unit 13 and outputs the result to the cryogenic low-noise amplifier 32. The cryogenic low-noise amplifier 32 amplifies the output of the high-temperature superconducting band filter 31 and outputs the result to the second amplifying unit 14. The output of the cryogenic low-noise amplifier 32 is subjected to the same processing as in FIG. 3 in the second amplifying unit 14, the output-side bandpass filter 15, and the transmitting antenna 16, and is transmitted as radio waves to the outside.
[0021]
Here, out-of-band unnecessary noises generated in the conventional wireless relay amplifier shown in FIG. 3 and the wireless relay amplifier of the present invention shown in FIG. 1 are compared. First, in the conventional wireless relay amplifying apparatus shown in FIG. 3, a gain against unnecessary noise outside the band will be considered. Assuming that the gain of the first amplifier 13 is G13, the noise figure of the first amplifier 13 is F13, the gain of the second amplifier 14 is G14, and the noise figure of the second amplifier 14 is F14, The gain G1 of the device is expressed by the following expression (2), and the noise figure F1 of the conventional wireless relay amplifying device is expressed by the following expression (3).
[0022]
G1 = G13 × G14 (2)
[0023]
F1 = F13 + (F14-1) / G13 (3)
[0024]
Next, in the wireless relay amplifying device of the present invention shown in FIG. 1, the gain against unnecessary noise outside the band will be considered. If the amount of out-of-band attenuation of the high-temperature superconducting filter 31 is sufficient, unnecessary noise before the high-temperature superconducting filter 31 becomes invisible. For example, if the noise figure before the high-temperature superconducting filter 31 is F0, the unnecessary noise before the high-temperature superconducting filter 31 is Nout0 = kTB (F0) (G13). When the out-of-band attenuation of the high-temperature superconducting filter 31 is L31, the unnecessary noise after the high-temperature superconducting filter 31 is Nout01 = kTB (F0) (G13 / L31). Therefore, if L31 >> G13, Nout01 becomes small, and unnecessary noise before the high-temperature superconducting filter 31 becomes a negligible level.
[0025]
Assuming that the gain of the cryogenic low-noise amplifier 32 is G32 and the noise figure of the cryogenic low-noise amplifier 32 is F32, the gain G2 of the wireless relay amplifying device of the present invention is expressed by the following equation (4). The noise figure F2 of the relay amplifier is represented by the following equation (5).
[0026]
G2 = G33 × G14 (4)
[0027]
F2 ≒ F32 + (F14-1) / G32 (5)
[0028]
Here, the gain G1 ′ = G13 × G14 for the signal in the band in the conventional wireless relay amplifier is equal to the gain G2 ′ = G13 × G32 × G14 for the signal in the band in the wireless relay amplifier of the present invention. I do. At this time, although F1 and F2 are not significantly different, the gain G2 for unnecessary noise outside the band in the wireless relay amplifying device of the present invention is equal to the value obtained by removing G13 from G2 'as described above. Is smaller than the gain G1 for unnecessary noise outside the band. Therefore, the wireless relay amplifying device of the present invention shown in FIG. 1 can suppress out-of-band unnecessary noise as compared with the conventional wireless relay amplifying device shown in FIG.
[0029]
In the present embodiment, an example in which the cryogenic low-noise amplifier 32 is used together with the high-temperature superconducting band filter 31 has been described, but a normal amplifier may be used instead of the cryogenic low-noise amplifier 32.
[0030]
Embodiment 2 FIG.
FIG. 2 is a block diagram illustrating a configuration example of a wireless relay amplification apparatus according to Embodiment 2 of the present invention. As shown in FIG. 2, in the present embodiment, a high-temperature superconducting band-pass filter 21 and a cryogenic low-noise amplifier 22 are provided instead of the input-side band-pass filter 12 in the wireless relay amplifier of the present invention shown in FIG. . The high-temperature superconducting band-pass filter 21 and the cryogenic low-noise amplifier 22, and the high-temperature superconducting band-pass filter 31 and the cryogenic low-noise amplifier 32 are sealed in a heat shield box 53 such as a Dewar bottle, for example, and are thermally shut off. In addition, a cooling means 24 similar to that of the first embodiment is provided, and the cooling means 24 includes a high-temperature superconducting band filter 21 and a cryogenic low-noise amplifier 22 and a high-temperature superconducting band filter 31 and a cryogenic low-temperature In order to bring the noise amplifier 32 into a superconductive state, the heat shield box 53 is cooled. 2, the same reference numerals as those in FIGS. 1 and 4 denote the same or corresponding objects as those shown in FIGS. 1 and 4, and a description thereof will be omitted.
[0031]
In the present embodiment, unnecessary noise outside the band can be suppressed as compared with the conventional wireless relay amplifier, and the high-temperature superconducting band filter 21 and the cryogenic low- By using the noise amplifier 22, unnecessary noise outside the band can be further suppressed.
[0032]
【The invention's effect】
As described in detail above, according to the present invention, there is an effect that it is possible to provide a wireless relay amplifying device capable of reducing unnecessary noise outside a band without deteriorating a signal to be relayed.
[Brief description of the drawings]
FIG. 1 is a block diagram illustrating a configuration example of a wireless relay amplification apparatus according to Embodiment 1 of the present invention.
FIG. 2 is a block diagram illustrating a configuration example of a wireless relay amplification device according to a second embodiment of the present invention.
FIG. 3 is a block diagram illustrating a configuration example of a conventional wireless relay amplification device.
FIG. 4 is a block diagram illustrating another configuration example of a conventional wireless relay amplification device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 receiving antenna, 12 input side band filter, 13 1st amplifier, 14 2nd amplifier, 15 output side band filter, 16 transmitting antenna, 21, 31 high temperature superconducting band filter, 22, 32 cryogenic low noise amplifier, 33, 53 heat shielding box, 24 cooling means.

Claims (3)

受信信号を中継増幅して送信する無線中継増幅装置において、
基地局からの電波を受信する受信アンテナと、
該受信アンテナで受信された受信信号を帯域制限する入力側帯域フィルタと、
該入力側帯域フィルタの出力を増幅する第1の増幅器と、
該第1の増幅器の出力を帯域制限する、高温超伝導体を用いた高温超伝導帯域フィルタと、
該高温超伝導帯域フィルタの出力を増幅する第2の増幅器と、
該第2の増幅器の出力を帯域制限する出力側帯域フィルタと、
該出力側帯域フィルタの出力を電波として送信する送信アンテナとを備えたことを特徴とする無線中継増幅装置。
In a wireless relay amplifying device for relay-amplifying and transmitting a received signal,
A receiving antenna for receiving radio waves from the base station;
An input-side bandpass filter for band-limiting a reception signal received by the reception antenna,
A first amplifier for amplifying the output of the input band-pass filter;
A high-temperature superconducting bandpass filter using a high-temperature superconductor for band-limiting the output of the first amplifier;
A second amplifier for amplifying the output of the high-temperature superconducting bandpass filter;
An output-side band-pass filter for band-limiting the output of the second amplifier;
A transmission antenna for transmitting an output of the output band-pass filter as a radio wave.
請求項1に記載の無線中継増幅装置において、
前記高温超伝導帯域フィルタの出力を増幅して前記第2の増幅器へ出力する極低温低雑音増幅器を備えたことを特徴とする無線中継増幅装置。
The wireless relay amplifying device according to claim 1,
A wireless relay amplifying device comprising a cryogenic low-noise amplifier for amplifying an output of the high-temperature superconducting band filter and outputting the amplified output to the second amplifier.
請求項1または請求項2のいずれかに記載の無線中継増幅装置において、
前記入力側帯域フィルタは、高温超伝導帯域フィルタであることを特徴とする無線中継増幅装置。
The wireless relay amplifying device according to claim 1 or 2,
The input-side bandpass filter is a high-temperature superconducting bandpass filter.
JP2003020046A 2003-01-29 2003-01-29 Radio relay amplifier Pending JP2004235812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003020046A JP2004235812A (en) 2003-01-29 2003-01-29 Radio relay amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003020046A JP2004235812A (en) 2003-01-29 2003-01-29 Radio relay amplifier

Publications (1)

Publication Number Publication Date
JP2004235812A true JP2004235812A (en) 2004-08-19

Family

ID=32949777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003020046A Pending JP2004235812A (en) 2003-01-29 2003-01-29 Radio relay amplifier

Country Status (1)

Country Link
JP (1) JP2004235812A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012068167A (en) * 2010-09-24 2012-04-05 Toshiba Corp Magnetic resonance measuring apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012068167A (en) * 2010-09-24 2012-04-05 Toshiba Corp Magnetic resonance measuring apparatus
US8587315B2 (en) 2010-09-24 2013-11-19 Kabushiki Kaisha Toshiba Magnetic resonance measuring apparatus

Similar Documents

Publication Publication Date Title
JP5654560B2 (en) Spool damping device, system, and method
US20100062707A1 (en) Frequency conversion device, method and system
KR101418592B1 (en) Method for concurrent transmitting and receiving data through heterogeneous wireless networks and apparatus using the same
JP2004235812A (en) Radio relay amplifier
JP2001308650A (en) Apparatus for amplifying transmission power
JP2002158599A (en) Transmission and reception circuit
US6298670B1 (en) Cooling device for RF filters and a low noise amplifier
JP2006166463A (en) Method of improving communication quality by identifying and removing pseudo noise code, and signal processor utilizing the same
JP2009267476A (en) Radio relay amplifying device
JP4777168B2 (en) Wireless signal receiver
KR100511296B1 (en) A low noise amplifier with exclude harmonics for linearity
JP2005223592A (en) Radio relay amplifier
JP2003179520A (en) Full duplex communication equipment
JP2000183771A (en) High sensitivity radio receiver
WO2004095849A2 (en) Communication systems incorporating hts filters and non-linear modulators such as rf-light modulators
Terrell et al. High temperature superconducting filters-a maturing technology
JP3558260B2 (en) High-sensitivity base station radio equipment
JP3439074B2 (en) Receiver
KR100570510B1 (en) Third distortion control method due to leakage signal in portable internet time division duplexing antenna part and the antenna part
US7075374B2 (en) Method and apparatus to provide wideband low noise amplification
JPS59154826A (en) System for controlling satellite communication transmission power
JP3369842B2 (en) Indoor wireless transmission equipment
JP2000134116A (en) High-sensitivity radio receiver
JPH10112678A (en) Simultaneous band selection radio relay amplifier
JP2000031879A (en) Radio relay amplifier

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050302

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070918