JP2004235325A - Solar cell - Google Patents

Solar cell Download PDF

Info

Publication number
JP2004235325A
JP2004235325A JP2003020473A JP2003020473A JP2004235325A JP 2004235325 A JP2004235325 A JP 2004235325A JP 2003020473 A JP2003020473 A JP 2003020473A JP 2003020473 A JP2003020473 A JP 2003020473A JP 2004235325 A JP2004235325 A JP 2004235325A
Authority
JP
Japan
Prior art keywords
silicon crystal
crystal layer
solar cell
semiconductor particles
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003020473A
Other languages
Japanese (ja)
Other versions
JP3787629B2 (en
Inventor
Toru Ujihara
徹 宇治原
Noritaka Usami
徳隆 宇佐美
Kozo Fujiwara
航三 藤原
Kazuo Nakajima
一雄 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2003020473A priority Critical patent/JP3787629B2/en
Publication of JP2004235325A publication Critical patent/JP2004235325A/en
Application granted granted Critical
Publication of JP3787629B2 publication Critical patent/JP3787629B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solar cell applicable with a conventional manufacturing method as is and simple in the structure thereof while having a high photoelectric conversion efficiency. <P>SOLUTION: The solar cell is equipped with a silicon crystalline layer having a photoelectric conversion function, and semiconductor particles having a conduction band, larger than silicon, are dispersed in the silicon crystalline layer. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、太陽電池に関する。
【0002】
【従来の技術】
現在、シリコン結晶は太陽電池材料として最も多く用いられている。
【0003】
従来の太陽電池としては、光電変換部材が単一のpn接合を持つシリコン結晶層を備えた構造ものが知られている。しかしながら、太陽光は紫外線、可視光線、赤外線と幅広いスペクトルを含むにも拘わらず、単一のpn接合を持つシリコン結晶層を有する太陽電池ではある波長域の光のみを吸収して電気に変換するため、光電変換部材と太陽光の間における波長の不整合により光電変換効率の高い太陽電池を実現することが困難であった。
【0004】
このようなことから、異なる種類の半導体薄膜(吸収波長帯域の異なる半導体薄膜)を組み合わせることにより光電変換効率を向上したタンデム型太陽電池が研究、開発されている。この太陽電池は、太陽光をバンドギャップの大きい半導体薄膜から小さい半導体薄膜へと順々に吸収・透過させることにより、太陽光の広い波長領域の光を吸収して光電変換効率を向上することを企図したものである。
【0005】
前記タンデム型の太陽電池は、主に薄膜の多層積層技術を用いて製造される。また、各半導体薄膜はそれぞれ電極が接続され、最大電力を取り出すための最適な構造に設計されている。
【0006】
【発明が解決しようとする課題】
しかしながら、従来のタンデム型の太陽電池は多層薄膜形成技術が必要で、基本的に多くの半導体薄膜を組み合わせるために、構造が非常に複雑になり、最適な構造設計も非常に困難になる。その結果、太陽電池のコストが非常に高価になり、用途が限定される問題があった。
【0007】
本発明は、従来の製法をそのまま適用可能で、構造も簡単で、高い光電変換効率を有する太陽電池を提供しようとするものである。
【0008】
【課題を解決するための手段】
本発明に係る太陽電池は、光電変換機能を持つシリコン結晶層を備えた太陽電池であって、
前記シリコン結晶層は、シリコンより大きい伝導帯を持つ半導体粒子が分散されていることを特徴とするものである。
【0009】
【発明の実施の形態】
以下、本発明に係る太陽電池を詳細に説明する。
【0010】
本発明の太陽電池は、光電変換機能を持つシリコン結晶層を備えている。前記シリコン結晶層は、シリコンより大きい伝導帯を持つ半導体粒子が分散されている。前記シリコン結晶層は、太陽光の入射側に表面電極が、太陽光の出射側に裏面電極が、それぞれ形成されている。
【0011】
前記シリコン結晶とは、シリコン単結晶、シリコン多結晶を意味する。
【0012】
前記シリコン結晶層は、5μm以上の厚さを有することが好ましい。ただし、裏面電極を兼ねるグラファイトのような基板にシリコン結晶層を形成する場合にはそのシリコン結晶層の厚さは5〜10μmにすることが好ましい。バルクシリコン結晶から切り出してシリコン結晶層を作製する場合は、そのシリコン結晶層の厚さは100〜350μmにすることが好ましい。
【0013】
前記光電変換機能を持つシリコン結晶層としては、例えばpn接合を持つシリコン結晶層、pin接合を持つシリコン結晶層を挙げることができる。
【0014】
前記シリコンより大きい伝導帯を持つ半導体粒子としては、例えば炭化ケイ素(SiC)粒子、ダイアモンド粒子、酸化亜鉛(ZnO)粒子等を挙げることができる。
【0015】
前記半導体粒子は、2μm以下、より好ましくは0.5〜1.5μmの平均粒径を有することが望ましい。これは、次に説明する3つの理由によるものである。1つ目の理由は、太陽光を前記半導体粒子が分散されたシリコン結晶層に入射させた場合、太陽光のうちのシリコン結晶層に吸収される波長を持つ光が前記半導体粒子に吸収されるのを防ぐために、前記半導体粒子をそのSi吸収光の波長より短い平均粒径である2μm以下にすることが好ましい。2つ目は、一定重量の半導体粒子をシリコン結晶層に分散させた場合、半導体粒子の粒径を小さくするほど、その粒子の存在に起因するキャリア発生部位が増大することから、前記半導体粒子を2μm以下の小さい平均粒径にすることが好ましい。3つ目は、半導体粒子との界面近傍のシリコン結晶層に歪を生じさせることで、半導体粒子の平均粒径が2μmを超えると、界面近傍のシリコン結晶層の歪の力が増大してそのシリコン結晶層に転位(欠陥)が生じる虞がある。
【0016】
前記半導体粒子は、その平均粒径が2μm以下である条件の下で、前記シリコン結晶層に1〜30重量%分散されていることが好ましい。前記半導体粒子の分散量を1重量%未満にすると、半導体粒子の分散によるキャリア発生の増大効果を十分に達成することが困難になる。一方、前記半導体粒子の分散量が30重量%を超えると、前記シリコン結晶層を構成するSiの連続性が阻害されて光電変換の機能が損なわれる虞がある。より好ましい前記半導体粒子の分散量は、10〜25重量%である。
【0017】
特に、前記半導体粒子はその平均粒径が2μm以下、前記シリコン結晶層の厚さが5μm以上であるとの条件の下で全分散量の少なくとも50%以上が前記シリコン結晶層に3μm以下の粒子間距離をあけて分散されていることが好ましい。前記粒子間距離は、例えば半導体粒子分散シリコン結晶層の断面を電子顕微鏡(SEM)で観察することにより測定することが可能である。前記半導体粒子の全分散量の割合および粒子間距離の規定は、前記シリコン結晶層に対する半導体粒子の分散密度、分散量を示す指標である。すなわち、前記半導体粒子が前記シリコン結晶層に3μmを超える粒子間距離をあけて分散することは、前記半導体粒子が比較的低密度でかつ少ない量で前記シリコン結晶層に分散されていることを意味し、太陽光の入射に際して前記半導体粒子の存在に起因するキャリア発生部位が減少してより一層の光電変換効率の向上が望めなくなる。より好ましい前記シリコン結晶層に分散される半導体粒子の粒子間距離は、0.5〜3μm、さらに好ましい半導体粒子の粒子間距離は0.5〜2μmである。
【0018】
次に、本発明に係る太陽電池の製造方法を説明する。
【0019】
1)ボロンのようなp型不純物(またはリン、砒素のようなn型不純物)がドープされたシリコン粉末と半導体粒子とを目的とする組成になるように秤量し、これらを均一に混合する。つづいて、この混合粉末をシリコンの融点より高く、前記半導体粒子の融点未満の温度で加熱し、その温度を保持した後、急速冷却することにより、前記半導体粒子が分散されたp型(またはn型)のバルクシリコン結晶を作る。このバルクシリコン結晶から薄板状のシリコン結晶(シリコン結晶層)を切出し、研磨処理等を施した後、このシリコン結晶層にこれにドープされた不純物と反対導電型の不純物を例えば気相拡散、固相拡散のような拡散技術により導入して前記シリコン結晶層にpn接合を作る。次いで、前記シリコン結晶層の太陽光入射側の面に例えばITO等からなる表面電極、前記シリコン結晶層の太陽光出射側の面に例えばアルミニム等からなる裏面電極を形成して太陽電池を製造する。
【0020】
2)グラファイトのような裏面電極を兼ねる基板上に半導体粒子が分散され、ボロンのようなp型不純物(またはリン、砒素のようなn型不純物)がドープされたシリコンのターゲットをスパッタリングして前記不純物がドープされたシリコンおよび半導体粒子を同時に成膜してシリコン結晶層を形成する。つづいて、このシリコン結晶層の表面(太陽光入射側の面)に例えばITO等からなる表面電極を形成して太陽電池を製造する。
【0021】
次に、本発明に係る太陽電池を図1を参照して説明する。
【0022】
シリコン結晶層1は、半導体粒子2が分散され、かつpn接合3を有する。太陽光4が入射される側の前記シリコン結晶層1の面には、ITOのような透明導電材料からなる表面電極5が形成されている。太陽光が出射される側の前記シリコン結晶層1の面には、アルミニウムのような導電材料からなる裏面電極6が形成されている。
【0023】
以上説明した本発明によれば、光電変換機能を持つシリコン結晶層を備え、前記シリコン結晶層をシリコンより大きい伝導帯を持つ半導体粒子が分散された構成にすることによって、以下に説明する作用から光電変換効率が高く、簡素な構造を持つ太陽電池を実現できる。
【0024】
図2は、本発明の太陽電池における半導体粒子が分散されたシリコン結晶層の半導体粒子近傍を示す概略図、図3は図2のシリコン結晶層の半導体粒子近傍におけるバンドギャップ図である。なお、図2中の11はシリコン結晶、12は半導体粒子、13は半導体粒子12との界面近傍に位置するシリコン結晶に形成された歪である。
【0025】
図1に示すようにシリコン結晶層1に太陽光4を照射すると、図2に示すシリコン結晶11部分および半導体粒子12の両方で発電に寄与するキャリアの発生がなされる。つまり、太陽光の異なる波長の光がシリコン結晶11部分および半導体粒子12で吸収されて、それぞれの箇所でキャリアの発生がなされる。この時、図3のバンドギャップ図に示すように半導体粒子はシリコンの伝導帯より高エネルギー側に位置する伝導帯を持つため、半導体粒子で生成されたキャリア(エレクトロン)はシリコン結晶へ移動し、結果的にシリコン結晶内のキャリア発生量を増大させることができる。このため、図1に示す表裏の電極5,6間から大きな開放端電圧および短絡電流を取り出すことができる。
【0026】
また、半導体粒子12の界面近傍のシリコン結晶11に形成された歪13は、図3のバンドギャップ図に示すようにシリコン結晶11のバンドギャップより小さくなるため、シリコン結晶11で本来吸収し得ない長波長の光を吸収して、キャリアの発生量を増大させることができる。このため、図1に示す表裏の電極5,6間から大きな開放端電圧および短絡電流を取り出すことができる。
【0027】
したがって、太陽光の照射においてシリコン結晶11で所定の波長を持つ太陽光を吸収してキャリアを発生でき、シリコン結晶11部分で吸収し得ない光を半導体粒子12で吸収してキャリアを発生でき、さらにシリコン結晶11で本来吸収し得ない長波長の光を半導体粒子12の界面近傍にシリコン結晶11に形成された歪13で吸収してキャリアを発生できるため、半導体粒子が分散されていないシリコン結晶層に比べてキャリア発生量を増大でき、光電変換効率の高い太陽電池を実現できる。
【0028】
特に、2μm以下の平均粒径を有する半導体粒子を用いることによって、前述した3つの理由からキャリア発生量をより増大でき、光電変換効率のより高い太陽電池を実現できる。
【0029】
さらに、前記半導体粒子をその平均粒径が2μm以下である条件の下で、前記シリコン結晶層に1〜30重量%分散させることによって、半導体粒子および半導体粒子との界面近傍のシリコン結晶層に生じる歪における種々のバンドギャップを有する部位(キャリア発生部位)をシリコン結晶層に適切に形成できるため、キャリア発生量をより一層増大でき、光電変換効率のより高い太陽電池を実現できる。
【0030】
とりわけ、前記半導体粒子をその平均粒径が2μm以下、前記シリコン結晶層の厚さが5μm以上であるとの条件の下で全分散量の少なくとも50%以上が前記シリコン結晶層に3μm以下の粒子間距離をあけて分散させることによって、半導体粒子および半導体粒子との界面近傍のシリコン結晶層に生じる歪における種々のバンドギャップを有する部位(キャリア発生部位)をシリコン結晶層により多く、かつ均一に形成できる。このため、太陽光を前記半導体粒子が分散されたシリコン結晶層に照射させた場合、キャリア発生量をより一層増大でき、光電変換効率が著しく高い太陽電池を実現できる。
【0031】
また、本発明の太陽電池は従来のタンデム型太陽電池のように多層薄膜形成技術により多くの半導体薄膜を組み合わせることが不要で、構造が簡素である上、従来のpn接合を持つシリコン結晶層を有する太陽電池と同様な方法で製造が可能であるため、大規模の設備投資も不要であるため、低コスト化で実用化が容易である。
【0032】
【実施例】
以下、本発明の好ましい実施例を説明する。
【0033】
(実施例1)
まず、p型不純物であるボロン(B)が1016cm−3ドープされたシリコン(Si)と平均粒径1μmの炭化ケイ素(SiC)粒子とをSiに対してSiCが10重量%の割合になるように秤量して十分に混合した後、グラファイト坩堝に入れた。つづいて、前記坩堝を高温加熱炉に設置し、1650℃に加熱保持した後、急速冷却して円柱状のSiC粒子分散Si多結晶体を作った。このSiC粒子分散Si多結晶体は、SEM写真での観察により、平均粒径1μmのSiC粒子がシリコン多結晶体に0.5〜3μmの粒子間距離をあけて分散されていることが確認された。
【0034】
次いで、前記円柱状のSiC粒子分散Si多結晶体を切断して厚さ300μmの円板とした後、表裏面を鏡面仕上げした。つづいて、このSiC粒子分散Si多結晶円板をn型不純物であるリンの雰囲気に曝してリンを前記多結晶円板に気相拡散して表面から1μmの深さにpn接合を形成することにより、光電変換機能を持つSiC粒子分散Si多結晶円板とした。この後、スッパタ技術および選択エッチング技術により前記pn接合を有するSiC粒子分散Si多結晶円板の両面にITOからなる表面電極、アルミニウムからなる裏面電極を形成して前述した図1に示す太陽電池を製造した。
【0035】
(比較例1)
p型不純物であるボロン(B)が1016cm−3ドープされたシリコン(Si)をグラファイト坩堝に入れ、高温加熱炉中で1650℃に加熱保持した後、急速冷却して円柱状のSi多結晶体を作り、このSi多結晶体から厚さ300μm、表面から1μmの深さにpn接合を有する光電変換機能を持つSi多結晶円板を作製した以外、実施例1と同様な太陽電池を得た。
【0036】
得られた実施例1および比較例1の太陽電池について、分光エリプソメトリー装置を用いて太陽光の入射面の偏光反射率を測定することにより、各太陽電池の光電変換機能を持つSiC粒子分散Si多結晶円板、Si多結晶円板での吸収係数の波長依存性を調べた。その結果を図4に示す。
【0037】
図4から明らかなように本発明の実施例1におけるSiC粒子分散Si多結晶円板は、比較例1におけるSi多結晶円板に比べて高エネルギー側で多くの波長域の光を吸収できることがわかる。これは、本発明の実施例1におけるSiC粒子分散Si多結晶円板がより多くのキャリアを発生し、大きな開放端電圧および短絡電流を取り出せることを意味する。
【0038】
【発明の効果】
以上詳述したように本発明によれば、従来の製法をそのまま適用可能で、構造もタンデム型に比べて簡単で、光電変換効率が高くかつ低コストの太陽電池を提供することができる。
【図面の簡単な説明】
【図1】本発明の太陽電池に一形態を示す概略断面図。
【図2】本発明の太陽電池における半導体粒子が分散されたシリコン結晶層の半導体粒子近傍を示す概略図。
【図3】図2のシリコン結晶層の半導体粒子近傍におけるバンドギャップ図。
【図4】実施例1および比較例1の太陽電池の光電変換機能を持つSiC粒子分散Si多結晶円板、Si多結晶円板での吸収係数の波長依存性を示すグラフ。
【符号の説明】
1,11…シリコン結晶、2,12…半導体粒子、3…pn接合、5…表面電極、6…裏面電極、13…歪。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a solar cell.
[0002]
[Prior art]
At present, silicon crystals are most frequently used as solar cell materials.
[0003]
As a conventional solar cell, a structure in which a photoelectric conversion member includes a silicon crystal layer having a single pn junction is known. However, despite the fact that sunlight includes a wide spectrum of ultraviolet light, visible light, and infrared light, a solar cell having a silicon crystal layer having a single pn junction absorbs only light in a certain wavelength range and converts it into electricity. Therefore, it has been difficult to realize a solar cell with high photoelectric conversion efficiency due to wavelength mismatch between the photoelectric conversion member and sunlight.
[0004]
For this reason, tandem solar cells having improved photoelectric conversion efficiency by combining different types of semiconductor thin films (semiconductor thin films having different absorption wavelength bands) have been studied and developed. This solar cell absorbs and transmits sunlight from a semiconductor thin film with a large band gap to a semiconductor thin film with a small band gap in order to absorb light in a wide wavelength range of sunlight and improve photoelectric conversion efficiency. It is intended.
[0005]
The tandem-type solar cell is mainly manufactured using a thin-film multilayer lamination technology. Each semiconductor thin film is connected to an electrode, and is designed to have an optimal structure for extracting maximum power.
[0006]
[Problems to be solved by the invention]
However, the conventional tandem-type solar cell requires a multilayer thin film forming technique, and since a large number of semiconductor thin films are basically combined, the structure becomes very complicated, and the optimal structural design becomes very difficult. As a result, there is a problem that the cost of the solar cell is extremely high, and the use is limited.
[0007]
An object of the present invention is to provide a solar cell which can be applied to a conventional manufacturing method as it is, has a simple structure, and has high photoelectric conversion efficiency.
[0008]
[Means for Solving the Problems]
The solar cell according to the present invention is a solar cell including a silicon crystal layer having a photoelectric conversion function,
The silicon crystal layer is characterized in that semiconductor particles having a conduction band larger than silicon are dispersed.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the solar cell according to the present invention will be described in detail.
[0010]
The solar cell of the present invention includes a silicon crystal layer having a photoelectric conversion function. In the silicon crystal layer, semiconductor particles having a conduction band larger than silicon are dispersed. In the silicon crystal layer, a front surface electrode is formed on the sunlight incident side, and a back surface electrode is formed on the sunlight exit side.
[0011]
The silicon crystal means a silicon single crystal or a silicon polycrystal.
[0012]
The silicon crystal layer preferably has a thickness of 5 μm or more. However, when a silicon crystal layer is formed on a substrate such as graphite that also serves as a back electrode, the thickness of the silicon crystal layer is preferably 5 to 10 μm. When a silicon crystal layer is formed by cutting out from a bulk silicon crystal, the thickness of the silicon crystal layer is preferably set to 100 to 350 μm.
[0013]
Examples of the silicon crystal layer having the photoelectric conversion function include a silicon crystal layer having a pn junction and a silicon crystal layer having a pin junction.
[0014]
Examples of the semiconductor particles having a conduction band larger than that of silicon include silicon carbide (SiC) particles, diamond particles, and zinc oxide (ZnO) particles.
[0015]
It is desirable that the semiconductor particles have an average particle diameter of 2 μm or less, more preferably 0.5 to 1.5 μm. This is due to the following three reasons. The first reason is that when sunlight is incident on the silicon crystal layer in which the semiconductor particles are dispersed, light of the sunlight having a wavelength that is absorbed by the silicon crystal layer is absorbed by the semiconductor particles. In order to prevent this, it is preferable that the semiconductor particles have an average particle diameter shorter than the wavelength of the Si absorption light of 2 μm or less. Second, when semiconductor particles of a certain weight are dispersed in the silicon crystal layer, the smaller the particle size of the semiconductor particles, the larger the number of carrier generation sites caused by the presence of the particles. It is preferable to make the average particle diameter as small as 2 μm or less. Third, by causing strain in the silicon crystal layer near the interface with the semiconductor particles, when the average particle diameter of the semiconductor particles exceeds 2 μm, the strain force of the silicon crystal layer near the interface increases, and Dislocations (defects) may occur in the silicon crystal layer.
[0016]
The semiconductor particles are preferably dispersed in the silicon crystal layer in an amount of 1 to 30% by weight under the condition that the average particle size is 2 μm or less. When the dispersion amount of the semiconductor particles is less than 1% by weight, it is difficult to sufficiently achieve the effect of increasing the generation of carriers due to the dispersion of the semiconductor particles. On the other hand, if the dispersion amount of the semiconductor particles exceeds 30% by weight, the continuity of Si forming the silicon crystal layer may be impaired, and the function of photoelectric conversion may be impaired. More preferably, the dispersion amount of the semiconductor particles is 10 to 25% by weight.
[0017]
In particular, under the condition that the semiconductor particles have an average particle size of 2 μm or less and the thickness of the silicon crystal layer is 5 μm or more, at least 50% or more of the total dispersion amount is 3 μm or less in the silicon crystal layer. It is preferable that the particles are dispersed at a distance. The interparticle distance can be measured, for example, by observing a cross section of the semiconductor particle-dispersed silicon crystal layer with an electron microscope (SEM). The ratio of the total dispersion amount of the semiconductor particles and the definition of the interparticle distance are indices indicating the dispersion density and the dispersion amount of the semiconductor particles in the silicon crystal layer. That is, the fact that the semiconductor particles are dispersed in the silicon crystal layer with an interparticle distance exceeding 3 μm means that the semiconductor particles are dispersed in the silicon crystal layer in a relatively low density and in a small amount. However, when sunlight is incident, the number of sites where carriers are generated due to the presence of the semiconductor particles is reduced, so that further improvement in photoelectric conversion efficiency cannot be expected. More preferably, the interparticle distance of the semiconductor particles dispersed in the silicon crystal layer is 0.5 to 3 μm, and further preferably, the interparticle distance of the semiconductor particles is 0.5 to 2 μm.
[0018]
Next, a method for manufacturing a solar cell according to the present invention will be described.
[0019]
1) A silicon powder and semiconductor particles doped with a p-type impurity such as boron (or an n-type impurity such as phosphorus or arsenic) are weighed so as to have a desired composition, and these are uniformly mixed. Subsequently, the mixed powder is heated at a temperature higher than the melting point of silicon and lower than the melting point of the semiconductor particles, and after maintaining the temperature, is rapidly cooled, so that the p-type (or n) Form) bulk silicon crystal. After a thin silicon crystal (silicon crystal layer) is cut out from the bulk silicon crystal and subjected to a polishing treatment or the like, an impurity of the opposite conductivity type to the impurity doped into the silicon crystal layer is diffused into the silicon crystal layer, for example, by gas phase diffusion. A pn junction is created in the silicon crystal layer by introducing it by a diffusion technique such as phase diffusion. Then, a front electrode made of, for example, ITO or the like is formed on the surface of the silicon crystal layer on the sunlight incident side, and a back electrode made of, for example, aluminum or the like is formed on the surface of the silicon crystal layer on the sunlight emission side to manufacture a solar cell. .
[0020]
2) Sputtering a silicon target in which semiconductor particles are dispersed on a substrate also serving as a back electrode such as graphite and doped with a p-type impurity such as boron (or an n-type impurity such as phosphorus or arsenic); Silicon and semiconductor particles doped with impurities are simultaneously formed to form a silicon crystal layer. Subsequently, a surface electrode made of, for example, ITO is formed on the surface of the silicon crystal layer (the surface on the sunlight incident side) to manufacture a solar cell.
[0021]
Next, a solar cell according to the present invention will be described with reference to FIG.
[0022]
Silicon crystal layer 1 has semiconductor particles 2 dispersed therein and has pn junction 3. A surface electrode 5 made of a transparent conductive material such as ITO is formed on the surface of the silicon crystal layer 1 on the side where the sunlight 4 is incident. A back electrode 6 made of a conductive material such as aluminum is formed on the surface of the silicon crystal layer 1 on the side from which sunlight is emitted.
[0023]
According to the present invention described above, a silicon crystal layer having a photoelectric conversion function is provided, and the silicon crystal layer has a configuration in which semiconductor particles having a conduction band larger than silicon are dispersed. A solar cell having a high photoelectric conversion efficiency and a simple structure can be realized.
[0024]
FIG. 2 is a schematic diagram showing the vicinity of the semiconductor particles of the silicon crystal layer in which the semiconductor particles are dispersed in the solar cell of the present invention, and FIG. 3 is a band gap diagram of the silicon crystal layer of FIG. 2 near the semiconductor particles. In FIG. 2, reference numeral 11 denotes a silicon crystal, reference numeral 12 denotes a semiconductor particle, and reference numeral 13 denotes a strain formed in a silicon crystal located near an interface with the semiconductor particle 12.
[0025]
When the silicon crystal layer 1 is irradiated with sunlight 4 as shown in FIG. 1, carriers contributing to power generation are generated in both the silicon crystal 11 and the semiconductor particles 12 shown in FIG. That is, light having different wavelengths of sunlight is absorbed by the silicon crystal 11 and the semiconductor particles 12, and carriers are generated at the respective locations. At this time, as shown in the band gap diagram of FIG. 3, since the semiconductor particles have a conduction band located on the higher energy side than the conduction band of silicon, carriers (electrons) generated by the semiconductor particles move to the silicon crystal, As a result, the amount of carriers generated in the silicon crystal can be increased. Therefore, a large open-circuit voltage and a short-circuit current can be taken out between the front and back electrodes 5 and 6 shown in FIG.
[0026]
Further, the strain 13 formed in the silicon crystal 11 near the interface of the semiconductor particles 12 is smaller than the band gap of the silicon crystal 11 as shown in the band gap diagram of FIG. By absorbing long-wavelength light, the amount of generated carriers can be increased. Therefore, a large open-circuit voltage and a short-circuit current can be taken out between the front and back electrodes 5 and 6 shown in FIG.
[0027]
Therefore, in the irradiation of sunlight, the silicon crystal 11 can absorb sunlight having a predetermined wavelength to generate carriers, and the semiconductor crystal 12 can absorb light that cannot be absorbed by the silicon crystal 11 and generate carriers. Furthermore, since long wavelength light that cannot be absorbed by the silicon crystal 11 can be absorbed by the strain 13 formed in the silicon crystal 11 near the interface of the semiconductor particle 12 to generate carriers, the silicon crystal in which the semiconductor particle is not dispersed The amount of generated carriers can be increased as compared with the layer, and a solar cell with high photoelectric conversion efficiency can be realized.
[0028]
In particular, by using semiconductor particles having an average particle diameter of 2 μm or less, the amount of generated carriers can be further increased for the above three reasons, and a solar cell with higher photoelectric conversion efficiency can be realized.
[0029]
Further, by dispersing the semiconductor particles in the silicon crystal layer in an amount of 1 to 30% by weight under the condition that the average particle size is 2 μm or less, the semiconductor particles are generated in the silicon crystal layer near the interface with the semiconductor particles. Since sites having various band gaps in strain (carrier generation sites) can be appropriately formed in the silicon crystal layer, the amount of generated carriers can be further increased, and a solar cell with higher photoelectric conversion efficiency can be realized.
[0030]
In particular, under the condition that the average particle diameter of the semiconductor particles is 2 μm or less and the thickness of the silicon crystal layer is 5 μm or more, at least 50% or more of the total dispersion amount is 3 μm or less in the silicon crystal layer. By dispersing the silicon particles at intervals, more and more uniform portions (carrier generation sites) having various band gaps in the strain generated in the semiconductor crystal layer and the silicon crystal layer near the interface with the semiconductor particle are formed in the silicon crystal layer. it can. Therefore, when sunlight is irradiated on the silicon crystal layer in which the semiconductor particles are dispersed, the amount of generated carriers can be further increased, and a solar cell with extremely high photoelectric conversion efficiency can be realized.
[0031]
Further, the solar cell of the present invention does not need to combine many semiconductor thin films by a multi-layer thin film forming technique like a conventional tandem solar cell, and has a simple structure and a silicon crystal layer having a conventional pn junction. Since the solar cell can be manufactured by the same method as that of the solar cell, large-scale capital investment is not required, so that the cost is reduced and the practical application is easy.
[0032]
【Example】
Hereinafter, preferred embodiments of the present invention will be described.
[0033]
(Example 1)
First, silicon (Si) doped with boron (B), which is a p-type impurity, at 10 16 cm −3 and silicon carbide (SiC) particles having an average particle diameter of 1 μm were mixed at a ratio of 10% by weight of SiC to Si. After weighing and mixing well, the mixture was placed in a graphite crucible. Subsequently, the crucible was placed in a high-temperature heating furnace, heated and maintained at 1650 ° C., and then rapidly cooled to produce a columnar SiC particle-dispersed Si polycrystal. This SiC particle-dispersed Si polycrystal was observed by SEM photographs, and it was confirmed that SiC particles having an average particle size of 1 μm were dispersed in the silicon polycrystal with a distance of 0.5 to 3 μm between the particles. Was.
[0034]
Next, the cylindrical SiC particle-dispersed Si polycrystal was cut into a disk having a thickness of 300 μm, and the front and rear surfaces were mirror-finished. Subsequently, the SiC-particle-dispersed Si polycrystalline disk is exposed to an atmosphere of phosphorus as an n-type impurity to diffuse phosphorus into the polycrystalline disk to form a pn junction at a depth of 1 μm from the surface. As a result, a SiC particle-dispersed Si polycrystalline disk having a photoelectric conversion function was obtained. Thereafter, a front electrode made of ITO and a back electrode made of aluminum are formed on both surfaces of the SiC particle-dispersed Si polycrystalline disk having the pn junction by the sputtering technique and the selective etching technique, and the solar cell shown in FIG. Manufactured.
[0035]
(Comparative Example 1)
Silicon (Si) doped with boron (B), which is a p-type impurity, at 10 16 cm −3 is placed in a graphite crucible, heated and maintained at 1650 ° C. in a high-temperature heating furnace, and then rapidly cooled to obtain a columnar Si multi-layer. A solar cell similar to that of Example 1 was prepared except that a crystal was formed, and a Si polycrystal disk having a photoelectric conversion function having a pn junction at a thickness of 300 μm and a depth of 1 μm from the surface was prepared from the Si polycrystal. Obtained.
[0036]
For the obtained solar cells of Example 1 and Comparative Example 1, by measuring the polarization reflectance of the incident surface of sunlight using a spectroscopic ellipsometer, SiC particles dispersed Si having a photoelectric conversion function of each solar cell were measured. The wavelength dependence of the absorption coefficient in a polycrystalline disk and a Si polycrystalline disk was examined. The result is shown in FIG.
[0037]
As is clear from FIG. 4, the Si polycrystalline disk in which the SiC particles are dispersed in Example 1 of the present invention can absorb light in many wavelength ranges on the high energy side as compared with the Si polycrystalline disk in Comparative Example 1. Understand. This means that the SiC particle-dispersed Si polycrystalline disk in Example 1 of the present invention generates more carriers and can take out a large open-end voltage and a short-circuit current.
[0038]
【The invention's effect】
As described in detail above, according to the present invention, a conventional solar cell can be applied as it is, the structure is simpler than that of a tandem type, and a solar cell with high photoelectric conversion efficiency and low cost can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing one mode of a solar cell of the present invention.
FIG. 2 is a schematic diagram showing the vicinity of semiconductor particles in a silicon crystal layer in which semiconductor particles are dispersed in the solar cell of the present invention.
FIG. 3 is a band gap diagram in the vicinity of a semiconductor particle of the silicon crystal layer in FIG. 2;
FIG. 4 is a graph showing the wavelength dependence of the absorption coefficient of SiC-particle-dispersed Si polycrystalline disks having a photoelectric conversion function in the solar cells of Example 1 and Comparative Example 1.
[Explanation of symbols]
1, 11: silicon crystal, 2, 12: semiconductor particles, 3: pn junction, 5: front electrode, 6: back electrode, 13: strain.

Claims (6)

光電変換機能を持つシリコン結晶層を備えた太陽電池であって、
前記シリコン結晶層は、シリコンより大きい伝導帯を持つ半導体粒子が分散されていることを特徴とする太陽電池。
A solar cell having a silicon crystal layer having a photoelectric conversion function,
A solar cell, wherein the silicon crystal layer has semiconductor particles having a conduction band larger than silicon dispersed therein.
前記半導体粒子は、炭化ケイ素粒子であることを特徴とする請求項1記載の太陽電池。The solar cell according to claim 1, wherein the semiconductor particles are silicon carbide particles. 前記半導体粒子は、2μm以下の平均粒径を有することを特徴とする請求項1または2記載の太陽電池。The solar cell according to claim 1, wherein the semiconductor particles have an average particle size of 2 μm or less. 前記半導体粒子は、前記シリコン結晶層に1〜30重量%分散されていることを特徴とする請求項1または3記載の太陽電池。The solar cell according to claim 1, wherein the semiconductor particles are dispersed in the silicon crystal layer by 1 to 30% by weight. 前記半導体粒子は、2μm以下の平均粒径を有し、かつ前記シリコン結晶層は5μm以上の厚さを有し、前記半導体粒子が全分散量の少なくとも50%以上が前記シリコン結晶層に3μm以下の粒子間距離をあけて分散されていることを特徴とする請求項1または3記載の太陽電池。The semiconductor particles have an average particle size of 2 μm or less, and the silicon crystal layer has a thickness of 5 μm or more, and at least 50% or more of the total dispersion amount of the semiconductor particles is 3 μm or less in the silicon crystal layer. 4. The solar cell according to claim 1, wherein the particles are dispersed with a distance between the particles. 前記シリコン結晶層は、前記半導体粒子との界面付近に歪が形成されていることを特徴とする請求項1ないし5いずれか記載の太陽電池。The solar cell according to claim 1, wherein the silicon crystal layer has a strain formed near an interface with the semiconductor particles.
JP2003020473A 2003-01-29 2003-01-29 Solar cell Expired - Lifetime JP3787629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003020473A JP3787629B2 (en) 2003-01-29 2003-01-29 Solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003020473A JP3787629B2 (en) 2003-01-29 2003-01-29 Solar cell

Publications (2)

Publication Number Publication Date
JP2004235325A true JP2004235325A (en) 2004-08-19
JP3787629B2 JP3787629B2 (en) 2006-06-21

Family

ID=32950098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003020473A Expired - Lifetime JP3787629B2 (en) 2003-01-29 2003-01-29 Solar cell

Country Status (1)

Country Link
JP (1) JP3787629B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011501421A (en) * 2007-10-18 2011-01-06 ドリッテ・パテントポートフォリオ・ベタイリグンスゲゼルシャフト・エムベーハー・ウント・コンパニー・カーゲー Semiconductor components

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011501421A (en) * 2007-10-18 2011-01-06 ドリッテ・パテントポートフォリオ・ベタイリグンスゲゼルシャフト・エムベーハー・ウント・コンパニー・カーゲー Semiconductor components

Also Published As

Publication number Publication date
JP3787629B2 (en) 2006-06-21

Similar Documents

Publication Publication Date Title
US6262359B1 (en) Aluminum alloy back junction solar cell and a process for fabrication thereof
JP4257332B2 (en) Silicon-based thin film solar cell
Cao et al. Epitaxial growth of vertically aligned antimony selenide nanorod arrays for heterostructure based self‐powered photodetector
JP4761706B2 (en) Method for manufacturing photoelectric conversion device
Fischer et al. Low-cost solar cells based on large-area unconventional silicon
JP2017063205A (en) Silicon substrates with doped surface contacts formed from doped silicon inks and corresponding processes
US20090050201A1 (en) Solar cell
JPH1117201A (en) Solar cell and its manufacture
JP6219886B2 (en) Manufacturing method of solar cell
Kuo et al. Super-high density Si quantum dot thin film utilizing a gradient Si-rich oxide multilayer structure
Yang et al. The materials characteristic and the efficiency degradation of solar cells from solar grade silicon from a metallurgical process route
Dhere et al. Influence of CdS/CdTe interface properties on the device properties
KR101484620B1 (en) Silicon solar cell
JP2011151068A (en) Photoelectric converter
JP3787629B2 (en) Solar cell
Lu et al. Si nanocrystals-based multilayers for luminescent and photovoltaic device applications
JP2699867B2 (en) Thin film solar cell and method of manufacturing the same
Usami et al. Effect of the compositional distribution on the photovoltaic power conversion of SiGe solar cells
US7368658B1 (en) High efficiency diamond solar cells
JP2011009245A (en) Photoelectric converter
KR20090089617A (en) Metal paste composition for front electrode of silicon solar cell, method of preparing the same and silicon solar cell comprising the same
JPH10247737A (en) Functional thin film and photovoltaic device
JPH03159179A (en) Manufacture of photoelectric converter
Zhang et al. Degradation behavior of electrical properties of GaInAs (1.0 eV) and GaInAs (0.7 eV) sub-cells of IMM4J solar cells under 1-MeV electron irradiation
Perlikowski et al. CZTS–A NEW MATERIAL FOR THIN FILM PHOTOVOLTAICS: FUNDAMENTAL STUDIES

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040618

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060228

R150 Certificate of patent or registration of utility model

Ref document number: 3787629

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term