JP2004234944A - Electrodeless discharge lamp - Google Patents

Electrodeless discharge lamp Download PDF

Info

Publication number
JP2004234944A
JP2004234944A JP2003020011A JP2003020011A JP2004234944A JP 2004234944 A JP2004234944 A JP 2004234944A JP 2003020011 A JP2003020011 A JP 2003020011A JP 2003020011 A JP2003020011 A JP 2003020011A JP 2004234944 A JP2004234944 A JP 2004234944A
Authority
JP
Japan
Prior art keywords
magnetic field
core
field generator
discharge tube
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003020011A
Other languages
Japanese (ja)
Inventor
Yasuhiro Notohara
康裕 能登原
Akihiro Yamashita
昭裕 山下
Toshiaki Kurachi
敏明 倉地
Yuji Komata
雄二 小俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003020011A priority Critical patent/JP2004234944A/en
Publication of JP2004234944A publication Critical patent/JP2004234944A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrodeless discharge lamp which is superior in usage efficiency of electric power, by efficiently taking the magnetic field generated from a magnetic field generator into a discharge tube. <P>SOLUTION: The discharge lamp comprises a discharge tube, in which discharge gas is sealed up, and a magnetic field generator for generating an electromagnetic field in the discharge tube. The magnetic field generator comprises a core provided with a step part, on which a coil is wound, so that the magnetic field released from the magnetic field generator can be efficiently taken into the discharge tube, resulting in a higher usage efficiency of the magnetic field that acts on discharge. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、放電ランプ、特に内部に放電管の内部に磁界発生器が設けられた無電極放電ランプに関する。
【0002】
【従来の技術】
磁界発生器を内部に設け、それにより発生する磁界を駆動源とする放電ランプは、放電管内部に電極を持たない事から、無電極放電ランプと呼ばれ、現在の主流である有電極の放電ランプと比較して長寿命であるという特徴を有することから、近年の環境問題の高まりと相俟って注目を浴びてきている。
【0003】
無電極放電ランプの従来の技術として、(特許文献1)を参照にして以下に示す。図9に従来の無電極放電ランプの構成を示した概略の断面図を模式的に示す。無電極放電ランプは、主として磁界発生器2と放電管1、及び高周波電源3とから構成されている。放電管1は一部に窪み部分8を有した構造となっており、この窪み部分8の中に磁界発生器2が配置される。磁界発生器2は、リード線7を介して高周波電源3と結合され、高周波電源3から供給される電力に応じて高周波磁界を発生する。磁界発生器2から放出される磁界が放電管内部4の放電ガスに作用することで、放電が開始及び維持される。ここで、放電管内部4に水銀蒸気を封入しておくと、放電ガスの作用により強い紫外線が放出されることになる。放電管1の管壁に紫外線に反応する蛍光物質等を固着させた構成とする事で、紫外線は可視光線に変換されて、照明用の光源として利用されるようになる。
【0004】
磁界発生器2は、コア5、巻線6とからなる。コアの形状は、円筒形状であり、コアの周囲に巻線を巻き回した構成となっている。好適な実施の形態として、高さ55mm、外径14mm、内径7mmのフェライトコアの表面に、リッツ線を0〜10mmの巻間ピッチで10〜80回巻いて構成されている。
【0005】
【特許文献1】
特開2000−348683号公報
【0006】
【発明が解決しようとする課題】
しかしながら、従来の構成の磁界発生器2は、コアの表面全体に巻線を施した構成であり、磁界発生器2を窪み部分8に配した場合、コア5と窪み部分8との隙間には巻線6が間に入る構成となること、更に巻線6の巻き数も多い事から、コア5と放電管1の窪み部分8との間の隙間は、ある一定の距離を必要とする構成であった。その為、磁界発生器2より放出される磁界で、実際に無電極ランプの放電に寄与する磁界の使用効率は低いものとならざるを得なかった。従って、例えば所定の光束を得るためには、放電管内部4に所定の強さの磁界を導入しなければならないが、その際はより多くの電力を巻線へ供給する事により所定の強さの磁界を得る必要があった。そのため、巻線で損失する銅損、フェライトコアで損失するコア損失、及び電源等での損失が一斉に増加し、無駄な発熱の増大による回路部品の信頼性への影響の問題、電力の消費が多くなるなどの問題点を有していた。
【0007】
本発明は、上記の課題を解決するもので、磁界発生器から発生する磁界を効率よく放電管内部4に取り込むことができ、電力の使用効率に優れた無電極放電ランプを提供することを目的とするものである。
【0008】
【課題を解決するための手段】
上記の目的を達成するために、本発明の無電極放電ランプは、放電ガスが封入された放電管と、放電管を内包する空間に電磁界を発生させる磁界発生器を配した放電ランプであって、磁界発生器が段差部を有するコアと段差部の凹部に設けた巻線とから構成される無電極放電ランプを用いる。
【0009】
本発明の無電極放電ランプによれば、磁界発生器から発生する磁界を効率よく放電管内部に取り込むことが出来るので、磁界発生器から発生する磁界を有効に放電に使用でき、電力の使用効率に優れた無電極放電ランプを提供することが可能となる。
【0010】
【発明の実施の形態】
請求項1記載の発明は、放電ガスを封入した放電管と、前記放電管磁界を供給する磁界発生器を配した放電ランプであって、前記磁界発生器は、段差部を有するコアと前記段差部の凹部に設けた巻線とを有する無電極放電ランプであるから、磁界発生器から発生する強い磁界を有効に放電管内部に取り込むことが出来るので、磁界発生器から発生する磁界を有効に放電に使用できる。
【0011】
請求項2記載の発明は、磁界発生器のコアの、段差部の凹部が、前記コアの中央部に位置する請求項1に記載の無電極放電ランプであるから、巻線近傍に2つの段差を有する構成となり、巻線により誘導される強い磁界を放電管内部に導くことが出来る。
【0012】
請求項3記載の発明は、磁界発生器のコアの段差部外部は中空形状である請求項2に記載の無電極放電ランプであるから、巻線により誘導される強い磁界を放電管内部に導くことが出来ると共に、コアの肉厚が薄くなるため、原材料を減らせると共に、ランプ放電中のコア損失の低減、ランプの重量増加の抑制ができる。
【0013】
請求項4記載の発明は、磁界発生器のコアの段差部外部に長軸方向の溝を設けた請求項2、3記載の無電極放電ランプであるから、磁界放出部の断面積の狭化により、巻線により誘導される強い磁界を放電管内部に導くことが出来る。
【0014】
請求項5記載の発明は、磁界発生器のコアの段差部外部に設けた長軸方向の溝に、前記段差部の凹部に設けた巻線に繋がるリード線を沿わせてなる請求項4記載の無電極放電ランプであるから、リード線引き回し用の空隙をコアと放電管との間に設ける必要が無いため、コアと放電管との隙間を狭くでき、巻線により誘導される強い磁界を放電管内部に導くことが出来る。
【0015】
請求項6記載の発明は、磁界発生器のコアの、段差部の凹部に設けた巻線が作る包絡面は、コアの表面より内側に設けられた請求項5記載の無電極放電ランプであるから、コアと放電管との隙間を狭くでき、巻線により誘導される強い磁界を放電管内部に導くことが出来る。
【0016】
請求項7記載の発明は、磁界発生器のコアの、段差部の凹部が、前記コアの両端側に位置する請求項1に記載の無電極放電ランプであるから、巻線部がコアの両端側に位置するために、巻線により誘導される強い磁界を均質に放電管内部に導くことが出来ると共に、コア形状は一体成型可能な形状となるために、生産性の向上が図れる。
【0017】
請求項8記載の発明は、磁界発生器のコアの段差部外部に長軸方向の溝を設けた、請求7記載の無電極放電ランプであるから、磁界放出部の断面積の狭化により、巻線により誘導される強い磁界を放電管内部に導くことが出来る。
【0018】
請求項9記載の発明は、磁界発生器のコアの段差部外部に設けた長軸方向の溝に、段差部に形成した巻線に繋がるリード線を沿わせてなる、請求項8記載の無電極放電ランプであるから、リード線引き回し用の空隙をコアと放電管との間に設ける必要が無いため、コアと放電管との隙間を狭くでき、巻線により誘導される強い磁界を放電管内部に導くことが出来る。
【0019】
請求項10記載の発明は、磁界発生器のコアの、段差部の凹部に設けた巻線が作る包絡面は、前記コアの表面より内側に設けられた請求項9記載の無電極放電ランプであるから、コアと放電管との隙間を狭くでき、巻線により誘導される強い磁界を放電管内部に導くことが出来る。
【0020】
請求項11記載の発明は、磁界発生器のコアはフェライト材からなる請求項1から10記載の無電極放電ランプであるから、コア損失を少なく出来ると共に巻線により誘導される磁界を効率よく放電管内部に導くことが出来る。
【0021】
以下に本発明の実施の形態を、図面を参照にしながら述べる。
【0022】
(実施の形態1)
本発明の一実施の形態として図1(a)に実施の形態1の無電極放電ランプの磁界発生器の斜視図の概略図と、図1(b)に実施の形態1の無電極放電ランプの部分断面図とを示す。実施の形態1の無電極放電ランプは、放電管1と磁界発生器2、及び磁界発生器2に電力を供給するための高周波電源3とから構成される。放電管1は、内部に放電ガスを封入したガラス容器よりなる。更に、放電管内部4には紫外線を有効に放出させるための水銀蒸気等が封入されている。また、放電管1の管壁内面には、紫外線を可視光線に変えるための蛍光体が固着されている。磁界発生器2は、コア5と巻線6、及び巻線6と高周波電源3とを結合するリード線7とから構成され、放電管1に設けられた窪み部分8内部に配置されている。
【0023】
次に、無電極放電ランプの動作を説明する。高周波電源3から、リード線7を介して巻線6に高周波電力が供給される。この供給電力に応じて、巻線6に誘導磁界が発生する。巻線6に誘導された磁界は、コア5により強められ、磁界発生器2の近傍に高周波磁界を発生する。この高周波磁界が、放電管内部4の放電ガスに作用して放電管内部4で、放電が開始及び維持されることになる。放電により発生した電離気体は水銀蒸気に作用して紫外線を発生させる。この紫外線が蛍光体に照射されることで可視光線となり、放電管1の外部へ放射されることで、例えば照明用の光源となる。
【0024】
さて、本実施の形態1の磁界発生器2のコア5は、コア5中央部に段差部9を有し、その段差部の凹部10に巻線6を施して構成される。この磁界発生器2は以下のようにして作製した。図2(a)、(b)にコアの作製方法を示す。図示したように、コア5の中心軸を通る面で2分した分割コア11をフェライト材を用いて作製し、2組を貼り合せることでフェライト材からなるコア5を作製した。なお、本実施の形態では2分割した分割コアを用いたが、3分割や4分割した分割コアを用いても良い。コア5は段差部9、段差部の凹部10、段差部外部12からなっている。フェライト材の組成は、放電ランプの駆動周波数に応じて選択すれば良い。実施の形態1では、MnZn系のフェライト材を用いた。ここで、コア5は、大振幅の磁界振幅で駆動されること、駆動時のコア5の温度は150℃程度と高温に成ること等から、この温度領域でコア損失が極小を有するようなフェライトの組成を選択した。MnZn系のフェライト材からなるコア5の場合、電気抵抗が小さいので、巻線6を施すコア5の中央部に設けた段差部の凹部10に電気的絶縁性の材料(図示せず)を介して巻線6を施すことになる。本実施の形態1では、ポリイミドテープを電気的絶縁性の材料として用いたが、コア5に表面に絶縁性の薄膜を設けたり、あるいは樹脂などを塗布して形成された絶縁材を介して巻線6をコア5に巻回しても良い。巻線6を施す段差部の凹部10は長さ15mm、凹部10の深さは3mmとした。この段差部の凹部10の寸法は、磁界発生器2のインダクタンスが所望の値となる巻数分だけ巻線6を巻きまわした際に、巻線6の包絡面13がコア5の表面からはみ出さない形状とした。磁界発生器2は、放電管1の窪み部分8に設けられる。従って、磁界発生器2の外径は、この放電管1の窪み部分8の大きさにより決まるものである。本実施の形態1では、放電管1の窪み部分8の大きさより僅かに小さいものとした。
【0025】
次に比較例の磁界発生器を作製した。比較例の磁界発生器は、図9に示したように従来の無電極放電ランプの構成と同様な、段差がない形状のフェライト材からなるコア5に巻線6を施した構成からなる。フェライト材の組成は実施の形態1と同じ組成であり、巻線部となるコア5の表面にはポリイミドテープを電気的絶縁性の材料に用いて巻線6を施した。巻線は、実施の形態1とインダクタンスが同じとなるように巻数を調整した。実際には実施の形態1と比べて3割程度増の巻数が必要であった。 磁界発生器2は、放電管1の窪み部分8に設けられる。従って、磁界発生器2の外径は、この放電管1の窪み部分8の大きさにより決まるものである。比較例の場合、最外部には巻線6となるために、この巻線6の外径が、実施の形態1のコア径と同じになる。即ち、実施の形態1では、巻線6をコア5の段差部の凹部10に設けたので、コア形状は放電管1の窪み部分8の大きさに応じて大きく出来るが、巻線6をコア5の外周部に巻く比較例の場合は、巻線6の大きさを放電管1の窪み部分8の大きさに対応させなければならない。そのため、実施の形態1では、比較例と比べて、コア5の外径大きくすることが出来る。
【0026】
ここで、図3に実施の形態1の磁界発生器と比較例の磁界発生器とに関して、磁束密度の放電管1の窪み部分8の壁面からの距離による変化の計算結果を示す。計算はインダクタンス一定の条件で行ったものである。
【0027】
なお、磁束密度は磁界強度に対応するものとして考えることができる。何れの場合も、コア5の近傍では強い磁束密度を示すが、距離が離れるとともに磁束密度は急速に減少することが図3に示される。すなわち、放電管1の窪み部分8に磁界発生器2を入れた構成の放電ランプの場合、放電管内部4の磁束密度分布は、実施の形態1においても、また比較例においても、磁界発生器2の近傍では磁束密度は強く、磁界発生器2からの距離が離れると急速に磁束密度は減少するような分布となっている。
【0028】
また、コア5に設けた段差部の凹部10に巻線6を施した本実施の形態1では、例えばコアの中心軸を通る断面で見た場合、巻線6をフェライト材がコの字型に覆う構成となっていることから、特に段差部9の近傍から強い磁界が発生する。
【0029】
このように、本実施の形態1では、コア5に設けた段差部の凹部10に巻線6を施すことで、比較例と比べて強い磁界を得ることが出来ると共に、磁界の実質的な放出部となるフェライト材からなるコア5を放電管1の窪み部分8の内壁と、狭い間隙で配置出来るので、磁界強度の距離による減衰を抑制した状態で磁界を放電管内部4に導入できるのである。
【0030】
次に、放電管内部4の磁束の強度の影響が最も顕著に現れる起動特性、即ち放電管内部4で放電が開始する電圧を、実施の形態1と比較例とについて調べた。その結果を(表1)に示す。なお、試験は実施の形態1と比較例とで、インダクタンスの値が同じ値となるように巻線数を調整して行った。
【0031】
【表1】

Figure 2004234944
【0032】
(表1)から、実施の形態1では、比較例と比べ、放電開始に要する電圧の低下が確認できる。この、電圧低下の要因は、実施の形態1では比較例と比べて、放電管内部4に磁界強度が強い磁界を導くことができた結果であると考えられる。
【0033】
放電開始には磁界強度の強い磁界を放電管内部に導くことが必要である。磁界強度の強い磁界を放電管内部に導く方法としては、例えば比較例においては、巻線に流す電流値を増やすことで対処することが出来る。しかしながら、図3からもわかるように比較例の場合の磁束密度の分布は、実施の形態1と比べて緩やかなものとなっている。これは、放電開始の為に巻線に流す電流値を増やした場合、放電管の外部の影響を受け易いことを意味するものである。例えば、放電管の周囲に鉄を主成分とするような保護カバーが存在する場合、磁界発生器から発生する磁界は、保護カバーと結合し易いと言うことである。この場合、たとえ巻線に流す電流値を増やして磁界発生器から発生する磁界強度を増したとしても、磁界発生器から発生した磁界は、放電開始に対して有効に寄与しないことになる。即ち、磁界発生器から発生する磁界を放電管の外部の影響無く効果的に寄与させるためには、本実施の形態1のように急峻な磁界分布を有する磁界を管内に無駄なく有効に取り込む事が必要であり、本実施の形態1はそれを満足するものである。
【0034】
また、点灯中の放電管1の光束を、実施の形態1と比較例とで調べた。各々の入力電力を一定とし、定常状態となった時の放電管1の発光効率を(表2)に示した。
【0035】
【表2】
Figure 2004234944
【0036】
(表2)より、実施の形態1では放電管1の発光効が比較例と比べて増加していることが確認できる。
【0037】
このように、コア5の中央部に段差部9を設け、その段差部の凹部10に巻線6を配して構成される磁界発生器2からなる実施の形態1では、強い磁界を有効に放電管内部4に取り込むことが出来るので、比較例と比べて起動電圧の低減と、放電管1の輝度の増大が図れるのである。
【0038】
また、実施の形態1では、同じインダクタンスを得るのに巻線の巻数を少なくできる事を示したが、巻線を減らす事で、巻線の電気抵抗が減少するので、巻線からの無駄な発熱も抑制できる。従って、巻線部の温度上昇が抑制でき、巻線の被覆材や、コアと巻線との電気的絶縁材などは、耐熱温度の低いものを使うことが出来るようになり、製造コストを安く押さえることが出来る。また、巻線の被覆材の耐熱温度を下げることが出来るために、電気回路形成のための巻線の被覆材の除去が容易になり、生産性が向上する。
【0039】
なお、本実施の形態1ではフェライト材からなるコア5は、中心軸を通る面で切断した形状の2分割コア11を貼り合せることでコア5を形成したが、フェライト材からなるコア5の形成方法は、これにこだわるものではなく、例えば段差部外部12、段差部の凹部10の各形状のコアを軸方向で貼りつけて構成しても構わない。ただしこの場合は、実施の形態1で用いたコア5では、コア5の磁化方向となる軸方向には連続した一体の形状となっているのに対して、コア5の磁化方向が途切れた形状となるので、コアを軸方向に貼りつけて形成する際は、コア間に不要な空隙ができないように注意を要する。磁化方向に存在する不要な空隙は磁界を有効に利用する上での妨げとなるからである。
【0040】
また、本実施の形態1では、フェライト材からなるコア5と巻線6との電気的な絶縁手段にポリイミドテープを用いたが、この電気的絶縁手段は、ポリイミドテープにこだわるものではなく、耐熱性の絶縁体であれば、例えばPPS樹脂製のボビンなどを用いても何ら構わない。但し、コア5と窪み部分8との間隙を出来る限り狭くして、コア5からの磁界の減衰の影響を小さくすることが肝要である。
【0041】
また、本実施の形態1では、フェライト材料にMnZn系のフェライト材を用いたが、フェライト材はMnZn系材料にこだわるものではなく、動作周波数に応じて選択すれば良い。例えば、動作周波数が500kHz以上となった場合は、MnZn系フェライトよりもNiZn系フェライト材の方が磁気特性に関して優れてくるので、NiZn系のフェライト材を選べばよいことになる。NiZn系のフェライト材を用いる場合は、NiZn系のフェライト材の電気抵抗は極めて大きいことから、巻線とフェライトコアとの電気的絶縁手段を設ける必要は無い。ただ、巻線時にフェライトコアのエッジ部のバリ等に注意して巻線を巻けば良い。
【0042】
また、本実施の形態1のコア5の形状は中心軸と垂直方向の断面形状は、円筒形状としたが、コア5の形状は円筒形状にこだわるものではない。外形は、多角形状でも何ら構わないし、例えば、図4(a)、(b)に示した様な段差部外部12に軸方向の溝14を入れた場合、コア5の段差部9の断面積を小さくする事で、コア5を通る磁束が集中し、その結果より強い磁界を放電管内部4に導けるようになる。また、段差部外部12に設けた溝14に、高周波電源から巻線6に電力を供給するリード線7を沿わせれば、コア5と放電管1の窪み部分8との隙間にリード線7を引き回すための空隙を設ける必要もなくなり、コア5と放電管1の窪み部分8との隙間を更に小さく出来、従って、コア5から発生する磁界の減少を抑制した状態の強い磁界を放電管内部4に導くことが出来、磁界の使用効率は更に向上する。なお、コア5の中心部の貫通穴15は、放電管球製造時に使用する細管を通すため、或いは、コアの放熱のための受熱器の挿入などに使用するためのものである。貫通穴15の必要性は、管球の形状や受熱器の必要性の有無などに応じる。
【0043】
また、実施の形態1では、段差部外部12は、貫通穴15のみを有した構成としたが、段差部外部12の内部は、図5(a)、(b)に示すように中空としても構わない。段差部外部12の長軸を法線とする断面の面積は、コア5内の磁束の流れを考慮した場合、少なくとも巻線6を施した段差部の凹部10の断面積と同程度の断面積であれば良いからである。なお、段差部外部12を中空とすることで、コアの無駄な部分が減ることから、材料の減少、重量の減少など形状的な利点が得られると共に、高周波駆動で特に問題となる渦電流損失の低減にも寄与し、無駄な電力を消費しない無電極放電ランプを得ることができる。なお、段差部外部12の内部を中空とする場合、例えば円錐状にすることで、コア内部の空気流の障壁が無くなり、放電管1の窪み部分8内の温度差に対応した対流が発生し易くなり、磁界発生器2の局所的な温度上昇の抑制が図れ、放電管動作時の信頼性が向上する。
【0044】
以上示したように、本実施の形態1の磁界発生器2を無電極放電ランプに用いることで、磁界発生器2から発生する磁界の磁界強度の強い磁界を放電管内部4に有効に無駄なく導入できるので、同一の投入電力とした場合の電球の光束の増加を図れるとともに、放電開始電圧の低減を図れる、動作性に優れた無電極放電ランプを提供できる。
(実施の形態2)
本発明の一実施の形態として図6(a)は実施の形態2の無電極放電ランプの磁界発生器2部分の斜視図を、図6(b)に実施の形態2の無電極放電ランプの部分断面図とを示す。実施の形態2の無電極放電ランプは、実施の形態1の無電極放電ランプと同様に、放電管1と磁界発生器2、及び磁界発生器2に電力を供給するための高周波電源3とから構成され、実施の形態1の無電極放電ランプと同様に動作する。
【0045】
さて、本実施の形態2の磁界発生器2は、コア5の両端側に段差部9を有し、従ってコア5の両端側にその段差部の凹部10が存在し、両方の段差部の凹部10に巻線6が施され、巻線6は高周波電源からの電力を供給するリード線7に結合して構成される。コア5は、実施の形態1と同様にMnZn系からなるフェライト材で作製した。実施の形態1が2枚のコアを貼り合わせて作製したのに対して、実施の形態2のコア5は、金型を用いて一体に成型できる形状であるため、フェライト材を一体にプレス成型して作製した。
【0046】
コア5の両端に存在する段差部の凹部10に巻線6を施すが、フェライト材からなるコア5と巻線6との電気的絶縁は、耐熱塗料を用いて確保した。巻線6を施す段差部の凹部10は長さ8mm、深さは3mmとしたが、この段差部の凹部の寸法は、磁界発生器2のインダクタンスが所望の値となる巻数分だけ巻線6を巻きまわした際に、巻線6の包絡面13がフェライト材からなるコア5の表面からはみ出さない形状となるように決めたものである。磁界発生器2は、放電管1の窪み部分8に設けられる。従って、磁界発生器2の外径は、この放電管1の窪み部分8の大きさにより制限される。本実施の形態2では、放電管1の窪み部分8の大きさより僅かに小さいものを作製した。
【0047】
なお、比較例の磁界発生器には、実施の形態1で用いたものを用いた。
【0048】
磁界発生器2は、放電管1の窪み部分8に設けられる。従って、磁界発生器2の外径は、この放電管1の窪み部分8の大きさにより決まるものである。比較例の場合、最外部には巻線6となるために、この巻線6の外径が、実施の形態2のコア径と同じになる。即ち、実施の形態2では、巻線6をフェライト材からなるコア5の段差部の凹部10に設けたので、コア形状を放電管1の窪み部分8に応じた大きさで大きく出来、巻線6をコア5の外周部に巻く比較例の場合は、巻線6の大きさを放電管1の窪み部分8の大きさに対応させなければならない。そのため、実施の形態2では、比較例と比べて、コア5の外径を大きく出来る。
【0049】
実施の形態2の磁界発生器と比較例の磁界発生器とに関して、磁束密度の放電管1の窪み部分8の壁面からの距離による変化の計算結果を図3に示す。なお、磁束密度は磁界強度に対応するものとして考えることができる。何れの場合も、コア5の近傍では強い磁束密度を示すが、距離が離れるとともに磁束密度は急速に減少することが図3に示される。すなわち、放電管1の窪み部分8に磁界発生器2を入れた構成の放電ランプの場合、放電管内部4の磁束密度分布は、実施の形態2においても、また比較例においても、磁界発生器2の近傍では磁束密度は強く、磁界発生器2からの距離が離れると急速に磁束密度は減少するような分布となっている。
【0050】
また、コア5に設けた段差部の凹部10に巻線6を施した本実施の形態2では、例えばコア5の中心軸を通る断面で見た場合、巻線6の片端部をフェライト材が覆う構成となっていることから、特に段差部9の近傍から強い磁界が発生するのである。しかしながら、巻線6がコアの両端側に2分されることから、磁束密度の値は、実施の形態1と比べ小さいものとなっている。
【0051】
このように、本実施の形態2では、コア5に設けた段差部の凹部10に巻線6を施すことで、比較例と比べて強い磁界を得ることが出来ると共に、磁界の実質的な放出部となる、フェライト材からなるコア5を放電管1の窪み部分8の内壁と、狭い間隙で配置出来るので、磁界強度の距離による減衰を抑制した状態で磁界を放電管内部4に導入できるのである。
【0052】
次に、放電管内部4の磁束の強度の影響が最も顕著に現れる起動特性、即ち放電管内部4で放電が開始する電圧を、実施の形態2と比較例とについて調べた。その結果を(表3)に示す。なお、試験は実施の形態1と比較例とで、インダクタンスの値が同じ値となるように巻線数を調整して行った。
【0053】
【表3】
Figure 2004234944
【0054】
(表3)から、実施の形態2では、比較例と比べ、放電開始に要する電圧の低下が確認できる。この、電圧低下の要因は、実施の形態2では比較例と比べて、放電管内部4に強度が強い磁界を導くことができた結果であると考えられる。
【0055】
本実施の形態2でも実施の形態1と同様に急峻な磁界分布を有する磁界を管内に無駄なく有効に取り込む事ができるので、磁界発生器から発生する磁界を放電管の外部の影響無く効果的に寄与させることが出来る。
【0056】
また、点灯中の放電管1の光束を、実施の形態2と比較例とで調べた。各々の入力電力を一定とし、定常状態となった時の放電管1の発光効率を(表4)に示した。
【0057】
【表4】
Figure 2004234944
【0058】
(表4)から、実施の形態2で放電管1の発光効率は比較例と比べて増加していることが確認できる。このように、コアの両端側に段差部9を設け、その段差部の凹部10に巻線6を設けて成る磁界発生器2からなる実施の形態2では、強い磁界を有効に放電管内部4に取り込むことが出来るので、比較例と比べて起動電圧の低下と、放電管1の輝度の増大が図れるのである。また、コア5の両端側に段差部9を設けたコア5とすることで、コア5の製造を金型により一体に成型できるので、コアを貼り合せて作製した実施の形態1と比べ生産性良くコア5を作製できる。
【0059】
また、実施の形態2では、同じインダクタンスを得るのに巻線の巻数を少なくできる事を示したが、巻線を減らす事で、巻線の電気抵抗が減少するので、巻線からの無駄な発熱も抑制できる。従って、巻線部の温度上昇が抑制でき、巻線の被覆材や、コアと巻線との電気的絶縁材などは、耐熱温度の低いものを使うことが出来るようになり、製造コストを安く押さえることが出来る。また、巻線の被覆材の耐熱温度を下げることが出来るために、電気回路形成のための巻線の被覆材の除去が容易になり、生産性が向上する。
【0060】
また、本実施の形態2のコアの形状は中心軸と垂直方向の断面形状は、円筒形状としたが、コアの形状は円筒形状にこだわるものではない。外形は、多角形状でも何ら構わないし、例えば、図7に示した様な、段差部外部12に軸方向の溝を入れた場合、コアの段差部9の断面積を小さくする事で、コアの磁束が集中し、その結果より強い磁界を放電管4の中に導けるようになる。また、段差部外部12に設けた溝14に、高周波電源3から巻線6に電力を供給するリード線7を沿わせれば、コア5と放電管1の窪み部分8との間にリード線7を引き回すための空隙を設ける必要もなくなり、コア5と放電管1の窪み部分8との隙間を更に小さく出来、従って、コア5から発生する磁界の減少を抑制した状態で放電管内部4に導くことが出来、磁界の使用効率は更に向上するのである。
【0061】
なお、コアの中心部の貫通穴15は、放電管球製造時に使用する細管を通すため、或いは、コアの放熱のための受熱器の挿入などに使用するためのものである。貫通穴15の必要性は、管球の形状や受熱器の必要性の有無などに応じる。
【0062】
また、本実施の形態2では、両端側に段差部の凹部10を設けた形状としたが、段差部の凹部10は、図8に示したようにコア5の両端側から、内側寄りへずれていても磁界発生器2とした場合の特性は、比較例と比べて優れたものとなるのであるが、コア5の作製には、例えば実施の形態1で示したように複数のコアの貼りつけが必要となる。
【0063】
以上示したように、本実施の形態2の磁界発生器を無電極放電ランプに用いることで、磁界発生器2から発生する磁界の磁界強度の強い磁界を放電管内部4に有効に無駄なく導入できるので、同一の投入電力とした場合の電球の光束の増加を図れるとともに、放電開始電圧の低減を図れる、動作性に優れた無電極放電ランプを提供できる。また、本実施の形態2のコア5は一体成型で加工できるので、生産性が向上する。 なお、各実施の形態において、コア5に設けられた凹部に関しては、コア5の全周に亘って設けられた設けた例を説明したが、例えば、凹部は全周ではなく、1/4周,1/2周,1/3周などの様に、部分的に凹部を設けても良く、その凹部内に巻線を収納するように構成しても良い。
【0064】
【発明の効果】
本発明の無電極放電ランプによれば放電ガスが封入された放電管と、放電管を内包する空間に電磁界を発生させる磁界発生器を配した放電ランプであって、磁界発生器が、段差部を有するコアと段差部の凹部に設けた巻線とから構成されるので、磁界発生器から発生する磁界の磁界強度の強い磁界を放電管内部に有効に導入できるので、同一の投入電力とした場合の電球の光束の増加を図れるとともに、放電開始の電圧を低減出来る、電力効率に優れた無電極放電ランプを提供できる。
【図面の簡単な説明】
【図1】本発明の実施の形態1の無電極放電ランプを示す図
【図2】本発明の実施の形態1の無電極放電ランプのコアの組み立て説明する図
【図3】本発明の実施の形態1と実施の形態2および比較例の磁界発生器から発生する磁束密度の放電管窪み部壁からの距離による変化の計算結果のグラフ
【図4】本発明の実施の形態1の無電極放電ランプの磁界発生器の他の例の斜視図とそれを用いた無電極放電ランプの構成を示した概略の断面図
【図5】本発明の実施の形態1の無電極放電ランプの磁界発生器の更に他の例の斜視図とそれを用いた無電極放電ランプの構成を示した概略の断面図
【図6】本発明の実施の形態2の無電極放電ランプの磁界発生器の斜視図とそれを用いた無電極放電ランプの構成を示した概略の断面図
【図7】本発明の実施の形態2の無電極放電ランプの磁界発生器の他の例の斜視図とそれを用いた無電極放電ランプの構成を示した概略の断面図
【図8】本発明の実施の形態2の無電極放電ランプの磁界発生器の更に他の例の斜視図とそれを用いた無電極放電ランプの構成を示した概略の断面図
【図9】従来の無電極放電ランプの構成を示した概略の断面図
【符号の説明】
1 放電管
2 磁界発生器
3 高周波電源
4 放電管内部
5 コア
6 巻線
7 リード線
8 窪み部分
9 段差部
10 段差部の凹部
11 分割コア
12 段差部外部
13 包絡面
14 軸方向の溝
15 貫通穴[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a discharge lamp, and more particularly to an electrodeless discharge lamp in which a magnetic field generator is provided inside a discharge tube.
[0002]
[Prior art]
Discharge lamps that have a magnetic field generator inside and use the magnetic field generated by them as a drive source are called electrodeless discharge lamps because they do not have electrodes inside the discharge tube. Due to its characteristic that it has a longer life than lamps, it has attracted attention in conjunction with the growing environmental issues in recent years.
[0003]
A conventional technique of an electrodeless discharge lamp is described below with reference to (Patent Document 1). FIG. 9 is a schematic cross-sectional view schematically showing a configuration of a conventional electrodeless discharge lamp. The electrodeless discharge lamp mainly includes a magnetic field generator 2, a discharge tube 1, and a high frequency power supply 3. The discharge tube 1 has a structure having a recess 8 in a part thereof, and the magnetic field generator 2 is arranged in the recess 8. The magnetic field generator 2 is coupled to the high-frequency power supply 3 via a lead wire 7 and generates a high-frequency magnetic field according to the power supplied from the high-frequency power supply 3. The discharge is started and maintained by the magnetic field emitted from the magnetic field generator 2 acting on the discharge gas inside the discharge tube interior 4. Here, if mercury vapor is sealed in the inside of the discharge tube 4, strong ultraviolet rays are emitted by the action of the discharge gas. By adopting a configuration in which a fluorescent substance or the like that reacts to ultraviolet light is fixed to the tube wall of the discharge tube 1, the ultraviolet light is converted into visible light and used as a light source for illumination.
[0004]
The magnetic field generator 2 includes a core 5 and a winding 6. The core has a cylindrical shape, and has a configuration in which a winding is wound around the core. As a preferred embodiment, a litz wire is wound 10 to 80 times on a surface of a ferrite core having a height of 55 mm, an outer diameter of 14 mm and an inner diameter of 7 mm at a pitch of 0 to 10 mm.
[0005]
[Patent Document 1]
JP 2000-348683 A
[0006]
[Problems to be solved by the invention]
However, the magnetic field generator 2 of the conventional configuration has a configuration in which a winding is applied to the entire surface of the core, and when the magnetic field generator 2 is disposed in the recessed portion 8, a gap between the core 5 and the recessed portion 8 is formed. The gap between the core 5 and the recessed portion 8 of the discharge tube 1 requires a certain distance because the winding 6 has a structure in which the winding 6 is inserted and the number of windings of the winding 6 is large. Met. Therefore, the use efficiency of the magnetic field emitted from the magnetic field generator 2 that actually contributes to the discharge of the electrodeless lamp has to be low. Therefore, for example, in order to obtain a predetermined luminous flux, it is necessary to introduce a magnetic field of a predetermined strength into the inside of the discharge tube 4, but in this case, more power is supplied to the windings to obtain the predetermined strength. It was necessary to obtain a magnetic field of As a result, the copper loss in the winding, the core loss in the ferrite core, and the loss in the power supply, etc. all increase at the same time. However, there were problems such as an increase in
[0007]
An object of the present invention is to solve the above-mentioned problems, and an object of the present invention is to provide an electrodeless discharge lamp capable of efficiently taking in a magnetic field generated from a magnetic field generator into a discharge tube interior 4 and having excellent power use efficiency. It is assumed that.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, an electrodeless discharge lamp according to the present invention is a discharge lamp including a discharge tube filled with a discharge gas and a magnetic field generator for generating an electromagnetic field in a space containing the discharge tube. An electrodeless discharge lamp is used in which the magnetic field generator includes a core having a step and a winding provided in a recess of the step.
[0009]
According to the electrodeless discharge lamp of the present invention, the magnetic field generated from the magnetic field generator can be efficiently taken into the discharge tube, so that the magnetic field generated from the magnetic field generator can be effectively used for discharging, and the power usage efficiency can be improved. It is possible to provide an electrodeless discharge lamp excellent in the above.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
The invention according to claim 1 is a discharge lamp including a discharge tube filled with a discharge gas and a magnetic field generator for supplying a magnetic field of the discharge tube, wherein the magnetic field generator includes a core having a stepped portion and the stepped portion. Since it is an electrodeless discharge lamp having a winding provided in the recess of the part, a strong magnetic field generated from the magnetic field generator can be effectively taken into the discharge tube, so that the magnetic field generated from the magnetic field generator can be effectively used. Can be used for discharging.
[0011]
The invention according to claim 2 is the electrodeless discharge lamp according to claim 1, wherein the recess of the step portion of the core of the magnetic field generator is located at the center of the core. And a strong magnetic field induced by the winding can be guided inside the discharge tube.
[0012]
According to a third aspect of the present invention, since the stepped portion outside the core of the magnetic field generator is hollow, the strong magnetic field induced by the winding is introduced into the discharge tube. In addition, the thickness of the core is reduced, so that the raw materials can be reduced, the core loss during lamp discharge can be reduced, and the weight of the lamp can be suppressed from increasing.
[0013]
According to a fourth aspect of the present invention, there is provided the electrodeless discharge lamp according to the second or third aspect, wherein a longitudinal groove is provided outside the stepped portion of the core of the magnetic field generator. Thereby, a strong magnetic field induced by the winding can be guided inside the discharge tube.
[0014]
According to a fifth aspect of the present invention, a lead wire connected to a winding provided in a concave portion of the step portion is formed along a longitudinal groove provided outside the step portion of the core of the magnetic field generator. Since it is an electrodeless discharge lamp, there is no need to provide a space for leading the lead wire between the core and the discharge tube, so the gap between the core and the discharge tube can be narrowed, and the strong magnetic field induced by the winding can be reduced. It can be guided inside the discharge tube.
[0015]
According to a sixth aspect of the present invention, there is provided the electrodeless discharge lamp according to the fifth aspect, wherein the envelope formed by the winding provided in the recess of the step portion of the core of the magnetic field generator is provided inside the surface of the core. Accordingly, the gap between the core and the discharge tube can be reduced, and a strong magnetic field induced by the winding can be guided into the discharge tube.
[0016]
The invention according to claim 7 is the electrodeless discharge lamp according to claim 1, wherein the concave portion of the step portion of the core of the magnetic field generator is located at both ends of the core. Since it is located on the side, a strong magnetic field induced by the winding can be uniformly introduced into the inside of the discharge tube, and the core has a shape that can be integrally molded, so that productivity can be improved.
[0017]
The invention according to claim 8 is the electrodeless discharge lamp according to claim 7, wherein a groove in the long axis direction is provided outside the stepped portion of the core of the magnetic field generator. A strong magnetic field induced by the winding can be guided inside the discharge tube.
[0018]
According to a ninth aspect of the present invention, there is provided the magnetic field generator according to the eighth aspect, wherein a lead wire connected to a winding formed in the step portion is provided along a longitudinal groove provided outside the step portion of the core of the magnetic field generator. Since it is an electrode discharge lamp, there is no need to provide a space for routing lead wires between the core and the discharge tube, so the gap between the core and the discharge tube can be narrowed, and a strong magnetic field induced by the windings can be applied to the discharge tube. You can lead inside.
[0019]
According to a tenth aspect of the present invention, there is provided the electrodeless discharge lamp according to the ninth aspect, wherein an envelope surface formed by a winding provided in the recess of the step portion of the core of the magnetic field generator is provided inside the surface of the core. As a result, the gap between the core and the discharge tube can be reduced, and a strong magnetic field induced by the winding can be guided into the discharge tube.
[0020]
According to an eleventh aspect of the present invention, since the core of the magnetic field generator is the electrodeless discharge lamp according to the first to tenth aspects, the core loss can be reduced and the magnetic field induced by the winding can be efficiently discharged. Can be guided inside the tube.
[0021]
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0022]
(Embodiment 1)
FIG. 1A is a schematic diagram of a perspective view of a magnetic field generator of the electrodeless discharge lamp of the first embodiment, and FIG. 1B is a diagram of the electrodeless discharge lamp of the first embodiment. FIG. The electrodeless discharge lamp according to the first embodiment includes a discharge tube 1, a magnetic field generator 2, and a high-frequency power supply 3 for supplying power to the magnetic field generator 2. The discharge tube 1 is formed of a glass container having a discharge gas sealed therein. Further, mercury vapor or the like for effectively emitting ultraviolet rays is sealed in the discharge tube interior 4. A fluorescent substance for converting ultraviolet light into visible light is fixed to the inner surface of the tube wall of the discharge tube 1. The magnetic field generator 2 includes a core 5, a winding 6, and a lead wire 7 connecting the winding 6 and the high-frequency power supply 3, and is disposed inside a recess 8 provided in the discharge tube 1.
[0023]
Next, the operation of the electrodeless discharge lamp will be described. High frequency power is supplied from the high frequency power supply 3 to the winding 6 via the lead wire 7. An induction magnetic field is generated in the winding 6 according to the supplied power. The magnetic field induced by the winding 6 is strengthened by the core 5 and generates a high-frequency magnetic field near the magnetic field generator 2. The high-frequency magnetic field acts on the discharge gas inside the discharge tube 4 to start and maintain the discharge inside the discharge tube 4. The ionized gas generated by the discharge acts on the mercury vapor to generate ultraviolet rays. When this ultraviolet ray is applied to the fluorescent material, it becomes visible light, and is emitted to the outside of the discharge tube 1 to serve as, for example, a light source for illumination.
[0024]
The core 5 of the magnetic field generator 2 according to the first embodiment has a step 9 in the center of the core 5, and the winding 6 is applied to a concave portion 10 of the step. This magnetic field generator 2 was manufactured as follows. 2A and 2B show a method for manufacturing a core. As shown in the figure, a split core 11 divided into two parts by a plane passing through the center axis of the core 5 was manufactured using a ferrite material, and two sets were laminated to manufacture a core 5 made of a ferrite material. In the present embodiment, the split core divided into two is used, but the split core divided into three or four may be used. The core 5 includes a step portion 9, a concave portion 10 of the step portion, and a step portion outside 12. The composition of the ferrite material may be selected according to the driving frequency of the discharge lamp. In the first embodiment, a MnZn-based ferrite material is used. Here, since the core 5 is driven with a large amplitude magnetic field amplitude, and the temperature of the core 5 at the time of driving becomes as high as about 150 ° C., the ferrite whose core loss is extremely small in this temperature region is used. Was selected. In the case of the core 5 made of a MnZn-based ferrite material, since the electric resistance is small, an electric insulating material (not shown) is interposed in the recess 10 of the step portion provided at the center of the core 5 on which the winding 6 is applied. The winding 6 is applied. In the first embodiment, the polyimide tape is used as an electrically insulating material. However, the core 5 is provided with an insulating thin film on the surface, or is wound via an insulating material formed by applying a resin or the like. The wire 6 may be wound around the core 5. The recess 10 of the step portion where the winding 6 is applied has a length of 15 mm, and the depth of the recess 10 is 3 mm. The dimension of the concave portion 10 of the step portion is such that when the winding 6 is wound by the number of turns at which the inductance of the magnetic field generator 2 becomes a desired value, the envelope 13 of the winding 6 protrudes from the surface of the core 5. No shape. The magnetic field generator 2 is provided in a recess 8 of the discharge tube 1. Therefore, the outer diameter of the magnetic field generator 2 is determined by the size of the concave portion 8 of the discharge tube 1. In the first embodiment, the size is slightly smaller than the size of the concave portion 8 of the discharge tube 1.
[0025]
Next, a magnetic field generator of a comparative example was manufactured. As shown in FIG. 9, the magnetic field generator of the comparative example has a configuration in which a winding 6 is applied to a core 5 made of a ferrite material having no step, similar to the configuration of a conventional electrodeless discharge lamp. The composition of the ferrite material is the same as that of the first embodiment, and the winding 6 is formed on the surface of the core 5 serving as the winding part by using a polyimide tape as an electrically insulating material. The number of windings was adjusted so that the inductance was the same as that of the first embodiment. Actually, the number of windings is required to be increased by about 30% as compared with the first embodiment. The magnetic field generator 2 is provided in a recess 8 of the discharge tube 1. Therefore, the outer diameter of the magnetic field generator 2 is determined by the size of the concave portion 8 of the discharge tube 1. In the case of the comparative example, since the outermost winding 6 is provided, the outer diameter of the winding 6 is the same as the core diameter of the first embodiment. That is, in the first embodiment, since the winding 6 is provided in the concave portion 10 of the step portion of the core 5, the core shape can be increased according to the size of the concave portion 8 of the discharge tube 1. In the case of the comparative example wound around the outer peripheral portion of the discharge tube 5, the size of the winding 6 must correspond to the size of the recessed portion 8 of the discharge tube 1. Therefore, in the first embodiment, the outer diameter of the core 5 can be increased as compared with the comparative example.
[0026]
Here, FIG. 3 shows a calculation result of a change in magnetic flux density depending on the distance from the wall surface of the recessed portion 8 of the discharge tube 1 for the magnetic field generator of the first embodiment and the magnetic field generator of the comparative example. The calculation is performed under the condition that the inductance is constant.
[0027]
The magnetic flux density can be considered as corresponding to the magnetic field strength. In each case, a strong magnetic flux density is shown near the core 5, but the magnetic flux density decreases rapidly as the distance increases, as shown in FIG. That is, in the case of a discharge lamp having a configuration in which the magnetic field generator 2 is inserted into the recessed portion 8 of the discharge tube 1, the magnetic flux density distribution inside the discharge tube 4 is the same as in the first embodiment and the comparative example. 2, the magnetic flux density is strong, and the distribution is such that the magnetic flux density decreases rapidly as the distance from the magnetic field generator 2 increases.
[0028]
Further, in the first embodiment in which the winding 6 is provided in the recess 10 of the step portion provided in the core 5, for example, when viewed in a cross section passing through the center axis of the core, the winding 6 is formed of a U-shaped ferrite material. Therefore, a strong magnetic field is generated particularly near the stepped portion 9.
[0029]
As described above, in the first embodiment, by applying the winding 6 to the concave portion 10 of the step portion provided in the core 5, a stronger magnetic field can be obtained as compared with the comparative example, and a substantial emission of the magnetic field can be achieved. Since the core 5 made of a ferrite material can be disposed in a narrow gap with the inner wall of the recessed portion 8 of the discharge tube 1, the magnetic field can be introduced into the inside of the discharge tube 4 in a state where attenuation due to the distance of the magnetic field intensity is suppressed. .
[0030]
Next, the starting characteristics in which the effect of the intensity of the magnetic flux inside the discharge tube 4 is most remarkable, that is, the voltage at which the discharge starts inside the discharge tube 4 were examined for the first embodiment and the comparative example. The results are shown in (Table 1). Note that the test was performed by adjusting the number of windings so that the inductance value was the same in the first embodiment and the comparative example.
[0031]
[Table 1]
Figure 2004234944
[0032]
From Table 1, it can be confirmed that the voltage required for starting discharge is lower in the first embodiment than in the comparative example. It is considered that the cause of the voltage drop is a result of a magnetic field having a strong magnetic field intensity being introduced into the inside of the discharge tube 4 in the first embodiment as compared with the comparative example.
[0033]
To start discharge, it is necessary to guide a strong magnetic field into the discharge tube. As a method of introducing a strong magnetic field into the inside of the discharge tube, for example, in the comparative example, it can be dealt with by increasing the value of the current flowing through the winding. However, as can be seen from FIG. 3, the distribution of the magnetic flux density in the comparative example is gentler than in the first embodiment. This means that when the value of the current flowing through the winding for starting the discharge is increased, it is easily affected by the outside of the discharge tube. For example, when a protective cover containing iron as a main component is present around the discharge tube, the magnetic field generated from the magnetic field generator is easily coupled to the protective cover. In this case, even if the intensity of the magnetic field generated from the magnetic field generator is increased by increasing the value of the current flowing through the winding, the magnetic field generated from the magnetic field generator does not effectively contribute to the start of discharge. That is, in order to effectively contribute the magnetic field generated from the magnetic field generator without the influence of the outside of the discharge tube, a magnetic field having a steep magnetic field distribution as in the first embodiment should be effectively taken into the tube without waste. Is required, and the first embodiment satisfies this requirement.
[0034]
Further, the luminous flux of the discharge tube 1 during lighting was examined in Embodiment 1 and Comparative Example. The luminous efficiency of the discharge tube 1 when each input power was constant and in a steady state is shown in (Table 2).
[0035]
[Table 2]
Figure 2004234944
[0036]
From Table 2, it can be confirmed that in the first embodiment, the luminous efficacy of the discharge tube 1 is increased as compared with the comparative example.
[0037]
As described above, in the first embodiment including the magnetic field generator 2 including the step portion 9 provided in the center portion of the core 5 and the winding 6 disposed in the concave portion 10 of the step portion, a strong magnetic field can be effectively generated. Since it can be taken into the inside of the discharge tube 4, the starting voltage can be reduced and the brightness of the discharge tube 1 can be increased as compared with the comparative example.
[0038]
In the first embodiment, the number of turns of the winding can be reduced to obtain the same inductance. However, by reducing the number of windings, the electric resistance of the winding is reduced. Heat generation can also be suppressed. Therefore, it is possible to suppress the temperature rise of the winding portion, and it is possible to use a material having a low heat-resistant temperature as a coating material of the winding or an electrical insulating material between the core and the winding, thereby reducing manufacturing costs. Can be held down. Further, since the heat-resistant temperature of the coating material of the winding can be lowered, the coating material of the winding for forming the electric circuit can be easily removed, and the productivity is improved.
[0039]
In the first embodiment, the core 5 made of a ferrite material is formed by bonding the two-piece core 11 having a shape cut along a plane passing through the central axis, but the core 5 made of a ferrite material is formed. The method is not limited to this, and for example, the core of each shape of the step portion outside 12 and the concave portion 10 of the step portion may be bonded in the axial direction. In this case, however, the core 5 used in the first embodiment has a continuous and integral shape in the axial direction which is the magnetization direction of the core 5, whereas the core 5 has a shape in which the magnetization direction of the core 5 is interrupted. Therefore, when forming the cores by sticking them in the axial direction, care must be taken so that unnecessary voids are not formed between the cores. This is because unnecessary air gaps existing in the direction of magnetization hinder effective use of the magnetic field.
[0040]
Further, in the first embodiment, a polyimide tape is used as an electrical insulating means between the core 5 and the winding 6 made of a ferrite material. However, this electrical insulating means is not limited to the polyimide tape and is heat resistant. For example, a bobbin made of a PPS resin may be used as long as the insulator is a conductive insulator. However, it is important to make the gap between the core 5 and the recess 8 as small as possible to reduce the influence of the attenuation of the magnetic field from the core 5.
[0041]
Further, in the first embodiment, the MnZn-based ferrite material is used as the ferrite material, but the ferrite material is not limited to the MnZn-based material and may be selected according to the operating frequency. For example, when the operating frequency is 500 kHz or more, the NiZn-based ferrite material has better magnetic characteristics than the MnZn-based ferrite, so that the NiZn-based ferrite material may be selected. When a NiZn-based ferrite material is used, it is not necessary to provide an electrical insulating means between the winding and the ferrite core because the electric resistance of the NiZn-based ferrite material is extremely large. However, the winding may be performed while paying attention to the burrs at the edge of the ferrite core.
[0042]
In addition, the shape of the core 5 according to the first embodiment has a cylindrical cross section perpendicular to the central axis, but the shape of the core 5 is not limited to the cylindrical shape. The outer shape may be any polygonal shape. For example, when an axial groove 14 is formed in the step portion outside 12 as shown in FIGS. 4A and 4B, the cross-sectional area of the step portion 9 of the core 5 Is reduced, the magnetic flux passing through the core 5 is concentrated, and as a result, a stronger magnetic field can be guided to the inside of the discharge tube 4. If the lead wire 7 for supplying electric power from the high frequency power supply to the winding 6 is arranged along the groove 14 provided in the step portion outer portion 12, the lead wire 7 is inserted into the gap between the core 5 and the concave portion 8 of the discharge tube 1. It is no longer necessary to provide a gap for routing, and the gap between the core 5 and the recessed portion 8 of the discharge tube 1 can be further reduced. Therefore, a strong magnetic field in a state in which the reduction of the magnetic field generated from the core 5 is suppressed is reduced. And the use efficiency of the magnetic field is further improved. The through hole 15 at the center of the core 5 is used for passing a thin tube used in manufacturing a discharge tube or for inserting a heat receiver for heat radiation of the core. The necessity of the through hole 15 depends on the shape of the tube, the necessity of the heat receiver, and the like.
[0043]
Further, in the first embodiment, the step portion outside 12 has only the through hole 15, but the inside of the step portion outside 12 may be hollow as shown in FIGS. 5 (a) and 5 (b). I do not care. In consideration of the flow of the magnetic flux in the core 5, the area of the cross section having the long axis of the step portion outside 12 as a normal line is at least the same as the cross sectional area of the concave portion 10 of the step portion where the winding 6 is applied. That's fine. By making the step portion outer portion 12 hollow, unnecessary parts of the core are reduced, so that a shape advantage such as a reduction in material and weight is obtained, and eddy current loss which is a particular problem in high-frequency driving is obtained. And an electrodeless discharge lamp that does not consume useless power can be obtained. In the case where the inside of the step portion outer portion 12 is hollow, for example, by making the inside of the step portion conical, the barrier of the air flow inside the core is eliminated, and convection corresponding to the temperature difference in the hollow portion 8 of the discharge tube 1 is generated. Therefore, local temperature rise of the magnetic field generator 2 can be suppressed, and reliability during operation of the discharge tube improves.
[0044]
As described above, by using the magnetic field generator 2 of the first embodiment for an electrodeless discharge lamp, a strong magnetic field of the magnetic field generated from the magnetic field generator 2 can be effectively applied to the inside of the discharge tube 4 without waste. Since it can be introduced, it is possible to provide an electrodeless discharge lamp excellent in operability, which can increase the luminous flux of the light bulb when the same input power is used and can reduce the discharge starting voltage.
(Embodiment 2)
FIG. 6A is a perspective view of a portion of a magnetic field generator 2 of an electrodeless discharge lamp according to a second embodiment of the present invention, and FIG. 6B is a perspective view of the electrodeless discharge lamp according to the second embodiment. FIG. The electrodeless discharge lamp according to the second embodiment includes a discharge tube 1, a magnetic field generator 2, and a high-frequency power supply 3 for supplying power to the magnetic field generator 2, similarly to the electrodeless discharge lamp according to the first embodiment. It is configured and operates similarly to the electrodeless discharge lamp of the first embodiment.
[0045]
Now, the magnetic field generator 2 according to the second embodiment has the step portions 9 at both ends of the core 5, and therefore, the recesses 10 of the step portions are present at both ends of the core 5, and the recesses of both step portions are provided. 10 is provided with a winding 6, and the winding 6 is connected to a lead wire 7 for supplying power from a high frequency power supply. The core 5 was made of a MnZn-based ferrite material as in the first embodiment. In contrast to Embodiment 1 in which two cores are bonded to each other, the core 5 in Embodiment 2 has a shape that can be integrally molded using a mold. It was produced.
[0046]
The winding 6 is applied to the concave portion 10 of the stepped portion existing at both ends of the core 5, and electrical insulation between the core 5 made of a ferrite material and the winding 6 is secured by using a heat-resistant paint. The concave portion 10 of the step portion to which the winding 6 is applied has a length of 8 mm and a depth of 3 mm. The dimension of the concave portion of the step portion is the same as the number of turns of the magnetic field generator 2 by the number of turns at which the inductance of the magnetic field generator 2 has a desired value. Is wound so that the envelope surface 13 of the winding 6 does not protrude from the surface of the core 5 made of ferrite material. The magnetic field generator 2 is provided in a recess 8 of the discharge tube 1. Therefore, the outer diameter of the magnetic field generator 2 is limited by the size of the concave portion 8 of the discharge tube 1. In the second embodiment, the discharge tube 1 is made slightly smaller than the size of the recessed portion 8.
[0047]
The magnetic field generator of the comparative example used was the same as that used in the first embodiment.
[0048]
The magnetic field generator 2 is provided in a recess 8 of the discharge tube 1. Therefore, the outer diameter of the magnetic field generator 2 is determined by the size of the concave portion 8 of the discharge tube 1. In the case of the comparative example, since the outermost winding 6 is provided, the outer diameter of the winding 6 is the same as the core diameter of the second embodiment. That is, in the second embodiment, since the winding 6 is provided in the concave portion 10 of the step portion of the core 5 made of a ferrite material, the core shape can be increased to a size corresponding to the concave portion 8 of the discharge tube 1. In the case of the comparative example in which 6 is wound around the outer periphery of the core 5, the size of the winding 6 must correspond to the size of the recessed portion 8 of the discharge tube 1. Therefore, in the second embodiment, the outer diameter of the core 5 can be increased as compared with the comparative example.
[0049]
FIG. 3 shows a calculation result of a change in magnetic flux density depending on the distance from the wall surface of the recessed portion 8 of the discharge tube 1 with respect to the magnetic field generator of the second embodiment and the magnetic field generator of the comparative example. The magnetic flux density can be considered as corresponding to the magnetic field strength. In each case, a strong magnetic flux density is shown near the core 5, but the magnetic flux density decreases rapidly as the distance increases, as shown in FIG. That is, in the case of a discharge lamp having a configuration in which the magnetic field generator 2 is inserted into the recessed portion 8 of the discharge tube 1, the magnetic flux density distribution inside the discharge tube 4 can be controlled by the magnetic field generator in both the second embodiment and the comparative example. 2, the magnetic flux density is strong, and the distribution is such that the magnetic flux density decreases rapidly as the distance from the magnetic field generator 2 increases.
[0050]
Further, in the second embodiment in which the winding 6 is applied to the concave portion 10 of the step portion provided in the core 5, for example, when viewed in a cross section passing through the central axis of the core 5, one end of the winding 6 is formed of a ferrite material. Since it is configured to cover, a strong magnetic field is generated particularly near the stepped portion 9. However, since the winding 6 is divided into two ends at both ends of the core, the value of the magnetic flux density is smaller than that of the first embodiment.
[0051]
As described above, in the second embodiment, by applying the winding 6 to the concave portion 10 of the step portion provided in the core 5, a stronger magnetic field can be obtained as compared with the comparative example, and a substantial emission of the magnetic field can be achieved. Since the core 5 made of a ferrite material can be disposed in a narrow gap with the inner wall of the recessed portion 8 of the discharge tube 1, the magnetic field can be introduced into the inside of the discharge tube 4 in a state where attenuation due to the distance of the magnetic field intensity is suppressed. is there.
[0052]
Next, the starting characteristics in which the effect of the intensity of the magnetic flux inside the discharge tube 4 is most remarkable, that is, the voltage at which the discharge starts inside the discharge tube 4 were examined for the second embodiment and the comparative example. The results are shown in (Table 3). Note that the test was performed by adjusting the number of windings so that the inductance value was the same in the first embodiment and the comparative example.
[0053]
[Table 3]
Figure 2004234944
[0054]
From Table 3, it can be confirmed that the voltage required for starting discharge is lower in the second embodiment than in the comparative example. The cause of the voltage drop is considered to be the result of the fact that a stronger magnetic field could be introduced into the inside of the discharge tube 4 in the second embodiment than in the comparative example.
[0055]
Also in the second embodiment, a magnetic field having a steep magnetic field distribution can be effectively taken into the tube without waste similarly to the first embodiment, so that the magnetic field generated from the magnetic field generator can be effectively applied without influence from the outside of the discharge tube. Can be contributed.
[0056]
Further, the luminous flux of the discharge tube 1 during lighting was examined in Embodiment 2 and Comparative Example. Table 4 shows the luminous efficiency of the discharge tube 1 when each input power was constant and the steady state was reached.
[0057]
[Table 4]
Figure 2004234944
[0058]
From Table 4, it can be confirmed that the luminous efficiency of the discharge tube 1 in the second embodiment is higher than that of the comparative example. As described above, in the second embodiment including the magnetic field generator 2 in which the step portions 9 are provided at both ends of the core and the windings 6 are provided in the concave portions 10 of the step portions, a strong magnetic field can be effectively generated inside the discharge tube 4. Therefore, the starting voltage can be reduced and the luminance of the discharge tube 1 can be increased as compared with the comparative example. Further, by forming the core 5 having the step portions 9 at both ends of the core 5, the core 5 can be integrally molded by a mold, so that productivity is higher than that of the first embodiment in which the cores are bonded. The core 5 can be produced well.
[0059]
In the second embodiment, the number of turns of the winding can be reduced to obtain the same inductance. However, by reducing the number of windings, the electrical resistance of the winding is reduced. Heat generation can also be suppressed. Therefore, it is possible to suppress the temperature rise of the winding portion, and it is possible to use a material having a low heat-resistant temperature as a coating material of the winding or an electrical insulating material between the core and the winding, thereby reducing manufacturing costs. Can be held down. Further, since the heat-resistant temperature of the coating material of the winding can be lowered, the coating material of the winding for forming the electric circuit can be easily removed, and the productivity is improved.
[0060]
In the second embodiment, the core has a cylindrical cross section in a direction perpendicular to the central axis, but the core is not limited to the cylindrical shape. The outer shape may be a polygonal shape. For example, when an axial groove is formed in the step outer portion 12 as shown in FIG. 7, by reducing the cross-sectional area of the step 9 of the core, the outer shape of the core is reduced. The magnetic flux concentrates, so that a stronger magnetic field can be guided into the discharge tube 4. If the lead wire 7 for supplying power from the high-frequency power source 3 to the winding 6 is arranged along the groove 14 provided in the step portion outer portion 12, the lead wire 7 is located between the core 5 and the recess 8 of the discharge tube 1. It is no longer necessary to provide a gap for routing the wire, and the gap between the core 5 and the recessed portion 8 of the discharge tube 1 can be further reduced. And the efficiency of using the magnetic field is further improved.
[0061]
The through hole 15 at the center of the core is used for passing a thin tube used for manufacturing a discharge tube, or for inserting a heat receiver for heat radiation of the core. The necessity of the through hole 15 depends on the shape of the tube, the necessity of the heat receiver, and the like.
[0062]
Further, in the second embodiment, the recess 10 of the step portion is provided on both ends, but the recess 10 of the step portion is shifted from the both ends of the core 5 toward the inside as shown in FIG. Although the characteristics of the magnetic field generator 2 are superior to those of the comparative example, the production of the core 5 may be performed, for example, by bonding a plurality of cores as described in the first embodiment. It needs to be turned on.
[0063]
As described above, by using the magnetic field generator of the second embodiment in an electrodeless discharge lamp, a strong magnetic field of the magnetic field generated from the magnetic field generator 2 is effectively and efficiently introduced into the discharge tube interior 4. Therefore, it is possible to provide an electrodeless discharge lamp excellent in operability, which can increase the luminous flux of the bulb when the same input power is used and can reduce the discharge starting voltage. Further, since the core 5 of the second embodiment can be processed by integral molding, productivity is improved. In each of the embodiments, the example in which the concave portion provided on the core 5 is provided over the entire circumference of the core 5 has been described. , 周, 1 /, etc., the recess may be partially provided, and the winding may be accommodated in the recess.
[0064]
【The invention's effect】
According to the electrodeless discharge lamp of the present invention, there is provided a discharge lamp in which a discharge tube filled with a discharge gas and a magnetic field generator for generating an electromagnetic field in a space containing the discharge tube are arranged. Since it is composed of a core having a portion and a winding provided in the recess of the step portion, a strong magnetic field of the magnetic field generated by the magnetic field generator can be effectively introduced into the discharge tube, so that the same input power and In this case, it is possible to provide an electrodeless discharge lamp with excellent power efficiency, which can increase the luminous flux of the bulb and can reduce the voltage at the start of discharge.
[Brief description of the drawings]
FIG. 1 is a diagram showing an electrodeless discharge lamp according to a first embodiment of the present invention.
FIG. 2 is a view for explaining assembly of a core of the electrodeless discharge lamp according to the first embodiment of the present invention;
FIG. 3 is a graph of a calculation result of a change in a magnetic flux density generated from the magnetic field generator according to the first and second embodiments of the present invention and a comparative example depending on a distance from a wall of a hollow portion of a discharge tube.
FIG. 4 is a perspective view of another example of the magnetic field generator of the electrodeless discharge lamp according to the first embodiment of the present invention, and a schematic cross-sectional view illustrating a configuration of the electrodeless discharge lamp using the same.
FIG. 5 is a perspective view of still another example of the magnetic field generator of the electrodeless discharge lamp according to the first embodiment of the present invention, and a schematic cross-sectional view showing a configuration of the electrodeless discharge lamp using the same.
FIG. 6 is a perspective view of a magnetic field generator of an electrodeless discharge lamp according to a second embodiment of the present invention and a schematic cross-sectional view showing a configuration of an electrodeless discharge lamp using the same.
FIG. 7 is a perspective view of another example of the magnetic field generator of the electrodeless discharge lamp according to the second embodiment of the present invention, and a schematic cross-sectional view illustrating a configuration of the electrodeless discharge lamp using the same.
FIG. 8 is a perspective view of still another example of the magnetic field generator of the electrodeless discharge lamp according to the second embodiment of the present invention, and a schematic sectional view showing the configuration of the electrodeless discharge lamp using the same.
FIG. 9 is a schematic sectional view showing the configuration of a conventional electrodeless discharge lamp.
[Explanation of symbols]
1 discharge tube
2 Magnetic field generator
3 High frequency power supply
4 Inside the discharge tube
5 core
6 winding
7 Lead wire
8 hollow
9 Step
10 Step recess
11 split core
12 Outside the step
13 Envelope
14 Axial groove
15 Through hole

Claims (11)

放電ガス封入した放電管と、前記放電管磁界を供給する磁界発生器を配した放電ランプであって、前記磁界発生器は、段差部を有するコアと前記段差部の凹部に設けた巻線とを有することを特徴とする無電極放電ランプ。A discharge lamp in which a discharge tube filled with a discharge gas and a magnetic field generator for supplying the discharge tube magnetic field are provided, wherein the magnetic field generator includes a core having a step portion and a winding provided in a concave portion of the step portion. An electrodeless discharge lamp comprising: 磁界発生器のコアの、段差部の凹部が、前記コアの中央部に位置することを特徴とする請求項1に記載の無電極放電ランプ。2. The electrodeless discharge lamp according to claim 1, wherein the recess of the step portion of the core of the magnetic field generator is located at the center of the core. 磁界発生器のコアの段差部外部は中空形状であることを特徴とすることを特徴とする請求項2に記載の無電極放電ランプ。The electrodeless discharge lamp according to claim 2, wherein the step portion outside the core of the magnetic field generator has a hollow shape. 磁界発生器のコアの段差部外部に長軸方向の溝を設けたことを特徴とすることを特徴とする請求項2、3記載の無電極放電ランプ。The electrodeless discharge lamp according to claim 2, wherein a groove in a long axis direction is provided outside a step portion of a core of the magnetic field generator. 磁界発生器のコアの段差部外部に設けた長軸方向の溝に、前記段差部の凹部に設けた巻線に繋がるリード線を沿わせてなることを特徴とする請求項4記載の無電極放電ランプ。5. The electrodeless device according to claim 4, wherein a lead wire connected to a winding provided in a concave portion of the step portion is formed along a longitudinal groove provided outside the step portion of the core of the magnetic field generator. Discharge lamp. 磁界発生器のコアの、段差部の凹部に設けた巻線が作る包絡面は、前記コアの表面より内側に設けられたことを特徴とする請求項5記載の無電極放電ランプ。The electrodeless discharge lamp according to claim 5, wherein an envelope surface formed by a winding provided in the recess of the step portion of the core of the magnetic field generator is provided inside the surface of the core. 磁界発生器のコアの、段差部の凹部が、前記コアの両端側に位置することを特徴とする請求項1に記載の無電極放電ランプ。2. The electrodeless discharge lamp according to claim 1, wherein concave portions of the step portion of the core of the magnetic field generator are located at both ends of the core. 3. 磁界発生器のコアの段差部外部に長軸方向の溝を設けたことを特徴とする請求7記載の無電極放電ランプ。8. The electrodeless discharge lamp according to claim 7, wherein a groove in a long axis direction is provided outside a step portion of a core of the magnetic field generator. 磁界発生器のコアの段差部外部に設けた長軸方向の溝に、段差部に形成した巻線に繋がるリード線を沿わせてなることを特徴とする請求項8記載の無電極放電ランプ。9. The electrodeless discharge lamp according to claim 8, wherein a lead wire connected to a winding formed in the step portion is formed along a longitudinal groove provided outside the step portion of the core of the magnetic field generator. 磁界発生器のコアの、段差部の凹部に設けた巻線が作る包絡面は、前記コアの表面より内側に設けられたことを特徴とする請求項9記載の無電極放電ランプ。The electrodeless discharge lamp according to claim 9, wherein an envelope surface formed by a winding provided in a recess of the step portion of the core of the magnetic field generator is provided inside the surface of the core. 磁界発生器のコアはフェライト材からなることを特徴とする請求項1から10記載の無電極放電ランプ。11. The electrodeless discharge lamp according to claim 1, wherein a core of the magnetic field generator is made of a ferrite material.
JP2003020011A 2003-01-29 2003-01-29 Electrodeless discharge lamp Pending JP2004234944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003020011A JP2004234944A (en) 2003-01-29 2003-01-29 Electrodeless discharge lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003020011A JP2004234944A (en) 2003-01-29 2003-01-29 Electrodeless discharge lamp

Publications (1)

Publication Number Publication Date
JP2004234944A true JP2004234944A (en) 2004-08-19

Family

ID=32949749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003020011A Pending JP2004234944A (en) 2003-01-29 2003-01-29 Electrodeless discharge lamp

Country Status (1)

Country Link
JP (1) JP2004234944A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1918975A1 (en) * 2005-08-26 2008-05-07 Matsushita Electric Works, Ltd. Electrodeless discharge lamp and lighting fixture equipped with such electrodeless discharge lamp

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1918975A1 (en) * 2005-08-26 2008-05-07 Matsushita Electric Works, Ltd. Electrodeless discharge lamp and lighting fixture equipped with such electrodeless discharge lamp
EP1918975A4 (en) * 2005-08-26 2011-04-06 Panasonic Elec Works Co Ltd Electrodeless discharge lamp and lighting fixture equipped with such electrodeless discharge lamp

Similar Documents

Publication Publication Date Title
JP3826158B2 (en) Electrodeless discharge lamp
US6768248B2 (en) Electrodeless lamp
US6979940B2 (en) Electrodeless discharge lamp
US7800289B2 (en) Electrodeless gas discharge lamp
EP0528489B1 (en) Electrodeless discharge lamp
JP2005093170A (en) Electrodeless discharge lamp
EP1852892A1 (en) Inside-through type combined magnetic energy generator and magnetic energy lamp
EP1840939A1 (en) Wrapper type combined magnetic energy generator and magnetic energy lamp
JP2004234944A (en) Electrodeless discharge lamp
US6404141B1 (en) Electrodeless discharge lamp
JP3680741B2 (en) Electrodeless fluorescent lamp
JP4058304B2 (en) Electrodeless discharge lamp
US7737613B2 (en) Electrodeless lamp and core having indented coil winding section for use with tubular lamp envelope
JP4365631B2 (en) Light bulb shaped fluorescent lamp and lighting circuit
JP5037167B2 (en) Electrodeless discharge lamp and lighting fixture equipped with the same
JP3069979U (en) Step-up transformer for magnetron drive
JP4105892B2 (en) Core and electrodeless lamp
JP3879299B2 (en) Electrodeless discharge lamp device
JP3849613B2 (en) Electrodeless discharge lamp, electrodeless discharge lamp lighting device and lighting device
JPS6191852A (en) Nonelectrode discharge lamp
JP2005158356A (en) Electrodeless discharge lamp
JP2005317635A (en) High frequency and high voltage transformer
JP3653708B2 (en) Electrodeless fluorescent discharge lamp
KR100499198B1 (en) An Electrodeless and Magnetic-Coreless Discharge Lamp
JP2004031052A (en) Electrodeless discharge lamp