JP2004234524A - Gloss expression method - Google Patents

Gloss expression method Download PDF

Info

Publication number
JP2004234524A
JP2004234524A JP2003024662A JP2003024662A JP2004234524A JP 2004234524 A JP2004234524 A JP 2004234524A JP 2003024662 A JP2003024662 A JP 2003024662A JP 2003024662 A JP2003024662 A JP 2003024662A JP 2004234524 A JP2004234524 A JP 2004234524A
Authority
JP
Japan
Prior art keywords
spectral reflectance
dimensional structure
luminance value
color
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003024662A
Other languages
Japanese (ja)
Inventor
Masami Shishikura
正視 宍倉
Yoichi Miyake
洋一 三宅
Norimichi Tsumura
徳道 津村
Toru Ishii
融 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP2003024662A priority Critical patent/JP2004234524A/en
Publication of JP2004234524A publication Critical patent/JP2004234524A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Image Generation (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gloss expression method capable of making a glossiness closer to reality compared to a conventional technique and preparing the image of a three-dimensional structure expressing the glossiness without being accompanied by correction work based on the sensitivity of a user. <P>SOLUTION: A change normal vector calculation part 105 decides change normal vectors for which the normal vectors of respective parts of the surface of the three-dimensional structure virtually displayed at a display device are dispersed for a displacement amount based on a stipulated distribution for the respective parts. A rendering processing part 107 applies a color sample spectral reflectance calculation function to an incident angle, an observation angle and a shifting angle, calculates spectral reflectance for the respective parts of the surface of the three-dimensional structure and calculates the values of the colors of the respective parts of the surface of the three-dimensional structure from the calculated spectral reflectance. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、コンピュータシステムを用いて作成した画像に色を出力する技術に係り、特に、光沢表現方法に関するものである。
【0002】
【従来の技術】
従来、コンピュータを用いて立体構造物の画像を作成し画面に表示する際に、その立体構造物の画像を実物に近似する自然な光沢感で表示する方法としては、光が表面で反射する強さ(表面反射光強度)や、光が表面から物体の内部に入ってから外に出てくる光の強さ(内部反射光強度)などを調整する方法(特許文献1参照)や、テクスチャ(光沢感やざらつき感などを出すために立体構造物の画像に仮想的に貼り付ける白黒の生地を表す情報)画像を貼り付ける方法(特許文献2参照)などがある。尚、特許文献1においては、立体構造物の画像を表示する画面において表示できる最大輝度以上の輝度値をカットする方法が記載されており、特許文献2においては実物と同じ光沢感を表現したテクスチャを立体構造物の画像に貼り付ける方法が記載されている。
【0003】
【特許文献1】
特開平5−40833号公報
【特許文献2】
特許第3107452号公報
【0004】
【発明が解決しようとする課題】
ここで、図10は反射光の輝度の反射面上の空間における強度分布の断面を示す図である。この図において(a)は入射光が反射する反射面の光沢度が大きい場合の反射光の輝度の強度分布の断面を示す図であり、(b)は入射光が反射する反射面の光沢度が小さい場合の反射光の輝度の強度分布の断面を示す図である。(a)、(b)より、反射面の光沢度が大きい場合には反射光の輝度の強度分布の指向性が強く、反射面の光沢度が小さい場合には反射光の輝度の強度分布の指向性が弱い。これにより、表示装置の最大輝度値でカットしてしまうと、反射面の光沢度が小さい(b)の場合のほうが輝度の強度分布の範囲dが広くなってしまう。これにより、特許文献1においては、反射面の光沢度が小さい立体構造物が、反射面の光沢度が大きい立体構造物に比べて輝度の高い画像となってしまう場合がある。よって、特許文献1においては実際の光沢が表現できない現象が発生する。また、特許文献2においてはテクスチャ自体を作成するユーザの感性に基づいて作成するので、この光沢感の修正作業に多くの時間がかかってしまい、また異なるユーザによって光沢感の違う立体構造物が作成されることとなる。
そこでこの発明は、従来技術に比べて光沢感がより実際と近似することでき、また、ユーザの感性に基づく修正作業を伴わずに光沢感を表現した立体構造物の画像を作成することができ、さらに、感性の違うユーザが同一の光沢感を表現した画像を作成することができる光沢表現方法を提供することを目的としている。
【0005】
【課題を解決するための手段】
本発明は、上述の課題を解決すべくなされたもので、表示装置に仮想的に表示される立体構造物の面の各部分毎の法線ベクトルを記憶する立体構造物情報記憶手段を備えた光沢表現装置における光沢表現方法であって、前記立体構造物情報記憶手段で記憶する立体構造物の面の各部分の法線ベクトルを規定の分布に基づく変位量分ばらつかせた変更法線ベクトルを当該各部分毎に決定する法線ベクトル変更過程と、前記立体構造物の面へ入射する光の光源方向と前記変更法線ベクトルが成す入射角度と前記立体構造物の面における前記光の反射を観測する観測点方向と前記変更法線ベクトルが成す観測角度と前記光源方向と前記観測点方向で作られる面と前記変更法線ベクトルとが成すあおり角度とに、媒体に色を塗布した色見本の分光反射率を算出する色見本分光反射率算出関数を適用し、前記立体構造物の面の各部分についての分光反射率を算出する分光反射率算出過程と、前記立体構造物の面の各部分の色の値を前記算出した分光反射率から算出できる色の値と決定する色値決定過程とを備えることを特徴とする光沢表現方法である。
【0006】
上述の構成によれば本発明は、法線ベクトル変更過程において表示装置に仮想的に表示される立体構造物の面の各部分の法線ベクトルを規定の分布に基づく変位量分ばらつかせた変更法線ベクトルを当該各部分毎に決定し、分光反射率算出過程において、入射角度と観測角度とあおり角度とに色見本分光反射率算出関数を適用して、立体構造物の面の各部分についての分光反射率を算出し、色値決定過程において立体構造物の面の各部分の色の値を前記算出した分光反射率から算出できる色の値と決定する。これにより、立体構造物の面の各部分の変更法線ベクトルがばらついた状態となるので、方向の違う各変更法線ベクトルと入射角度と観測角度とあおり角度とに基づいて異なる分光反射率が算出されるようになる。したがって異なる分光反射率ではその分光反射率から算出できる色の値が違うので、立体構造物の画像を出力した時に当該立体構造物の面でざらつき感が生まれ、仮想的な立体構造物の画像の生成における光沢感を表すひとつの表現方法として利用することができる。
【0007】
また、本発明は、前記法線ベクトル変更過程において前記規定の分布は複数あり、これら複数の前記規定の分布毎についてそれぞれ変更法線ベクトルを決定する。これにより、規定の分布に応じて変更法線ベクトルのばらつきが異なるので、異なるざらつき感を表現した異なる立体構造物の画像を生成することができる。
【0008】
また、本発明は、色見本へ垂直に当てた光を斜め方向の所定の角度から観測した際の分光反射率に基づいて算出した指定輝度値と表示装置が表示できる最大輝度値とを記憶する輝度値情報記憶手段とを備えた光沢表現装置における光沢表現方法であって、前記表示装置に仮想的に表示される立体構造物の面へ入射する光の光源方向と前記立体構造物の面の法線ベクトルが成す入射角度と前記立体構造物の面における前記光の反射を観測する観測点方向と前記法線ベクトルが成す観測角度と前記光源方向と前記観測点方向で作られる面と前記法線ベクトルとが成すあおり角度とに、媒体に色を塗布した色見本の分光反射率を算出する色見本分光反射率算出関数を適用し、前記立体構造物の面の各部分についての分光反射率を算出する分光反射率算出過程と、前記輝度値情報記憶手段から前記最大輝度値と前記指定輝度値とを読み取って、前記最大輝度値から前記指定輝度値を減じた値に縮小比を掛けた値と当該指定輝度値を足した変更輝度値を算出する変更輝度値算出過程と、前記算出した分光反射率から前記各部分における輝度値を算出し、算出した輝度値が前記最大輝度値以上である各部分の色の値については、前記算出した分光反射率から算出できる色の値の輝度値を前記変更輝度値に変換して当該色の値と決定し、その他の各部分の色の値については前記算出した分光反射率から算出できる色の値と決定する色値決定過程とを備えることを特徴とする光沢表現方法である。
【0009】
上述の構成によれば本発明は、分光反射率算出過程において、入射角度と観測角度とあおり角度とに色見本の分光反射率を算出する色見本分光反射率算出関数を適用して、表示装置に仮想的に表示される立体構造物の面の各部分についての分光反射率を算出し、変更輝度値算出過程において、最大輝度値から指定輝度値を減じた値に縮小比を掛けた値と指定輝度値を足した変更輝度値を算出する。また、色値決定過程において算出した分光反射率から各部分における輝度値を算出し、算出した輝度値が最大輝度値以上である各部分の色の値については、算出した分光反射率から算出できる色の値の輝度値を変更輝度値に変換して当該色の値と決定し、その他の各部分の色の値については算出した分光反射率から算出できる色の値と決定する。これにより、立体構造物の分光反射率から算出される輝度値が表示装置の出力できる最大輝度値以上であることで輝度値の縮小を行なわなければならない際に、指定輝度値以上の輝度のみを縮小比を用いて縮小するので、輝度の低い部分を更に輝度を引くしてしまうことを避けることができる。また、立体構造物の分光反射率から算出される輝度値が表示装置の出力できる最大輝度値以上であることで、輝度値の縮小を行なわなければならない際に、最大輝度値として表示する方法を取らないので、光の反射の指向性に基づく輝度の強度分布の範囲が、輝度強度の小さかった分光反射率の方が輝度強度の大きかった分光反射率より大きくなってしまう現象を回避できる。よって輝度強度の小さい分光反射率の方が明るく表現されてしまう現象を回避できる。
【0010】
また、本発明は、前記光沢表現方法において、複数の縮小比毎の変更輝度値を前記変更輝度値算出過程において算出し、前記色値決定過程において各変更輝度値に対応する前記立体構造物の面の各部分の色の値を前記立体構造物毎に出力する。これにより、異なる変更輝度値に応じて最大輝度値以上の輝度値を縮小する際の値が変わるので、異なる光沢感を表現した複数の立体構造物の画像を生成することができる。
【0011】
また、本発明は、前記光沢表現方法において、前記色見本分光反射率算出関数は、入射角度と観測角度とあおり角度の組合せと前記色見本の分光反射率との対応関係に基づいて最小自乗法を行って得られた関数である。これによりこの色見本分光反射率算出関数を入射角度と観測角度とあおり角度とに適用すれば色見本の分光反射率が算出できる。
【0012】
また、本発明は、表示装置に仮想的に表示される立体構造物の面へ入射する光の光源方向と前記立体構造物の面の各部分における法線ベクトルが成す入射角度と前記立体構造物の面の各部分における前記光の反射を観測する観測点方向と前記法線ベクトルが成す観測角度と前記光源方向と前記観測点方向で作られる面と前記法線ベクトルとが成すあおり角度とに、媒体に色を塗布した色見本の分光反射率から前記媒体の分光反射率を規定の割合で算術的に差引いた差引分光反射率を算出する差引分光反射率算出関数を適用し、前記立体構造物の面の各部分についての差引分光反射率を算出する差引分光反射率算出過程と、前記入射角度と前記観測角度と前記あおり角度とに、前記媒体の分光反射率を算出する媒体分光反射率算出関数を適用し、前記立体構造物の面の各部分についての前記媒体の分光反射率を算出する媒体分光反射率算出過程と、前記立体構造物の面の各部分について、前記差引分光反射率の適用または前記媒体分光反射率の適用のいずれかを規定の割合に基づいて決定し、前記各部分の色の値を当該決定した差引分光反射率または媒体分光反射率から算出できる色の値と決定する色値決定過程とを備えることを特徴とする光沢表現方法である。
【0013】
上述の構成によれば本発明は、入射角度と観測角度とあおり角度とに差引分光反射率算出関数を適用して表示装置に仮想的に表示される立体構造物の面の各部分についての差引分光反射率を算出し、入射角度と観測角度とあおり角度とに媒体分光反射率算出関数を適用して立体構造物の面の各部分についての前記媒体の分光反射率を算出する。そして、立体構造物の面の各部分について、差引分光反射率の適用または媒体分光反射率の適用のいずれかを規定の割合に基づいて決定し、各部分の色の値を当該決定した差引分光反射率または媒体分光反射率から算出できる色の値と決定する。これにより、色見本の分光反射率から媒体の分光反射率を規定の割合で差引いた差引分光反射率で立体構造物の面の各部分における分光反射率を決定し、さらに媒体自体の分光反射率に基づく色を立体構造物の面の各部分にも反映させるので、媒体自体の影響を反映する色の表現させた仮想的な立体構造物の画像の生成を行なうことができる。
【0014】
また、本発明は、上述の光沢表現方法において、前記差引分光反射率算出関数は、入射角度と観測角度とあおり角度の組合せと、媒体に色を塗布した色見本の分光反射率から前記媒体の分光反射率を規定の割合で算術的に差引いた差引分光反射率との対応関係に基づいて最小自乗法を行って得られた関数であり、前記媒体分光反射率算出関数は、入射角度と観測角度とあおり角度の組合せと前記媒体の分光反射率との対応関係に基づいて最小自乗法を行なって得られた関数である。これによりこの差引分光反射率算出関数を入射角度と観測角度とあおり角度とに適用すれば差引分光反射率が算出でき、また、媒体分光反射率算出関数を入射角度と観測角度とあおり角度とに適用すれば媒体の分光反射率が算出できる。
【0015】
また、本発明は、表示装置に仮想的に表示される立体構造物の面の各部分毎の法線ベクトルを記憶する立体構造物情報記憶手段と、色見本へ垂直に当てた光を斜め方向の所定の角度から観測した際の分光反射率に基づいて算出した指定輝度値と前記立体構造物の画像を表示する表示装置が表示できる最大輝度値とを記憶する輝度値情報記憶手段とを備えた光沢表現装置における光沢表現方法であって、前記立体構造物情報記憶手段で記憶する立体構造物の面の各部分の法線ベクトルを規定の分布に基づく変位量分ばらつかせた変更法線ベクトルを当該各部分毎に決定する法線ベクトル変更過程と、前記立体構造物の面へ入射する光の光源方向と前記変更法線ベクトルが成す入射角度と前記立体構造物の面における前記光の反射を観測する観測点方向と前記変更法線ベクトルが成す観測角度と前記光源方向と前記観測点方向で作られる面と前記変更法線ベクトルとが成すあおり角度とに、媒体に色を塗布した色見本の分光反射率を算出する色見本分光反射率算出関数を適用し、前記立体構造物の面の各部分についての分光反射率を算出する分光反射率算出過程と、前記輝度値情報記憶手段から前記最大輝度値と前記指定輝度値とを読み取って、前記最大輝度値から前記指定輝度値を減じた値に縮小比を掛けた値と当該指定輝度値を足した変更輝度値を算出する変更輝度値算出過程と、前記算出した分光反射率から前記各部分における輝度値を算出し、算出した輝度値が前記最大輝度値以上である各部分の色の値については、前記算出した分光反射率から算出できる色の値の輝度値を前記変更輝度値に変換して当該色の値と決定し、その他の各部分の色の値については前記算出した分光反射率から算出できる色の値と決定する色値決定過程と、前記色の値を出力する立体構造物画像出力過程とを備えることを特徴とする光沢表現方法である。
【0016】
上述の構成によれば本発明は、法線ベクトル変更過程において、表示装置に仮想的に表示される立体構造物の面の各部分の法線ベクトルを規定の分布に基づく変位量分ばらつかせた変更法線ベクトルを前記面の各部分毎に決定し、分光反射率算出過程において、入射角度と観測角度とあおり角度とに色見本分光反射率算出関数を適用し、立体構造物の面の各部分についての分光反射率を算出する。また、変更輝度値算出過程において、最大輝度値から指定輝度値を減じた値に縮小比を掛けた値と指定輝度値を足した変更輝度値を算出し、色値決定過程において、算出した分光反射率から各部分における輝度値を算出し、算出した輝度値が最大輝度値以上である各部分の色の値については、算出した分光反射率から算出できる色の値の輝度値を変更輝度値に変換して当該色の値と決定し、その他の各部分の色の値については算出した分光反射率から算出できる色の値と決定する。そして、立体構造物画像出力過程色の各部分毎の値を出力する。
これにより、変更法線ベクトルを用いた分光反射率の算出によるざらつき感の表現と、表示装置が出力できる最大輝度値以上の輝度値の縮小の新しい方法を用いるので、従来技術に比べて光沢感がより実際と近似した立体構造物の画像を出力することができる。また、テクスチャを作成しなくて済むので、ユーザの感性に基づく修正作業を伴わずに光沢感を表現した立体構造物の画像を作成することができ、さらに、変更法線ベクトルを決定する規定の分布と変更輝度値を算出する為の縮小比の指定を行なうだけで立体構造物の画像の生成を行なうことができるので、感性の違うユーザが同一の光沢感を表現した画像を光沢表現装置を用いて作成することができる。
【0017】
また、本発明は、表示装置に仮想的に表示される立体構造物の面の各部分毎の法線ベクトルを記憶する立体構造物情報記憶手段と、媒体に色を塗布した色見本へ垂直に当てた光を斜め方向の所定の角度から観測した際の分光反射率に基づいて算出した指定輝度値と前記立体構造物の画像を表示する表示装置が表示できる最大輝度値とを記憶する輝度値情報記憶手段とを備えた光沢表現装置における光沢表現方法であって、前記立体構造物情報記憶手段で記憶する立体構造物の面の各部分の法線ベクトルを規定の分布に基づく変位量分ばらつかせた変更法線ベクトルを当該各部分毎に決定する法線ベクトル変更過程と、前記立体構造物の面へ入射する光の光源方向と前記変更法線ベクトルが成す入射角度と前記立体構造物の面の各部分における前記光の反射を観測する観測点方向と前記変更法線ベクトルが成す観測角度と前記光源方向と前記観測点方向で作られる面と前記変更法線ベクトルとが成すあおり角度とに、前記色見本の分光反射率から前記媒体の分光反射率を規定の割合で算術的に差引いた差引分光反射率を算出する差引分光反射率算出関数を適用し、前記立体構造物の面の各部分についての差引分光反射率を算出する差引分光反射率算出過程と、前記入射角度と前記観測角度と前記あおり角度とに、前記媒体の分光反射率を算出する媒体分光反射率算出関数を適用し、前記立体構造物の面の各部分についての前記媒体の分光反射率を算出する媒体分光反射率算出過程と、前記輝度値情報記憶手段から前記最大輝度値と前記指定輝度値とを読み取って、前記最大輝度値から前記指定輝度値を減じた値に縮小比を掛けた値と前記指定輝度値を足した変更輝度値を算出する変更輝度値算出過程と、前記立体構造物の面の各部分について、前記差引分光反射率の適用または前記媒体分光反射率の適用のいずれかを規定の割合に基づいて決定し、前記算出した差引分光反射率または媒体分光反射率のいずれかに基づき前記各部分における輝度値を算出し、算出した輝度値が前記最大輝度値以上である各部分の色の値については、前記算出した差引分光反射率または媒体分光反射率のいずれかから算出できる色の値の輝度値を前記変更輝度値に変換して当該色の値と決定し、その他の各部分の色の値については前記算出した差引分光反射率または前記媒体分光反射率のいずれかから算出できる色の値と決定する色値決定過程と、前記色の値を出力する立体構造物画像出力過程とを備えることを特徴とする光沢表現方法である。
【0018】
上述の構成によれば本発明は、法線ベクトル変更過程において表示装置に仮想的に表示される立体構造物の面の各部分の法線ベクトルを規定の分布に基づく変位量分ばらつかせた変更法線ベクトルを各部分毎に決定し、差引分光反射率算出過程において入射角度と観測角度とあおり角度とに差引分光反射率算出関数を適用し、前記各部分についての差引分光反射率を算出し、媒体分光反射率算出過程において入射角度と観測角度とあおり角度とに差引分光反射率算出関数を適用し、前記各部分についての媒体分光反射率を算出する。また、変更輝度値算出過程において最大輝度値から指定輝度値を減じた値に縮小比を掛けた値と指定輝度値を足した変更輝度値を算出する。また、色値決定過程において、立体構造物の面の各部分について、差引分光反射率の適用または媒体分光反射率の適用のいずれかを規定の割合に基づいて決定し、算出した差引分光反射率または媒体分光反射率のいずれかに基づき各部分における輝度値を算出し、算出した輝度値が最大輝度値以上である各部分の色の値については、算出した差引分光反射率または媒体分光反射率のいずれかから算出できる色の値の輝度値を変更輝度値に変換して当該各部分の色の値と決定し、その他の各部分の色の値については算出した差引分光反射率または媒体分光反射率のいずれかから算出できる色の値と決定する。さらに、立体構造物画像出力過程において色の値を出力する。
これにより、色見本の分光反射率から媒体の分光反射率を差引いた差引分光反射率で立体構造物の面の各部分における分光反射率を決定し、さらに媒体自体の分光反射率を立体構造物の面の各部分にも適用するので、媒体の影響を反映した分光反射率による色の表現をすることができ、さらに、従来技術に比べて光沢感がより実際と近似した立体構造物の画像を出力することができる。
【0019】
【発明の実施の形態】
以下、本発明の一実施形態による光沢表現装置を図面を参照して説明する。
図1は、この発明の一実施形態による光沢表現装置の構成を示す概略ブロック図である。この図において、符号1は光沢表現装置である。本実施形態において光沢表現装置1は、実際に色見本(紙などの媒体に色が塗布されたもの)で作成された立体構造物の光沢感に近似させた当該立体構造物の画像をモニタなどの表示装置に表示するための処理を行なう。尚、光沢表現装置1は立体構造物の光沢感を変化させた複数の同一立体構造物の画像を表示装置に表示させて、その中から、実際の立体構造物に光沢感が最も近似している立体構造物の画像の選択を受付ける。
【0020】
そして、図1において符号101は入力部であり、光の光源の位置や、立体構造物の観測方向などの情報の入力を受付ける。また符号102は立体構造物データ作成部であり、表示装置に表示させる立体構造物を表す立体構造物の形状情報の作成処理を行なう。また符号103は任意の入射角度と観測角度とあおり角度の組合せの分光反射率を求めるための分光反射率算出関数の係数を算出する反射モデルパラメータ算出部である。
【0021】
また符号104は紙の影響差引算出部であり、立体構造物を作成する色見本の分光反射率から、当該色見本の媒体(本実施形態においては媒体は紙であり、紙にインキを用いて印刷したものが色見本である)の分光反射率を規定の割合で差引いた値を算出する処理を行なう。また符号105は変更法線ベクトル算出部であり、立体構造物の面における各部分の法線ベクトルを規定の分布に基づいてばらつかせる処理を行なう。これにより、立体構造物の面に紙のざらつき感を与える処理を行なう。尚、変更法線ベクトル算出部105は異なる規定の分布に基づいて法線ベクトルをばらつかせる。これにより光沢表現装置1は、規定の分布に基づて、異なる法線ベクトルのばらつき具合ごとの光沢感を表現した複数の同一立体構造物の画像を表示装置に表示する。また符号106は変更輝度値算出部であり、光が法線ベクトルに対し同じ角度で反対方向に反射する分光反射率から算出できる輝度値(表面反射強度とも言う)が、表示装置の出力できる最大輝度値以上である場合に、所定の計算方法を用いて最大輝度値以下に縮小する処理を行なう。尚この輝度値を変更輝度値と呼ぶこととする。
【0022】
また符号107はレンダリング処理部であり、立体構造物の面の法線ベクトルと光の光源方向が成す入射角度と、立体構造物を観測する観測点と立体構造物の面の法線ベクトルが成す観測角度と、立体構造物の面の各部分の空間座標における指定の傾きと、立体構造物の面が示す色見本の情報と、立体構造物の面の法線ベクトルのばらつき具合を決定する標準偏差の情報と、変更輝度値とに基づいて後述する所定の方法によりレンダリングリ処理を行う。また符号108は表示処理部であり、レンダリング処理部107がレンダリングした立体構造物の画像を表示装置に表示する処理を行なう。また符号109は角度記憶部であり、入力部101が受付けた立体構造物入射する光の光源の位置や立体構造物を観測する方向などの情報を記憶している。また符号110は立体構造物データ記憶部(立体構造物情報記憶手段)であり、立体構造物データ作成部102が作成した立体構造物の形状情報を記憶している。なお、この立体構造物の形状情報は、例えば3Dグラフィックのモデリング技法のひとつであるワイヤーフレームモデル(空間内の座標を直線で結んだデータ構造で形状を表す技法)で描かれた立体構造物の形状の情報などである。また立体構造物データ記憶部110は立体構造物を表す面の各部分ごとの法線ベクトルも記憶している。また符号111は輝度値情報記憶部(輝度値情報記憶手段)であり、予め立体構造物を作成している実物の色見本へ垂直に当てた光を45度の角度(斜め方向の所定の角度)から観測した際の分光反射率に基づいて算出した指定輝度値と表示装置が表示できる最大輝度値とを記憶している。
【0023】
また符号112は分光反射率データベースであり、実物の立体構造物の面となる色見本に実際にユーザが光を照射することにより測定した分光反射率を予め記憶している。なお、この分光反射率は色見本への入射角度と色見本の観測角度とあおり角度とに対応付けられて記録されている。尚入射角度と観測角度とあおり角度の詳細については後述する。また符号113は反射モデル用パラメータデータベースであり、反射モデル用パラメータ算出部103が算出した分光反射率算出関数の係数の情報を記憶している。また符号114は最適パラメータデータベースであり、光沢表現装置1が表示装置に複数表示した立体構造物の画像の中から受付けた、実際の立体構造物に最も光沢感が近似している立体構造物の画像をレンダリングするための後述する各種パラメータの係数を記憶する。
【0024】
そして、光沢表現装置1は立体構造物の面の各部分における均一な法線ベクトルを後述する方法を用いてばらつかせることにより当該面のざらつき感を表現し、また色見本の媒体(本実施形態においては紙)自体の色を後述する方法を用いて色見本に反映させることにより色見本のざらつきを表現する。また光沢表現装置1はレンダリングした立体構造物の画像の輝度値が、当該立体構造物を表示する表示装置の出力できる最大輝度値以上である場合には、最大輝度値以下に縮小するする処理をおこない、これにより新しい方法による光沢感を表現する。そして、光沢表現装置1は法線ベクトルのばらつきの程度と輝度値の縮小の程度の組合せに応じた、光沢感の異なる同一立体構造物の画像を表示する。そして、光沢表現装置1は複数の光沢感の異なる同一立体構造物の中から、最も実物の光沢感に近似している立体構造物の指定を受付けて、その立体構造物の画像をレンダリングした時の各種パラメータを記憶しておく。そして、同一の色見本で作成されて立体構造物を再びレンダリングする際には記憶したパラメータを用いてレンダリングをすることで、最も実物と近似した立体構造物をユーザの手動による調整なしに表示装置に表示する。尚、本実施形態において実物の立体構造物を作成する色見本は、上質紙、マット紙、アート紙の各紙に同一色のインキを用いて印刷した各色見本であり、各色見本で実際に作成された立体構造物について最も近似する光沢感を表現する立体構造物の画像の指定を受付ける。また上述の立体構造物の面における部分とは、当該立体構造物の面を細かく分割した時の小さな面であり、例えば、この小さな面が表示装置の画面における1つの画素に対応していても良いし、また、この小さな面が表示装置の画面における複数の画素に対応していても良い。ここで、図2は立体構造物が円柱である時の円柱の面における小さな面とその法線ベクトルを示す図である。
【0025】
次に、入射角度と観測角度とあおり角度とについて説明する。
図3は入射角度と観測角度とあおり角度とを説明する為の図である。図3に示すように、色見本の法線ベクトルと色見本へ入射する光の光源方向が成す角度が入射角度である。また色見本を観測する観測点の方向と色見本の法線ベクトルが成す角度が観測角度である。尚、図3においては色見本への入射方向と色見本から観測点の方向をともに色見本に投影した際の2つの線が成す角度は180度(つまり直線)となる。そしてその線を基準として色見本をあおった時の角度があおり角度である。尚、あおり角度を空間において考えた場合、色見本上の一点において光源方向を示す線と観測点方向を示す線で作られる面と色見本の法線ベクトルとが成す角度があおり角度である。
【0026】
そしてユーザは予め、入射角度と観測角度とあおり角度の組合せ毎に測色器を用いて色見本の面の分光反射率を測定する。尚、色見本の分光反射率の情報は分光反射率データベース112に記憶させておく。また、ユーザは色見本に色を着色する前の紙の分光反射率も色見本の分光反射率と同様に測定し、分光反射率データベース112に記憶させておく。尚、入射角度はθ、観測角度はα、あおり角度はΦとする。
【0027】
次に、立体構造物の面の各部分における法線ベクトルをばらつかせる方法について説明する。図4は法線ベクトルを仮想的にばらつかせた際の立体構造物の表面の断面を拡大した図である。図4が示すように、光沢表現装置1の変更法線ベクトル算出部105は、仮想的に立体構造物の面の各部分の法線ベクトルを基準としてばらつかせた変更法線ベクトルを生成する。これにより、観測点の方向(立体構造物の画像を表示装置に表示した時に表示装置を目視するユーザの視点への当該立体構造物からの方向に同じ)と変更法線ベクトルとが成す観測角度と、変更法線ベクトルと光の光源方向が成す入射角度と、色見本上の一点において光源方向を示す線と観測点方向を示す線で作られる面と色見本の法線ベクトルとが成すあおり角度とに基づき、観測点において観察する分光反射率の違いが前記面の各部分において発生する。これにより立体構造物の面における各部分の分光反射率の違いから立体構造物の面の各部分における色を変化させることができるので、光沢表現装置1はこの色の違いをざらつき感として表現できる。
【0028】
尚、元の法線ベクトルを基準とした変更法線ベクトルのばらつきを大きくしてしまうと、観測点の方向への分光反射率が低い立体構造物の面において、さらに観測点の方向への分光反射率が低くなってしまう現象が起きるので、本実施形態においては元の法線ベクトルを基準とした変更法線ベクトルの傾きのばらつきの標準偏差(σ:規定の分布に基づく変位量)を3度以内とする。そして光沢表現装置1の変更法線ベクトル算出部105は、変更法線ベクトルの傾き0度(変更前の法線ベクトルと同じ傾き)を基準とし、標準偏差=3度を限度としたガウス分布に基づいて変更法線ベクトルを決定する処理を行なう。そして、光沢表現装置1の変更法線ベクトル算出部105は標準偏差σ=0度〜3度まで0.5度刻みの値を用いることにより、レンダリング処理部107が異なる変更法線ベクトルの傾きのばらつきの基準による同一立体構造物の画像を生成して、表示処理部108が生成された立体構造物の画像を表示装置に出力する。
図5は標準偏差を2度とした時のガウス分布を示す図である。この図において斜線部分は、変更前の法線ベクトルと変更法線ベクトルとの傾きの差が2度以内となる面における各部分の数を示している。尚、ガウス分布を用いた場合、そのガウス分布の標準偏差が2度であるときには変更前の法線ベクトルと変更法線ベクトルとの傾きの差が2度以内となる部分が、面の全体の部分のうち68%となる。
【0029】
次に、色見本の分光反射率から算出する立体構造物の面の観測点の方向(表示装置において立体構造物を表示する方向)への分光反射率が表示装置の輝度値を超えていた場合の処理について説明する。図6は光の入射角度θ、光の最大反射角度θであるときの光の輝度の強度分布と表示装置が出力できる最大輝度値とを表す図である。通常、入射角度θで色見本の面に光が入射すると当該面上の空間の全ての方向に光が反射する。そしてこの図は反射した光の分光反射率から算出できる輝度の強度分布を示したものであるが、一般に、θ=θとなる最大反射角度θにおいて輝度の強度が最も大きくなる(但し、光の入射方向を色見本に投影した方向と反射する方向を色見本に投影した方向とが成す角度は180度)。また図6においてLmaxは表示装置が出力できる最大輝度値を表している。
【0030】
ここで、図6で示す色見本の面を光沢感表現装置1が表示装置に表示する立体構造物の面であると仮定し、また最大反射角度θで示される光の最も反射する方向が当該立体構造物を表示する方向であると仮定する。この時立体構造物の面の表示方向への分光反射率から算出できる輝度値が最大輝度値Lmaxを超えている場合には表示装置では表現できないので、その超えている分の輝度値を縮小する必要がある。よって、輝度値を縮小する方法として以下の方法を本実施形態において行なう。
まずユーザが色見本に垂直に光を入射させた際の45度の角度から色見本を測色器を用いて測色する。そしてユーザは当該測色した分光反射率を入力部101を介して光沢表現装置1に入力する。またユーザは光沢表現装置1に入力した45度の角度から色見本を測色したときの分光反射率から輝度値を算出する処理をさせる。尚、この輝度値の算出は図示しない指定輝度値算出部が行なう。そしてこの指定輝度値算出部が算出した輝度値を指定輝度値(Ld)と呼ぶこととする。そして指定輝度値Ldが輝度値情報記憶部111に記録される。
【0031】
尚、分光反射率から輝度値を算出するアルゴリズムは周知の技術であり、例えば、「日本色彩学会編、新編色彩科学ハンドブック、東京大学出版会、昭和56年7月25日、3刷、p98、p139〜p141」などに記載された技術を用いればよい。この従来技術に記載されている分光反射率から輝度値を算出する技術は、分光反射率からCIE(Commission Internationale de l’Eclairage)XYZ値を算出する技術である。そしてこの算出CIEXYZのYが輝度値である。
そして、光沢表現装置1は以下の色を用いて、最大輝度値Lmaxを超えている分の輝度値を縮小した変更輝度値Lsを算出する。尚、この変更輝度値Lsの算出は変更輝度値算出部106が行なう。
【0032】
Ls=Ld+(Lmax−Ld)×k/n
(但し、n=6、k=1、2、3、4、5、6)
そして、変更輝度値算出部106はk=1〜6までの各値に応じた変更輝度値Lsを算出し、変更輝度値の度合いが異なる同一立体構造物の画像を生成して表示装置に出力する。尚、k/nが縮小比である。
【0033】
次に、立体構造物を作成している色見本の媒体(本実施形態においては紙)自体の色を色見本に反映させることにより色見本のざらつきを表現する方法について説明する。
図7は色見本の媒体に色見本の色のインキ顔料が塗布された際の当該色見本の断面を拡大した図である。尚、色見本の媒体は紙である。図が示すように、色見本の媒体が例えば上質紙のような紙である場合には、インキ顔料が極微小なために上質紙の繊維が塗布されたインキ顔料よりも飛び出てしまう。ここで、この状況をレンダリングした立体構造物の画像に反映させる為に、光沢表現装置1は色見本の分光反射率(色見本分光反射率)と紙の分光反射率(媒体分光反射率)とを測色器で測色したデータを分光反射率データベース112に記録しておき、また、紙の影響差引算出部104が色見本分光反射率から媒体分光反射率を差引いた差引分光反射率を算出して分光反射率データベース112に記録しておく。ここで、差引分光反射率を算出する式を以下に示す。尚、色見本分光反射率をMs、媒体分光反射率をMp、差引分光分光反射率をMcとする。
【0034】
Mc=(100×Ms−a×Mp)/(100−a)
但し、aは色見本において紙の繊維が飛び出している確率を示しており、本実施形態において色見本の媒体が上質紙の場合にはa=5(飛び出している確率5%)と規定する。尚、本実施形態において色見本の媒体がマット紙やアート紙の場合にはa=0とする。
【0035】
次に、色見本分光反射率Ms、媒体分光反射率Mp、差引分光反射率Mcのデータについて説明する。図8は分光反射率データベース112で記憶するデータを表す図である。図8が示すように分光反射率データベース112では各色見本について、あおり角度Φと入射角度θと観測角度α毎に色見本分光反射率Msと媒体分光反射率Mpと差引分光反射率Mc各々の分光反射率(400nm〜700nmまでの10nm毎の光の反射率)を記憶している。
【0036】
次に、光沢表現装置1が入射角度θと観測角度αとあおり角度Φとに基づいて分光反射率を算出できる関数について説明する。
まず、光沢表現装置1の分光反射率データベース112には色見本分光反射率Msと媒体分光反射率Mpと差引分光反射率Mcの各分光反射率のデータが記憶されている。よって光沢表現装置1は各分光反射率の情報それぞれについて最小自乗法を行うことにより、入射角度θと観測角度αとあおり角度Φとに基づいて色見本分光反射率を導くことのできる色見本分光反射率算出関数と、入射角度θと観測角度αとあおり角度Φとに基づいて媒体分光反射率を導くことのできる媒体分光反射率算出関数と、入射角度θと観測角度αとあおり角度Φとに基づいて色見本分光反射率から媒体分光反射率を規定の割合で差引いた差引分光反射率を導くことのできる差引分光反射率算出関数の算出を行なう。尚、各分光反射率算出関数の算出は光沢表現装置1の反射モデル用パラメータ算出部103が行なう。つまり反射モデル用パラメータ算出部103は各分光反射率算出関数における係数の値を導き出す。そして反射モデル用パラメータ算出部103は導き出した係数の値を反射モデル用パラメータデータベース113に記録する。
【0037】
尚、上述した色見本分光反射率Msと媒体分光反射率Mpと差引分光反射率Mcの各分光反射率の情報それぞれについて最小自乗法を行うことにより各分光反射率算出関数を算出する技術は、周知のものとし、例えば、「”Generalization of the Lambertian Model and Implications for Machine Vision,”S. K. Nayarand M. Oren,International Journal of Computer Vision,Vol. 14, pp. 227−251, 1995.」や、「K. Torrance and E. Sparrow, 1967. Theory for Off−Specular Reflection from Roughened Surfaces. Journal of the Optical Society ofAmerica, volume 57,number 9, pp 1105−1114.」などに記載された技術を用いればよい。
【0038】
尚、光沢表現装置1は、紙の影響を反映させた色見本により作成される立体構造物の画像をレンダリングする際には、まず、差引分光反射率Mcと入射角度θと観測角度αとあおり角度Φと変更輝度値Lsと変更法線ベクトルを決定する為の標準偏差σと立体構造物を作成している色見本の情報とを用いて、立体構造物の面の各部分における分光反射率と輝度値を導き出す。また光沢表現装置1は、媒体分光反射率Mpと入射角度θと観測角度αとあおり角度Φと変更輝度値Lsと変更法線ベクトルを決定する為の標準偏差σを用いて立体構造物の面の各部分における分光反射率と輝度値を導き出す。そして、光沢表現装置1は立体構造物の画像をレンダリングする際に、立体構造物の面における各部分の95%が差引分光反射率Mcによって算出した分光反射率と輝度値とに基づく色となり、また立体構造物の面における各部分の残りの5%(上記の上質紙の繊維が飛び出している確率に同じとする)が媒体分光反射率Mcによって算出した分光反射率と輝度値とに基づく色となるうように処理する。
【0039】
尚、本実施形態において、アート紙とマット紙で作成された立体構造物の画像をレンダリングする際には、光沢表現装置1は立体構造物を作成する色見本の媒体自体の色を色見本に反映させる処理は行なわない。これは、アート紙やマットしは紙の表面がコーティングされているので、通常は紙に塗布したインキ顔料から紙の繊維が飛び出さないからである。
【0040】
次に、光沢表現装置1がアート紙及びマット紙の色見本で作成された立体構造物の画像をレンダリングする際の処理について図9を参照して説明する。図9は光沢表現装置1における処理のフローを示す図である。
尚、アート紙及びマット紙は、例えば雑誌などに用いられている紙であり、アート紙及びマット紙は紙の表面にコーティングがされており、通常はインキ顔料を塗布した際にインキ顔料の外側に紙の繊維が飛び出さない紙である。
まず、ユーザは実物のアート紙、マット紙で構造の同じ立体構造物(本実施形態においては円柱)を作成する。そして、ユーザは立体構造物を目視しながら当該立体構造物の形状の画像を光沢表現装置1において作成する。尚、この立体構造物の形状の画像の作成は従来のCAD(computer−aided design)ソフトウェアや立体図作成ソフトウェアなどで処理される立体構造物の形状の画像の作成処理と同様である。そして、ユーザは作成した立体構造物の形状の情報を立体構造物データ記憶部110に記録しておく。
【0041】
次にユーザは立体構造物へ入射する光の光源の位置と立体構造物の観測方向と立体構造物を作成する色見本の情報(アート紙かマット紙か)を決定し、その情報を入力部101を介して光沢表現装置1に入力する。そしてユーザは立体構造物のレンダリングを光沢表現装置1に指示する。すると、当該レンダリングの指示を入力部101が受付ける(ステップS1a)。そして、変更法線ベクトル算出部105が立体構造物データ記憶部110から立体構造物の面における各部分の法線ベクトルを読み取り、σ=0.0〜3.0までの0.5度刻みの各標準偏差のガウス分布に基づいて、当該各部分毎の法線ベクトルをばらつかせた変更法線ベクトルの情報を算出する(ステップS2a)。
次に、変更輝度値算出部106がユーザより入力を受付けた色見本の情報に対応して記録されている指定輝度値Ldと表示装置が出力できる最大輝度値Lmaxとを輝度値情報記憶部111から読み取る。そして、読み取った指定輝度値Ldと最大輝度値Lmaxと上述の変更輝度値Lsを求める計算式とを用いて、当該計算式にk=1〜6までの値をそれぞれ代入した時の各変更輝度値Lsを算出する(ステップS3a)。
【0042】
次に、レンダリング処理部107は、ユーザから受付けた色見本の情報に対応した色見本分光反射率Msを算出するための色見本分光反射率算出関数の係数の値を反射モデル用パラメータデータベース113から読み取る。そして、レンダリング処理部107はステップS2aで算出した立体構造物の面の各部分における変更法線ベクトルとユーザから入力を受付けた光源の方向とが成す角度の入射角度θと、変更法線ベクトルとユーザから入力を受付けた観測方向とが成す角度の観測角度αと、観測方向と変更法線ベクトルによって決まるあおり角度Φと、ステップS3aで算出された変更輝度値Lsと、読み取った色見本分光反射率算出関数の係数とに基づいてレンダリング処理を行なう(ステップS4a)。
この時レンダリング処理部107は、まず入射角度θと観測角度αとあおり角度Φとに基づいて立体構造物の面の各部分における分光反射率を算出し、その分光反射率からXYZ値(色の値)を算出する。そしてXYZ値のYの値(輝度値)が最大輝度値Lmax以上の場合にはXYZ値のYの値を変更輝度値に置き換える。これにより、立体構造物の面の各部分におけるXYZ値が決定する。
【0043】
次に、表示処理部108がレンダリング処理部107の決定した立体構造物の面の各部分におけるXYZ値に基づいて、立体構造物の面の各部分に対応する表示装置の画面の画素へ色を出力する。これにより、表示装置に立体構造物の画像が表示される(ステップS5a)。
そしてレンダリング処理部107は標準偏差σと変更輝度値Lsの組合せ毎に立体構造物のレンダリングを繰り返し、また、表示処理部108はレンダリング処理部107がレンダリングした各立体構造物の画像を表示装置に同時に出力する。これにより、光沢表現装置1は標準偏差σが7通り、変更輝度値Lsが6通りあるので、1つの色見本で作成される立体構造物の画像について、全部で42の光沢感の異なる同一立体構造物の画像を表示装置に出力する。尚、レンダリング処理部107は標準偏差σと変更輝度値Lsの組合せ毎にレンダリングした立体構造物各々に番号を振って、各番号の立体構造物をレンダリングした際の標準偏差σと変更輝度値Lsの算出に用いた係数kとを一時記憶しておく。そして、表示処理部108は各立体構造物の画像に番号を付けて表示する。
【0044】
次に、光沢表現装置1の入力部101が表示処理部108の表示した光沢感の異なる立体構造物の画像の番号の入力をユーザから受付ける。この時、例えばユーザは実際に作成した立体構造物に光を照射し、また光沢表現装置1に入力した立体構造物の観測方向と同じ方向から実物の立体構造物を目視して、表示装置に出力された光沢感の異なる複数の立体構造物のうち、一番近似するものの番号を光沢表現装置1に入力する。すると、光沢表現装置1の図示しない処理部が受付けた画像の番号に対応する立体構造物をレンダリングした際の標準偏差σと変更輝度値Lsの算出に用いた係数kとをレンダリング処理部107から読み取って、色見本の情報に対応付けて最適パラメータデータベース114に記録する。
【0045】
次に、光沢表現装置1が上質紙の色見本で作成された立体構造物の画像をレンダリングする際の処理について説明する。尚、上質紙は例えばコピー用紙として用いられる紙であり、コーティングがされていないので上質紙にインキ顔料を塗布した際に紙の繊維が飛び出してしまう紙である。
図9より、まず、ユーザは立体構造物へ入射する光の光源の位置と立体構造物の観測方向と立体構造物を作成する色見本の情報(上質紙)を決定し、その情報を入力部101を介して光沢表現装置1に入力する。そしてユーザは立体構造物のレンダリングを光沢表現装置1に指示する。すると光沢表現装置1は上述のステップS1aからステップS3aまでの処理を行なう。
【0046】
次に、レンダリング処理部107は、ユーザから受付けた色見本が上質紙であるため、色見本の分光反射率から上質紙の分光反射率(媒体分光反射率)を差引いた差引分光反射率Mcを算出するための差引分光反射率算出関数の係数の値を反射モデル用パラメータデータベース113から読み取る。そして、レンダリング処理部107はステップS2aで算出した立体構造物の面の各部分における変更法線ベクトルとユーザから入力を受付けた光源の方向とが成す角度の入射角度θと、変更法線ベクトルとユーザから入力を受付けた観測方向とが成す角度の観測角度αと、観測方向と変更法線ベクトルによって決まるあおり角度Φと、ステップS3aで算出された変更輝度値Lsと、読み取った差引分光反射率算出関数の係数とに基づいてレンダリング処理を行なう(ステップS4b)。
【0047】
次に、レンダリング処理部107は、ユーザから受付けた色見本が上質紙であるため、インキ顔料の塗布されていない上質紙自体の分光反射率となる媒体分光反射率Mpを算出するための媒体分光反射率算出関数の係数の値を反射モデル用パラメータデータベース113から読み取る。そして、レンダリング処理部107はステップS2aで算出した立体構造物の面の各部分における変更法線ベクトルとユーザから入力を受付けた光源の方向とが成す角度の入射角度θと、変更法線ベクトルとユーザから入力を受付けた観測方向とが成す角度の観測角度αと、観測方向と変更法線ベクトルによって決まるあおり角度Φと、ステップS3aで算出された変更輝度値Lsと、読み取った媒体分光反射率算出関数の係数とに基づいてレンダリング処理を行なう(ステップS5b)。
【0048】
次に、レンダリング処理部107は立体構造物の面における各部分の95%が差引分光反射率算出関数によって算出した分光反射率と輝度値を表現する部分として決定し、また立体構造物の面における各部分の残りの5%が媒体分光反射率算出関数によって算出した分光反射率と輝度値を表現する部分として決定する(ステップS6b)。そして、表示処理部108がレンダリング処理部107の決定した立体構造物の面の各部分における分光反射率と輝度値とに基づいて、立体構造物の面の各部分に対応する表示装置の画面の画素へ色を出力する(ステップS7b)。
尚、上質紙の立体構造物の画像について、上述のアート紙やマット紙と同様に、光沢感の異なる複数の同一の立体構造物の画像が表示装置に出力され、ユーザから最も実物の立体構造物と光沢感が近似するものの番号を受付ける。そして、その番号の立体構造物をレンダリングした際の標準偏差σと変更輝度値Lsの算出に用いた係数kとを最適パラメータデータベース114に記録する。
【0049】
尚、光沢表現装置1は、ユーザの指示により色見本の情報に対応付けられて記録されている標準偏差σと変更輝度値Lsの算出に用いた係数kを用いて、次回からレンダリングの処理をするようにしても良い。そのときは、例えば、最初にユーザから受付けた色見本の情報が最適パラメータデータベース114に記録されているか否かを確認し、記録されている場合にはその色見本の情報に対応して記録されている標準偏差σと変更輝度値Lsの算出に用いた係数kを読み取って、レンダリング処理部107がレンダリングを行なう。
【0050】
以上、本発明の一実施形態について説明したが、実施形態は上述の形態に限らない。また、上述の光沢表現装置は内部に、コンピュータシステムを有している。そして、上述した処理の過程は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータが読み出して実行することによって、上記処理が行われる。ここでコンピュータ読み取り可能な記録媒体とは、磁気ディスク、光磁気ディスク、CD−ROM、DVD−ROM、半導体メモリ等をいう。また、このコンピュータプログラムを通信回線によってコンピュータに配信し、この配信を受けたコンピュータが当該プログラムを実行するようにしても良い。
【0051】
【発明の効果】
以上説明したように、この発明によれば、法線ベクトル変更過程において表示装置に仮想的に表示される立体構造物の面の各部分の法線ベクトルを規定の分布に基づく変位量分ばらつかせた変更法線ベクトルを当該各部分毎に決定し、分光反射率算出過程において、入射角度と観測角度とあおり角度とに色見本分光反射率算出関数を適用して、立体構造物の面の各部分についての分光反射率を算出し、色値決定過程において立体構造物の面の各部分の色の値を前記算出した分光反射率から算出できる色の値と決定する。これにより、立体構造物の面の各部分の変更法線ベクトルがばらついた状態となるので、方向の違う各変更法線ベクトルと入射角度と観測角度とあおり角度とに基づいて異なる分光反射率が算出されるようになる。したがって異なる分光反射率ではその分光反射率から算出できる色の値が違うので、立体構造物の画像を出力した時に当該立体構造物の面でざらつき感が生まれ、仮想的な立体構造物の画像の生成における光沢感を表すひとつの表現方法として利用することができる。
【0052】
また本発明によれば、法線ベクトル変更過程において前記規定の分布は複数あり、これら複数の前記規定の分布毎についてそれぞれ変更法線ベクトルを決定する。これにより、規定の分布に応じて変更法線ベクトルのばらつきが異なるので、異なるざらつき感を表現した異なる立体構造物の画像を生成することができる。
【0053】
また本発明によれば、分光反射率算出過程において、入射角度と観測角度とあおり角度とに色見本の分光反射率を算出する色見本分光反射率算出関数を適用して、表示装置に仮想的に表示される立体構造物の面の各部分についての分光反射率を算出し、変更輝度値算出過程において、最大輝度値から指定輝度値を減じた値に縮小比を掛けた値と指定輝度値を足した変更輝度値を算出する。また、色値決定過程において算出した分光反射率から各部分における輝度値を算出し、算出した輝度値が最大輝度値以上である各部分の色の値については、算出した分光反射率から算出できる色の値の輝度値を変更輝度値に変換して当該色の値と決定し、その他の各部分の色の値については算出した分光反射率から算出できる色の値と決定する。これにより、立体構造物の分光反射率から算出される輝度値が表示装置の出力できる最大輝度値以上であることで輝度値の縮小を行なわなければならない際に、指定輝度値以上の輝度のみを縮小比を用いて縮小するので、輝度の低い部分を更に輝度を引くしてしまうことを避けることができる。また、立体構造物の分光反射率から算出される輝度値が表示装置の出力できる最大輝度値以上であることで、輝度値の縮小を行なわなければならない際に、最大輝度値として表示する方法を取らないので、光の反射の指向性に基づく輝度の強度分布の範囲が、輝度強度の小さかった分光反射率の方が輝度強度の大きかった分光反射率より大きくなってしまう現象を回避できる。よって輝度強度の小さい分光反射率の方が明るく表現されてしまう現象を回避できる。
【0054】
また本発明によれば、本発明は、前記光沢表現方法において、複数の縮小比毎の変更輝度値を前記変更輝度値算出過程において算出し、前記色値決定過程において各変更輝度値に対応する前記立体構造物の面の各部分の色の値を前記立体構造物毎に出力する。これにより、異なる変更輝度値に応じて最大輝度値以上の輝度値を縮小する際の値が変わるので、異なる光沢感を表現した複数の立体構造物の画像を生成することができる。
【0055】
また本発明によれば、前記光沢表現方法において、前記色見本分光反射率算出関数は、入射角度と観測角度とあおり角度の組合せと前記色見本の分光反射率との対応関係に基づいて最小自乗法を行って得られた関数である。これによりこの色見本分光反射率算出関数を入射角度と観測角度とあおり角度とに適用すれば色見本の分光反射率が算出できる。
【0056】
また本発明によれば、入射角度と観測角度とあおり角度とに差引分光反射率算出関数を適用して表示装置に仮想的に表示される立体構造物の面の各部分についての差引分光反射率を算出し、入射角度と観測角度とあおり角度とに媒体分光反射率算出関数を適用して立体構造物の面の各部分についての前記媒体の分光反射率を算出する。そして、立体構造物の面の各部分について、差引分光反射率の適用または媒体分光反射率の適用のいずれかを規定の割合に基づいて決定し、各部分の色の値を当該決定した差引分光反射率または媒体分光反射率から算出できる色の値と決定する。これにより、色見本の分光反射率から媒体の分光反射率を規定の割合で差引いた差引分光反射率で立体構造物の面の各部分における分光反射率を決定し、さらに媒体自体の分光反射率に基づく色を立体構造物の面の各部分にも反映させるので、媒体自体の影響を反映する色の表現させた仮想的な立体構造物の画像の生成を行なうことができる。
【0057】
また本発明によれば、差引分光反射率算出関数は、入射角度と観測角度とあおり角度の組合せと、媒体に色を塗布した色見本の分光反射率から前記媒体の分光反射率を規定の割合で算術的に差引いた差引分光反射率との対応関係に基づいて最小自乗法を行って得られた関数であり、前記媒体分光反射率算出関数は、入射角度と観測角度とあおり角度の組合せと前記媒体の分光反射率との対応関係に基づいて最小自乗法を行なって得られた関数である。これによりこの差引分光反射率算出関数を入射角度と観測角度とあおり角度とに適用すれば差引分光反射率が算出でき、また、媒体分光反射率算出関数を入射角度と観測角度とあおり角度とに適用すれば媒体の分光反射率が算出できる。
【0058】
また本発明によれば、法線ベクトル変更過程において、表示装置に仮想的に表示される立体構造物の面の各部分の法線ベクトルを規定の分布に基づく変位量分ばらつかせた変更法線ベクトルを前記面の各部分毎に決定し、分光反射率算出過程において、入射角度と観測角度とあおり角度とに色見本分光反射率算出関数を適用し、立体構造物の面の各部分についての分光反射率を算出する。また、変更輝度値算出過程において、最大輝度値から指定輝度値を減じた値に縮小比を掛けた値と指定輝度値を足した変更輝度値を算出し、色値決定過程において、算出した分光反射率から各部分における輝度値を算出し、算出した輝度値が最大輝度値以上である各部分の色の値については、算出した分光反射率から算出できる色の値の輝度値を変更輝度値に変換して当該色の値と決定し、その他の各部分の色の値については算出した分光反射率から算出できる色の値と決定する。そして、立体構造物画像出力過程色の各部分毎の値を出力する。これにより、変更法線ベクトルを用いた分光反射率の算出によるざらつき感の表現と、表示装置が出力できる最大輝度値以上の輝度値の縮小の新しい方法を用いるので、従来技術に比べて光沢感がより実際と近似した立体構造物の画像を出力することができる。また、テクスチャを作成しなくて済むので、ユーザの感性に基づく修正作業を伴わずに光沢感を表現した立体構造物の画像を作成することができ、さらに、変更法線ベクトルを決定する規定の分布と変更輝度値を算出する為の縮小比の指定を行なうだけで立体構造物の画像の生成を行なうことができるので、感性の違うユーザが同一の光沢感を表現した画像を光沢表現装置を用いて作成することができる。
【0059】
また本発明によれば、法線ベクトル変更過程において表示装置に仮想的に表示される立体構造物の面の各部分の法線ベクトルを規定の分布に基づく変位量分ばらつかせた変更法線ベクトルを各部分毎に決定し、差引分光反射率算出過程において入射角度と観測角度とあおり角度とに差引分光反射率算出関数を適用し、前記各部分についての差引分光反射率を算出し、媒体分光反射率算出過程において入射角度と観測角度とあおり角度とに差引分光反射率算出関数を適用し、前記各部分についての媒体分光反射率を算出する。また、変更輝度値算出過程において最大輝度値から指定輝度値を減じた値に縮小比を掛けた値と指定輝度値を足した変更輝度値を算出する。また、色値決定過程において、立体構造物の面の各部分について、差引分光反射率の適用または媒体分光反射率の適用のいずれかを規定の割合に基づいて決定し、算出した差引分光反射率または媒体分光反射率のいずれかに基づき各部分における輝度値を算出し、算出した輝度値が最大輝度値以上である各部分の色の値については、算出した差引分光反射率または媒体分光反射率のいずれかから算出できる色の値の輝度値を変更輝度値に変換して当該各部分の色の値と決定し、その他の各部分の色の値については算出した差引分光反射率または媒体分光反射率のいずれかから算出できる色の値と決定する。さらに、立体構造物画像出力過程において色の値を出力する。これにより、色見本の分光反射率から媒体の分光反射率を差引いた差引分光反射率で立体構造物の面の各部分における分光反射率を決定し、さらに媒体自体の分光反射率を立体構造物の面の各部分にも適用するので、媒体の影響を反映した分光反射率による色の表現をすることができ、さらに、従来技術に比べて光沢感がより実際と近似した立体構造物の画像を出力することができる。
【図面の簡単な説明】
【図1】この発明の一実施形態による光沢表現装置の構成を示す概略ブロック図である。
【図2】本実施形態における立体構造物が円柱である時の円柱の面における小さな面とその法線ベクトルを示す図である。
【図3】本実施形態における入射角度と観測角度とあおり角度とを説明する為の図である。
【図4】本実施形態における法線ベクトルを仮想的にばらつかせた際の立体構造物の表面の断面を拡大した図である。
【図5】標準偏差を2度とした時のガウス分布を示す図である。
【図6】光の入射角度θ、光の最大反射角度θであるときの光の輝度の強度分布と表示装置が出力できる最大輝度値とを表す図である。
【図7】本実施形態における色見本の媒体に色見本の色のインキ顔料が塗布された際の当該色見本の断面を拡大した図である。
【図8】本実施形態における分光反射率データベースで記憶するデータを表す図である。
【図9】本実施形態における光沢表現装置における処理のフローを示す図である。
【図10】本実施形態における反射光の輝度の反射面上の空間における強度分布の断面を示す図である。
【符号の説明】
1 光沢表現装置
101 入力部
102 立体構造物データ作成部
103 反射モデル用パラメータ算出部
104 紙の影響差引算出部
105 変更法線ベクトル算出部
106 変更輝度値算出部
107 レンダリング処理部
108 表示処理部
109 角度記憶部
110 立体構造物データ記憶部
111 輝度値情報記憶部
112 分光反射率データベース
113 反射モデル用パラメータデータベース
114 最適パラメータデータベース
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a technique for outputting colors to an image created using a computer system, and more particularly to a gloss expression method.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, when an image of a three-dimensional structure is created using a computer and displayed on a screen, a method of displaying the image of the three-dimensional structure with a natural glossy approximation to the real thing is a method of reflecting light on the surface. (Refer to Patent Literature 1), a method of adjusting light intensity (internal reflected light intensity), the intensity of light that exits from the surface after entering the object from the surface (internal reflected light intensity), and the like. There is a method of pasting an image (information indicating black and white fabric) virtually pasted on an image of a three-dimensional structure to give a glossy feeling or a rough feeling (see Patent Document 2). Patent Document 1 describes a method for cutting a luminance value equal to or higher than the maximum luminance that can be displayed on a screen displaying an image of a three-dimensional structure. Patent Document 2 describes a texture expressing the same glossiness as a real object. Is attached to an image of a three-dimensional structure.
[0003]
[Patent Document 1]
JP-A-5-40833
[Patent Document 2]
Japanese Patent No. 3107452
[0004]
[Problems to be solved by the invention]
Here, FIG. 10 is a diagram showing a cross section of the intensity distribution in the space on the reflection surface of the luminance of the reflected light. In this figure, (a) is a diagram showing a cross section of the intensity distribution of the luminance of the reflected light when the glossiness of the reflection surface that reflects the incident light is large, and (b) is the glossiness of the reflection surface that reflects the incident light. FIG. 7 is a diagram showing a cross section of the intensity distribution of the luminance of the reflected light when is small. (A) and (b), when the glossiness of the reflection surface is high, the directivity of the intensity distribution of the luminance of the reflected light is strong, and when the glossiness of the reflection surface is low, the intensity distribution of the intensity distribution of the reflection light is low. Poor directivity. As a result, if cutting is performed at the maximum luminance value of the display device, the range d of the intensity distribution of luminance becomes wider in the case where the glossiness of the reflection surface is small (b). As a result, in Patent Literature 1, a three-dimensional structure with a low glossiness of the reflection surface may become an image with higher luminance than a three-dimensional structure with a high glossiness of the reflection surface. Therefore, in Patent Document 1, a phenomenon occurs in which actual gloss cannot be expressed. In Patent Document 2, since the texture itself is created based on the sensibility of the user who creates the texture, it takes a lot of time to correct the glossiness, and a three-dimensional structure having a different glossiness is created by different users. Will be done.
Therefore, according to the present invention, it is possible to create an image of a three-dimensional structure expressing the glossiness without involving a correction operation based on the user's sensitivity, and the glossiness can be more approximate to the actual feeling than the conventional technology. It is another object of the present invention to provide a gloss expression method in which users with different sensibilities can create images expressing the same glossiness.
[0005]
[Means for Solving the Problems]
The present invention has been made to solve the above-described problem, and has a three-dimensional structure information storage unit that stores a normal vector for each part of a surface of a three-dimensional structure that is virtually displayed on a display device. What is claimed is: 1. A gloss expressing method in a gloss expressing device, comprising: a modified normal vector obtained by dispersing a normal vector of each part of a surface of a three-dimensional structure stored in said three-dimensional structure information storage means by a displacement amount based on a prescribed distribution. A normal vector changing step of determining the light source direction of light incident on the surface of the three-dimensional structure, an incident angle formed by the changed normal vector, and reflection of the light on the surface of the three-dimensional structure. The observation point direction to observe, the observation angle formed by the modified normal vector, the light source direction, the tilt angle formed by the surface formed by the observation point direction, and the tilt angle formed by the modified normal vector, the color obtained by applying a color to the medium. Sample spectral reflection Applying a color sample spectral reflectance calculation function to calculate the spectral reflectance of each part of the surface of the three-dimensional structure, and calculating the spectral reflectance of each part of the surface of the three-dimensional structure, A gloss expression method comprising: a color value that can be calculated from the calculated spectral reflectance and a color value determining step of determining the value.
[0006]
According to the above configuration, in the present invention, in the process of changing the normal vector, the normal vector of each portion of the surface of the three-dimensional structure virtually displayed on the display device is dispersed by the displacement amount based on the prescribed distribution. A change normal vector is determined for each of the portions, and in the process of calculating the spectral reflectance, a color sample spectral reflectance calculation function is applied to the incident angle, the observation angle, and the tilt angle, and each portion of the surface of the three-dimensional structure is determined. Is calculated, and the color value of each portion of the surface of the three-dimensional structure is determined as a color value that can be calculated from the calculated spectral reflectance in the color value determination process. As a result, the changed normal vector of each part of the surface of the three-dimensional structure is in a state of variation, so that different spectral reflectances based on each changed normal vector having a different direction, the incident angle, the observation angle, and the tilt angle are different. It will be calculated. Therefore, different spectral reflectances have different color values that can be calculated from the spectral reflectances, so that when an image of a three-dimensional structure is output, a rough feeling is generated on the surface of the three-dimensional structure, and an image of the virtual three-dimensional structure is generated. It can be used as one expression method for expressing glossiness in generation.
[0007]
In the present invention, there are a plurality of the specified distributions in the normal vector changing process, and a changed normal vector is determined for each of the plurality of specified distributions. Thus, since the variation of the changed normal vector varies depending on the prescribed distribution, it is possible to generate images of different three-dimensional structures expressing different feelings of roughness.
[0008]
Further, the present invention stores a designated luminance value calculated based on a spectral reflectance when observing light perpendicularly applied to a color sample from a predetermined angle in an oblique direction and a maximum luminance value that can be displayed by the display device. A gloss expression method in a gloss expression device comprising: a brightness value information storage unit, wherein a light source direction of light incident on a surface of the three-dimensional structure virtually displayed on the display device and a surface of the three-dimensional structure are displayed. The incident angle formed by the normal vector, the observation point direction for observing the reflection of the light on the surface of the three-dimensional structure, the observation angle formed by the normal vector, the light source direction, the surface formed by the observation point direction, and the method Apply a color sample spectral reflectance calculation function for calculating the spectral reflectance of a color sample coated with a medium to the tilt angle formed by the line vector and the spectral reflectance of each part of the surface of the three-dimensional structure. Calculate the spectral reflectance Output step, reading the maximum luminance value and the designated luminance value from the luminance value information storage means, multiplying a value obtained by subtracting the designated luminance value from the maximum luminance value by a reduction ratio and the designated luminance value A modified luminance value calculating step of calculating a modified luminance value obtained by adding the calculated spectral reflectance, and calculating a luminance value in each of the portions from the calculated spectral reflectance. For the value, the luminance value of the color value that can be calculated from the calculated spectral reflectance is converted to the changed luminance value and determined as the value of the color, and the color values of other parts are calculated for the calculated spectral reflectance. A gloss expression method comprising a color value that can be calculated from reflectance and a color value determination step of determining the color value.
[0009]
According to the configuration described above, the present invention provides a display device that applies a color sample spectral reflectance calculation function for calculating a color sample spectral reflectance to an incident angle, an observation angle, and a tilt angle in a spectral reflectance calculation process. Calculate the spectral reflectance for each part of the surface of the three-dimensional structure that is virtually displayed, and in the process of calculating the changed brightness value, multiply the value obtained by subtracting the specified brightness value from the maximum brightness value by the reduction ratio. Calculate a changed luminance value by adding the specified luminance value. In addition, a luminance value in each part is calculated from the spectral reflectance calculated in the color value determination process, and a color value of each part in which the calculated luminance value is equal to or greater than the maximum luminance value can be calculated from the calculated spectral reflectance. The luminance value of the color value is converted into a changed luminance value and determined as the color value, and the color values of other parts are determined as color values that can be calculated from the calculated spectral reflectance. With this, when the luminance value calculated from the spectral reflectance of the three-dimensional structure is equal to or more than the maximum luminance value that can be output from the display device and the luminance value must be reduced, only the luminance value equal to or more than the designated luminance value is reduced. Since the reduction is performed using the reduction ratio, it is possible to avoid further lowering the luminance of the low-luminance portion. In addition, when the brightness value calculated from the spectral reflectance of the three-dimensional structure is equal to or more than the maximum brightness value that can be output from the display device, when the brightness value needs to be reduced, a method of displaying the maximum brightness value is used. Since this is not taken, it is possible to avoid a phenomenon in which the range of the intensity distribution of the luminance based on the directivity of light reflection is such that the spectral reflectance whose luminance intensity is small is larger than the spectral reflectance whose luminance intensity is large. Therefore, it is possible to avoid a phenomenon in which a spectral reflectance having a small luminance intensity is expressed brighter.
[0010]
Further, the present invention provides the gloss expression method, wherein a changed brightness value for each of a plurality of reduction ratios is calculated in the changed brightness value calculating step, and the three-dimensional structure corresponding to each changed brightness value is calculated in the color value determining step. The color value of each part of the surface is output for each of the three-dimensional structures. Thus, the value when reducing the brightness value equal to or greater than the maximum brightness value changes according to the different changed brightness value, so that it is possible to generate images of a plurality of three-dimensional structures expressing different glossiness.
[0011]
The present invention also provides the gloss expression method, wherein the color sample spectral reflectance calculation function is a least squares method based on a correspondence relationship between a combination of an incident angle, an observation angle, and a tilt angle, and the spectral reflectance of the color sample. Is the function obtained. By applying the color sample spectral reflectance calculation function to the incident angle, the observation angle, and the tilt angle, the spectral reflectance of the color sample can be calculated.
[0012]
The present invention also provides a light source direction of light incident on a surface of a three-dimensional structure virtually displayed on a display device, an incident angle formed by a normal vector in each part of the surface of the three-dimensional structure, and the three-dimensional structure. The observation point direction for observing the reflection of light in each part of the surface, the observation angle formed by the normal vector, the light source direction, the surface formed by the observation point direction, and the tilt angle formed by the normal vector. Applying a subtracted spectral reflectance calculation function to calculate a subtracted spectral reflectance by arithmetically subtracting the spectral reflectance of the medium from the spectral reflectance of a color sample in which a color is applied to a medium at a prescribed ratio, A subtracted spectral reflectance calculating step of calculating a subtracted spectral reflectance for each part of the surface of the object; and a medium spectral reflectance for calculating the spectral reflectance of the medium at the incident angle, the observation angle, and the tilt angle. Apply the calculation function A medium spectral reflectance calculating step of calculating the spectral reflectance of the medium for each part of the surface of the three-dimensional structure; and applying the subtracted spectral reflectance or the medium spectral reflectance for each part of the surface of the three-dimensional structure. A color value determining step of determining one of the applications of the reflectance based on a prescribed ratio and determining the color value of each portion as a color value that can be calculated from the determined subtracted spectral reflectance or the medium spectral reflectance. And a gloss expression method.
[0013]
According to the above configuration, the present invention provides a subtraction method for each part of the surface of the three-dimensional structure virtually displayed on the display device by applying the subtraction spectral reflectance calculation function to the incident angle, the observation angle, and the tilt angle. The spectral reflectance is calculated, and the spectral reflectance of the medium is calculated for each part of the surface of the three-dimensional structure by applying the medium spectral reflectance calculation function to the incident angle, the observation angle, and the tilt angle. Then, for each part of the surface of the three-dimensional structure, either the application of the subtractive spectral reflectance or the application of the medium spectral reflectance is determined based on a specified ratio, and the color value of each part is determined by the determined subtractive spectral reflectance. It is determined as a color value that can be calculated from the reflectance or the medium spectral reflectance. Thus, the spectral reflectance of each portion of the surface of the three-dimensional structure is determined by subtracting the spectral reflectance of the medium from the spectral reflectance of the color sample by a specified ratio, and further, the spectral reflectance of the medium itself. Is reflected in each part of the surface of the three-dimensional structure, so that it is possible to generate an image of a virtual three-dimensional structure in which colors reflecting the influence of the medium itself are expressed.
[0014]
In addition, the present invention provides the gloss expression method described above, wherein the subtracted spectral reflectance calculation function is based on a combination of an incident angle, an observation angle, and a tilt angle, and the spectral reflectance of a color sample in which a color is applied to the medium. A function obtained by performing a least squares method based on a correspondence relationship with a subtracted spectral reflectance obtained by arithmetically subtracting a spectral reflectance at a specified ratio, and the medium spectral reflectance calculating function is based on an incident angle and an observation angle. This is a function obtained by performing the least squares method based on the correspondence between the combination of the angle and the tilt angle and the spectral reflectance of the medium. By applying this subtracted spectral reflectance calculation function to the incident angle, the observation angle, and the tilt angle, the subtracted spectral reflectance can be calculated, and the medium spectral reflectance calculation function can be calculated for the incident angle, the observation angle, and the tilt angle. If applied, the spectral reflectance of the medium can be calculated.
[0015]
Also, the present invention provides a three-dimensional structure information storage means for storing a normal vector for each part of the surface of the three-dimensional structure virtually displayed on the display device, Brightness information storage means for storing a designated brightness value calculated based on the spectral reflectance when observed from a predetermined angle and a maximum brightness value that can be displayed by a display device that displays an image of the three-dimensional structure. A glossy expression method in a glossy expression device, wherein a normal vector of each part of the surface of the three-dimensional structure stored in the three-dimensional structure information storage means is varied by a displacement amount based on a prescribed distribution. A normal vector changing process of determining a vector for each of the portions, a light source direction of light incident on the surface of the three-dimensional structure, an incident angle formed by the changed normal vector, and the light of the light on the surface of the three-dimensional structure. Observation to observe reflection Direction, the observation angle formed by the modified normal vector, the light source direction, the surface formed by the observation point direction, and the tilt angle formed by the modified normal vector, and the spectral reflectance of a color sample in which a color is applied to a medium. Applying a color sample spectral reflectance calculation function to calculate the spectral reflectance for each part of the surface of the three-dimensional structure, a spectral reflectance calculation step, and the maximum brightness value from the brightness value information storage means Reading the designated luminance value, a modified luminance value calculating step of calculating a modified luminance value by adding a value obtained by subtracting the designated luminance value from the maximum luminance value and a reduction ratio and the designated luminance value, A luminance value in each of the portions is calculated from the calculated spectral reflectance, and a color value of each portion in which the calculated luminance value is equal to or greater than the maximum luminance value is a color value that can be calculated from the calculated spectral reflectance. Before luminance value A color value determining step of converting the converted luminance value to a value of the color and determining the color value of each of the other portions as a color value that can be calculated from the calculated spectral reflectance; and a color value determining step of determining the color value. And a three-dimensional structure image outputting step of outputting a gloss.
[0016]
According to the above configuration, the present invention provides a method of dispersing a normal vector of each portion of a surface of a three-dimensional structure virtually displayed on a display device by a displacement amount based on a prescribed distribution in a normal vector changing process. The changed normal vector is determined for each part of the surface, and in the spectral reflectance calculation process, a color sample spectral reflectance calculation function is applied to the incident angle, the observation angle, and the tilt angle, and the surface of the three-dimensional structure is determined. Calculate the spectral reflectance for each part. Also, in the change luminance value calculation step, a change luminance value is calculated by adding a value obtained by multiplying a value obtained by subtracting the specified luminance value from the maximum luminance value by the reduction ratio and the specified luminance value, and in the color value determination step, the calculated spectral value is calculated. Calculate the luminance value of each part from the reflectance, and for the color value of each part where the calculated luminance value is greater than or equal to the maximum luminance value, change the luminance value of the color value that can be calculated from the calculated spectral reflectance. And the color value is determined, and the color values of the other parts are determined as color values that can be calculated from the calculated spectral reflectance. Then, a value for each portion of the three-dimensional structure image output process color is output.
As a result, a new method of expressing roughness by calculating the spectral reflectance using the modified normal vector and reducing the luminance value equal to or greater than the maximum luminance value that can be output by the display device is used. Can output an image of a three-dimensional structure that is more similar to the actual one. In addition, since it is not necessary to create a texture, it is possible to create an image of a three-dimensional structure expressing glossiness without performing a modification operation based on the user's sensitivity, and furthermore, a rule for determining a changed normal vector is provided. Since the image of the three-dimensional structure can be generated simply by specifying the reduction ratio for calculating the distribution and the changed luminance value, a user with different sensibility can generate an image expressing the same glossiness by using a glossy expression device. Can be created using
[0017]
Also, the present invention provides a three-dimensional structure information storage unit that stores a normal vector for each part of a surface of a three-dimensional structure virtually displayed on a display device, and a color sample in which a color is applied to a medium. A luminance value that stores a specified luminance value calculated based on the spectral reflectance when the applied light is observed from a predetermined angle in an oblique direction and a maximum luminance value that can be displayed by a display device that displays an image of the three-dimensional structure. A gloss expression method in a gloss expression device having information storage means, wherein a normal vector of each part of a surface of the three-dimensional structure stored in the three-dimensional structure information storage means is separated by a displacement amount based on a prescribed distribution. A normal vector changing process of determining a changed normal vector for each part, a light source direction of light incident on a surface of the three-dimensional structure, an incident angle formed by the changed normal vector, and the three-dimensional structure In each part of the surface of The observation point direction for observing the reflection of light recording, the observation angle formed by the modified normal vector, the light source direction and the tilt angle formed by the plane formed by the observation point direction and the modified normal vector, and the color sample Applying a subtracted spectral reflectance calculation function for calculating a subtracted spectral reflectance by arithmetically subtracting the spectral reflectance of the medium at a specified ratio from the spectral reflectance of the three-dimensional structure, Applying a medium spectral reflectance calculation function for calculating the spectral reflectance of the medium to the subtracted spectral reflectance calculating step of calculating the spectral reflectance, and applying the medium spectral reflectance calculating function to the incident angle, the observation angle, and the tilt angle; A medium spectral reflectance calculating step of calculating the spectral reflectance of the medium for each part of the surface of the object, and reading the maximum luminance value and the designated luminance value from the luminance value information storage means, From A modified luminance value calculating step of calculating a modified luminance value by adding a value obtained by multiplying a value obtained by subtracting the designated luminance value to a reduction ratio and the designated luminance value, and performing the subtraction spectrum for each part of the surface of the three-dimensional structure. The application of the reflectance or the application of the medium spectral reflectance is determined based on a specified ratio, and the luminance value in each of the portions is calculated based on either the calculated subtracted spectral reflectance or the medium spectral reflectance. Then, for the color value of each part whose calculated luminance value is equal to or greater than the maximum luminance value, the luminance value of the color value that can be calculated from either the calculated subtracted spectral reflectance or the medium spectral reflectance is changed. The color is converted into a luminance value and determined as the color value, and the color values of the other parts are determined as the color values that can be calculated from either the calculated subtracted spectral reflectance or the medium spectral reflectance. Value determination process and And a three-dimensional structure image outputting step of outputting the color value.
[0018]
According to the above configuration, in the present invention, in the process of changing the normal vector, the normal vector of each portion of the surface of the three-dimensional structure virtually displayed on the display device is dispersed by the displacement amount based on the prescribed distribution. A change normal vector is determined for each part, and a subtracted spectral reflectance calculation function is applied to an incident angle, an observation angle, and a tilt angle in a subtracted spectral reflectance calculation process to calculate a subtracted spectral reflectance for each of the parts. Then, in the medium spectral reflectance calculation process, a subtractive spectral reflectance calculation function is applied to the incident angle, the observation angle, and the tilt angle to calculate the medium spectral reflectance for each of the portions. Further, in the process of calculating the changed luminance value, a changed luminance value is calculated by adding a value obtained by multiplying a value obtained by subtracting the specified luminance value from the maximum luminance value by the reduction ratio and the specified luminance value. In the color value determination process, for each part of the surface of the three-dimensional structure, either the application of the subtracted spectral reflectance or the application of the medium spectral reflectance is determined based on a specified ratio, and the calculated subtracted spectral reflectance is calculated. Alternatively, the luminance value of each part is calculated based on one of the medium spectral reflectances, and the calculated subtracted spectral reflectance or medium spectral reflectance is calculated for the color value of each part where the calculated luminance value is equal to or greater than the maximum luminance value. The luminance value of the color value that can be calculated from any of the above is converted into a changed luminance value and determined as the color value of each portion, and the subtracted spectral reflectance or medium spectral value calculated for the color values of the other portions is calculated. A color value that can be calculated from any of the reflectances is determined. Further, a color value is output in a three-dimensional structure image output process.
Thus, the spectral reflectance of each part of the surface of the three-dimensional structure is determined by subtracting the spectral reflectance of the medium from the spectral reflectance of the color sample, and the spectral reflectance of the medium itself is further determined by the three-dimensional structure. Since it is applied to each part of the surface, it is possible to express the color by the spectral reflectance reflecting the influence of the medium, and furthermore, the image of the three-dimensional structure whose glossiness is more approximate to the actual one compared to the conventional technology Can be output.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a gloss expression device according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic block diagram showing a configuration of a gloss expression device according to an embodiment of the present invention. In this figure, reference numeral 1 denotes a gloss expressing device. In the present embodiment, the gloss expression device 1 monitors an image of the three-dimensional structure approximated to the glossiness of the three-dimensional structure created by actually using a color sample (a color medium is applied to a paper or the like) on a monitor or the like. For display on the display device. Note that the gloss expressing device 1 displays a plurality of images of the same three-dimensional structure in which the glossiness of the three-dimensional structure is changed on a display device, and from among the images, the glossiness is closest to the actual three-dimensional structure. The selection of the image of the three-dimensional structure is accepted.
[0020]
In FIG. 1, reference numeral 101 denotes an input unit which receives input of information such as the position of a light source of light and the observation direction of a three-dimensional structure. Reference numeral 102 denotes a three-dimensional structure data creating unit that performs a process of creating shape information of the three-dimensional structure representing the three-dimensional structure to be displayed on the display device. Reference numeral 103 denotes a reflection model parameter calculation unit that calculates a coefficient of a spectral reflectance calculation function for obtaining a spectral reflectance of a combination of an arbitrary incident angle, an observation angle, and a tilt angle.
[0021]
Reference numeral 104 denotes a paper influence subtraction calculation unit, which determines the medium of the color sample (in the present embodiment, the medium is paper and uses ink for paper) based on the spectral reflectance of the color sample for creating a three-dimensional structure. A process is performed to calculate a value obtained by subtracting the spectral reflectance of the printed sample is a color sample at a specified ratio. Reference numeral 105 denotes a modified normal vector calculation unit that performs processing for varying the normal vector of each part on the surface of the three-dimensional structure based on a prescribed distribution. In this way, a process for giving a rough feeling of paper to the surface of the three-dimensional structure is performed. Note that the changed normal vector calculation unit 105 varies the normal vectors based on different prescribed distributions. Thereby, the gloss expressing device 1 displays on the display device a plurality of images of the same three-dimensional structure expressing the glossiness for each degree of variation of the normal vector based on the specified distribution. Reference numeral 106 denotes a changed luminance value calculation unit, and a luminance value (also referred to as surface reflection intensity) that can be calculated from the spectral reflectance at which light is reflected at the same angle and in the opposite direction with respect to the normal vector is the maximum value that can be output from the display device If the luminance value is equal to or more than the luminance value, a process of reducing the luminance value to the maximum luminance value or less is performed using a predetermined calculation method. Note that this luminance value is referred to as a changed luminance value.
[0022]
Reference numeral 107 denotes a rendering processing unit, which is formed by the normal vector of the surface of the three-dimensional structure and the incident angle formed by the light source direction, the observation point for observing the three-dimensional structure, and the normal vector of the three-dimensional structure surface. Standard for determining the observation angle, the specified inclination in the spatial coordinates of each part of the surface of the three-dimensional structure, the information on the color sample indicated by the surface of the three-dimensional structure, and the degree of dispersion of the normal vector of the surface of the three-dimensional structure Based on the deviation information and the changed luminance value, the rendering reprocessing is performed by a predetermined method described later. Reference numeral 108 denotes a display processing unit which performs a process of displaying an image of the three-dimensional structure rendered by the rendering processing unit 107 on a display device. An angle storage unit 109 stores information such as a position of a light source of light incident on the three-dimensional structure received by the input unit 101 and a direction in which the three-dimensional structure is observed. Reference numeral 110 denotes a three-dimensional structure data storage unit (three-dimensional structure information storage unit) which stores the three-dimensional structure shape information created by the three-dimensional structure data creation unit 102. In addition, the shape information of the three-dimensional structure is, for example, a three-dimensional graphic modeling technique, which is a wire frame model (a technique of representing the shape by a data structure in which coordinates in space are connected by straight lines). Information on the shape. The three-dimensional structure data storage unit 110 also stores a normal vector for each part of the surface representing the three-dimensional structure. Reference numeral 111 denotes a brightness value information storage unit (brightness value information storage means), which applies light, which has been vertically applied to a color sample of a real object in which a three-dimensional structure is previously created, at an angle of 45 degrees (a predetermined angle in an oblique direction) ) Stores the designated luminance value calculated based on the spectral reflectance when observed from the above and the maximum luminance value that can be displayed by the display device.
[0023]
Reference numeral 112 denotes a spectral reflectance database in which spectral reflectances measured by actually irradiating a user with light on a color sample serving as a surface of a real three-dimensional structure are stored in advance. The spectral reflectance is recorded in association with the angle of incidence on the color sample, the observation angle of the color sample, and the tilt angle. The details of the incident angle, the observation angle, and the tilt angle will be described later. Reference numeral 113 denotes a reflection model parameter database, which stores information on coefficients of the spectral reflectance calculation function calculated by the reflection model parameter calculation unit 103. Reference numeral 114 denotes an optimal parameter database, which is a three-dimensional structure having the closest gloss to the actual three-dimensional structure received from the images of the three-dimensional structure displayed by the gloss expression device 1 on the display device. The coefficients of various parameters to be described later for rendering the image are stored.
[0024]
Then, the gloss expressing device 1 expresses the roughness of the surface of the three-dimensional structure by dispersing uniform normal vectors in each portion of the surface using a method described later, and furthermore, a medium of the color sample (this embodiment). The roughness of the color sample is expressed by reflecting the color of the paper itself in the form on the color sample using a method described later. When the luminance value of the rendered image of the three-dimensional structure is equal to or greater than the maximum luminance value that can be output from the display device that displays the three-dimensional structure, the gloss expressing device 1 performs a process of reducing the luminance value to the maximum luminance value or less. In this way, a new method is used to express the glossiness. Then, the gloss expressing device 1 displays images of the same three-dimensional structure having different glossiness according to the combination of the degree of variation of the normal vector and the degree of reduction of the luminance value. Then, the gloss expression device 1 receives a designation of a three-dimensional structure closest to the real glossiness from among a plurality of the same three-dimensional structures having different glossiness, and renders an image of the three-dimensional structure. Are stored. Then, when rendering a three-dimensional structure again using the same color sample and rendering the stored three-dimensional structure, the three-dimensional structure closest to the real one is rendered without any manual adjustment by the user by performing rendering using the stored parameters. To display. Note that the color samples for creating the real three-dimensional structure in the present embodiment are color samples printed on high-quality paper, matte paper, and art paper using the same color ink, and are actually created with each color sample. The specification of the image of the three-dimensional structure that expresses the glossiness that is most similar to the three-dimensional structure that has been obtained is accepted. Further, the above-mentioned portion on the surface of the three-dimensional structure is a small surface when the surface of the three-dimensional structure is finely divided. For example, even if this small surface corresponds to one pixel on the screen of the display device, Alternatively, this small surface may correspond to a plurality of pixels on the screen of the display device. Here, FIG. 2 is a diagram showing a small surface and a normal vector of the surface of the cylinder when the three-dimensional structure is a cylinder.
[0025]
Next, the incident angle, the observation angle, and the tilt angle will be described.
FIG. 3 is a diagram for explaining the incident angle, the observation angle, and the tilt angle. As shown in FIG. 3, the angle formed by the normal vector of the color sample and the light source direction of light incident on the color sample is the incident angle. The angle formed by the direction of the observation point for observing the color sample and the normal vector of the color sample is the observation angle. In FIG. 3, when both the direction of incidence on the color sample and the direction of the observation point from the color sample are projected onto the color sample, the angle formed by the two lines is 180 degrees (that is, a straight line). The angle when the color sample is turned on the basis of the line is the tilt angle. When the tilt angle is considered in space, the angle formed by the surface formed by the line indicating the light source direction and the line indicating the observation point direction at one point on the color sample and the normal vector of the color sample is the tilt angle.
[0026]
Then, the user previously measures the spectral reflectance of the surface of the color sample using a colorimeter for each combination of the incident angle, the observation angle, and the tilt angle. The information on the spectral reflectance of the color sample is stored in the spectral reflectance database 112. The user also measures the spectral reflectance of the paper before coloring the color sample in the same manner as the spectral reflectance of the color sample, and stores the measured spectral reflectance in the spectral reflectance database 112. The incident angle is θ, the observation angle is α, and the tilt angle is Φ.
[0027]
Next, a method for dispersing the normal vector in each part of the surface of the three-dimensional structure will be described. FIG. 4 is an enlarged view of a cross section of the surface of the three-dimensional structure when the normal vectors are virtually varied. As shown in FIG. 4, the changed normal vector calculation unit 105 of the gloss expressing device 1 generates a changed normal vector that virtually varies based on the normal vector of each part of the surface of the three-dimensional structure. . Thereby, the observation angle formed by the direction of the observation point (same as the direction from the three-dimensional structure to the viewpoint of the user who views the display device when the image of the three-dimensional structure is displayed on the display device) and the changed normal vector And the angle of incidence formed by the modified normal vector and the light source direction of the light, and the plane formed by the line indicating the light source direction and the line indicating the observation point direction at one point on the color sample and the normal vector of the color sample Based on the angle, a difference in spectral reflectance observed at the observation point occurs in each part of the surface. Thus, the color in each part of the surface of the three-dimensional structure can be changed based on the difference in spectral reflectance of each part in the surface of the three-dimensional structure, so that the gloss expression device 1 can express the difference in color as a rough feeling. .
[0028]
If the variation of the modified normal vector based on the original normal vector is increased, the spectral structure in the direction of the observation point is further reduced on the surface of the three-dimensional structure having a low spectral reflectance in the direction of the observation point. In this embodiment, the standard deviation (σ: displacement amount based on a specified distribution) of the variation of the slope of the modified normal vector is set to 3 Within degrees. Then, the changed normal vector calculation unit 105 of the gloss expressing device 1 sets the Gaussian distribution with the standard deviation = 3 degrees as a limit based on 0 degree of the changed normal vector (the same slope as the normal vector before the change). A process for determining a changed normal vector is performed based on this. Then, the modified normal vector calculation unit 105 of the gloss expressing device 1 uses the values of the standard deviation σ = 0 ° to 3 ° in increments of 0.5 ° so that the rendering processing unit 107 can determine the different inclinations of the modified normal vector. An image of the same three-dimensional structure is generated based on the criterion of variation, and the display processing unit 108 outputs the generated image of the three-dimensional structure to a display device.
FIG. 5 is a diagram showing a Gaussian distribution when the standard deviation is set to 2 degrees. In this figure, the hatched portions indicate the number of each portion on a plane where the difference between the inclination of the normal vector before change and the changed normal vector is within 2 degrees. When the Gaussian distribution is used, when the standard deviation of the Gaussian distribution is 2 degrees, the part where the difference in inclination between the normal vector before change and the changed normal vector is within 2 degrees is the entire surface. 68% of the portion.
[0029]
Next, when the spectral reflectance in the direction of the observation point of the surface of the three-dimensional structure calculated from the spectral reflectance of the color sample (the direction in which the three-dimensional structure is displayed on the display device) exceeds the luminance value of the display device. Will be described. FIG. 6 shows the incident angle θ of light. 1 , Maximum reflection angle θ of light 2 FIG. 7 is a diagram illustrating an intensity distribution of light luminance and a maximum luminance value that can be output by the display device when the light intensity is. Normally, incident angle θ 1 When light is incident on the surface of the color sample, the light is reflected in all directions of the space on the surface. This figure shows the intensity distribution of the luminance that can be calculated from the spectral reflectance of the reflected light. 1 = Θ 2 Maximum reflection angle θ 2 At which the intensity of the luminance is the highest (however, the angle formed by the direction in which the light incident direction is projected on the color sample and the direction in which the light is reflected is projected on the color sample is 180 degrees). In FIG. 6, Lmax represents the maximum luminance value that can be output by the display device.
[0030]
Here, it is assumed that the surface of the color sample shown in FIG. 6 is a surface of the three-dimensional structure displayed on the display device by the gloss expression device 1, and the maximum reflection angle θ 2 It is assumed that the direction in which the light is reflected most is the direction in which the three-dimensional structure is displayed. At this time, if the luminance value that can be calculated from the spectral reflectance of the surface of the three-dimensional structure in the display direction exceeds the maximum luminance value Lmax, the luminance value cannot be expressed by the display device, and the excessive luminance value is reduced. There is a need. Therefore, the following method is performed in the present embodiment as a method of reducing the luminance value.
First, the color sample is measured using a colorimeter from an angle of 45 degrees when light is incident on the color sample vertically. Then, the user inputs the measured spectral reflectance to the gloss expressing device 1 via the input unit 101. Further, the user causes a process of calculating a luminance value from a spectral reflectance when a color sample is measured from an angle of 45 degrees input to the gloss expression device 1. The calculation of the brightness value is performed by a designated brightness value calculation unit (not shown). The luminance value calculated by the specified luminance value calculation unit is called a specified luminance value (Ld). Then, the designated luminance value Ld is recorded in the luminance value information storage unit 111.
[0031]
The algorithm for calculating the luminance value from the spectral reflectance is a well-known technique. For example, "Handbook of Color Science, edited by The Japan Society of Color Science, The University of Tokyo Press, July 25, 1981, 3rd printing, p98, p139 to p141 ”may be used. The technique of calculating a luminance value from a spectral reflectance described in this conventional technique is a technique of calculating a CIE (Commission Internationale de l'Eclairage) XYZ value from the spectral reflectance. And Y of this calculated CIEXYZ is the luminance value.
Then, the gloss expressing device 1 calculates the changed luminance value Ls by reducing the luminance value exceeding the maximum luminance value Lmax by using the following colors. The change luminance value Ls is calculated by the change luminance value calculation unit 106.
[0032]
Ls = Ld + (Lmax−Ld) × k / n
(However, n = 6, k = 1, 2, 3, 4, 5, 6)
Then, the changed luminance value calculation unit 106 calculates a changed luminance value Ls corresponding to each value of k = 1 to 6, generates images of the same three-dimensional structure having different degrees of the changed luminance value, and outputs the images to the display device. I do. Note that k / n is the reduction ratio.
[0033]
Next, a method of expressing the roughness of the color sample by reflecting the color of the color sample medium (paper in the present embodiment) itself creating the three-dimensional structure in the color sample will be described.
FIG. 7 is an enlarged view of a cross section of the color sample when the color sample ink pigment is applied to the color sample medium. The medium of the color sample is paper. As shown in the figure, when the medium of the color sample is paper such as high-quality paper, the ink pigment is extremely small, so that it protrudes more than the ink pigment to which the fiber of the high-quality paper is applied. Here, in order to reflect this situation on the rendered image of the three-dimensional structure, the gloss expression device 1 uses the spectral reflectance of color samples (spectral reflectance of color samples) and the spectral reflectance of paper (spectral reflectance of medium). Is recorded in the spectral reflectance database 112, and the paper effect subtraction calculating unit 104 calculates the subtracted spectral reflectance by subtracting the medium spectral reflectance from the color sample spectral reflectance. And stored in the spectral reflectance database 112. Here, an equation for calculating the subtracted spectral reflectance is shown below. The color sample spectral reflectance is Ms, the medium spectral reflectance is Mp, and the subtracted spectral reflectance is Mc.
[0034]
Mc = (100 × Ms−a × Mp) / (100−a)
However, a indicates the probability that the fiber of the paper jumps out of the color sample, and in the present embodiment, when the medium of the color sample is high-quality paper, a = 5 (probability of jumping 5%) is defined. In the present embodiment, when the color sample medium is mat paper or art paper, a = 0.
[0035]
Next, data of the color sample spectral reflectance Ms, the medium spectral reflectance Mp, and the subtracted spectral reflectance Mc will be described. FIG. 8 is a diagram illustrating data stored in the spectral reflectance database 112. As shown in FIG. 8, in the spectral reflectance database 112, for each color sample, the spectral value of the color sample Ms, the spectral reflectance of the medium Mp, and the spectral reflectance of the subtracted Mc for each of the tilt angle Φ, the incident angle θ, and the observation angle α. The reflectance (reflectance of light every 10 nm from 400 nm to 700 nm) is stored.
[0036]
Next, a function that allows the gloss expression device 1 to calculate the spectral reflectance based on the incident angle θ, the observation angle α, and the tilt angle Φ will be described.
First, the spectral reflectance database 112 of the gloss expression device 1 stores data of spectral reflectances of a color sample spectral reflectance Ms, a medium spectral reflectance Mp, and a subtracted spectral reflectance Mc. Therefore, the gloss expressing device 1 performs a least square method on each piece of information of the spectral reflectance, thereby obtaining a color sample spectral reflectance based on the incident angle θ, the observation angle α, and the tilt angle Φ. A reflectance calculation function, a medium spectral reflectance calculation function capable of deriving a medium spectral reflectance based on the incident angle θ, the observation angle α, and the tilt angle Φ, the incident angle θ, the observation angle α, the tilt angle Φ, A subtracted spectral reflectance calculation function that can derive a subtracted spectral reflectance by subtracting the medium spectral reflectance from the color sample spectral reflectance at a specified ratio based on the calculated spectral reflectance is calculated. The calculation of each spectral reflectance calculation function is performed by the reflection model parameter calculation unit 103 of the gloss expression device 1. That is, the reflection model parameter calculation unit 103 derives a coefficient value in each spectral reflectance calculation function. Then, the reflection model parameter calculation unit 103 records the derived coefficient values in the reflection model parameter database 113.
[0037]
The technique of calculating each spectral reflectance calculation function by performing the least square method on the information of each spectral reflectance of the color sample spectral reflectance Ms, the medium spectral reflectance Mp, and the subtracted spectral reflectance Mc described above is as follows. As well known, for example, "" Generalization of the Lambertian Model and Implications for Machine Vision, "S.K. , "K. Torrance and E. Sparrow, 1967. Theory for Off-Specular Reflection from Roughened. urfaces. Journal of the Optical Society ofAmerica, volume 57, number 9, pp 1105-1114. "techniques may be used, which is described, for example.
[0038]
When rendering an image of a three-dimensional structure created by a color sample reflecting the influence of paper, the gloss expression device 1 firstly sets the subtracted spectral reflectance Mc, the incident angle θ, and the observation angle α. Using the angle Φ, the changed luminance value Ls, the standard deviation σ for determining the changed normal vector, and the information of the color sample forming the three-dimensional structure, the spectral reflectance at each part of the surface of the three-dimensional structure And derive the luminance value. Further, the gloss expressing device 1 uses the medium spectral reflectance Mp, the incident angle θ, the observation angle α, the tilt angle Φ, the changed luminance value Ls, and the standard deviation σ for determining the changed normal vector to obtain the surface of the three-dimensional structure. Derive the spectral reflectance and luminance value in each part of. When rendering the image of the three-dimensional structure, the gloss expressing device 1 renders 95% of each part on the surface of the three-dimensional structure as a color based on the spectral reflectance calculated by the subtracted spectral reflectance Mc and the luminance value, The remaining 5% of each part on the surface of the three-dimensional structure (the same as the probability that the fiber of the high-quality paper is protruding) is a color based on the spectral reflectance calculated by the medium spectral reflectance Mc and the luminance value. Process so that
[0039]
In the present embodiment, when rendering an image of a three-dimensional structure created with art paper and matte paper, the gloss expression device 1 uses the color of the color sample medium for creating the three-dimensional structure as a color sample. No reflection processing is performed. This is because art paper or matte paper is coated on the surface of the paper, so that the paper fibers do not usually fly out of the ink pigment applied to the paper.
[0040]
Next, processing performed when the gloss expressing device 1 renders an image of a three-dimensional structure created using color samples of art paper and matte paper will be described with reference to FIG. FIG. 9 is a diagram showing a flow of processing in the gloss expression device 1.
Art paper and matte paper are used for magazines and the like, for example, and art paper and matte paper have a coating on the surface of the paper. It is paper in which the fiber of paper does not pop out.
First, the user creates a three-dimensional structure (in the present embodiment, a cylinder) having the same structure using real art paper or matte paper. Then, the user creates an image of the shape of the three-dimensional structure in the gloss expression device 1 while viewing the three-dimensional structure. The creation of the image of the shape of the three-dimensional structure is the same as the creation of an image of the shape of the three-dimensional structure processed by conventional CAD (computer-aided design) software, three-dimensional diagram creation software, or the like. Then, the user records information on the shape of the created three-dimensional structure in the three-dimensional structure data storage unit 110.
[0041]
Next, the user determines the position of the light source of light incident on the three-dimensional structure, the observation direction of the three-dimensional structure, and information (color paper or matte paper) of a color sample for creating the three-dimensional structure, and inputs the information to the input unit. Input to the gloss expression device 1 via 101. Then, the user instructs the gloss expression device 1 to render the three-dimensional structure. Then, the input unit 101 receives the rendering instruction (step S1a). Then, the modified normal vector calculation unit 105 reads the normal vector of each part on the surface of the three-dimensional structure from the three-dimensional structure data storage unit 110, and calculates the normal vector in 0.5 degree steps from σ = 0.0 to 3.0. Based on the Gaussian distribution of each standard deviation, information on a changed normal vector in which the normal vector of each part is varied is calculated (step S2a).
Next, the specified luminance value Ld recorded corresponding to the color sample information received from the user by the changed luminance value calculation unit 106 and the maximum luminance value Lmax that can be output by the display device are stored in the luminance value information storage unit 111. Read from. Then, using the read designated luminance value Ld, the maximum luminance value Lmax, and the above-described calculation formula for obtaining the changed brightness value Ls, each of the changed brightness values when k = 1 to 6 are substituted into the calculation formula. The value Ls is calculated (Step S3a).
[0042]
Next, the rendering processing unit 107 calculates the value of the coefficient of the color sample spectral reflectance calculation function for calculating the color sample spectral reflectance Ms corresponding to the color sample information received from the user from the reflection model parameter database 113. read. Then, the rendering processing unit 107 calculates the incident angle θ of the angle formed by the changed normal vector in each part of the surface of the three-dimensional structure calculated in step S2a and the direction of the light source received from the user, The observation angle α of the angle formed by the observation direction received from the user, the tilt angle Φ determined by the observation direction and the modified normal vector, the modified luminance value Ls calculated in step S3a, and the read color sample spectral reflection The rendering process is performed based on the coefficient of the rate calculation function (step S4a).
At this time, the rendering processing unit 107 first calculates the spectral reflectance of each part of the surface of the three-dimensional structure based on the incident angle θ, the observation angle α, and the tilt angle Φ, and calculates the XYZ values (color values) from the spectral reflectance. Value). When the Y value (luminance value) of the XYZ value is equal to or greater than the maximum luminance value Lmax, the Y value of the XYZ value is replaced with the changed luminance value. Thereby, the XYZ values in each part of the surface of the three-dimensional structure are determined.
[0043]
Next, based on the XYZ values of each part of the surface of the three-dimensional structure determined by the rendering processing unit 107, the display processing unit 108 assigns colors to pixels of the screen of the display device corresponding to each part of the three-dimensional structure surface. Output. Thereby, the image of the three-dimensional structure is displayed on the display device (step S5a).
Then, the rendering processing unit 107 repeats rendering of the three-dimensional structure for each combination of the standard deviation σ and the changed luminance value Ls, and the display processing unit 108 displays an image of each three-dimensional structure rendered by the rendering processing unit 107 on a display device. Output at the same time. As a result, the gloss expressing apparatus 1 has seven standard deviations σ and six changed luminance values Ls. Therefore, for the image of the three-dimensional structure created with one color sample, a total of 42 identical solids having different gloss feelings are obtained. An image of the structure is output to a display device. Note that the rendering processing unit 107 assigns a number to each of the three-dimensional structures rendered for each combination of the standard deviation σ and the changed luminance value Ls, and renders the standard deviation σ and the changed luminance value Ls when the three-dimensional structure of each number is rendered. Is temporarily stored with the coefficient k used for the calculation. Then, the display processing unit 108 attaches numbers to the images of the three-dimensional structures and displays them.
[0044]
Next, the input unit 101 of the gloss expression device 1 receives an input of the number of the image of the three-dimensional structure having a different glossiness displayed by the display processing unit 108 from the user. At this time, for example, the user irradiates the actually created three-dimensional structure with light, visually observes the real three-dimensional structure from the same direction as the observation direction of the three-dimensional structure input to the gloss expression device 1, and displays the three-dimensional structure on the display device. The number of the closest three-dimensional structure having a different glossiness is input to the gloss expression device 1. Then, from the rendering processing unit 107, the standard deviation σ when the three-dimensional structure corresponding to the received image number is rendered by the processing unit (not shown) of the gloss expression device 1 and the coefficient k used for calculating the changed luminance value Ls are output from the rendering processing unit 107. It is read and recorded in the optimal parameter database 114 in association with the information of the color sample.
[0045]
Next, a description will be given of processing when the gloss expressing device 1 renders an image of a three-dimensional structure created with a color sample of high-quality paper. Note that high quality paper is paper used as, for example, copy paper, and is not coated so that the fibers of the paper pop out when an ink pigment is applied to the high quality paper.
From FIG. 9, first, the user determines the position of the light source of the light incident on the three-dimensional structure, the observation direction of the three-dimensional structure, and information (color paper) of a color sample for creating the three-dimensional structure, and inputs the information to the input unit. Input to the gloss expression device 1 via 101. Then, the user instructs the gloss expression device 1 to render the three-dimensional structure. Then, the gloss expressing device 1 performs the processing from step S1a to step S3a described above.
[0046]
Next, since the color sample received from the user is high quality paper, the rendering processing unit 107 calculates the subtracted spectral reflectance Mc obtained by subtracting the spectral reflectance of the high quality paper (medium spectral reflectance) from the spectral reflectance of the color sample. The value of the coefficient of the subtracted spectral reflectance calculation function for calculation is read from the reflection model parameter database 113. Then, the rendering processing unit 107 calculates the incident angle θ of the angle formed by the changed normal vector in each part of the surface of the three-dimensional structure calculated in step S2a and the direction of the light source received from the user, The observation angle α of the angle formed by the observation direction received from the user, the tilt angle Φ determined by the observation direction and the changed normal vector, the changed luminance value Ls calculated in step S3a, and the read subtracted spectral reflectance A rendering process is performed based on the coefficients of the calculation function (step S4b).
[0047]
Next, since the color sample received from the user is high-quality paper, the rendering processing unit 107 determines a medium spectral reflectance Mp that is a spectral reflectance of the high-quality paper itself to which the ink pigment is not applied. The value of the coefficient of the reflectance calculation function is read from the reflection model parameter database 113. Then, the rendering processing unit 107 calculates the incident angle θ of the angle formed by the changed normal vector in each part of the surface of the three-dimensional structure calculated in step S2a and the direction of the light source received from the user, The observation angle α of the angle formed by the observation direction received from the user, the tilt angle Φ determined by the observation direction and the changed normal vector, the changed luminance value Ls calculated in step S3a, and the read medium spectral reflectance The rendering process is performed based on the coefficients of the calculation function (step S5b).
[0048]
Next, the rendering processing unit 107 determines that 95% of each portion on the surface of the three-dimensional structure is a portion expressing the spectral reflectance and the luminance value calculated by the subtraction spectral reflectance calculation function, and determines the portion on the surface of the three-dimensional structure. The remaining 5% of each part is determined as a part expressing the spectral reflectance and luminance value calculated by the medium spectral reflectance calculation function (step S6b). Then, based on the spectral reflectance and the luminance value of each part of the surface of the three-dimensional structure determined by the rendering processing unit 107, the display processing unit 108 displays the screen of the display device corresponding to each part of the three-dimensional structure surface. The color is output to the pixel (step S7b).
In addition, as for the image of the three-dimensional structure of high-quality paper, images of a plurality of the same three-dimensional structures having different glossiness are output to the display device in the same manner as the above-described art paper or matte paper, and the user may input the most realistic three-dimensional structure. Accept the number of the object whose glossiness is similar to that of the object. Then, the standard deviation σ when rendering the three-dimensional structure having that number and the coefficient k used for calculating the changed luminance value Ls are recorded in the optimal parameter database 114.
[0049]
The gloss expression device 1 performs the rendering process from the next time using the standard deviation σ recorded in association with the color sample information and the coefficient k used for calculating the changed luminance value Ls according to the user's instruction. You may do it. At that time, for example, it is checked whether or not the information of the color sample first received from the user is recorded in the optimal parameter database 114. If the information is recorded, the information is recorded corresponding to the information of the color sample. The standard deviation σ and the coefficient k used for calculating the changed luminance value Ls are read, and the rendering processing unit 107 performs rendering.
[0050]
As described above, one embodiment of the present invention has been described, but the embodiment is not limited to the above-described embodiment. Also, the gloss expression device described above has a computer system inside. The above-described process is stored in a computer-readable recording medium in the form of a program, and the program is read and executed by the computer to perform the process. Here, the computer-readable recording medium refers to a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like. Alternatively, the computer program may be distributed to a computer via a communication line, and the computer that has received the distribution may execute the program.
[0051]
【The invention's effect】
As described above, according to the present invention, in the process of changing the normal vector, the normal vector of each part of the surface of the three-dimensional structure that is virtually displayed on the display device varies by the displacement amount based on the prescribed distribution. The changed normal vector is determined for each of the portions, and in the process of calculating the spectral reflectance, a color sample spectral reflectance calculation function is applied to the incident angle, the observation angle, and the tilt angle to calculate the surface of the three-dimensional structure. The spectral reflectance of each part is calculated, and the color value of each part of the surface of the three-dimensional structure is determined as a color value that can be calculated from the calculated spectral reflectance in the color value determination process. As a result, the changed normal vector of each part of the surface of the three-dimensional structure is in a state of variation, so that different spectral reflectances based on each changed normal vector having a different direction, the incident angle, the observation angle, and the tilt angle are different. It will be calculated. Therefore, different spectral reflectances have different color values that can be calculated from the spectral reflectances, so that when an image of a three-dimensional structure is output, a rough feeling is generated on the surface of the three-dimensional structure, and an image of the virtual three-dimensional structure is generated. It can be used as one expression method for expressing glossiness in generation.
[0052]
According to the present invention, there are a plurality of the specified distributions in the process of changing the normal vector, and a changed normal vector is determined for each of the plurality of specified distributions. Thus, since the variation of the changed normal vector varies depending on the prescribed distribution, it is possible to generate images of different three-dimensional structures expressing different feelings of roughness.
[0053]
According to the present invention, in the spectral reflectance calculation step, a color sample spectral reflectance calculation function for calculating the spectral reflectance of the color sample is applied to the incident angle, the observation angle, and the tilt angle, so that the display device is virtually provided. Calculates the spectral reflectance of each part of the surface of the three-dimensional structure displayed in, and in the process of calculating the changed luminance value, multiplies the value obtained by subtracting the specified luminance value from the maximum luminance value by the reduction ratio, and the specified luminance value To calculate a changed luminance value. In addition, a luminance value in each part is calculated from the spectral reflectance calculated in the color value determination process, and a color value of each part in which the calculated luminance value is equal to or greater than the maximum luminance value can be calculated from the calculated spectral reflectance. The luminance value of the color value is converted into a changed luminance value and determined as the color value, and the color values of other parts are determined as color values that can be calculated from the calculated spectral reflectance. With this, when the luminance value calculated from the spectral reflectance of the three-dimensional structure is equal to or more than the maximum luminance value that can be output from the display device and the luminance value must be reduced, only the luminance value equal to or more than the designated luminance value is reduced. Since the reduction is performed using the reduction ratio, it is possible to avoid further lowering the luminance of the low-luminance portion. In addition, when the brightness value calculated from the spectral reflectance of the three-dimensional structure is equal to or more than the maximum brightness value that can be output from the display device, when the brightness value needs to be reduced, a method of displaying the maximum brightness value is used. Since this is not taken, it is possible to avoid a phenomenon in which the range of the intensity distribution of the luminance based on the directivity of light reflection is such that the spectral reflectance whose luminance intensity is small is larger than the spectral reflectance whose luminance intensity is large. Therefore, it is possible to avoid a phenomenon in which a spectral reflectance having a small luminance intensity is expressed brighter.
[0054]
Further, according to the present invention, in the gloss expressing method, the changed brightness value for each of the plurality of reduction ratios is calculated in the changed brightness value calculating step, and the changed brightness value corresponds to each changed brightness value in the color value determining step. The color value of each part of the surface of the three-dimensional structure is output for each three-dimensional structure. Thus, the value when reducing the brightness value equal to or greater than the maximum brightness value changes according to the different changed brightness value, so that it is possible to generate images of a plurality of three-dimensional structures expressing different glossiness.
[0055]
Further, according to the present invention, in the gloss expression method, the color sample spectral reflectance calculation function is configured such that the color sample minimum reflectance is calculated based on a correspondence relationship between a combination of an incident angle, an observation angle, and a tilt angle, and the spectral reflectance of the color sample. This is a function obtained by multiplication. By applying the color sample spectral reflectance calculation function to the incident angle, the observation angle, and the tilt angle, the spectral reflectance of the color sample can be calculated.
[0056]
Further, according to the present invention, the subtracted spectral reflectance of each part of the surface of the three-dimensional structure virtually displayed on the display device by applying the subtracted spectral reflectance calculation function to the incident angle, the observation angle, and the tilt angle. Is calculated, and the spectral reflectance of the medium for each part of the surface of the three-dimensional structure is calculated by applying the medium spectral reflectance calculation function to the incident angle, the observation angle, and the tilt angle. Then, for each part of the surface of the three-dimensional structure, either the application of the subtractive spectral reflectance or the application of the medium spectral reflectance is determined based on a specified ratio, and the color value of each part is determined by the determined subtractive spectral reflectance. It is determined as a color value that can be calculated from the reflectance or the medium spectral reflectance. Thus, the spectral reflectance of each portion of the surface of the three-dimensional structure is determined by subtracting the spectral reflectance of the medium from the spectral reflectance of the color sample by a specified ratio, and further, the spectral reflectance of the medium itself. Is reflected in each part of the surface of the three-dimensional structure, so that it is possible to generate an image of a virtual three-dimensional structure in which colors reflecting the influence of the medium itself are expressed.
[0057]
Further, according to the present invention, the subtracted spectral reflectance calculation function determines the spectral reflectance of the medium from the combination of the incident angle, the observation angle, and the tilt angle, and the spectral reflectance of the color sample in which the color is applied to the medium. Is a function obtained by performing a least squares method based on the correspondence relationship with the subtracted spectral reflectance arithmetically subtracted, the medium spectral reflectance calculation function is a combination of an incident angle, an observation angle, and a tilt angle. This is a function obtained by performing the least square method based on the correspondence relationship with the spectral reflectance of the medium. By applying this subtracted spectral reflectance calculation function to the incident angle, the observation angle, and the tilt angle, the subtracted spectral reflectance can be calculated, and the medium spectral reflectance calculation function can be calculated for the incident angle, the observation angle, and the tilt angle. If applied, the spectral reflectance of the medium can be calculated.
[0058]
Further, according to the present invention, in the normal vector changing process, a changing method in which the normal vector of each portion of the surface of the three-dimensional structure virtually displayed on the display device is varied by a displacement amount based on a prescribed distribution. A line vector is determined for each portion of the surface, and in the process of calculating the spectral reflectance, a color sample spectral reflectance calculation function is applied to the incident angle, the observation angle, and the tilt angle, and for each portion of the surface of the three-dimensional structure. Is calculated. Also, in the change luminance value calculation step, a change luminance value is calculated by adding a value obtained by multiplying a value obtained by subtracting the specified luminance value from the maximum luminance value by the reduction ratio and the specified luminance value, and in the color value determination step, the calculated spectral value is calculated. Calculate the luminance value of each part from the reflectance, and for the color value of each part where the calculated luminance value is greater than or equal to the maximum luminance value, change the luminance value of the color value that can be calculated from the calculated spectral reflectance. And the color value is determined, and the color values of the other parts are determined as color values that can be calculated from the calculated spectral reflectance. Then, a value for each portion of the three-dimensional structure image output process color is output. As a result, a new method of expressing roughness by calculating the spectral reflectance using the modified normal vector and reducing the luminance value equal to or greater than the maximum luminance value that can be output by the display device is used. Can output an image of a three-dimensional structure that is more similar to the actual one. In addition, since it is not necessary to create a texture, it is possible to create an image of a three-dimensional structure expressing glossiness without performing a modification operation based on the user's sensitivity, and furthermore, a rule for determining a changed normal vector is provided. Since the image of the three-dimensional structure can be generated simply by specifying the reduction ratio for calculating the distribution and the changed luminance value, a user with different sensibility can generate an image expressing the same glossiness by using a glossy expression device. Can be created using
[0059]
Further, according to the present invention, in the process of changing the normal vector, the changed normal is obtained by dispersing the normal vector of each part of the surface of the three-dimensional structure virtually displayed on the display device by the displacement amount based on the prescribed distribution. A vector is determined for each part, and a subtracted spectral reflectance calculation function is applied to an incident angle, an observation angle, and a tilt angle in a subtracted spectral reflectance calculation process, and a subtracted spectral reflectance for each of the parts is calculated. In the spectral reflectance calculation process, a subtractive spectral reflectance calculation function is applied to the incident angle, the observation angle, and the tilt angle to calculate the medium spectral reflectance for each of the portions. Further, in the process of calculating the changed luminance value, a changed luminance value is calculated by adding a value obtained by multiplying a value obtained by subtracting the specified luminance value from the maximum luminance value by the reduction ratio and the specified luminance value. In the color value determination process, for each part of the surface of the three-dimensional structure, either the application of the subtracted spectral reflectance or the application of the medium spectral reflectance is determined based on a specified ratio, and the calculated subtracted spectral reflectance is calculated. Alternatively, the luminance value of each part is calculated based on one of the medium spectral reflectances, and the calculated subtracted spectral reflectance or medium spectral reflectance is calculated for the color value of each part where the calculated luminance value is equal to or greater than the maximum luminance value. The luminance value of the color value that can be calculated from any of the above is converted into a changed luminance value and determined as the color value of each portion, and the subtracted spectral reflectance or medium spectral value calculated for the color values of the other portions is calculated. A color value that can be calculated from any of the reflectances is determined. Further, a color value is output in a three-dimensional structure image output process. Thus, the spectral reflectance of each part of the surface of the three-dimensional structure is determined by subtracting the spectral reflectance of the medium from the spectral reflectance of the color sample, and the spectral reflectance of the medium itself is further determined by the three-dimensional structure. Since it is applied to each part of the surface, it is possible to express the color by the spectral reflectance reflecting the influence of the medium, and furthermore, the image of the three-dimensional structure whose glossiness is more approximate to the actual one compared to the conventional technology Can be output.
[Brief description of the drawings]
FIG. 1 is a schematic block diagram illustrating a configuration of a gloss expression device according to an embodiment of the present invention.
FIG. 2 is a diagram illustrating a small surface and a normal vector of the surface of the cylinder when the three-dimensional structure in the embodiment is a cylinder.
FIG. 3 is a diagram for explaining an incident angle, an observation angle, and a tilt angle in the present embodiment.
FIG. 4 is an enlarged view of a cross section of the surface of the three-dimensional structure when the normal vectors are virtually varied in the present embodiment.
FIG. 5 is a diagram showing a Gaussian distribution when a standard deviation is set to 2 degrees.
FIG. 6 shows the incident angle θ of light. 1 , Maximum reflection angle θ of light 2 FIG. 7 is a diagram illustrating an intensity distribution of light luminance and a maximum luminance value that can be output by the display device when the light intensity is.
FIG. 7 is an enlarged view of a cross section of the color sample when a color sample ink pigment is applied to a color sample medium in the embodiment.
FIG. 8 is a diagram illustrating data stored in a spectral reflectance database according to the present embodiment.
FIG. 9 is a diagram showing a flow of processing in the gloss expression device according to the embodiment.
FIG. 10 is a diagram illustrating a cross section of an intensity distribution in a space on a reflection surface of luminance of reflected light in the present embodiment.
[Explanation of symbols]
1 Gloss expression device
101 Input unit
102 Three-dimensional structure data creation unit
103 Reflection Model Parameter Calculator
104 Paper effect subtraction calculation unit
105 Change normal vector calculation unit
106 Change luminance value calculation unit
107 rendering processing unit
108 Display processing unit
109 Angle storage
110 Three-dimensional structure data storage unit
111 luminance value information storage unit
112 Spectral Reflectance Database
113 Reflection Model Parameter Database
114 Optimal Parameter Database

Claims (9)

表示装置に仮想的に表示される立体構造物の面の各部分毎の法線ベクトルを記憶する立体構造物情報記憶手段を備えた光沢表現装置における光沢表現方法であって、
前記立体構造物情報記憶手段で記憶する立体構造物の面の各部分の法線ベクトルを規定の分布に基づく変位量分ばらつかせた変更法線ベクトルを当該各部分毎に決定する法線ベクトル変更過程と、
前記立体構造物の面へ入射する光の光源方向と前記変更法線ベクトルが成す入射角度と前記立体構造物の面における前記光の反射を観測する観測点方向と前記変更法線ベクトルが成す観測角度と前記光源方向と前記観測点方向で作られる面と前記変更法線ベクトルとが成すあおり角度とに、媒体に色を塗布した色見本の分光反射率を算出する色見本分光反射率算出関数を適用し、前記立体構造物の面の各部分についての分光反射率を算出する分光反射率算出過程と、
前記立体構造物の面の各部分の色の値を前記算出した分光反射率から算出できる色の値と決定する色値決定過程と、
を備えることを特徴とする光沢表現方法。
A gloss expression method in a gloss expression device including a three-dimensional structure information storage unit that stores a normal vector for each part of a surface of a three-dimensional structure that is virtually displayed on a display device,
A normal vector for determining a changed normal vector in which the normal vector of each part of the surface of the three-dimensional structure stored in the three-dimensional structure information storage means is dispersed by a displacement amount based on a prescribed distribution, for each of the parts Change process,
The light source direction of light incident on the surface of the three-dimensional structure, the incident angle formed by the modified normal vector, the observation point direction for observing the reflection of the light on the surface of the three-dimensional structure, and the observation formed by the modified normal vector A color sample spectral reflectance calculation function for calculating a spectral reflectance of a color sample coated with a medium at a tilt angle formed by an angle, the light source direction, the surface formed by the observation point direction, and the modified normal vector. Applying, a spectral reflectance calculation step of calculating the spectral reflectance for each part of the surface of the three-dimensional structure,
A color value determining step of determining a color value of each part of the surface of the three-dimensional structure as a color value that can be calculated from the calculated spectral reflectance,
A gloss expression method comprising:
前記法線ベクトル変更過程において前記規定の分布は複数あり、これら複数の前記規定の分布毎についてそれぞれ変更法線ベクトルを決定する請求項1に記載の光沢表現方法。The gloss expression method according to claim 1, wherein there are a plurality of the prescribed distributions in the normal vector changing step, and a modified normal vector is determined for each of the plurality of prescribed distributions. 色見本へ垂直に当てた光を斜め方向の所定の角度から観測した際の分光反射率に基づいて算出した指定輝度値と表示装置が表示できる最大輝度値とを記憶する輝度値情報記憶手段とを備えた光沢表現装置における光沢表現方法であって、
前記表示装置に仮想的に表示される立体構造物の面へ入射する光の光源方向と前記立体構造物の面の法線ベクトルが成す入射角度と前記立体構造物の面における前記光の反射を観測する観測点方向と前記法線ベクトルが成す観測角度と前記光源方向と前記観測点方向で作られる面と前記法線ベクトルとが成すあおり角度とに、媒体に色を塗布した色見本の分光反射率を算出する色見本分光反射率算出関数を適用し、前記立体構造物の面の各部分についての分光反射率を算出する分光反射率算出過程と、
前記輝度値情報記憶手段から前記最大輝度値と前記指定輝度値とを読み取って、前記最大輝度値から前記指定輝度値を減じた値に縮小比を掛けた値と前記指定輝度値を足した変更輝度値を算出する変更輝度値算出過程と、
前記算出した分光反射率から前記各部分における輝度値を算出し、算出した輝度値が前記最大輝度値以上である各部分の色の値については、前記算出した分光反射率から算出できる色の値の輝度値を前記変更輝度値に変換して当該色の値と決定し、その他の各部分の色の値については前記算出した分光反射率から算出できる色の値と決定する色値決定過程と、
を備えることを特徴とする光沢表現方法。
Brightness value information storage means for storing a designated brightness value calculated based on the spectral reflectance when the light vertically applied to the color sample is observed from a predetermined angle in an oblique direction and a maximum brightness value that can be displayed by the display device; A gloss expression method in a gloss expression device comprising:
The light source direction of light incident on the surface of the three-dimensional structure virtually displayed on the display device, the angle of incidence formed by the normal vector of the surface of the three-dimensional structure, and the reflection of the light on the surface of the three-dimensional structure. Observation direction of the observation point to be observed, the observation angle formed by the normal vector, the light source direction, the tilt angle formed by the surface formed by the observation point direction, and the tilt angle formed by the normal vector, spectral analysis of a color sample in which a color is applied to a medium. Applying a color sample spectral reflectance calculation function to calculate the reflectance, a spectral reflectance calculation step of calculating the spectral reflectance for each part of the surface of the three-dimensional structure,
Reading the maximum luminance value and the specified luminance value from the luminance value information storage means, and adding a value obtained by multiplying a value obtained by subtracting the specified luminance value from the maximum luminance value by a reduction ratio and the specified luminance value; A change luminance value calculating step of calculating a luminance value,
A luminance value in each of the portions is calculated from the calculated spectral reflectance, and a color value of each portion in which the calculated luminance value is equal to or greater than the maximum luminance value is a color value that can be calculated from the calculated spectral reflectance. A color value determining step of converting the luminance value of the color into the changed luminance value and determining the value of the color, and determining the color values of the other parts as color values that can be calculated from the calculated spectral reflectance. ,
A gloss expression method comprising:
複数の縮小比毎の変更輝度値を前記変更輝度値算出過程において算出し、前記色値決定過程において各変更輝度値に対応する前記立体構造物の面の各部分の色の値を前記立体構造物毎に出力する請求項3に記載の光沢表現方法。The changed luminance value for each of the plurality of reduction ratios is calculated in the changed luminance value calculating step, and the color value of each part of the surface of the three-dimensional structure corresponding to each changed luminance value is calculated in the color value determining step. The gloss expression method according to claim 3, wherein the gloss is output for each object. 前記色見本分光反射率算出関数は、入射角度と観測角度とあおり角度の組合せと前記色見本の分光反射率との対応関係に基づいて最小自乗法を行って得られた関数である請求項1または請求項3のいずれかに記載の光沢表現方法。The color sample spectral reflectance calculation function is a function obtained by performing a least square method based on a correspondence relationship between a combination of an incident angle, an observation angle, and a tilt angle, and the spectral reflectance of the color sample. Or the gloss expression method according to claim 3. 表示装置に仮想的に表示される立体構造物の面へ入射する光の光源方向と前記立体構造物の面の各部分における法線ベクトルが成す入射角度と前記立体構造物の面の各部分における前記光の反射を観測する観測点方向と前記法線ベクトルが成す観測角度と前記光源方向と前記観測点方向で作られる面と前記法線ベクトルとが成すあおり角度とに、媒体に色を塗布した色見本の分光反射率から前記媒体の分光反射率を規定の割合で算術的に差引いた差引分光反射率を算出する差引分光反射率算出関数を適用し、前記立体構造物の面の各部分についての差引分光反射率を算出する差引分光反射率算出過程と、
前記入射角度と前記観測角度と前記あおり角度とに、前記媒体の分光反射率を算出する媒体分光反射率算出関数を適用し、前記立体構造物の面の各部分についての前記媒体の分光反射率を算出する媒体分光反射率算出過程と、
前記立体構造物の面の各部分について、前記差引分光反射率の適用または前記媒体分光反射率の適用のいずれかを規定の割合に基づいて決定し、前記各部分の色の値を当該決定した差引分光反射率または媒体分光反射率から算出できる色の値と決定する色値決定過程と、
を備えることを特徴とする光沢表現方法。
In the light source direction of light incident on the surface of the three-dimensional structure virtually displayed on the display device, the incident angle formed by the normal vector at each part of the surface of the three-dimensional structure, and at each part of the surface of the three-dimensional structure A color is applied to the medium at the observation point direction for observing the light reflection, the observation angle formed by the normal vector, the light source direction, the surface formed by the observation point direction, and the tilt angle formed by the normal vector. Applying a subtracted spectral reflectance calculation function to calculate a subtracted spectral reflectance by arithmetically subtracting the spectral reflectance of the medium from the spectral reflectance of the color sample at a specified ratio, and applying the subtracted spectral reflectance calculation function to each part of the surface of the three-dimensional structure A subtracted spectral reflectance calculation process of calculating a subtracted spectral reflectance for
Applying a medium spectral reflectance calculation function for calculating the spectral reflectance of the medium to the incident angle, the observation angle, and the tilt angle, the spectral reflectance of the medium for each part of the surface of the three-dimensional structure Calculating the medium spectral reflectance,
For each portion of the surface of the three-dimensional structure, either the application of the subtracted spectral reflectance or the application of the medium spectral reflectance was determined based on a prescribed ratio, and the color value of each portion was determined. A color value determining step of determining a color value that can be calculated from the subtracted spectral reflectance or the medium spectral reflectance,
A gloss expression method comprising:
前記差引分光反射率算出関数は、入射角度と観測角度とあおり角度の組合せと、媒体に色を塗布した色見本の分光反射率から前記媒体の分光反射率を規定の割合で算術的に差引いた差引分光反射率との対応関係に基づいて最小自乗法を行って得られた関数であり、前記媒体分光反射率算出関数は、入射角度と観測角度とあおり角度の組合せと前記媒体の分光反射率との対応関係に基づいて最小自乗法を行なって得られた関数である請求項6に記載の光沢表現方法。The subtracted spectral reflectance calculation function is a combination of the incident angle, the observation angle, and the tilt angle, and the spectral reflectance of the medium is arithmetically subtracted at a specified ratio from the spectral reflectance of a color sample in which a color is applied to the medium. A function obtained by performing a least squares method based on the correspondence relationship with the subtracted spectral reflectance, the medium spectral reflectance calculating function is a combination of an incident angle, an observation angle, a tilt angle, and a spectral reflectance of the medium. 7. The gloss expression method according to claim 6, wherein the function is a function obtained by performing a least-squares method based on a correspondence relationship between the glossiness and the brightness. 表示装置に仮想的に表示される立体構造物の面の各部分毎の法線ベクトルを記憶する立体構造物情報記憶手段と、色見本へ垂直に当てた光を斜め方向の所定の角度から観測した際の分光反射率に基づいて算出した指定輝度値と前記立体構造物の画像を表示する表示装置が表示できる最大輝度値とを記憶する輝度値情報記憶手段とを備えた光沢表現装置における光沢表現方法であって、
前記立体構造物情報記憶手段で記憶する立体構造物の面の各部分の法線ベクトルを規定の分布に基づく変位量分ばらつかせた変更法線ベクトルを当該各部分毎に決定する法線ベクトル変更過程と、
前記立体構造物の面へ入射する光の光源方向と前記変更法線ベクトルが成す入射角度と前記立体構造物の面における前記光の反射を観測する観測点方向と前記変更法線ベクトルが成す観測角度と前記光源方向と前記観測点方向で作られる面と前記変更法線ベクトルとが成すあおり角度とに、媒体に色を塗布した色見本の分光反射率を算出する色見本分光反射率算出関数を適用し、前記立体構造物の面の各部分についての分光反射率を算出する分光反射率算出過程と、
前記輝度値情報記憶手段から前記最大輝度値と前記指定輝度値とを読み取って、前記最大輝度値から前記指定輝度値を減じた値に縮小比を掛けた値と前記指定輝度値を足した変更輝度値を算出する変更輝度値算出過程と、
前記算出した分光反射率から前記各部分における輝度値を算出し、算出した輝度値が前記最大輝度値以上である各部分の色の値については、前記算出した分光反射率から算出できる色の値の輝度値を前記変更輝度値に変換して当該色の値と決定し、その他の各部分の色の値については前記算出した分光反射率から算出できる色の値と決定する色値決定過程と、
前記色の値を出力する立体構造物画像出力過程と、
を備えることを特徴とする光沢表現方法。
A three-dimensional structure information storage means for storing a normal vector for each part of the surface of the three-dimensional structure virtually displayed on the display device, and observing light perpendicularly applied to the color sample from a predetermined oblique angle. Gloss in a gloss expression device comprising a designated luminance value calculated based on the spectral reflectance at the time of the above and a luminance value information storage means for storing a maximum luminance value that can be displayed by a display device for displaying an image of the three-dimensional structure. Expression method,
A normal vector for determining a changed normal vector in which the normal vector of each part of the surface of the three-dimensional structure stored in the three-dimensional structure information storage means is dispersed by a displacement amount based on a prescribed distribution, for each of the parts Change process,
The light source direction of light incident on the surface of the three-dimensional structure, the incident angle formed by the modified normal vector, the observation point direction for observing the reflection of the light on the surface of the three-dimensional structure, and the observation formed by the modified normal vector A color sample spectral reflectance calculation function for calculating a spectral reflectance of a color sample coated with a medium at a tilt angle formed by an angle, the light source direction, the surface formed by the observation point direction, and the modified normal vector. Applying, a spectral reflectance calculation step of calculating the spectral reflectance for each part of the surface of the three-dimensional structure,
Reading the maximum luminance value and the specified luminance value from the luminance value information storage means, and adding a value obtained by multiplying a value obtained by subtracting the specified luminance value from the maximum luminance value by a reduction ratio and the specified luminance value; A change luminance value calculating step of calculating a luminance value,
A luminance value in each of the portions is calculated from the calculated spectral reflectance, and a color value of each portion in which the calculated luminance value is equal to or greater than the maximum luminance value is a color value that can be calculated from the calculated spectral reflectance. A color value determining step of converting the luminance value of the color into the changed luminance value and determining the value of the color, and determining the color values of the other parts as color values that can be calculated from the calculated spectral reflectance. ,
Outputting a three-dimensional structure image outputting the color value;
A gloss expression method comprising:
表示装置に仮想的に表示される立体構造物の面の各部分毎の法線ベクトルを記憶する立体構造物情報記憶手段と、媒体に色を塗布した色見本へ垂直に当てた光を斜め方向の所定の角度から観測した際の分光反射率に基づいて算出した指定輝度値と前記立体構造物の画像を表示する表示装置が表示できる最大輝度値とを記憶する輝度値情報記憶手段とを備えた光沢表現装置における光沢表現方法であって、
前記立体構造物情報記憶手段で記憶する立体構造物の面の各部分の法線ベクトルを規定の分布に基づく変位量分ばらつかせた変更法線ベクトルを当該各部分毎に決定する法線ベクトル変更過程と、
前記立体構造物の面へ入射する光の光源方向と前記変更法線ベクトルが成す入射角度と前記立体構造物の面の各部分における前記光の反射を観測する観測点方向と前記変更法線ベクトルが成す観測角度と前記光源方向と前記観測点方向で作られる面と前記変更法線ベクトルとが成すあおり角度とに、前記色見本の分光反射率から前記媒体の分光反射率を規定の割合で算術的に差引いた差引分光反射率を算出する差引分光反射率算出関数を適用し、前記立体構造物の面の各部分についての差引分光反射率を算出する差引分光反射率算出過程と、
前記入射角度と前記観測角度と前記あおり角度とに、前記媒体の分光反射率を算出する媒体分光反射率算出関数を適用し、前記立体構造物の面の各部分についての前記媒体の分光反射率を算出する媒体分光反射率算出過程と、
前記輝度値情報記憶手段から前記最大輝度値と前記指定輝度値とを読み取って、前記最大輝度値から前記指定輝度値を減じた値に縮小比を掛けた値と前記指定輝度値を足した変更輝度値を算出する変更輝度値算出過程と、
前記立体構造物の面の各部分について、前記差引分光反射率の適用または前記媒体分光反射率の適用のいずれかを規定の割合に基づいて決定し、前記算出した差引分光反射率または媒体分光反射率のいずれかに基づき前記各部分における輝度値を算出し、算出した輝度値が前記最大輝度値以上である各部分の色の値については、前記算出した差引分光反射率または媒体分光反射率のいずれかから算出できる色の値の輝度値を前記変更輝度値に変換して当該色の値と決定し、その他の各部分の色の値については前記算出した差引分光反射率または前記媒体分光反射率のいずれかから算出できる色の値と決定する色値決定過程と、
前記色の値を出力する立体構造物画像出力過程と、
を備えることを特徴とする光沢表現方法。
A three-dimensional structure information storage means for storing a normal vector for each part of the surface of the three-dimensional structure virtually displayed on the display device, and a light obliquely applied vertically to a color sample coated with a medium. Brightness information storage means for storing a designated brightness value calculated based on the spectral reflectance when observed from a predetermined angle and a maximum brightness value that can be displayed by a display device that displays an image of the three-dimensional structure. A gloss expression method in a gloss expression device,
A normal vector for determining a changed normal vector in which the normal vector of each part of the surface of the three-dimensional structure stored in the three-dimensional structure information storage means is dispersed by a displacement amount based on a prescribed distribution, for each of the parts Change process,
The light source direction of light incident on the surface of the three-dimensional structure, the incident angle formed by the modified normal vector, the observation point direction for observing the light reflection on each part of the surface of the three-dimensional structure, and the modified normal vector The angle formed by the observation angle, the light source direction, the surface formed by the observation point direction, and the change normal vector, the spectral reflectance of the medium from the spectral reflectance of the color sample at a specified ratio. Applying a subtracted spectral reflectance calculation function to calculate a subtracted spectral reflectance arithmetically subtracted, a subtracted spectral reflectance calculation step of calculating a subtracted spectral reflectance for each part of the surface of the three-dimensional structure,
Applying a medium spectral reflectance calculation function for calculating the spectral reflectance of the medium to the incident angle, the observation angle, and the tilt angle, the spectral reflectance of the medium for each part of the surface of the three-dimensional structure Calculating the medium spectral reflectance,
Reading the maximum luminance value and the specified luminance value from the luminance value information storage means, and adding a value obtained by multiplying a value obtained by subtracting the specified luminance value from the maximum luminance value by a reduction ratio and the specified luminance value; A change luminance value calculating step of calculating a luminance value,
For each part of the surface of the three-dimensional structure, either the application of the subtracted spectral reflectance or the application of the medium spectral reflectance is determined based on a specified ratio, and the calculated subtracted spectral reflectance or medium spectral reflectance is determined. The luminance value in each of the portions is calculated based on any one of the ratios. For the color value of each portion in which the calculated luminance value is equal to or more than the maximum luminance value, the calculated subtracted spectral reflectance or medium spectral reflectance is calculated. The luminance value of the color value that can be calculated from any of the above values is converted into the changed luminance value and determined as the color value, and the color values of the other parts are calculated with the subtracted spectral reflectance or the medium spectral reflectance. A color value determining process of determining a color value that can be calculated from any of the ratios,
Outputting a three-dimensional structure image outputting the color value;
A gloss expression method comprising:
JP2003024662A 2003-01-31 2003-01-31 Gloss expression method Withdrawn JP2004234524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003024662A JP2004234524A (en) 2003-01-31 2003-01-31 Gloss expression method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003024662A JP2004234524A (en) 2003-01-31 2003-01-31 Gloss expression method

Publications (1)

Publication Number Publication Date
JP2004234524A true JP2004234524A (en) 2004-08-19

Family

ID=32953134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003024662A Withdrawn JP2004234524A (en) 2003-01-31 2003-01-31 Gloss expression method

Country Status (1)

Country Link
JP (1) JP2004234524A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7121224B1 (en) * 2022-03-01 2022-08-17 ファナック株式会社 Display device and computer program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7121224B1 (en) * 2022-03-01 2022-08-17 ファナック株式会社 Display device and computer program
WO2023166560A1 (en) * 2022-03-01 2023-09-07 ファナック株式会社 Display device and computer program

Similar Documents

Publication Publication Date Title
JP5195306B2 (en) Material information data acquisition device and display control system including the same
US8493618B2 (en) Color processing apparatus and method that calculate and combine color data of diffuse reflection in a line-of-sight direction and color data of specular reflection in a line-of-sight direction, and that convert the combined color data to color data in a color space of a monitor
JP2006215756A (en) Image processing apparatus, image processing method, and program for the same
US9323490B2 (en) Image processing apparatus and image processing method
JP5615041B2 (en) Image processing apparatus and image processing method
Menk et al. Visualisation techniques for using spatial augmented reality in the design process of a car
JP4960840B2 (en) Image processing apparatus and image processing method
JP5635810B2 (en) Image processing apparatus and method
JP5661381B2 (en) Image processing apparatus and method
JP2004252603A (en) Three-dimensional data processing method
JP5474113B2 (en) Image processing apparatus and image processing method
JP4477951B2 (en) Makeup simulation device
JP2004234524A (en) Gloss expression method
JP2020182074A (en) Image processing apparatus and image processing program
JP4764963B2 (en) Image processing device
JP4615430B2 (en) Image generation apparatus, image generation method, and image generation program
JP7271888B2 (en) Image processing device and program
Gigilashvili et al. Appearance manipulation in spatial augmented reality using image differences
JP6977416B2 (en) Image processing equipment, information processing equipment and programs
JPH11232430A (en) Color changing method for object image
JP7421607B2 (en) Image processing device and method
JP7020075B2 (en) Image processing equipment and programs
US20230298248A1 (en) Texture Interpolation
Chen et al. The effect of display capabilities on the gloss consistency between real and virtual objects
JP2003168129A (en) Method, program, apparatus and system for three- dimensional image processing

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060404