JP2004233387A - Projection device - Google Patents
Projection device Download PDFInfo
- Publication number
- JP2004233387A JP2004233387A JP2003018233A JP2003018233A JP2004233387A JP 2004233387 A JP2004233387 A JP 2004233387A JP 2003018233 A JP2003018233 A JP 2003018233A JP 2003018233 A JP2003018233 A JP 2003018233A JP 2004233387 A JP2004233387 A JP 2004233387A
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- crystal panel
- light
- light source
- radiator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Projection Apparatus (AREA)
- Liquid Crystal (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、スクリーンに画像を表示する投写装置に関する。
【0002】
【従来の技術】
図5は、従来の投写装置の内部を示す平面図である(例えば、特許文献1参照)。キャビネット(2)内には、光源(1)が設けられ、該光源(1)から発せられる不定偏光はリフレクタ(10)に反射されて直進する。光源(1)からの光路上には、複数の凸レンズを縦横に配列して構成されるレンズアレイ体(3)(30)、光路に対して傾いたダイクロイックミラー(60)(61)、R、G、Bの3原色に対応した3つの液晶パネル(7)(7a)(7b)及び全反射ミラー(62)(63)(64)(65)が設けられている。キャビネット(2)の前端部には、色合成プリズム(66)及び投写レンズ(6)が設けられ、キャビネット(2)の前方には、投写レンズ(6)に対向してスクリーン(20)が配備されている。
【0003】
光源(1)側のダイクロイックミラー(60)は赤色光のみを通過させ、該通過光は全反射ミラー(65)で反射されて、赤色光用の液晶パネル(7)を照射する。一方、ダイクロイックミラー(60)により反射された光のうち、ダイクロイックミラー(61)により緑色光が反射され、該反射光は緑色光用の液晶パネル(7a)を照射する。また、ダイクロイックミラー(61)を通過した青色光は、全反射ミラー(63)(64)により反射された後に、青色光用の液晶パネル(7b)を照射する。赤色光用、緑色光用、青色光用の液晶パネル(7)(7a)(7b)を通過した光は、色合成プリズム(66)に入射する。該色合成プリズム(66)にて、赤、青、緑の各光に対応した画像が合成され、投写レンズ(6)によりスクリーン(20)に照射される。
【0004】
液晶パネル(7)は、光源(1)からの光を受けて温度上昇するから、冷却する必要がある。図6は、液晶パネル(7)を空冷する構造の分解斜視図であり、図7は、図6をA−A線を含む面にて破断した断面図である。液晶パネル(7)は、多数のフィン(40)(40)を形成した放熱体(4)に挟まれ、該放熱体(4)の外側に偏光板(73)(74)が貼り付けられる。周知の如く、液晶パネル(7)は光源(1)からの不定偏光のうち、一方の偏光しか通さない。液晶パネル(7)は周知の如く、透明な基板(70)(71)を重ね、両基板(70)(71)間に液晶分子(図示せず)を封入して構成される。
液晶パネル(7)は、図8に示すように、一般に金属製の枠体(78)に収納される。
【0005】
【特許文献1】
特開2000−147472号(第1図)
【0006】
【発明が解決しようとする課題】
近年、投写画像の高輝度化が求められ、光源(1)に高出力が求められている。具体的には、7−8年前に比して、約20倍程度の4000ルーメン程度の明るさが求められている。従って、光源(1)に照射される液晶パネル(7)が温度上昇し易くなっており、より効果的な冷却構造が求められている。
出願人は、この冷却構造を種々検討していたところ、金属製の枠体(78)に放熱体(4)を取り付けていることにより、熱伝導効率が低下していることを発見した。
本発明の目的は、液晶パネルをより効率的に冷却することにある。
【0007】
【課題を解決する為の手段】
液晶パネル(7)の基板(70)(71)は、一対の放熱体(4)(5)に直接挟持され、偏光板(73)(74)は各放熱体(4)(5)内に設けられている。
【0008】
【作用及び効果】
基板(70)(71)は、放熱体(4)(5)に直接挟持されるから、従来のように、枠体(78)を介して液晶パネル(7)を保持する構造に比して、熱伝導効率が改善される。これにより、液晶パネル(7)をより効率的に冷却でき、光源(1)の高出力化に対応できる。
【0009】
【発明の実施の形態】
(全体構成)
以下、本発明の一例を図を用いて詳述する。
図1は、投写装置の内部を示す平面図である。キャビネット(2)の後端部には、光源(1)が設けられ、該光源(1)から発せられる不定偏光はリフレクタ(10)に反射されて直進する。光源(1)からの光路上には、紫外線及び赤外線を除去するカットフィルタ(11)、複数の凸レンズを縦横に配列して構成されるレンズアレイ体(3)(30)、入射する光をP波又はS波の何れかに揃えて出射する偏光ビームスプリッタ(85)、光路に対して傾いたダイクロイックミラー(60)(61)、R、G、Bの3原色に対応した3つの液晶パネル(7)(7a)(7b)及び全反射ミラー(62)(64)(65)が設けられている。
キャビネット(2)の前端部には、投写レンズ(6)が設けられ、キャビネット(2)の前方には、投写レンズ(6)に対向してスクリーン(20)が配備されている。ダイクロイックミラー(60)(61)から投写レンズ(6)に至るまでの光路は、従来と同じである。
【0010】
本例にあっては、液晶パネル(7)を冷却する構成に特徴がある。図2は、液晶パネル(7)(7a)(7b)を冷却する放熱体(4)(5)の平面図であり、図3は、図2の正面図である。
3つの液晶パネル(7)(7a)(7b)は、夫々色合成プリズム(66)の各面に貼り付けられたベースプレート(9)に出射側放熱体(5)を介して、取り付けられる。該出射側放熱体(5)は多数のフィン(40)(40)を横に並べて構成され、内部に出射側偏光板(73)が設けられている。
液晶パネル(7)(7a)(7b)を挟んで出射側偏光板(5)の反対側には、入射側放熱体(4)が取り付けられ、該入射側放熱体(4)の内部に入射側偏光板(74)が設けられている。液晶パネル(7)は両放熱体(4)(5)に挟まれ、ネジ(54)によって両放熱体(4)(5)は固定される。色合成プリズム(66)及び液晶パネル(7)(7a)(7b)の下方には、軸流タイプのファン(55)が設けられ、液晶パネル(7)(7a)(7b)は空冷される。ファン(55)は、軸流ファンに代えて、シロッコファンでもよい。
【0011】
液晶パネル(7)(7a)(7b)を色合成プリズム(66)に取り付けるには、以下の手順で行う。先ず、緑色光用の液晶パネル(7a)の画面中心と色合成プリズム(66)の光軸を一致させ、ベースプレート(9)と出射側放熱体(5)とを半田又は接着剤により固定する。
次に、緑色光用の液晶パネル(7a)の表示画面を基準として、赤色光用の液晶パネル(7)のコンバージェンス調整及びバックフォーカス調整を行う。ここでコンバージェンス調整とは、赤色光用の液晶パネル(7)を光軸に直交した面内にて上下移動且つ回動させ、該液晶パネル(7)の光軸を、緑色光用の液晶パネル(7a)の光軸に一致させる調整を指す。また、バックフォーカス調整とは、投写レンズ(6)から液晶パネル(7)までの距離を微調整し、スクリーン(20)上に画像を正確に写す調整を指す(特許第3357843号参照)。
コンバージェンス調整及びバックフォーカス調整後に、ベースプレート(9)と出射側放熱体(5)とを半田又は接着剤により固定する。青色光用の液晶パネル(7b)についても同様に、コンバージェンス調整及びバックフォーカス調整後に、ベースプレート(9)と出射側放熱体(5)とを半田又は接着剤により固定する。尚、青色光用の液晶パネル(7b)と赤色光用の液晶パネル(7)は、どちらを先に調整してもよい。
【0012】
各偏光板(73)(74)は、例えばサファイアガラス等の熱伝導率の高い部材から形成されており、熱伝導率は40−45W/mKに設定されている。放熱体(4)(5)は、アルミダイカストから形成され、熱伝導率は約200W/mKと比較的高い。偏光板(73)(74)は熱伝導製の高いシリコン系の接着剤にて放熱体(4)(5)に接着し、放熱効果を高めている。
【0013】
図4に示すように、入射側放熱体(4)及び出射側放熱体(5)内に、偏光板(73)(74)に加えて、更なる光学部材(8)を設けてもよい。光学部材(8)は、1−2ミリの間隔を開けて偏光板(73)(74)に略平行に対向している。光学部材(8)には、例えば追加の偏光板、視野角拡大フィルムが該当する。ここで、視野角拡大フィルムとは、内部に封入された液晶分子の配向角が、フィルムの厚み方向に沿って連続的に変化している光学補償フィルムであり、これにより、液晶パネル(7)を斜め前から見ても、画像が鮮明に見える。視野角拡大フィルム内に封入される液晶分子には、円盤状のディスクティック液晶を用いることができる。
尚、図4にあっては、説明の便宜上、緑色光に対応した液晶パネル(7a)しか図示しないが、赤色光及び青色光に対応した液晶パネル(7)(7b)に取り付けられる放熱体(4)(5)内に光学部材(8)を設けてもよい。
【0014】
基板(70)(71)は、放熱体(4)(5)に直接挟持されるから、従来のように、枠体(78)を介して液晶パネル(7)を保持する構造に比して、熱伝導効率が改善される。これにより、液晶パネル(7)をより効率的に冷却でき、光源(1)の高出力化に対応できる。
【0015】
上記実施例の説明は、本発明を説明するためのものであって、特許請求の範囲に記載の発明を限定し、或は範囲を減縮する様に解すべきではない。又、本発明の各部構成は上記実施例に限らず、特許請求の範囲に記載の技術的範囲内で種々の変形が可能であることは勿論である。
【図面の簡単な説明】
【図1】投写装置の内部を示す平面図である。
【図2】液晶パネルを冷却する放熱体の平面図である。
【図3】図2の正面図である。
【図4】別の放熱体の平面図である。
【図5】従来の投写装置の内部を示す平面図である。
【図6】液晶パネルを空冷する構造の分解斜視図である。
【図7】図6をA−A線を含む面にて破断した断面図である。
【図8】従来の液晶パネルの斜視図である。
【符号の説明】
(1) 光源
(2) キャビネット
(4) 放熱体
(5) 放熱体
(7) 液晶パネル
(9) ファン[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a projection device that displays an image on a screen.
[0002]
[Prior art]
FIG. 5 is a plan view showing the inside of a conventional projection device (for example, see Patent Document 1). A light source (1) is provided in the cabinet (2), and the indeterminate polarized light emitted from the light source (1) is reflected by a reflector (10) and travels straight. On the optical path from the light source (1), a lens array body (3) (30) configured by arranging a plurality of convex lenses vertically and horizontally, dichroic mirrors (60) (61) inclined with respect to the optical path, R, Three liquid crystal panels (7) (7a) (7b) corresponding to the three primary colors G and B and total reflection mirrors (62) (63) (64) (65) are provided. A color combining prism (66) and a projection lens (6) are provided at the front end of the cabinet (2), and a screen (20) is provided in front of the cabinet (2) so as to face the projection lens (6). Have been.
[0003]
The dichroic mirror (60) on the side of the light source (1) allows only red light to pass therethrough, and the passed light is reflected by the total reflection mirror (65) to irradiate the liquid crystal panel (7) for red light. On the other hand, of the light reflected by the dichroic mirror (60), green light is reflected by the dichroic mirror (61), and the reflected light illuminates the liquid crystal panel (7a) for green light. The blue light that has passed through the dichroic mirror (61) is reflected by the total reflection mirrors (63) and (64) and then irradiates the blue light liquid crystal panel (7b). Light that has passed through the liquid crystal panels (7), (7a), and (7b) for red light, green light, and blue light enters the color combining prism (66). An image corresponding to each of red, blue and green lights is synthesized by the color synthesizing prism (66), and is projected onto the screen (20) by the projection lens (6).
[0004]
Since the temperature of the liquid crystal panel (7) rises in response to the light from the light source (1), it needs to be cooled. FIG. 6 is an exploded perspective view of a structure for air-cooling the liquid crystal panel (7), and FIG. 7 is a cross-sectional view of FIG. 6 cut along a plane including the line AA. The liquid crystal panel (7) is sandwiched between radiators (4) formed with a number of fins (40) (40), and polarizing plates (73) (74) are attached to the outside of the radiators (4). As is well known, the liquid crystal panel (7) transmits only one of the indeterminate polarized lights from the light source (1). As is well known, the liquid crystal panel (7) is formed by stacking transparent substrates (70) and (71) and sealing liquid crystal molecules (not shown) between the substrates (70) and (71).
The liquid crystal panel (7) is generally housed in a metal frame (78) as shown in FIG.
[0005]
[Patent Document 1]
JP-A-2000-147472 (FIG. 1)
[0006]
[Problems to be solved by the invention]
In recent years, higher brightness of a projected image has been demanded, and a higher output has been demanded of the light source (1). Specifically, a brightness of about 4000 lumens, which is about 20 times that of 7 to 8 years ago, is required. Therefore, the temperature of the liquid crystal panel (7) irradiated to the light source (1) is easily increased, and a more effective cooling structure is required.
The applicant has studied the cooling structure in various ways, and found that the heat transfer efficiency was reduced by attaching the heat radiator (4) to the metal frame (78).
An object of the present invention is to cool a liquid crystal panel more efficiently.
[0007]
[Means for solving the problem]
The substrates (70) and (71) of the liquid crystal panel (7) are directly sandwiched between the pair of heat radiators (4) and (5), and the polarizing plates (73) and (74) are placed in the respective heat radiators (4) and (5). Is provided.
[0008]
[Action and effect]
Since the substrates (70) and (71) are directly sandwiched between the heat radiators (4) and (5), compared with the conventional structure in which the liquid crystal panel (7) is held via the frame (78). , Heat conduction efficiency is improved. Thereby, the liquid crystal panel (7) can be cooled more efficiently, and the output of the light source (1) can be increased.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
(overall structure)
Hereinafter, an example of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a plan view showing the inside of the projection device. A light source (1) is provided at the rear end of the cabinet (2), and the indeterminate polarized light emitted from the light source (1) is reflected by the reflector (10) and travels straight. On the optical path from the light source (1), a cut filter (11) for removing ultraviolet rays and infrared rays, a lens array body (3) (30) constituted by arranging a plurality of convex lenses vertically and horizontally, A polarization beam splitter (85) that emits light in accordance with either a wave or an S wave, dichroic mirrors (60) and (61) that are inclined with respect to the optical path, and three liquid crystal panels corresponding to the three primary colors of R, G, and B ( 7) (7a) (7b) and total reflection mirrors (62) (64) (65) are provided.
A projection lens (6) is provided at a front end of the cabinet (2), and a screen (20) is provided in front of the cabinet (2) so as to face the projection lens (6). The optical path from the dichroic mirrors (60) and (61) to the projection lens (6) is the same as the conventional one.
[0010]
The present embodiment is characterized in that the liquid crystal panel (7) is cooled. FIG. 2 is a plan view of the radiators (4) and (5) for cooling the liquid crystal panels (7), (7a) and (7b), and FIG. 3 is a front view of FIG.
The three liquid crystal panels (7), (7a) and (7b) are attached to the base plate (9) attached to the respective surfaces of the color combining prism (66) via the emission side radiator (5). The emission-side heat radiator (5) is formed by arranging a number of fins (40) (40) side by side, and an emission-side polarizing plate (73) is provided inside.
An incident side radiator (4) is attached to the opposite side of the output side polarizing plate (5) with the liquid crystal panels (7), (7a) and (7b) interposed therebetween. A side polarizing plate (74) is provided. The liquid crystal panel (7) is sandwiched between both radiators (4) and (5), and the radiators (4) and (5) are fixed by screws (54). An axial flow type fan (55) is provided below the color combining prism (66) and the liquid crystal panels (7), (7a) and (7b), and the liquid crystal panels (7), (7a) and (7b) are air-cooled. . The fan (55) may be a sirocco fan instead of an axial fan.
[0011]
In order to attach the liquid crystal panels (7) (7a) (7b) to the color combining prism (66), the following procedure is performed. First, the center of the screen of the liquid crystal panel (7a) for green light is made to coincide with the optical axis of the color combining prism (66), and the base plate (9) and the emission side radiator (5) are fixed with solder or an adhesive.
Next, the convergence adjustment and the back focus adjustment of the liquid crystal panel (7) for red light are performed with reference to the display screen of the liquid crystal panel (7a) for green light. Here, the convergence adjustment means that the liquid crystal panel (7) for red light is moved up and down and rotated in a plane perpendicular to the optical axis, and the optical axis of the liquid crystal panel (7) is changed to the liquid crystal panel for green light. (7a) refers to adjustment to match the optical axis. In addition, the back focus adjustment refers to an adjustment for finely adjusting the distance from the projection lens (6) to the liquid crystal panel (7) to accurately project an image on the screen (20) (see Japanese Patent No. 3357843).
After the convergence adjustment and the back focus adjustment, the base plate (9) and the emission side radiator (5) are fixed by solder or an adhesive. Similarly, for the blue light liquid crystal panel (7b), after the convergence adjustment and the back focus adjustment, the base plate (9) and the emission-side heat radiator (5) are fixed with solder or an adhesive. Either the liquid crystal panel (7b) for blue light or the liquid crystal panel (7) for red light may be adjusted first.
[0012]
Each of the polarizing plates (73) and (74) is formed of a member having a high thermal conductivity such as sapphire glass, and the thermal conductivity is set to 40 to 45 W / mK. The radiators (4) and (5) are made of aluminum die-cast, and have a relatively high thermal conductivity of about 200 W / mK. The polarizing plates (73) and (74) are bonded to the radiators (4) and (5) with a high thermal conductive silicon-based adhesive to enhance the heat radiation effect.
[0013]
As shown in FIG. 4, an additional optical member (8) may be provided in addition to the polarizing plates (73) and (74) in the incident side radiator (4) and the exit side radiator (5). The optical member (8) faces the polarizing plates (73) and (74) substantially in parallel with an interval of 1-2 mm. The optical member (8) corresponds to, for example, an additional polarizing plate or a viewing angle widening film. Here, the viewing angle widening film is an optical compensation film in which the orientation angle of the liquid crystal molecules sealed therein changes continuously along the thickness direction of the film. The image looks sharp even when viewed diagonally from the front. Discotic liquid crystals having a disc shape can be used as the liquid crystal molecules sealed in the viewing angle widening film.
In FIG. 4, for convenience of explanation, only a liquid crystal panel (7a) corresponding to green light is shown, but a radiator (7) (7b) attached to liquid crystal panels (7) (7b) corresponding to red light and blue light is illustrated. 4) An optical member (8) may be provided in (5).
[0014]
Since the substrates (70) and (71) are directly sandwiched between the heat radiators (4) and (5), the liquid crystal panel (7) is held via the frame (78) as in the related art. , Heat conduction efficiency is improved. As a result, the liquid crystal panel (7) can be cooled more efficiently, and the output of the light source (1) can be increased.
[0015]
The description of the above embodiments is intended to explain the present invention, and should not be construed as limiting the invention described in the claims or reducing the scope thereof. Further, the configuration of each part of the present invention is not limited to the above-described embodiment, and it is needless to say that various modifications can be made within the technical scope described in the claims.
[Brief description of the drawings]
FIG. 1 is a plan view showing the inside of a projection device.
FIG. 2 is a plan view of a radiator that cools a liquid crystal panel.
FIG. 3 is a front view of FIG. 2;
FIG. 4 is a plan view of another radiator.
FIG. 5 is a plan view showing the inside of a conventional projection device.
FIG. 6 is an exploded perspective view of a structure for air-cooling a liquid crystal panel.
FIG. 7 is a cross-sectional view of FIG. 6 cut along a plane including line AA.
FIG. 8 is a perspective view of a conventional liquid crystal panel.
[Explanation of symbols]
(1) Light source (2) Cabinet (4) Heat radiator (5) Heat radiator (7) Liquid crystal panel (9) Fan
Claims (2)
液晶パネル(7)の基板(70)(71)は、一対の放熱体(4)(5)に直接挟持され、偏光板(73)(74)は各放熱体(4)(5)内に設けられたことを特徴とする投写装置。A cabinet (2) includes a light source (1) and a liquid crystal panel (7) irradiated with light from the light source (1) and having polarizing plates (73) and (74), and the liquid crystal panel (7) is transparent. The liquid crystal molecules are sealed between the transparent substrates (70) and (71), and the projection device is mounted on the heat radiator (4).
The substrates (70) and (71) of the liquid crystal panel (7) are directly sandwiched between the pair of heat radiators (4) and (5), and the polarizing plates (73) and (74) are placed in the respective heat radiators (4) and (5). A projection device, which is provided.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003018233A JP2004233387A (en) | 2003-01-28 | 2003-01-28 | Projection device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003018233A JP2004233387A (en) | 2003-01-28 | 2003-01-28 | Projection device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004233387A true JP2004233387A (en) | 2004-08-19 |
Family
ID=32948423
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003018233A Pending JP2004233387A (en) | 2003-01-28 | 2003-01-28 | Projection device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004233387A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006126582A (en) * | 2004-10-29 | 2006-05-18 | Nec Tokin Corp | Optical isolator |
US7528892B2 (en) | 2005-07-19 | 2009-05-05 | Sanyo Electric Co., Ltd. | Projector device |
-
2003
- 2003-01-28 JP JP2003018233A patent/JP2004233387A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006126582A (en) * | 2004-10-29 | 2006-05-18 | Nec Tokin Corp | Optical isolator |
US7528892B2 (en) | 2005-07-19 | 2009-05-05 | Sanyo Electric Co., Ltd. | Projector device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6844993B2 (en) | Optical device and projector having the optical device | |
US7961269B2 (en) | Optical modulation element unit, projection optical unit, and image projection apparatus | |
JP3608428B2 (en) | Projection display | |
JPH0792561B2 (en) | Projection liquid crystal display | |
JP2009047969A (en) | Projector and display apparatus | |
US20060262233A1 (en) | Liquid crystal projector | |
JP3448492B2 (en) | Liquid crystal panel and projection device using the liquid crystal panel | |
US6906840B1 (en) | Optical modulator, optical device having the optical modulator and projector having the same | |
JP3861596B2 (en) | Optical unit and video display device using the same | |
JP4366618B2 (en) | LCD projector | |
JP2004245914A (en) | Liquid crystal projector device and transparent plate used for same, and liquid crystal display panel | |
JP5740850B2 (en) | Light modulator and projector | |
JP2004233387A (en) | Projection device | |
JP2001201739A (en) | Projection mode video display device and optical parts | |
JP2002244214A (en) | Projector | |
JP3914834B2 (en) | Polarization conversion element and liquid crystal projector including the same | |
JP2009145444A (en) | Projector | |
JP3807239B2 (en) | projector | |
JP2004246178A (en) | Optical unit, projection type video display device and polarizing plate used therein | |
JP2004198596A (en) | Polarizer and projector | |
JP2012022118A (en) | Projector | |
JP2002131541A (en) | Polarizing plate and liquid crystal projector using the same | |
KR100676977B1 (en) | Lcos panel assembly of projection system | |
JP2008039835A (en) | Liquid crystal projector | |
JP2003228024A (en) | Optical device and projector using the optical device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040810 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060710 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060808 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061002 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061002 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070904 |