JP2004233250A - Distance measuring device - Google Patents

Distance measuring device Download PDF

Info

Publication number
JP2004233250A
JP2004233250A JP2003023853A JP2003023853A JP2004233250A JP 2004233250 A JP2004233250 A JP 2004233250A JP 2003023853 A JP2003023853 A JP 2003023853A JP 2003023853 A JP2003023853 A JP 2003023853A JP 2004233250 A JP2004233250 A JP 2004233250A
Authority
JP
Japan
Prior art keywords
light
sampling
light receiving
light emitting
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003023853A
Other languages
Japanese (ja)
Inventor
Hisanori Imai
寿教 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Industrial Devices SUNX Co Ltd
Original Assignee
Sunx Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sunx Ltd filed Critical Sunx Ltd
Priority to JP2003023853A priority Critical patent/JP2004233250A/en
Publication of JP2004233250A publication Critical patent/JP2004233250A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a distance measuring device capable of measuring the distance surely even if the reflectivity of a detection object is low, in a constitution for measuring the distance to the detection object based on the ratio of the total receiving quantity of light irradiated onto a detection region. <P>SOLUTION: A first floodlighting means 1 irradiates focusing light toward the detection region, and a second floodlighting means 2 irradiates diffuse light. In this case, since the focusing light on one side and the diffuse light on the other side are changed differently according to the distance to the detection object, a control means 3 can determine the distance to the detection object based on the ratio of the light receiving quantity corresponding to each floodlighting means 1, 2 from a sampling means 5. When the light receiving quantity is below a prescribed level, since the sampling time of the sampling means 5 is adjusted in the state where the primary ratio is maintained in the state where the detection object is positioned on the farthest position on the detection region, a signal can be amplified without being influenced by a noise, and the distance to the detection object can be surely measured. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、性質の異なる投光或は受光を利用して検出領域に位置する物体までの距離を測定する距離測定装置に関する。
【0002】
【従来の技術】
物体までの距離を測定する距離測定装置として特開2000−46516号が開示されている。このものは、光芒が異なる2つの投光手段から拡散光と略平行光とを検出領域に向けて照射し、被検出物体で反射した各反射光を1つの受光手段で受光し、その受光量の比を求めることで、物体の反射率による影響を防止しながら距離測定するものである。
【0003】
【特許文献1】特開2000−46516号公報
【0004】
【発明が解決しようとする課題】
しかしながら、被検出物体の反射率が低い場合には、被検出物体に照射されて反射する拡散光の受光量が略平行光の受光量よりも小さいことから、その受光量の検出がノイズの影響を受けやすくなり、両方の受光量の比の判定精度が低下するという問題がある。
【0005】
このような問題に対する対策として、拡散光の光量を増大することも考えられるが、それでは、投光手段を構成する投光素子の劣化が早まってしまうので、投光量を増大することには限界があり、結局、距離測定の精度を高めることは困難であるのが実情である。
【0006】
本発明は上記事情に鑑みてなされたもので、その目的は、検出領域に照射された光の総受光量の比に基づいて被検出物体までの距離を測定する構成において、被検出物体の反射率が低くとも確実に距離を測定することができる距離測定装置を提供することにある。
【0007】
【課題を解決するための手段】
本発明は、異なる光芒の光を検出領域に向けて異なるタイミングで交互に照射する第1投光手段及び第2投光手段と、これらの投光手段から照射され検出領域に位置する被検出物体で反射した光を受光する受光手段と、前記各投光手段の投光タイミングに応じて前記受光手段から出力される受光信号を所定期間サンプリングすることにより総受光量を得るサンプリング手段と、このサンプリング手段により前記第1投光手段及び第2投光手段の投光タイミングに応じてサンプリングされた総受光量の比を演算する演算手段と、この演算手段が演算した比に基づいて被検出物体までの距離を測定する測定手段と、前記サンプリング手段が前記各投光手段の投光タイミングに応じてサンプリングした総受光量が所定レベルよりも低い場合は、総受光量の比を維持しながら前記総受光量が所定レベルを上回るまで前記サンプリング手段によるサンプリング時間を調整する制御手段とから構成されているものである(請求項1)。
【0008】
このような構成によれば、第1投光手段と第2投光手段からの光芒は異なっているので、受光手段からの受光信号レベルは被検出物体の検出距離に応じて異なっている。従って、サンプリング手段が第1投光手段及び第2投光手段の投光タイミングに応じて受光手段からの受光信号を所定期間サンプリングすることにより得た総受光量は、被検出物体までの距離に応じて異なっているので、演算手段がそれらの総受光量の比を求めることにより、測定手段は被検出物体までの距離を被検出物体の反射率の影響を受けることなく測定することができる。
【0009】
ところで、被検出物体の反射率が低い場合は、総受光量が不足してしまい、検出距離の測定の精度が低下する。
そこで、制御手段は、総受光量が所定レベルよりも低い場合は、総受光量の比を維持しながら前記総受光量が所定レベルを上回るまでサンプリング手段によるサンプリング時間を調整する。これにより、総受光量の比を維持しながら総受光量を高めることができるので、ノイズの影響を受けることなく被検出物体までの距離を確実に測定することができる。
【0010】
本発明は、異なる光芒の光を検出領域に向けて異なるタイミングで交互に照射する第1投光手段及び第2投光手段と、これらの投光手段から照射され検出領域に位置する被検出物体で反射した光を受光する受光手段と、前記各投光手段の投光タイミングに応じて前記受光手段から出力される受光信号を所定期間サンプリングすることにより総受光量を得るサンプリング手段と、このサンプリング手段により前記第1投光手段及び第2投光手段の投光タイミングに応じてサンプリングされた総受光量の比を演算する演算手段と、この演算手段が演算した比に基づいて被検出物体までの距離を測定する測定手段と、外部操作可能に設けられ、前記サンプリング手段のサンプリング時間を設定する設定手段と、この設定手段に設定されたサンプリング時間となるように前記サンプリング手段のサンプリング時間を調整する制御手段とから構成され、前記サンプリング手段が前記各投光手段の投光タイミングに応じてサンプリングした総受光量が所定レベルよりも低い場合は、総受光量の比を維持しながら前記サンプリング手段による総受光量が所定レベルを上回るまで前記設定手段を外部操作するようにしたものである(請求項2)。
【0011】
このような構成によれば、サンプリング手段が得た総受光量が低い場合は、設定手段に対する外部操作によりサンプリング手段のサンプリング時間を長く設定する。すると、制御手段がサンプリング手段のサンプリング時間を調整するので、総受光量の比を維持しながらサンプリング手段による総受光量が所定レベルを上回るまで設定手段を外部操作する。従って、ノイズなどの影響で誤ってサンプリング時間が可変されることがなく、被検出物体までの距離を確実に測定することができる。
【0012】
上記各構成において、検出領域の最遠位置に被検出物体が位置した状態で、当該最遠位置に対応した総受光量の比を維持しながらサンプリング時間を調整するのが望ましい(請求項3)。
このような構成によれば、検出領全体にわたって総受光量の比を維持しながら総受光量を所定レベル以上とすることができる。
【0013】
また、前記第1投光手段は、検出領域へ向けて光芒が収束する集束光を照射するように構成され、前記第2投光手段は、検出領域へ向けて光芒が拡散する拡散光を照射するように構成されていてもよい(請求項4)。
このような構成によれば、一方の光芒が集束光で、他方の光芒が拡散光であるので、総受光量の比を最大に設定することができ、検出距離の分解能を高めることができる。
【0014】
また、前記第1投光手段及び前記第2投光手段の投光領域並びに前記受光手段の受光領域は、各光軸が略同軸上に設定されていてもよい(請求項5)。
このような構成によれば、各投光領域及び受光領域が略同軸上に設定されているので、各領域が重なる検出領域を広く設定することができる。
【0015】
また、前記第1投光手段の投光領域と前記受光手段の受光領域とは略同一領域となるように設定され、前記第2投光手段は、前記第1投光手段の投光領域と交差する投光領域となるように各光軸が交差して設定されていてもよい(請求項6)。
このような構成によれば、構造上の制約がなくなり、設計の自由度を高めることができるので、安価且つ簡単に製作することができる。
【0016】
本発明は、所定光芒の光を検出領域に向けて照射する投光手段と、検出領域に異なる受光領域が設定され、前記投光手段から照射され検出領域に位置する被検出物体で反射した光を受光する第1受光手段及び第2受光手段と、これらの受光手段から出力される受光信号を所定期間サンプリングすることにより総受光量を得るサンプリング手段と、このサンプリング手段によりサンプリングされた前記第1受光手段及び第2受光手段の総受光量の比を演算する演算手段と、この演算手段が演算した比に基づいて被検出物体までの距離を測定する測定手段と、前記サンプリング手段が前記投光手段の投光タイミングに応じてサンプリングした総受光量が所定レベルよりも低い場合は、総受光量の比を維持しながら前記総受光量が所定レベルを上回るまで前記サンプリング手段によるサンプリング時間を調整する制御手段とから構成されているものである(請求項7)。
【0017】
このような構成によれば、投光手段からの投光を検出領域において異なる受光領域で受光する2つの受光手段からの受光信号をサンプリング手段でサンプリングし、それらの総受光量の比を演算手段で演算することにより、測定手段は被検出物体までの距離を測定することができる。
【0018】
ここで、サンプリング手段による総受光量が所定レベルよりも低い場合は、総受光量の比を維持しながら総受光量が所定レベルを上回るまでサンプリング手段によるサンプリング時間を調整するので、被検出物体までの距離を確実に検出できるようになる。
【0019】
本発明は、所定光芒の光を検出領域に向けて照射する投光手段と、検出領域に異なる受光領域が設定され、前記投光手段から照射され検出領域に位置する被検出物体で反射した光を受光する第1受光手段及び第2受光手段と、これらの受光手段から出力される受光信号を所定期間サンプリングすることにより総受光量を得るサンプリング手段と、このサンプリング手段によりサンプリングされた前記第1受光手段及び第2受光手段の総受光量の比を演算する演算手段と、この演算手段が演算した比に基づいて被検出物体までの距離を測定する測定手段と、外部操作可能に設けられ、前記サンプリング手段のサンプリング時間を設定する設定手段と、この設定手段に設定されたサンプリング時間となるように前記サンプリング手段のサンプリング時間を調整する制御手段とから構成され、前記サンプリング手段が前記投光手段の投光タイミングに応じてサンプリングした総受光量が所定レベルよりも低い場合は、総受光量の比を維持しながら前記サンプリング手段による総受光量が所定レベルを上回るまで前記設定手段を外部操作するものである(請求項8)。
このような構成によれば、外部操作により総受光量を調整することができる。
【0020】
上記各構成において、検出領域の最遠位置に被検出物体が位置した状態で、当該最遠位置に対応した総受光量の比を維持しながらサンプリング時間を調整するのが望ましい(請求項9)。
このような構成によれば、検出領域全体にわたって総受光量の比を維持しながら総受光量を所定レベル以上とすることができる。
【0021】
前記第1受光手段は、検出領域へ向けて受光領域が収束するように構成され、前記第2投光手段は、検出領域へ向けて受光領域が拡散するように構成されていてもよい(請求項10)。
このような構成によれば、一方の受光領域が収束し、他方の受光領域が拡散するので、総受光量の比を最大に設定することができ、検出距離の分解能を高めることができる。
【0022】
また、前記投光手段の投光領域と前記第1受光手段及び第2受光手段の受光領域は、各光軸が略同軸上に設定されていてもよい(請求項11)。
このような構成によれば、各投光領域及び受光領域が略同軸上に設定されているので、各領域が重なる検出領域を広く設定することができる。
【0023】
また、前記投光手段の投光領域と前記第1受光手段の受光領域とは略同一領域となるように各光軸が同軸上に設定され、前記第2受光手段は、前記投光手段の投光領域と交差する受光領域となるように各光軸が交差して設定されていてもよい(請求項12)。
このような構成によれば、構造上の制約がなくなり、設計の自由度を高めることができので、安価且つ簡単に製作することができる。
【0024】
【発明の実施の形態】
(第1の実施の形態)
以下、本発明の第1の実施の形態を図1ないし図7に基づいて説明する。
図1は、距離測定装置の構成を概略的に示すブロック図である。この図1において、第1投光手段1及び第2投光手段2は、制御手段(演算手段、測定手段を兼ねる)3からの駆動信号が与えられたときは所定光芒の光を前方に異なるタイミングで照射するようになっている。受光手段4は、受光した光を受光信号に変換してサンプリング手段5に出力する。サンプリング手段5は、制御手段3からのサンプリング信号に応じた所定期間だけ受光手段4からの受光信号を積分することにより総受光量(以下、単に受光量という)を求めると共に、サンプリング信号の終了タイミングから所定期間だけ受光量をホールドした状態で制御手段3に出力する。
【0025】
図2は、距離測定装置の電気的構成を示すブロック図である。この図2において、第1投光手段1は、投光素子6と収束レンズ7とから構成されており、投光素子6からの光を収束レンズ7で収束した収束光を検出領域に照射する。
【0026】
第2投光手段2は投光素子8から構成されており、投光素子8からの拡散光を検出領域に照射する、この場合、第1投光手段1の光軸と第2投光手段2の光軸とは交差しており、第2投光手段2からの光が収束レンズ7に照射されないように構成されている。本実施の形態では、上述した収束光と拡散光が本発明でいう「異なる光芒の光」に相当する。要するに、異なる光芒とは光の照射幅が異なることで、これにより互いの受光量の距離に対する変化の度合いが異なり、受光量の比が距離に応じて変化するのである。このような「異なる光芒の光」とは、収束光と拡散光に限らず、収束光と平行光、或は平行光と拡散光といった組合せでもよい。
【0027】
受光手段4は受光素子9から構成されており、その受光素子9が第1投光手段1を構成する投光素子6と隣接して配置されている。従って、第1投光手段1を構成する収束レンズ7を介して光を集光状態で受光するようになっており、受光手段4の受光領域は、第1投光手段1と略同軸上に設定されて投光領域と略重なるように設定されている。
【0028】
サンプリング手段5は、ゲート回路10、積分回路11及びサンプルホールド回路12から構成されている。ゲート回路10は、制御手段3からの指令期間だけ受光素子9からの受光信号を通過する。積分回路11は、ゲート回路10を通過した受光信号を積分する。サンプルホールド回路12は、積分回路11で積分された受光積分レベルを制御手段3からの指令に応じて所定時間だけホールドする。この所定時間とは、後述するA/D変換回路がアナログ信号をデジタル信号に変換するのに十分な時間である。
【0029】
制御手段3は、CPU13を主体としてなり、A/D変換回路14、ROM15、モード切替スイッチ16、モニター用LED17からなる。CPU13は、第1,第2投光手段1,2を交互に投光駆動し、それぞれの投光タイミングに応じてサンプリング手段5に対してサンプル動作を行わせる。A/D変換回路14は、CPU13からの指令に応じてアナログ値である受光量をデジタル値に変換してCPU13へ出力する。そして、CPU13は、A/D変換回路14によりデジタル化された受光量を取込むと共に、それぞれの受光量の比を演算し、予め設定されたテーブルに基づいて受光量の比から被検出物体までの距離を求めるようになっている。
【0030】
尚、サンプリング手段5のサンプリング時間は、本距離測定装置を工場出荷する際に所定時間となるように調整されている。つまり、被検出物体として基準検出物体(例えば、無光沢白紙)を検出領域における最短位置から最遠位置まで順に位置させた状態で、第1,第2投光手段1,2を交互に駆動した駆動タイミングに応じてサンプリング手段5が検出した各受光量が距離測定に十分な所定レベル以上で、且つ受光量の比の変化が理想的な比の変化となるようなサンプリング時間S1,S2が予め設定されている。
【0031】
ROM15には、CPU13の動作用プログラムに加えて、上述のようにして求めた受光量の比と距離との関係を示すテーブルが予め記憶されている。
モード切替スイッチ16は、検出モードと設定モードとを切替えるものである。検出モードとは通常の検出動作を実行するモードであり、設定モードとはサンプリング時間の調整を行うモードである。
【0032】
次に上記構成の作用について説明する。
被検出物体までの距離を測定するには、モード切替スイッチ16を検出モードに切替えた状態で距離測定装置を駆動する。すると、CPU13は、モード切替スイッチ16が検出モードに切替えられた状態では、検出モードを実行する。
【0033】
図3は、CPU13の検出モードを示している。この図3において、CPU13は、第1投光手段1の投光素子6を駆動する(S101、図5(A)参照)。これにより、投光素子6から第1投光(集束光)が検出領域に向けて照射されるので、検出領域に被検出物体が存在する状態では、受光手段4が被検出物体で反射した光を受光するようになる(図5(C)参照)。
【0034】
CPU13は、第1投光手段1の駆動タイミングに応じて受光量を読取る(S102)。つまり、サンプリング手段5のゲート回路10を所定期間だけオンする。このゲート回路10のオン時間は、上述したように工場出荷時に予め設定されているサンプリング時間S1である(図5(D)参照)。これにより、積分回路11は、ゲート回路10を通過した受光信号を積分するので、受光信号は時間の経過に従って上昇して最終的に受光量D1に変換される(図5(E)参照)。この受光量D1は、A/D変換回路14においてデジタル値に変換され、CPU13は、そのデジタル値を読取ることになる。
【0035】
続いて、CPU13は、第2投光手段2を駆動すると共に(S103、図5(A)参照)、受光量D2を読取り(S104、図5(E)参照)、受光量D2が所定レベルDmを上回っていることを確認してから(S105:YES)、受光量D1,D2より受光量の比を求める(S106)。
【0036】
ここで、第1投光手段1からの第1投光は集束光であると共に、第1投光手段1の投光領域と受光手段4の受光領域は略重なっていることから、第1投光に対応した受光量D1は被検出物体までの距離の増加に対して減衰量が小さいのに対して(図7に破線で示す)、第2投光手段2からの第2投光は拡散光であるので、第2投光に対応した受光量D2は大きく減衰する(図7に実線で示す)。従って、各受光量D1,D2の比は被検出物体までの距離に応じて変化するので、それらの比からテーブルに基づいて被検出物体までの距離を求めることができる(S107)。この場合、被検出物体までの距離は、第1投光及び第2投光に対応した受光量の比D1/D2によって一義的に決まることから、被検出物体の反射率の影響を受けないのが特徴である。
【0037】
ところで、各受光量D1,D2が所定レベル以上の場合は、上述したようにして検出領域における全ての位置で被検出物体までの距離を精度よく検出することができるものの、被検出物体の反射率が低い場合は、受光量が過度に小さくなってノイズの影響を受けやすくなるので、受光量の比に基づく距離測定が不確実となる虞がある。そこで、CPU13は、第2投光に対応した受光量が所定レベルを下回った場合は、モニター用LED17によりエラーを報知する(S108)。
【0038】
尚、被検出物体の反射率が極端に低い場合は、第2投光に加えて第1投光に対応した受光量D1が所定レベルDmを下回ることがあるものの、第1投光に対応した受光量D1が所定レベルDmを下回るような場合は、第2投光に対応した受光量D2も必ず所定レベルDmを下回ることから、受光量の判断は第2投光に対応した受光量D2のみでよい。
【0039】
さて、以上のようにして距離測定装置のモニター用LED17によりエラーが報知された場合、使用者は、被検出物体を検出領域における最遠位置に位置させた状態でモード切替スイッチ16を設定モードに切替える。すると、CPU13は、モード切替スイッチ16が設定モードに切替えられ状態で、設定モードを実行するようになる。
【0040】
図4は、CPU13の設定モードを示している。この図4において、CPU13は、第2投光手段2を駆動すると共に(S201)、第2投光の投光タイミングに応じてサンプリング時間S2でもって受光量を読取る(S202)。これにより、第2投光手段2から第2投光(拡散光)が検出領域に向けて照射され、それに伴って被検出物体で第2投光が反射されるので、CPU13は、第2投光に対応した受光量D2を入力するようになる。このとき、受光量D2は、所定レベルDmよりも低くなる(図6(E)参照)。尚、被検出物体の反射率によっては、第1投光に対応した受光量D1も所定レベルDmよりも低くなることがある。
【0041】
ここで、CPU13は、第2投光に対応した受光量D2が所定レベルDmを下回っていることから(S203:NO)、第2投光手段2のサンプリング時間S2を所定時間αだけ延長し(S209)、受光量が所定レベルDm以上となったところで(図6(E’)参照)、そのサンプリング時間を第2投光のサンプリング時間S2として設定する(図4(D’)参照)。
【0042】
このとき、第2投光に対応した受光量D2のみが増大しているので、各投光に対応した受光量の比は本来の値(最遠位置に対応した受光量の比)から変化している。
そこで、CPU13は、上述したようにサンプリング時間S2の延長により第2投光に対応した受光量を増大したときは、最遠位置の受光量の比Xをテーブルから読み取り(S204)、第1投光手段1を駆動すると共に(S205)、第1投光手段1の投光タイミングに応じてサンプリング時間S1でもって受光を読取り(S206)、受光量の比D1/D2がX以上かを判断する(S207)。
【0043】
このとき、受光量の比D1/D2はXよりも小さいので(S207:NO)、第1投光のサンプリング時間S1を所定時間αだけ延長することにより第1投光に対応した受光量D1を増大し(S210)、受光量の比D1/D2がX以上となったところで(S207:YES、図6(E’)参照)、モニター用LED17により設定が終了したことを報知して(S208)、設定モードを終了する。
【0044】
尚、第1投光に対応した受光量D1が所定レベルDm以下であるにしても、第2投光に対応した受光量D2が所定レベルDm以上となるように調整された状態では、第1投光に対応した受光量D1は必ず所定レベルDm以上となることから、第1投光に対応した受光量D1が所定レベルDm以上となるかを判断する必要はない。
また、上述したようなサンプリング時間S1,S2の調整は、各投光に対応した受光信号が有効となっている期間内であるのは勿論である。
【0045】
そして、使用者は、モニター用LED17により設定の終了が報知されたときは、モード切替スイッチ16を操作して検出モードを設定する。
CPU13は、検出モードが設定されたときは、設定モードで設定したサンプリング時間S1,S2でもって第1、第2投光に対応した受光量D1,D2を検出し、それらの受光量の比からテーブルに基づいて被検出物体までの距離を求めるようになる。従って、検出領域に被検出物体が位置する場合においては、第1投光に対応した受光量D1は勿論のこと、第2投光に対応した受光量D2が所定レベルDm以上となることから、両方の受光量の比に基づいて被検出物体までの距離を精度よく測定することができる。
【0046】
尚、上述したようにしてサンプリング時間が基準のサンプリング時間よりも長く設定された状態で、反射率の高い被検出物体を検出する場合は、特には第1投光に対応した受光量が過度に高くなり、距離測定が不確実となることから、このような場合は、サンプリング時間を基準時間に復帰させるようになっている。
【0047】
このような実施の形態によれば、異なる光芒の第1投光及び第2投光に対応した受光量を求め、それらの受光量の比に基づいて被検出物体までの距離を求める構成において、受光量が所定レベル以下となるような場合は、設定モードを実行することにより各投光に対応した受光量D1,D2の比が当初の比を維持しながら受光量が所定レベルを上回るように受光信号のサンプリング時間S1,S2を調整するようにしたので、ノイズの影響を受けることなく信号の増幅を図ることができ、被検出物体までの距離を確実に測定することができる。
【0048】
しかも、距離によって受光レベルの比が大きく変化するほど、距離測定の分解能を高めることができることから、本実施の形態のように、受光レベルの比が大きく変化するように、一方を集束光、他方を拡散光とすることにより両方の光芒が大きく異なることが望ましい。
【0049】
また、第1投光手段1の光軸に対して第2投光手段2の光軸を交差するように設けたので、第1投光手段1と第2投光手段2とを並列する構成に比較して、第1投光手段1として収束レンズ7で光を収束する構成でありながら、収束レンズ7の影響を受けることなく第2投光手段2からの拡散光を検出領域に効率よく照射することができるので、設計の自由度を高めて、低コストで簡単に製作することができる。
【0050】
(第2の実施の形態)
次に、本発明の第2の実施の形態を図8に基づいて説明するに、第1の実施の形態と同一部分には同一符号を付して説明を省略する。この第2の実施の形態は、一方の光芒を略平行光としたことを特徴とする。
【0051】
第1投光手段1及び第2投光手段2の構成を示す図8において、第1投光手段1は、投光素子6とコリメータレンズ21とから構成されており、投光素子6からの光をコリメータレンズ21により平行光に変換する。つまり、一方を平行光、他方を拡散光とするものである。また、受光手段4の受光領域は、第1投光手段1の投光領域と略一致している。
【0052】
このような実施の形態によれば、投光手段1からの光の一方を平行光、他方を拡散光としたので、距離に対応した受光量の比の変化が小さくなり、それだけ、検出精度は低下するものの、反射率が低い被検出物体を検出することが可能となる。
【0053】
(第3の実施の形態)
次に本発明の第3の実施の形態を図9に基づいて説明する。この第3の実施の形態は、光ファイバを用いたことを特徴とする。
第1投光手段及び第2投光手段並びに受光手段を示す図9において、各手段を構成する各投光用光ファイバ31,32及び受光用光ファイバ33が隣接して構成されており、各光ファイバ31〜33の光軸は略同軸上に設定されている。この場合、各投光用光ファイバ31,32の投光領域及び受光用光ファイバ33の受光領域は光ファイバの開口角に依存しており、その特性は、光ファイバの種別によって設定することができる。
【0054】
このような実施の形態によれば、各投光用光ファイバ31,32及び受光用光ファイバ33の光軸を略同軸上に設定することができるので、投光領域と受光領域が重なる領域を最大とすることができ、検出領域を最大に設定することができる。
尚、光ファイバの先端にレンズを装着することにより、各投光手段の投光領域及び受光手段の受光領域を設定するようにしてもよい。
【0055】
(第4の実施の形態)
次に、本発明の第4の実施の形態を図10に基づいて説明する。この第4の実施の形態は、投光手段を1つ設けると共に、受光手段を2つ設けたことを特徴とする。
【0056】
投光手段及び受光手段の構成を示す図10において、投光手段1から収束光を照射すると共に、第1受光手段41及び第2受光手段42を設け、各受光手段41,42で投光手段1からの光を受光するようになっている。この場合、第1受光手段41は、投光手段1の投光領域と略同一の受光領域が設定されている。また、第2受光手段42の光軸は、第1受光手段41の光軸と交差するように設定されており、第2受光手段42の配置の自由度が高い構成となっている。
【0057】
このような実施の形態によれば、投光手段1から投光され、被検出物体で反射した光に対して距離に応じて異なる受光特性を示す2つの受光手段41,42により受光するようにしたので、第1の実施の形態と同様に、受光量が所定レベル以下の場合は、受光量が所定レベルを上回るまでサンプリング時間を延長するようにしたので、被検出物体までの距離を正確に測定することができる。
【0058】
本発明は、上記各実施の形態に限定されるものではなく、次のように変形または拡張できる。
第1,第2投光手段としては、拡散光、集束光、平行光の何れか2つの光芒を照射するものを組合わせればよい。
サンプリング時間の調整に関して、上記各実施の形態では、サンプリング時間の調整は、設定モード時におけるCPUの自動動作であったが、例えば外部から使用者が設定可能な設定手段を設け、使用者が受光量波形を見ながらサンプリング時間を設定し、制御手段がサンプリング時間を設定されたサンプリング時間となるように調整するようにしてもよい。
【0059】
エラーが報知されたときは、被検出物体をエラーが報知された位置に位置させた状態で設定モードを実行するようにしてもよい。この場合、距離測定装置に被検出物体までの距離を与える必要がある。
第2投光に対応したサンプリング時間S2を調整した場合は、当初のサンプリング時間の比となるように第1投光に対応したサンプリング時間S1を調整するようにしてもよい。この場合、被検出物体までの距離を距離測定装置に与える必要がないので、エラーが報知された位置に被検出物体を位置させた状態で設定モードを実行すればよく、使い勝手が優れている。
【0060】
【発明の効果】
以上の説明から明らかなように、本発明の距離測定装置によれば、サンプリングした総受光量が所定レベルよりも低い場合は、総受光量の比を維持しながら総受光量が所定レベルを上回るまでサンプリング時間を調整するようにしたので、検出領域に照射された光の総受光量の比に基づいて被検出物体までの距離を測定する構成において、被検出物体の反射率が低くとも確実に距離を測定することができるという優れた効果を奏する。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態における全体構成を概略的に示すブロック図
【図2】電気的構成を示すブロック図
【図3】CPUの検出モードの動作を示すフローチャート
【図4】CPUの設定モードの動作を示すフローチャート
【図5】各信号の出力状態を示す図
【図6】サンプリング時間の調整状態で示す図5相当図
【図7】検出距離と各投光に対応した受光量との関係を示す図
【図8】本発明の第2の実施の形態を示す光学系の配置図
【図9】本発明の第3の実施の形態を示す図8相当図
【図10】本発明の第4の実施の形態を示す図8相当図
【符号の説明】
1は第1投光手段、2は第2投光手段、3は制御手段(演算手段、測定手段)、4は受光手段、5はサンプリング手段、31、32は投光用光ファイバ(投光手段)、33は受光用光ファイバ(受光手段)、41は第1受光手段、42は第2受光手段である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a distance measuring device that measures a distance to an object located in a detection area using light projection or light reception having different properties.
[0002]
[Prior art]
Japanese Patent Application Laid-Open No. 2000-46516 discloses a distance measuring device for measuring a distance to an object. This device irradiates diffused light and substantially parallel light from two light projecting means having different beams of light toward a detection area, receives each reflected light reflected by an object to be detected by one light receiving means, and receives the amount of received light. By measuring the ratio, the distance is measured while preventing the influence of the reflectance of the object.
[0003]
[Patent Document 1] Japanese Patent Application Laid-Open No. 2000-46516
[0004]
[Problems to be solved by the invention]
However, when the reflectance of the detected object is low, the amount of diffused light illuminated and reflected on the detected object is smaller than the amount of substantially parallel light received. Therefore, there is a problem that the accuracy of determination of the ratio between the two light receiving amounts is reduced.
[0005]
As a countermeasure against such a problem, it is conceivable to increase the amount of diffused light. However, the deterioration of the light emitting element constituting the light emitting means is accelerated, and there is a limit to increasing the amount of light emitted. In fact, it is actually difficult to increase the accuracy of distance measurement.
[0006]
The present invention has been made in view of the above circumstances, and an object of the present invention is to measure a distance to a detected object based on a ratio of a total received light amount of light applied to a detection area. It is an object of the present invention to provide a distance measuring device that can surely measure a distance even if the rate is low.
[0007]
[Means for Solving the Problems]
The present invention is directed to a first light projecting means and a second light projecting means for alternately irradiating different beams of light toward a detection area at different timings, and a detected object irradiated from these light projecting means and positioned in the detection area. A light receiving means for receiving the light reflected by the light emitting means; a sampling means for sampling a light receiving signal output from the light receiving means in accordance with a light emitting timing of each of the light emitting means for a predetermined period; Means for calculating the ratio of the total amount of received light sampled in accordance with the light emission timings of the first light emitting means and the second light emitting means, and an object to be detected based on the ratio calculated by the calculating means. Measuring means for measuring a distance between the light receiving means and the sampling means, and when the total amount of received light sampled according to the light emitting timing of each of the light emitting means is lower than a predetermined level, In which the total amount of received light while maintaining the ratio of the amount is composed of the control means for adjusting the sampling time by the sampling means to above the predetermined level (claim 1).
[0008]
According to such a configuration, since the beams of light from the first light emitting means and the second light emitting means are different, the light receiving signal level from the light receiving means is different depending on the detection distance of the detected object. Therefore, the total amount of received light obtained by the sampling means sampling the light receiving signal from the light receiving means for a predetermined period according to the light emitting timings of the first light emitting means and the second light emitting means is equal to the distance to the detected object. Since the calculation means calculates the ratio of the total amount of received light, the measuring means can measure the distance to the detected object without being affected by the reflectance of the detected object.
[0009]
When the reflectance of the detected object is low, the total amount of received light is insufficient, and the accuracy of measuring the detection distance is reduced.
Therefore, when the total amount of received light is lower than the predetermined level, the control unit adjusts the sampling time by the sampling unit until the total amount of received light exceeds the predetermined level while maintaining the ratio of the total amount of received light. Thus, the total received light amount can be increased while maintaining the ratio of the total received light amount, so that the distance to the detected object can be reliably measured without being affected by noise.
[0010]
The present invention is directed to a first light projecting means and a second light projecting means for alternately irradiating different beams of light toward a detection area at different timings, and a detected object irradiated from these light projecting means and positioned in the detection area. A light receiving means for receiving the light reflected by the light emitting means; a sampling means for sampling a light receiving signal output from the light receiving means in accordance with a light emitting timing of each of the light emitting means for a predetermined period; Means for calculating the ratio of the total amount of received light sampled in accordance with the light emission timings of the first light emitting means and the second light emitting means, and an object to be detected based on the ratio calculated by the calculating means. Measuring means for measuring the distance of the sampler, setting means provided to be operable externally, and setting the sampling time of the sampling means, and a sampler set in the setting means. And control means for adjusting the sampling time of the sampling means so as to be a time.If the total received light amount sampled by the sampling means in accordance with the light emission timing of each of the light emitting means is lower than a predetermined level, The setting means is externally operated until the total received light quantity by the sampling means exceeds a predetermined level while maintaining the ratio of the total received light quantity (claim 2).
[0011]
According to such a configuration, when the total amount of received light obtained by the sampling unit is low, the sampling time of the sampling unit is set long by an external operation on the setting unit. Then, since the control means adjusts the sampling time of the sampling means, the setting means is externally operated while maintaining the ratio of the total received light amount until the total received light amount by the sampling means exceeds a predetermined level. Therefore, the sampling time is not erroneously changed due to the influence of noise or the like, and the distance to the detected object can be reliably measured.
[0012]
In each of the above configurations, it is desirable to adjust the sampling time while maintaining the ratio of the total amount of received light corresponding to the farthest position in a state where the detected object is located at the farthest position in the detection area. .
According to such a configuration, the total amount of received light can be set to a predetermined level or more while maintaining the ratio of the total amount of received light over the entire detection area.
[0013]
Further, the first light projecting means is configured to irradiate a converging light in which a light beam converges toward a detection area, and the second light projecting means irradiates a diffuse light in which a light beam diffuses toward a detection area. (Claim 4).
According to such a configuration, since one beam is a convergent beam and the other beam is a diffuse beam, the ratio of the total amount of received light can be set to the maximum, and the resolution of the detection distance can be increased.
[0014]
Further, in the light emitting area of the first light emitting means and the second light emitting means and the light receiving area of the light receiving means, respective optical axes may be set substantially coaxially.
According to such a configuration, since the light projecting area and the light receiving area are set substantially coaxially, it is possible to set a wide detection area where each area overlaps.
[0015]
Further, the light projecting area of the first light projecting means and the light receiving area of the light receiving means are set to be substantially the same area, and the second light projecting means is provided with a light projecting area of the first light projecting means. The optical axes may be set to intersect so as to form an intersecting light projecting area (claim 6).
According to such a configuration, since there are no structural restrictions and the degree of freedom of design can be increased, it is possible to manufacture the device inexpensively and easily.
[0016]
The present invention provides a light projecting means for irradiating a light of a predetermined beam of light toward a detection area, and a different light receiving area set in the detection area, and a light irradiated from the light projecting means and reflected by a detected object located in the detection area. A first light receiving means and a second light receiving means for receiving light; a sampling means for sampling a light receiving signal output from these light receiving means for a predetermined period to obtain a total amount of received light; A calculating means for calculating a ratio of the total amount of light received by the light receiving means and the second light receiving means; a measuring means for measuring a distance to an object to be detected based on the ratio calculated by the calculating means; If the total received light amount sampled according to the light emission timing of the means is lower than the predetermined level, the total received light amount exceeds the predetermined level while maintaining the ratio of the total received light amount. Are those composed of a control means for adjusting the sampling time by the sampling means to (claim 7).
[0017]
According to such a configuration, the light receiving signals from the two light receiving means for receiving the light emitted from the light emitting means in the different light receiving areas in the detection area are sampled by the sampling means, and the ratio of the total amount of received light is calculated by the calculating means. , The measuring means can measure the distance to the detected object.
[0018]
Here, when the total received light amount by the sampling means is lower than the predetermined level, the sampling time by the sampling means is adjusted until the total received light amount exceeds the predetermined level while maintaining the ratio of the total received light amount. Can be reliably detected.
[0019]
The present invention provides a light projecting means for irradiating a light of a predetermined beam of light toward a detection area, and a different light receiving area set in the detection area, and a light irradiated from the light projecting means and reflected by a detected object located in the detection area. A first light receiving means and a second light receiving means for receiving light; a sampling means for sampling a light receiving signal output from these light receiving means for a predetermined period to obtain a total amount of received light; Calculating means for calculating the ratio of the total amount of light received by the light receiving means and the second light receiving means; measuring means for measuring the distance to the detected object based on the ratio calculated by the calculating means; and Setting means for setting a sampling time of the sampling means; and a sampling means of the sampling means for setting the sampling time set in the setting means. Control means for adjusting the time, wherein when the total received light amount sampled by the sampling means in accordance with the light emitting timing of the light emitting means is lower than a predetermined level, the ratio of the total received light amount is maintained. The setting means is externally operated until the total amount of light received by the sampling means exceeds a predetermined level.
According to such a configuration, the total amount of received light can be adjusted by an external operation.
[0020]
In each of the above configurations, it is desirable to adjust the sampling time while maintaining the ratio of the total amount of received light corresponding to the farthest position in a state where the detected object is located at the farthest position in the detection area. .
According to such a configuration, the total amount of received light can be equal to or higher than a predetermined level while maintaining the ratio of the total amount of received light over the entire detection region.
[0021]
The first light receiving means may be configured such that the light receiving area converges toward the detection area, and the second light emitting means may be configured such that the light receiving area is diffused toward the detection area. Item 10).
According to such a configuration, since one light receiving region converges and the other light receiving region diffuses, the ratio of the total amount of received light can be set to the maximum, and the resolution of the detection distance can be increased.
[0022]
Further, the light projecting area of the light projecting means and the light receiving areas of the first light receiving means and the second light receiving means may be set so that their optical axes are substantially coaxial.
According to such a configuration, since the light projecting area and the light receiving area are set substantially coaxially, it is possible to set a wide detection area where each area overlaps.
[0023]
Further, each optical axis is set coaxially so that the light emitting area of the light emitting means and the light receiving area of the first light receiving means are substantially the same area. Each optical axis may be set to intersect so as to form a light receiving area that intersects the light projecting area.
According to such a configuration, there is no restriction on the structure, and the degree of freedom in design can be increased.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
(First Embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a block diagram schematically showing the configuration of the distance measuring device. In FIG. 1, a first light projecting means 1 and a second light projecting means 2 make a predetermined beam of light differently forward when a drive signal is given from a control means (which also serves as a calculating means and a measuring means) 3. Irradiation is performed at the timing. The light receiving means 4 converts the received light into a light receiving signal and outputs the signal to the sampling means 5. The sampling means 5 obtains a total light receiving amount (hereinafter simply referred to as a light receiving amount) by integrating the light receiving signal from the light receiving means 4 for a predetermined period according to the sampling signal from the control means 3 and also determines the end timing of the sampling signal. Is output to the control means 3 in a state where the received light amount is held for a predetermined period from.
[0025]
FIG. 2 is a block diagram showing an electrical configuration of the distance measuring device. In FIG. 2, the first light projecting means 1 includes a light projecting element 6 and a converging lens 7, and irradiates a converging light obtained by converging the light from the light projecting element 6 with the converging lens 7 to a detection area. .
[0026]
The second light projecting means 2 is composed of a light projecting element 8, and irradiates the detection area with diffused light from the light projecting element 8. In this case, the optical axis of the first light projecting means 1 and the second light projecting means The second optical axis 2 intersects with the optical axis 2 so that light from the second light projecting means 2 is not irradiated on the converging lens 7. In the present embodiment, the above-mentioned convergent light and diffused light correspond to “light having different light beams” in the present invention. In short, different beams of light have different irradiation widths of light, so that the degree of change in the amount of received light with respect to the distance differs, and the ratio of the amount of received light changes in accordance with the distance. Such “different beams of light” is not limited to convergent light and diffused light, but may be a combination of convergent light and parallel light, or parallel light and diffused light.
[0027]
The light receiving means 4 includes a light receiving element 9, and the light receiving element 9 is disposed adjacent to the light emitting element 6 constituting the first light emitting means 1. Accordingly, light is received in a condensed state via the converging lens 7 constituting the first light projecting means 1, and the light receiving area of the light receiving means 4 is substantially coaxial with the first light projecting means 1. It is set so as to substantially overlap the light projection area.
[0028]
The sampling means 5 includes a gate circuit 10, an integration circuit 11, and a sample and hold circuit 12. The gate circuit 10 passes the light receiving signal from the light receiving element 9 only during the command period from the control means 3. The integrating circuit 11 integrates the light receiving signal that has passed through the gate circuit 10. The sample hold circuit 12 holds the light receiving integration level integrated by the integration circuit 11 for a predetermined time according to a command from the control means 3. The predetermined time is a time sufficient for an A / D conversion circuit described later to convert an analog signal into a digital signal.
[0029]
The control means 3 mainly includes a CPU 13 and includes an A / D conversion circuit 14, a ROM 15, a mode changeover switch 16, and a monitor LED 17. The CPU 13 drives the first and second light emitting means 1 and 2 alternately to emit light, and causes the sampling means 5 to perform a sampling operation in accordance with each light emitting timing. The A / D conversion circuit 14 converts the amount of received light, which is an analog value, into a digital value according to a command from the CPU 13 and outputs the digital value to the CPU 13. Then, the CPU 13 takes in the received light amount digitized by the A / D conversion circuit 14, calculates the ratio of each received light amount, and calculates the ratio of the received light amount to the detected object based on a preset table. To determine the distance.
[0030]
The sampling time of the sampling means 5 is adjusted to a predetermined time when the distance measuring device is shipped from the factory. That is, the first and second light projecting means 1 and 2 are alternately driven in a state where the reference detection object (for example, matte white paper) is sequentially positioned as the detection object from the shortest position to the farthest position in the detection area. Sampling times S1 and S2 are set in advance so that each received light amount detected by the sampling means 5 according to the drive timing is equal to or more than a predetermined level sufficient for distance measurement, and a change in the ratio of received light amounts becomes an ideal ratio change. Is set.
[0031]
In the ROM 15, in addition to the operation program of the CPU 13, a table indicating the relationship between the ratio of the amount of received light and the distance obtained as described above is stored in advance.
The mode switch 16 switches between a detection mode and a setting mode. The detection mode is a mode for executing a normal detection operation, and the setting mode is a mode for adjusting a sampling time.
[0032]
Next, the operation of the above configuration will be described.
To measure the distance to the detected object, the distance measuring device is driven with the mode changeover switch 16 switched to the detection mode. Then, the CPU 13 executes the detection mode in a state where the mode changeover switch 16 is switched to the detection mode.
[0033]
FIG. 3 shows a detection mode of the CPU 13. 3, the CPU 13 drives the light emitting element 6 of the first light emitting means 1 (S101, see FIG. 5A). As a result, the first light (convergent light) is emitted from the light projecting element 6 toward the detection area. Therefore, in a state where the detected object is present in the detection area, the light reflected by the light receiving unit 4 is reflected by the detected object. (See FIG. 5C).
[0034]
The CPU 13 reads the amount of received light according to the drive timing of the first light emitting means 1 (S102). That is, the gate circuit 10 of the sampling means 5 is turned on for a predetermined period. The ON time of the gate circuit 10 is the sampling time S1 preset at the time of factory shipment as described above (see FIG. 5D). As a result, the integration circuit 11 integrates the light reception signal that has passed through the gate circuit 10, so that the light reception signal rises with time and is finally converted into the light reception amount D1 (see FIG. 5E). The received light amount D1 is converted into a digital value in the A / D conversion circuit 14, and the CPU 13 reads the digital value.
[0035]
Subsequently, the CPU 13 drives the second light projecting means 2 (S103, see FIG. 5A), reads the received light amount D2 (S104, see FIG. 5E), and sets the received light amount D2 to the predetermined level Dm. Is exceeded (S105: YES), and the ratio of the received light amount is calculated from the received light amounts D1 and D2 (S106).
[0036]
Here, the first light emitted from the first light emitting means 1 is a converged light, and the light emitting area of the first light emitting means 1 and the light receiving area of the light receiving means 4 are substantially overlapped. The light receiving amount D1 corresponding to the light has a smaller attenuation with respect to an increase in the distance to the detected object (indicated by a broken line in FIG. 7), whereas the second light emitting from the second light emitting means 2 is diffused. Since the light is light, the received light amount D2 corresponding to the second light emission is greatly attenuated (shown by a solid line in FIG. 7). Therefore, since the ratio between the light receiving amounts D1 and D2 changes according to the distance to the detected object, the distance to the detected object can be obtained from the ratio based on the table (S107). In this case, the distance to the object to be detected is uniquely determined by the ratio D1 / D2 of the amount of received light corresponding to the first light emission and the second light emission, and thus is not affected by the reflectance of the object to be detected. Is the feature.
[0037]
When the received light amounts D1 and D2 are equal to or higher than a predetermined level, the distance to the detected object can be accurately detected at all positions in the detection area as described above, but the reflectance of the detected object is high. If the value is low, the amount of received light becomes excessively small and is likely to be affected by noise, so that the distance measurement based on the ratio of the amount of received light may become uncertain. Therefore, when the amount of received light corresponding to the second light emission falls below a predetermined level, the CPU 13 notifies an error using the monitor LED 17 (S108).
[0038]
When the reflectance of the detected object is extremely low, the light receiving amount D1 corresponding to the first light emission in addition to the second light emission may fall below a predetermined level Dm. When the received light amount D1 is lower than the predetermined level Dm, the received light amount D2 corresponding to the second light projection is also always lower than the predetermined level Dm. Therefore, the received light amount is determined only by the light received amount D2 corresponding to the second light projection. Is fine.
[0039]
When an error is notified by the monitor LED 17 of the distance measuring device as described above, the user sets the mode changeover switch 16 to the setting mode with the detected object positioned at the farthest position in the detection area. Switch. Then, the CPU 13 executes the setting mode with the mode changeover switch 16 switched to the setting mode.
[0040]
FIG. 4 shows a setting mode of the CPU 13. In FIG. 4, the CPU 13 drives the second light projecting means 2 (S201), and reads the amount of received light with a sampling time S2 in accordance with the light projecting timing of the second light projecting (S202). As a result, the second light projecting means 2 irradiates the detection area with the second light (diffused light), and the second light is reflected by the object to be detected. The received light amount D2 corresponding to the light is input. At this time, the light reception amount D2 becomes lower than the predetermined level Dm (see FIG. 6E). Note that, depending on the reflectance of the detected object, the received light amount D1 corresponding to the first light projection may be lower than the predetermined level Dm.
[0041]
Here, the CPU 13 extends the sampling time S2 of the second light projecting means 2 by the predetermined time α since the received light amount D2 corresponding to the second light projection is below the predetermined level Dm (S203: NO) ( S209) When the amount of received light reaches or exceeds the predetermined level Dm (see FIG. 6 (E ')), the sampling time is set as the sampling time S2 of the second light emission (see FIG. 4 (D')).
[0042]
At this time, since only the received light amount D2 corresponding to the second light projection is increased, the ratio of the received light amount corresponding to each light projection changes from the original value (the ratio of the received light amount corresponding to the farthest position). ing.
Therefore, when the light reception amount corresponding to the second light emission is increased by extending the sampling time S2 as described above, the CPU 13 reads the ratio X of the light reception amount at the farthest position from the table (S204), and performs the first light emission. While driving the light means 1 (S205), the light reception is read for a sampling time S1 according to the light emission timing of the first light emission means 1 (S206), and it is determined whether the ratio D1 / D2 of the light reception amount is X or more. (S207).
[0043]
At this time, since the ratio D1 / D2 of the light reception amount is smaller than X (S207: NO), the light reception amount D1 corresponding to the first light emission is extended by extending the sampling time S1 of the first light emission by a predetermined time α. It increases (S210), and when the ratio D1 / D2 of the amount of received light becomes X or more (S207: YES, see FIG. 6 (E ')), the monitor LED 17 notifies that the setting has been completed (S208). Then, the setting mode ends.
[0044]
In addition, even if the light reception amount D1 corresponding to the first light projection is equal to or less than the predetermined level Dm, the first light reception amount D2 corresponding to the second light emission is adjusted to be equal to or higher than the predetermined level Dm. Since the light reception amount D1 corresponding to the light projection is always equal to or higher than the predetermined level Dm, it is not necessary to determine whether the light reception amount D1 corresponding to the first light emission is equal to or higher than the predetermined level Dm.
The adjustment of the sampling times S1 and S2 as described above is, of course, within a period in which the light receiving signal corresponding to each light projection is valid.
[0045]
When the end of the setting is notified by the monitor LED 17, the user operates the mode changeover switch 16 to set the detection mode.
When the detection mode is set, the CPU 13 detects the light reception amounts D1 and D2 corresponding to the first and second light projections based on the sampling times S1 and S2 set in the setting mode, and calculates a ratio between the light reception amounts. The distance to the detected object is obtained based on the table. Therefore, when the detected object is located in the detection area, not only the light reception amount D1 corresponding to the first light emission but also the light reception amount D2 corresponding to the second light emission is equal to or more than the predetermined level Dm. The distance to the object to be detected can be accurately measured based on the ratio of the two received light amounts.
[0046]
In the case where an object to be detected having a high reflectance is detected in a state where the sampling time is set to be longer than the reference sampling time as described above, in particular, the amount of light received corresponding to the first light emission is excessively large. In such a case, the sampling time is returned to the reference time because the distance becomes high and the distance measurement becomes uncertain.
[0047]
According to such an embodiment, in a configuration in which the amount of received light corresponding to the first light emission and the second light emission of different beams of light is obtained, and the distance to the detected object is obtained based on the ratio of the amounts of received light, When the received light amount is equal to or less than the predetermined level, the setting mode is executed so that the ratio of the received light amounts D1 and D2 corresponding to the respective light projections exceeds the predetermined level while maintaining the initial ratio. Since the sampling times S1 and S2 of the received light signal are adjusted, the signal can be amplified without being affected by noise, and the distance to the detected object can be reliably measured.
[0048]
In addition, since the resolution of distance measurement can be increased as the ratio of the light receiving level greatly changes depending on the distance, one of the two is focused light and the other is focused so that the ratio of the light receiving level greatly changes as in the present embodiment. It is desirable that both beams of light greatly differ by making the light a diffused light.
[0049]
Further, since the optical axis of the second light projecting means 2 is provided so as to intersect the optical axis of the first light projecting means 1, the first light projecting means 1 and the second light projecting means 2 are arranged in parallel. Compared to the first embodiment, although the light is converged by the converging lens 7 as the first light projecting means 1, the diffused light from the second light projecting means 2 is efficiently transmitted to the detection area without being affected by the converging lens 7. Since irradiation can be performed, the degree of freedom in design can be increased and the device can be easily manufactured at low cost.
[0050]
(Second embodiment)
Next, a second embodiment of the present invention will be described with reference to FIG. 8, and the same parts as those in the first embodiment will be denoted by the same reference numerals and description thereof will be omitted. The second embodiment is characterized in that one light beam is substantially parallel light.
[0051]
In FIG. 8 showing the configuration of the first light projecting means 1 and the second light projecting means 2, the first light projecting means 1 comprises a light projecting element 6 and a collimator lens 21. The light is converted by the collimator lens 21 into parallel light. That is, one is a parallel light and the other is a diffused light. In addition, the light receiving area of the light receiving means 4 substantially matches the light emitting area of the first light emitting means 1.
[0052]
According to such an embodiment, since one of the light from the light projecting means 1 is a parallel light and the other is a diffused light, the change in the ratio of the received light amount corresponding to the distance is small, and the detection accuracy is accordingly small. It is possible to detect an object to be detected which has a low reflectance, though it is low.
[0053]
(Third embodiment)
Next, a third embodiment of the present invention will be described with reference to FIG. The third embodiment is characterized in that an optical fiber is used.
In FIG. 9 showing the first light projecting means, the second light projecting means, and the light receiving means, each light projecting optical fiber 31, 32 and light receiving optical fiber 33 constituting each means are arranged adjacent to each other. The optical axes of the optical fibers 31 to 33 are set substantially coaxially. In this case, the light projecting area of each of the light projecting optical fibers 31 and 32 and the light receiving area of the light receiving optical fiber 33 depend on the opening angle of the optical fiber, and the characteristics can be set according to the type of the optical fiber. it can.
[0054]
According to such an embodiment, the optical axes of the light projecting optical fibers 31 and 32 and the light receiving optical fiber 33 can be set substantially coaxially, so that the region where the light projecting region and the light receiving region overlap each other is reduced. It can be set to the maximum, and the detection area can be set to the maximum.
By mounting a lens at the end of the optical fiber, the light emitting area of each light emitting means and the light receiving area of the light receiving means may be set.
[0055]
(Fourth embodiment)
Next, a fourth embodiment of the present invention will be described with reference to FIG. The fourth embodiment is characterized in that one light projecting means is provided and two light receiving means are provided.
[0056]
In FIG. 10 showing the configuration of the light projecting means and the light receiving means, a convergent light is emitted from the light projecting means 1 and a first light receiving means 41 and a second light receiving means 42 are provided. 1 is received. In this case, the first light receiving means 41 has a light receiving area substantially the same as the light emitting area of the light emitting means 1. Further, the optical axis of the second light receiving means 42 is set so as to intersect with the optical axis of the first light receiving means 41, so that the second light receiving means 42 has a high degree of freedom in arrangement.
[0057]
According to such an embodiment, the light emitted from the light emitting means 1 and received by the two light receiving means 41 and 42 having different light receiving characteristics depending on the distance with respect to the light reflected by the detected object is received. Therefore, as in the first embodiment, when the amount of received light is equal to or less than the predetermined level, the sampling time is extended until the amount of received light exceeds the predetermined level, so that the distance to the detected object can be accurately determined. Can be measured.
[0058]
The present invention is not limited to the above embodiments, and can be modified or expanded as follows.
As the first and second light projecting means, means for irradiating any two rays of diffused light, focused light, and parallel light may be combined.
Regarding the adjustment of the sampling time, in each of the above embodiments, the adjustment of the sampling time was an automatic operation of the CPU in the setting mode. The sampling time may be set while observing the quantity waveform, and the control means may adjust the sampling time to be the set sampling time.
[0059]
When an error is notified, the setting mode may be executed in a state where the detected object is located at the position where the error has been notified. In this case, it is necessary to provide the distance measuring device with the distance to the detected object.
When the sampling time S2 corresponding to the second light emission is adjusted, the sampling time S1 corresponding to the first light emission may be adjusted so as to have a ratio of the initial sampling time. In this case, there is no need to provide the distance measuring device with the distance to the detected object, so that the setting mode may be executed with the detected object positioned at the position where the error has been reported, and the usability is excellent.
[0060]
【The invention's effect】
As is clear from the above description, according to the distance measuring device of the present invention, when the sampled total received light amount is lower than the predetermined level, the total received light amount exceeds the predetermined level while maintaining the ratio of the total received light amount. Since the sampling time is adjusted up to, in the configuration that measures the distance to the detected object based on the ratio of the total amount of light received on the detection area, even if the reflectance of the detected object is low, It has an excellent effect that the distance can be measured.
[Brief description of the drawings]
FIG. 1 is a block diagram schematically showing an overall configuration according to a first embodiment of the present invention.
FIG. 2 is a block diagram showing an electrical configuration.
FIG. 3 is a flowchart showing the operation of a CPU in a detection mode.
FIG. 4 is a flowchart showing an operation of a CPU in a setting mode.
FIG. 5 is a diagram showing an output state of each signal.
FIG. 6 is a diagram corresponding to FIG. 5, showing a sampling time adjustment state.
FIG. 7 is a diagram showing a relationship between a detection distance and a received light amount corresponding to each light projection.
FIG. 8 is an arrangement diagram of an optical system according to a second embodiment of the present invention.
FIG. 9 is a view corresponding to FIG. 8, showing a third embodiment of the present invention;
FIG. 10 is a view corresponding to FIG. 8, showing a fourth embodiment of the present invention;
[Explanation of symbols]
1 is a first light projecting means, 2 is a second light projecting means, 3 is a control means (computing means, measuring means), 4 is a light receiving means, 5 is a sampling means, 31 and 32 are light projecting optical fibers (light projecting means). Means), 33 is a light receiving optical fiber (light receiving means), 41 is a first light receiving means, and 42 is a second light receiving means.

Claims (12)

異なる光芒の光を検出領域に向けて異なるタイミングで交互に照射する第1投光手段及び第2投光手段と、
これらの投光手段から照射され検出領域に位置する被検出物体で反射した光を受光する受光手段と、
前記各投光手段の投光タイミングに応じて前記受光手段から出力される受光信号を所定期間サンプリングすることにより総受光量を得るサンプリング手段と、
このサンプリング手段により前記第1投光手段及び第2投光手段の投光タイミングに応じてサンプリングされた総受光量の比を演算する演算手段と、
この演算手段が演算した比に基づいて被検出物体までの距離を測定する測定手段と、
前記サンプリング手段が前記各投光手段の投光タイミングに応じてサンプリングした総受光量が所定レベルよりも低い場合は、総受光量の比を維持しながら前記総受光量が所定レベルを上回るまで前記サンプリング手段によるサンプリング時間を調整する制御手段とから構成されていることを特徴とする距離測定装置。
A first light projecting means and a second light projecting means for alternately irradiating different beams of light toward the detection region at different timings;
Light receiving means for receiving light emitted from these light emitting means and reflected by the detected object located in the detection area;
Sampling means for obtaining a total amount of received light by sampling a light receiving signal output from the light receiving means in accordance with a light emitting timing of each of the light emitting means for a predetermined period;
Calculating means for calculating the ratio of the total amount of received light sampled by the sampling means in accordance with the light emitting timings of the first light emitting means and the second light emitting means;
Measuring means for measuring the distance to the detected object based on the ratio calculated by the calculating means,
If the total received light amount sampled by the sampling means according to the light emitting timing of each of the light emitting means is lower than a predetermined level, the total received light amount exceeds the predetermined level while maintaining the ratio of the total received light amount. A distance measuring device, comprising: a control unit for adjusting a sampling time by the sampling unit.
異なる光芒の光を検出領域に向けて異なるタイミングで交互に照射する第1投光手段及び第2投光手段と、
これらの投光手段から照射され検出領域に位置する被検出物体で反射した光を受光する受光手段と、
前記各投光手段の投光タイミングに応じて前記受光手段から出力される受光信号を所定期間サンプリングすることにより総受光量を得るサンプリング手段と、
このサンプリング手段により前記第1投光手段及び第2投光手段の投光タイミングに応じてサンプリングされた総受光量の比を演算する演算手段と、
この演算手段が演算した比に基づいて被検出物体までの距離を測定する測定手段と、
外部操作可能に設けられ、前記サンプリング手段のサンプリング時間を設定する設定手段と、
この設定手段に設定されたサンプリング時間となるように前記サンプリング手段のサンプリング時間を調整する制御手段とから構成され、
前記サンプリング手段が前記各投光手段の投光タイミングに応じてサンプリングした総受光量が所定レベルよりも低い場合は、総受光量の比を維持しながら前記サンプリング手段による総受光量が所定レベルを上回るまで前記設定手段を外部操作することを特徴とする距離測定装置。
A first light projecting means and a second light projecting means for alternately irradiating different beams of light toward the detection region at different timings;
Light receiving means for receiving light emitted from these light emitting means and reflected by the detected object located in the detection area;
Sampling means for obtaining a total amount of received light by sampling a light receiving signal output from the light receiving means in accordance with a light emitting timing of each of the light emitting means for a predetermined period;
Calculating means for calculating the ratio of the total amount of received light sampled by the sampling means in accordance with the light emitting timings of the first light emitting means and the second light emitting means;
Measuring means for measuring the distance to the detected object based on the ratio calculated by the calculating means,
Setting means provided so as to be able to be operated externally, and setting a sampling time of the sampling means;
Control means for adjusting the sampling time of the sampling means so as to be the sampling time set in the setting means,
If the total received light amount sampled by the sampling means in accordance with the light emission timing of each of the light projecting means is lower than a predetermined level, the total received light amount by the sampling means is reduced to a predetermined level while maintaining the ratio of the total received light amount. A distance measuring device, wherein the setting means is operated externally until the distance exceeds a predetermined value.
検出領域の最遠位置に被検出物体が位置した状態で、当該最遠位置に対応した総受光量の比を維持しながらサンプリング時間を調整することを特徴とする請求項1または2記載の距離測定装置。3. The distance according to claim 1, wherein the sampling time is adjusted while maintaining the ratio of the total amount of received light corresponding to the farthest position in a state where the detected object is located at the farthest position in the detection area. measuring device. 前記第1投光手段は、検出領域へ向けて光芒が収束する集束光を照射するように構成され、
前記第2投光手段は、検出領域へ向けて光芒が拡散する拡散光を照射するように構成されていることを特徴とする請求項1ないし3の何れかに記載の距離測定装置。
The first light projecting means is configured to irradiate a converging light in which a beam of light converges toward a detection area,
The distance measuring device according to claim 1, wherein the second light projecting unit is configured to irradiate a diffused light in which a beam of light is diffused toward a detection area.
前記第1投光手段及び前記第2投光手段の投光領域並びに前記受光手段は、各光軸が略同軸上に設定されていることを特徴とする請求項1ないし4の何れかに記載の距離測定装置。5. The light emitting area of the first light emitting means, the light emitting area of the second light emitting means, and the light receiving means, each optical axis of which is set substantially coaxially. Distance measuring device. 前記第1投光手段の投光領域と前記受光手段の受光領域とは略同一領域となるように設定され、
前記第2投光手段は、前記第1投光手段の投光領域と交差する投光領域となるように各光軸が交差して設定されていることを特徴とする請求項1ないし4の何れかに記載の距離測定装置。
The light emitting area of the first light emitting means and the light receiving area of the light receiving means are set to be substantially the same area,
5. The optical system according to claim 1, wherein the second light projecting means is set so that respective optical axes intersect so as to form a light projecting area intersecting with the light projecting area of the first light projecting means. 6. The distance measuring device according to any one of the above.
所定光芒の光を検出領域に向けて照射する投光手段と、
検出領域に異なる受光領域が設定され、前記投光手段から照射され検出領域に位置する被検出物体で反射した光を受光する第1受光手段及び第2受光手段と、
これらの受光手段から出力される受光信号を所定期間サンプリングすることにより総受光量を得るサンプリング手段と、
このサンプリング手段によりサンプリングされた前記第1受光手段及び第2受光手段の総受光量の比を演算する演算手段と、
この演算手段が演算した比に基づいて被検出物体までの距離を測定する測定手段と、
前記サンプリング手段が前記投光手段の投光タイミングに応じてサンプリングした総受光量が所定レベルよりも低い場合は、総受光量の比を維持しながら前記総受光量が所定レベルを上回るまで前記サンプリング手段によるサンプリング時間を調整する制御手段とから構成されていることを特徴とする距離測定装置。
Light emitting means for irradiating a predetermined beam of light toward the detection area,
A different light receiving area is set in the detection area, a first light receiving means and a second light receiving means for receiving light emitted from the light projecting means and reflected by a detected object located in the detection area,
Sampling means for obtaining the total amount of received light by sampling light receiving signals output from these light receiving means for a predetermined period;
Calculating means for calculating the ratio of the total amount of received light of the first light receiving means and the second light receiving means sampled by the sampling means;
Measuring means for measuring the distance to the detected object based on the ratio calculated by the calculating means,
If the total received light amount sampled by the sampling means in accordance with the light emitting timing of the light emitting means is lower than a predetermined level, the sampling is performed until the total received light amount exceeds a predetermined level while maintaining the ratio of the total received light amount. And a control unit for adjusting a sampling time by the unit.
所定光芒の光を検出領域に向けて照射する投光手段と、
検出領域に異なる受光領域が設定され、前記投光手段から照射され検出領域に位置する被検出物体で反射した光を受光する第1受光手段及び第2受光手段と、
これらの受光手段から出力される受光信号を所定期間サンプリングすることにより総受光量を得るサンプリング手段と、
このサンプリング手段によりサンプリングされた前記第1受光手段及び第2受光手段の総受光量の比を演算する演算手段と、
この演算手段が演算した比に基づいて被検出物体までの距離を測定する測定手段と、
外部操作可能に設けられ、前記サンプリング手段のサンプリング時間を設定する設定手段と、
この設定手段に設定されたサンプリング時間となるように前記サンプリング手段のサンプリング時間を調整する制御手段とから構成され、
前記サンプリング手段が前記投光手段の投光タイミングに応じてサンプリングした総受光量が所定レベルよりも低い場合は、総受光量の比を維持しながら前記サンプリング手段による総受光量が所定レベルを上回るまで前記設定手段を外部操作することを特徴とする距離測定装置。
Light emitting means for irradiating a predetermined beam of light toward the detection area,
A different light receiving area is set in the detection area, a first light receiving means and a second light receiving means for receiving light emitted from the light projecting means and reflected by a detected object located in the detection area,
Sampling means for obtaining the total amount of received light by sampling light receiving signals output from these light receiving means for a predetermined period;
Calculating means for calculating the ratio of the total amount of received light of the first light receiving means and the second light receiving means sampled by the sampling means;
Measuring means for measuring the distance to the detected object based on the ratio calculated by the calculating means,
Setting means provided so as to be able to be operated externally, and setting a sampling time of the sampling means;
Control means for adjusting the sampling time of the sampling means so as to be the sampling time set in the setting means,
If the total received light amount sampled by the sampling means according to the light emission timing of the light emitting means is lower than a predetermined level, the total received light amount by the sampling means exceeds a predetermined level while maintaining the ratio of the total received light amount. A distance measuring device, wherein the setting means is externally operated until the setting is completed.
検出領域の最遠位置に被検出物体が位置した状態で、当該最遠位置に対応した総受光量の比を維持しながらサンプリング時間を調整することを特徴とする請求項7または8記載の距離測定装置。9. The distance according to claim 7, wherein the sampling time is adjusted while maintaining the ratio of the total amount of received light corresponding to the farthest position in a state where the detected object is located at the farthest position in the detection area. measuring device. 前記第1受光手段は、検出領域へ向けて受光領域が収束するように構成され、
前記第2投光手段は、検出領域へ向けて受光領域が拡散するように構成されていることを特徴とする請求項7ないし9の何れかに記載の距離測定装置。
The first light receiving unit is configured such that the light receiving region converges toward the detection region,
The distance measuring device according to any one of claims 7 to 9, wherein the second light projecting means is configured so that a light receiving region is diffused toward a detection region.
前記投光手段の投光領域と前記第1受光手段及び第2受光手段の受光領域は、各光軸が略同軸上に設定されていることを特徴とする請求項7ないし10の何れかに記載の距離測定装置。11. The light-emitting area of the light-emitting means and the light-receiving areas of the first light-receiving means and the second light-receiving means, wherein respective optical axes are set substantially coaxially. The distance measuring device as described. 前記投光手段の投光領域と前記第1受光手段の受光領域とは略同一領域となるように各光軸が同軸上に設定され、
前記第2受光手段は、前記投光手段の投光領域と交差する受光領域となるように各光軸が交差して設定されていることを特徴とする請求項7ないし10の何れかに記載の距離測定装置。
Each optical axis is set coaxially so that the light emitting area of the light emitting means and the light receiving area of the first light receiving means are substantially the same area,
11. The optical system according to claim 7, wherein the second light receiving unit is set so that the respective optical axes intersect so as to form a light receiving region that intersects with a light projecting region of the light projecting unit. Distance measuring device.
JP2003023853A 2003-01-31 2003-01-31 Distance measuring device Pending JP2004233250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003023853A JP2004233250A (en) 2003-01-31 2003-01-31 Distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003023853A JP2004233250A (en) 2003-01-31 2003-01-31 Distance measuring device

Publications (1)

Publication Number Publication Date
JP2004233250A true JP2004233250A (en) 2004-08-19

Family

ID=32952546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003023853A Pending JP2004233250A (en) 2003-01-31 2003-01-31 Distance measuring device

Country Status (1)

Country Link
JP (1) JP2004233250A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333458A (en) * 2006-06-13 2007-12-27 Nissan Motor Co Ltd Peripheral obstacle detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333458A (en) * 2006-06-13 2007-12-27 Nissan Motor Co Ltd Peripheral obstacle detector

Similar Documents

Publication Publication Date Title
US6226076B1 (en) Distance measuring apparatus using pulse light
JP5469793B2 (en) Distance measuring device
US20100068673A1 (en) Laser processing device and its processing method
JP2005140773A (en) Distance-measuring sensor
JP2017181105A (en) Laser radar device
KR20190109753A (en) How to detect operating conditions of laser-based particle detectors
JP4400538B2 (en) Reflection characteristic measuring apparatus and reflection characteristic measuring method
JP6505009B2 (en) Laser device for illumination
JP2013195261A (en) Photoelectric powder dust detector and powder dust gas detector
JP4165010B2 (en) Optical displacement measuring device and method for correcting the amount of projected light
JP2004233250A (en) Distance measuring device
JP2007147336A (en) Optical distance measuring method
JP5317410B2 (en) Liquid detector
WO2020179268A1 (en) Optical distance measurement device
JP4773802B2 (en) Displacement sensor
GB2452833A (en) Distance measurement system with light diffusing element
JP7263723B2 (en) distance measuring device
KR20050009155A (en) Missing die detection
JPH11101872A (en) Laser range finder
JP2011185776A (en) Pinhole detector
JP2004215315A (en) Photo-electric sensor and sensitivity setting method therefor
JPH09281237A (en) Laser distance measuring instrument
KR102612466B1 (en) Optical measurement devices and optical measurement methods
JP2001174326A (en) Light receiving device
WO2003017188A3 (en) Device for detecting the position of an indicator object