JP2004233226A - Belt vibration measuring method and belt sound production evaluation method using the same - Google Patents

Belt vibration measuring method and belt sound production evaluation method using the same Download PDF

Info

Publication number
JP2004233226A
JP2004233226A JP2003022940A JP2003022940A JP2004233226A JP 2004233226 A JP2004233226 A JP 2004233226A JP 2003022940 A JP2003022940 A JP 2003022940A JP 2003022940 A JP2003022940 A JP 2003022940A JP 2004233226 A JP2004233226 A JP 2004233226A
Authority
JP
Japan
Prior art keywords
belt
vibration
laser light
pulley
waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003022940A
Other languages
Japanese (ja)
Other versions
JP4067978B2 (en
JP2004233226A5 (en
Inventor
Shuhei Nishida
周平 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuboshi Belting Ltd
Original Assignee
Mitsuboshi Belting Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuboshi Belting Ltd filed Critical Mitsuboshi Belting Ltd
Priority to JP2003022940A priority Critical patent/JP4067978B2/en
Publication of JP2004233226A publication Critical patent/JP2004233226A/en
Publication of JP2004233226A5 publication Critical patent/JP2004233226A5/ja
Application granted granted Critical
Publication of JP4067978B2 publication Critical patent/JP4067978B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new procedure for specifying a belt slip sound caused by micro-vibration in the pulley radial direction generated by misalignment or the like, and elucidating its sound production mechanism. <P>SOLUTION: Laser light transmitted from an optical Doppler vibration measuring device 3 is reflected by a belt back face vibrating in the pulley radial direction, and receives a Doppler shift. The reflected light is allowed to optically interferes with reference laser light, to be thereby converted into a voltage signal. The FM modulated wave is recorded as a vibration speed signal proportional to the Doppler shift by an optical heterodyne detection demodulation unit. Simultaneously, a noise level signal is recorded as time series data by a microphone 4 provided near the laser light irradiation position. The sound production time is specified from agreement of peaks of a pair of waveforms, and a coherence function is operated from a frequency spectrum of the pair of waveforms, and the sound production frequency is specified by using the coherent value as a determination standard value. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は摩擦伝動に供せられる平ベルト、Vベルト、Vリブドベルト等の伝動ベルトと、これと略一体に回転するプーリ群の所定のプーリと、の間に発生する相対振動(微振動)を特定し、この振動に起因する発音を評価する方法に係り、詳しくはプーリ半径方向に相対振動(微振動)するベルトの振動速度を測定する方法であり、これを用いた発音評価方法である。
【0002】
【従来の技術】
従来、ベルトとプーリ間で発生する摩擦すべりに関わるベルトの振動を測定する方法、或いはこの振動に起因する発音性状を評価する方法については、種々、研究が成されているが、この発音のメカニズムは未だ不明部分が多く、確とした方法が確立していない。
【0003】
例えばプーリ上でのベルトの摩擦すべり現象であって、プーリ周方向の微小滑りに起因するベルトの振動をプーリ周方向の振動成分として測定する方法が、本出願人によって下記の文献に明らかにされている。
【0004】
【特許文献1】
特開2000−131055号公報
また、本発明に係る光ヘテロダイン検波復調方式のレーザドップラ振動測定方法に関連する技術として、下記の文献が開示されている。
【0005】
【特許文献2】
特許第2866784号公報
上記特開2000−131055号公報に開示した技術は、所定のプーリの振動速度とこのプーリ上を走行するベルトの振動速度を同時に測定し、一対の測定波形を図表化したデータを比較対照することによって、摩擦伝動ベルトの微小滑りの様相を特定する方法であり、更にこの結果と騒音レベル波形を対照することによって発音時刻或いは発音メカニズムを明らかにする。
【0006】
すなわち、図5(a)に示すように完全な摩擦伝動状態であれば、プーリとベルトの振動速度は一致し、微小滑りは発生しない。しかし、ベルト張力不足或いは摩擦係数の低下等、何らかの原因で不完全な摩擦伝動になると、図5(b)に示すように、駆動プーリの振動速度に対しベルトは追従不能となり、微小滑りを発生させる。
【0007】
尚、図5(a)、図5(b)に示すグラフ図は自動車用エンジン補機駆動ベルトを用いて行った実験結果であり、エンジンクランク軸の回転変動がクランクプーリに重畳していることから、これによって駆動されるベルトの微小滑りの有無および発生時刻を確認することができる。
【0008】
上記微小滑りの測定方法は、前述の特開2000−131055号公報に開示されているが、その概要は図6(a)、図6(b)に示す通り、一台の光ドップラー式振動測定器3のレーザ光をプーリ2の側面に照射し、プーリ周方向の振動速度を測定すると同時にもう一台の光ドップラー式振動測定器3のレーザ光をベルト1の側面に照射し、ベルト走行方向(プーリ周方向)の振動速度を測定し、この一対の波形データから微小滑りの性状を判定する方法である。
【0009】
【発明が解決しようとする課題】
しかしながら、前記プーリ2の振動速度とこのプーリ上でのベルト1の振動速度とを対比することによって伝動ベルトの微小滑りの発生時刻を特定し、発音のメカニズムを明らかにしようとする従来技術には以下の課題があることが判明した。
【0010】
すなわち、従来のベルト振動速度測定方法は、図6(a)、図6(b)に示すように光ドップラー振動測定器3から発信されたレーザ光を図面上の左右方向(プーリ周方向)に移動するベルト1の側面に照射し、被測定体の移動速度に比例してドップラーシフトされたFM変調波を光電変換器に入力、電圧信号に変換し、このFM変調波をヘテロダイン検波復調ユニットによりFM復調し、ビート信号を取出し、前記ドップラーシフトに比例した振動速度を検出する方法である。
【0011】
同様に、このベルト振動速度に対比させるプーリ2の振動速度はもう一台の光ドップラー振動測定器3を用いて同時測定する。また、このときプーリ上でのベルト1に起因する発音有無を記録するために、プーリ2の直近にマイクロフォン4を設置し、騒音レベルデータを同時収録し、このときの聴感測定結果を記録する。
【0012】
このような微小滑りに関する議論は、図5(a)、図5(b)を用いて説明した通りであり、微小滑りの発生時刻の特定に関しては効果的な方法であった。しかし、微小滑りと発音との関係を関連付けようとする場合には、下記の課題が残されていることが明らかとなった。
【0013】
以下、図7(a)、図7(b)を用いてその課題を詳細に説明する。図7(a)は、光ドップラー振動測定器3を用いて測定したベルト振動速度波形と、これと同時に測定した騒音レベル波形を時系列に従ってグラフ化したものである。このグラフからは騒音レベルのピークは確認できるが、ベルト振動速度のピークは確認できない。
【0014】
そこで、このベルト1の微小滑りと発音の関連を明らかにするためにベルト振動速度波形データ及び騒音レベル波形データの夫々の周波数スペクトルを演算し、この一対のデータのコヒーレンス関数を演算した。
【0015】
結果は図7(b)に示す通りであり、周波数2.2khz付近にやや相関性(コヒレント値=0.71)が認められるものの、ベルト振動速度そのものには周波数2.2khz近辺にピークは認められなかった。
【0016】
以上のことから、前記従来方法はベルト1とプーリ2間の微小滑りの発生時刻を特定する手段としては効果のある方法であるが、騒音レベルとの関係でこの発音の性状を特定する方法としては不十分である。
【0017】
【課題を解決するための手段】
請求項1の発明は、プーリ上を走行するベルトの振動速度を測定するベルト振動測定方法であって、測定する振動速度がプーリ半径方向の振動速度であることをその要部とする。また、その振動速度を測定する方法は、プーリ半径方向からベルト背面に照射しドップラーシフトさせた反射レーザ光と、照射レーザ光の周波数を所定の周波数だけシフトさせた参照レーザ光とを光干渉させ、得られた干渉レーザ光を電気信号に変換し、これをFM復調することによって振動速度を検出することをその特徴とする。
【0018】
請求項2の発明は、プーリ上を走行するベルトの振動に起因する発音特性を評価するベルト発音評価方法であって、このベルトの振動はプーリ半径方向のベルト振動速度によって定義される振動であり、且つそのベルト振動速度はプーリ半径方向からベルト背面に照射しドップラーシフトさせた反射レーザ光と、照射レーザ光の周波数を所定の周波数だけシフトさせた参照レーザ光とを光干渉させ、得られた干渉レーザ光を電気信号に変換し、これをFM復調することにより検出されるものであって、得られた干渉レーザ光によるベルト振動速度波形と、これに同期して検出した騒音レベル波形と、を時系列波形として表出し、このベルト振動速度波形のピーク値と、騒音レベル波形のピーク値の一致から、発音時刻を特定するベルト発音評価方法である。
【0019】
請求項3の発明は、干渉レーザ光によるベルト振動速度波形と、これに同期して測定した騒音レベル波形と、から夫々の周波数スペクトルを演算し、この一対の周波数スペクトルからコヒーレンス関数を演算し、得られたコヒーレンス関数のピーク値から、発音時刻および発音周波数を特定する請求項2に記載のベルト発音評価方法である。
【0020】
【発明の実施の形態】
以下、本発明の実施の形態を、図面を用いて詳細に説明する。図1は実施例に係るベルト振動測定方法及び発音評価方法を示すブロック図であり、図2は、実施例に係るベルト振動測定方法及び発音評価方法を示すフロー図である。また、図3は、実施例に係るベルトの振動測定原理を示す概略図である。
【0021】
図4は実施例に係るベルト振動測定結果及び発音評価結果を示すグラフ図であり、図4(a)、図4(b)は夫々時系列のベルト振動速度波形と騒音レベル波形を示し、図(c)はベルト振動速度と騒音レベルの周波数スペクトル、およびこのベルト振動速度と騒音レベルのコヒーレンス関数を示す。
【0022】
また、図8は本発明に係るベルト駆動装置を示す概略図であり、図(a)はベルト駆動装置全体を示し、図(b)はベルトの断面を示す。
【0023】
始めに図8を用いて本発明に係るベルト駆動装置の一例を説明する。図8(a)において、ベルト1は6個のプーリに巻き掛けられ、エンジンクランクプーリ(Crank/P)によって回転力を付与され、ベルト1を介して各補機プーリ(ACGプーリ、P/Sプーリ、W/Pプーリ、A/Cプーリ)、及びテンショナプーリ(A/T)を駆動する。
【0024】
図8(a)に示すようなサーペンティン駆動に用いられるベルト1は、通常、屈曲性に優れたVリブドベルトが用いられる。このVリブドベルトは図8(b)に示すように、延伸処理されたコードからなる心線1cと、この心線を埋設する接着ゴム1dと、その上側にゴム付帆布1aを積層した伸張ゴム1b、その下側には所定のリブ数をベルト長手方向に形成したリブゴム1eとから構成される。
【0025】
次に図1を用いて本発明に係るベルト振動測定方法及びこれを用いた発音評価方法を仔細に説明する。図1において光ドップラー振動測定器3から発信されたレーザ光は、第1プリズム(ビームスプリッタ)によって直進方向と直角方向に分光され、直進方向に進むレーザ光はそのまま、ベルト1の背面に照射され、その背面で反射される。
【0026】
この反射光はプーリ半径方向に振動するベルト振動速度によってドップラーシフトを受け、第2のプリズムに再入射され、さらに直角方向に誘導される。この誘導された反射光はさらにミラーを介して直角方向に誘導される。一方、第1プリズムで直角方向に分光されたレーザ光は光学変調器によって、所定の周波数シフトを受けた参照レーザ光に変換される。
【0027】
上記反射光と参照レーザ光は第3のプリズムを介して光干渉し、干渉レーザ光となって光電変換器に入射する。光電変換器によって電圧信号に変換されたFM変調波は光ヘテロダイン検波復調ユニットによってビート信号が取出され、前記ドップラーシフトに比例した電圧信号を振動速度として出力する。
【0028】
また、前記レーザ光照射点の直近位置に設置されたマイクロフォン4を介して、レーザ光照射点位置近傍の騒音レベル信号を同時測定し、この騒音レベル信号は、前記振動速度波形と共に時系列同期データとして、FFTアナライザ5に入力される。
【0029】
入力された時系列波形はリアルタイムで処理される、或いは、記憶媒体に収録された後、適宜、波形処理される。いずれの場合も騒音レベル波形とベルト振動波形の相関を適切に判定し、発音時刻、発音周波数を特定するための発音評価方法として有効に処理される。
【0030】
次に図2を用いて、ベルト振動測定方法及びこれを用いた発音評価方法の流れを仔細に説明する。図2においてベルト振動測定の手順は、先ず評価対象となるベルト1を走行可能な状態に準備し、次いで騒音レベル測定用のマイクロフォン4を設置し、さらに本発明の要部である半径方向のベルト振動を高精度の測定する光ドップラ式振動測定器3を設置する。
【0031】
以上の準備の下に、ベルト1を走行させ、騒音レベルとベルト振動速度を同時測定する。この波形データは外部記憶装置に一旦記憶するか、リアルタイムで騒音レベルとベルト振動速度の波形処理を実行する。この段階で一対の時系列波形のピーク値が一致する場合、互いに強い相関があるものと判定し、発音時刻を特定し、さらにベルト振動速度波形と騒音レベル波形の周波数スペクトルを演算する。
【0032】
上記一対の周波数スペクトルからコヒーレンス関数を演算し、このコヒーレンス関数のピーク値が予め定めた判定値αより大であれば、発音とベルト振動速度に強い因果関係があるものと判定し、発音周波数を特定する。しかし、ピーク値が判定値αより小であれば、発音の特定は不可と判定する。
【0033】
以上の通り、本発明は測定するベルト振動速度の向きに顕著な特徴があるものであって、従来方法がベルト走行方向の成分、すなわち、プーリ周方向の振動速度を測定する方法であるのに対し、本発明はこれと直角方向、すなわち、プーリ半径方向に振動するベルト振動速度を測定することを特徴とする。
【0034】
次に従来法による振動方向と本発明による振動方向の違いを、図3を用いて説明する。図3(a)はベルト振動方向を斜視図で示したものであり、ベルト1がプーリ2の半径方向に微振動する様子を示している。この微振動は、レーザ光をベルト1の背面に照射させ、半径方向の光ドップラシフトを測定することによって、このドップラーシフトに比例した振動速度を検出することができる。
【0035】
さらに詳述すれば、図3(b)はプーリ2に巻き掛けられたベルト1の断面を、ベルト幅方向に示したものであり、ベルト1がプーリ2の溝形状に沿ってプーリ半径方向に微振動する様子が理解できる。以下、実施例に基づいて本発明方法による作用効果を詳細に説明する。
【0036】
【実施例】
実施例に用いたベルト駆動装置は、直列4気筒1800ccエンジンに用いられるエンジン補機駆動用ベルト装置であり、概略レイアウトは図8(a)に示した通りである。また、この試験に供試したベルト1は三ツ星ベルト製Vリブドベルト6PK1940(ベルト周長1940mm)であった。
【0037】
尚、ベルト1を駆動する原動機には、試験結果の解析を容易にするため、別途、出力軸に回転変動出力機能を有する原動機を前記エンジン補機駆動用ベルト装置のクランク軸に組付けて実施した。このときのクランク軸回転数は800rpmであり、このときのベルト張力は23.5kgf/6リブであり、オートテンショナ(A/T)を用いて然るべく付与した。
【0038】
また、光ドップラ式振動測定器3は、小野測器製光ドップラ式振動測定器(LV−1720)を用い、騒音レベル測定器は小野測器製騒音計(M1−1233)を用い、Aモードで測定した。又、FFTアナライザ5は小野測器製DS―2000を用いた。
【0039】
以上の構成に基づいて実施した結果を図4に示す。図4(a)は光ドップラ式振動測定器3を用いてベルト1の背面振動をプーリ半径方向に測定した時系列波形であり、図4(b)は図4(a)に同期して測定した騒音レベル波形である。
【0040】
この図4(a)及び図4(b)のグラフ図から、騒音レベル波形及びベルト振動速度波形の夫々に明瞭なピークが存在することが判別できる。且つこのピークの発生時刻が明らかに一致することから、これによって発音の発生及び発音時刻を正確に特定することが可能になった。
【0041】
一方、従来方法によるプーリ周方向の振動データからは、図7(a)及び図7(b)のグラフ図に示したようにベルト振動速度波形にピークの存在を判別することはできなかった。
【0042】
次いでこの発音の周波数を特定するために、ベルト振動速度波形と騒音レベル波形の周波数スペクトルを演算し、この一対の周波数スペクトルからコヒーレンス関数を演算し、その結果を図4(c)に表示した。
【0043】
すなわち、図4(c)のグラフ図からコヒーレンス関数のピークが、周波数6.7khz近辺に存在し、このコヒーレント値が0.95と極めて大であることが判る。
【0044】
このコヒーレントの値はベルト振動速度波形と騒音レベル波形の周波数に強度の相関があることを意味するから、このコヒーレントの値を発音評価プログラムの判定値αとして予め登録しておけば、これによって発音時刻および周波数を正確に特定することが可能になる。
【0045】
すなわち、本発明方法によるプーリ半径方向のベルト振動速度を測定することによって、従来の周方向の振動速度の測定では得られなかった微振動(高周波域)の測定が可能となり、これによって高音域の発音を特定することができる。
【0046】
【発明の効果】
請求項1の発明は、これによってプーリ半径方向のベルト振動速度を測定することが可能になり、ミスアライメント等による微振動に起因する振動現象の解明が可能になった。
【0047】
請求項2の発明は、これによってプーリ半径方向のベルト微振動に起因する発音の発音時刻の特定が可能となり、発音メカニズムの解析が容易になる。
【0048】
請求項3の発明は、これによってプーリ半径方向のベルト微振動に起因する発音の発音時刻、および発音の周波数を特定することが可能になり、発音メカニズムの解明とベルトの発音性能向上に効果がある。
【図面の簡単な説明】
【図1】実施例に係るベルト振動測定方法及び発音評価方法を示すブロック図である。
【図2】実施例に係るベルト振動測定方法及び発音評価方法を示すフロー図である。
【図3】実施例に係るベルトの振動測定原理を示す概略図である。
【図4】実施例に係るベルト振動測定結果及び発音評価結果を示すグラフ図であり、図(a)、図(b)は夫々時系列のベルト振動速度波形と騒音レベル波形を示し、図(c)はベルト振動速度と騒音レベルの周波数スペクトル、および振動速度と騒音レベルのコヒーレンス関数を示す。
【図5】従来例に係るベルトの微小滑りの測定結果を示すグラフ図であり、図5(a)は微小滑りのない状態を示し、図5(b)は微小滑りのある状態を示す。
【図6】従来例に係るベルト振動測定方法を示す概略図である。
【図7】従来例に係るベルト振動測定結果及び発音評価結果を示すグラフ図であり、図(a)は時系列のベルト振動速度波形と騒音レベル波形を示し、図(b)は図(a)の周波数スペクトルと、ベルト振動速度と騒音レベルのコヒーレンス関数を示す。
【図8】本発明に係るベルト駆動装置を示す概略図であり、図(a)はベルト駆動装置全体を示し、図(b)はベルトの断面を示す。
【符号の説明】
1 ベルト
2 プーリ
3 光ドップラー式振動測定器
4 マイクロフォン
5 FFTアナライザ
[0001]
TECHNICAL FIELD OF THE INVENTION
According to the present invention, a relative vibration (fine vibration) generated between a transmission belt such as a flat belt, a V-belt, and a V-ribbed belt used for friction transmission and a predetermined pulley of a group of pulleys that rotates substantially integrally with the belt is described. More specifically, the present invention relates to a method for identifying and evaluating a sound generated due to this vibration, and more specifically, a method for measuring a vibration speed of a belt which relatively vibrates (finely vibrates) in a pulley radial direction, and is a sound generation evaluation method using the same.
[0002]
[Prior art]
Conventionally, various studies have been made on a method of measuring the vibration of a belt related to a frictional slip generated between a belt and a pulley or a method of evaluating a sound generation property caused by the vibration. There are still many unknowns, and no reliable method has been established.
[0003]
For example, a friction slip phenomenon of a belt on a pulley, a method of measuring the vibration of the belt due to a small slip in the pulley circumferential direction as a vibration component in the pulley circumferential direction is disclosed in the following document by the present applicant. ing.
[0004]
[Patent Document 1]
JP, 2000-131055, A The following documents are indicated as a technique related to a laser Doppler vibration measuring method of an optical heterodyne detection and demodulation method according to the present invention.
[0005]
[Patent Document 2]
The technique disclosed in Japanese Patent No. 2866784 discloses a technique in which the vibration speed of a predetermined pulley and the vibration speed of a belt running on the pulley are simultaneously measured, and a pair of measured waveforms is tabulated. This is a method of specifying the mode of the micro-slip of the friction transmission belt by comparing and comparing the results with each other, and further comparing the result with the noise level waveform to clarify the sounding time or sounding mechanism.
[0006]
That is, as shown in FIG. 5 (a), in a complete frictional transmission state, the vibration speeds of the pulley and the belt match, and no minute slippage occurs. However, if the friction transmission is incomplete due to any cause, such as insufficient belt tension or a decrease in friction coefficient, the belt cannot follow the vibration speed of the driving pulley, as shown in FIG. Let it.
[0007]
The graphs shown in FIGS. 5 (a) and 5 (b) are the results of an experiment performed using an automobile engine accessory drive belt, in which the rotation fluctuation of the engine crankshaft is superimposed on the crank pulley. Thus, the presence / absence and occurrence time of minute slippage of the belt driven by this can be confirmed.
[0008]
The method of measuring the above-mentioned minute slip is disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 2000-131055, and the outline thereof is shown in FIG. 6A and FIG. Irradiates the side of the belt 1 with the laser light of the optical pulley 2 to measure the vibration velocity in the circumferential direction of the pulley 2 and simultaneously irradiates the side of the belt 1 with the laser light of the other optical Doppler type vibration measuring instrument 3. This is a method of measuring the vibration velocity (in the circumferential direction of the pulley) and judging the nature of the minute slip from the pair of waveform data.
[0009]
[Problems to be solved by the invention]
However, in the prior art which attempts to identify the time of occurrence of minute slippage of the transmission belt by comparing the vibration speed of the pulley 2 with the vibration speed of the belt 1 on this pulley, and to clarify the sound generation mechanism. The following issues were found.
[0010]
That is, in the conventional belt vibration velocity measuring method, as shown in FIGS. 6A and 6B, the laser beam transmitted from the optical Doppler vibration measuring device 3 is moved in the left-right direction (the pulley circumferential direction) in the drawing. Irradiating the side surface of the moving belt 1, the FM modulated wave which is Doppler shifted in proportion to the moving speed of the measured object is input to the photoelectric converter and converted into a voltage signal, and the FM modulated wave is converted by the heterodyne detection demodulation unit. This is a method of performing FM demodulation, extracting a beat signal, and detecting a vibration speed proportional to the Doppler shift.
[0011]
Similarly, the vibration speed of the pulley 2 to be compared with the belt vibration speed is measured simultaneously by using another optical Doppler vibration measuring device 3. At this time, in order to record the presence / absence of sound generation due to the belt 1 on the pulley, a microphone 4 is installed in the immediate vicinity of the pulley 2, noise level data is simultaneously recorded, and the audibility measurement result at this time is recorded.
[0012]
The discussion on such a minute slip is as described with reference to FIGS. 5A and 5B, and is an effective method for specifying the occurrence time of the minute slip. However, when trying to associate the relationship between micro-slip and pronunciation, it became clear that the following problems remained.
[0013]
Hereinafter, the problem will be described in detail with reference to FIGS. 7A and 7B. FIG. 7A is a graph in which a belt vibration velocity waveform measured by using the optical Doppler vibration measuring device 3 and a noise level waveform measured simultaneously therewith are graphed in a time series. From this graph, the peak of the noise level can be confirmed, but the peak of the belt vibration speed cannot be confirmed.
[0014]
Therefore, in order to clarify the relationship between the slight slip of the belt 1 and the sound generation, the frequency spectra of the belt vibration velocity waveform data and the noise level waveform data were calculated, and the coherence function of the pair of data was calculated.
[0015]
The results are as shown in FIG. 7 (b). Although a slight correlation (coherent value = 0.71) is observed near the frequency of 2.2 kHz, a peak is observed in the belt vibration speed itself near the frequency of 2.2 kHz. I couldn't.
[0016]
From the above, the above-mentioned conventional method is an effective method as a means for specifying the time of occurrence of a minute slip between the belt 1 and the pulley 2, but as a method for specifying the nature of this sound generation in relation to the noise level. Is not enough.
[0017]
[Means for Solving the Problems]
The invention according to claim 1 is a belt vibration measuring method for measuring a vibration speed of a belt traveling on a pulley, and a main part of the method is that the measured vibration speed is a vibration speed in a pulley radial direction. In addition, the method of measuring the vibration speed is such that the reflected laser light radiated to the back of the belt from the pulley radial direction and subjected to Doppler shift and the reference laser light whose frequency of the irradiated laser light is shifted by a predetermined frequency cause optical interference. The characteristic feature is that the obtained interference laser light is converted into an electric signal, and the resulting signal is subjected to FM demodulation to detect a vibration speed.
[0018]
The invention according to claim 2 is a belt sounding evaluation method for evaluating sound generation characteristics caused by vibration of a belt running on a pulley, wherein the vibration of the belt is a vibration defined by a belt vibration speed in a pulley radial direction. And, the belt vibration speed was obtained by causing light interference between the reflected laser light which was irradiated from the pulley radial direction to the belt back surface and shifted by Doppler shift and the reference laser light which was shifted the frequency of the irradiated laser light by a predetermined frequency. The interference laser light is converted into an electric signal, which is detected by FM demodulation. The belt vibration velocity waveform by the obtained interference laser light, the noise level waveform detected in synchronization with the belt vibration velocity waveform, Is expressed as a time-series waveform, and based on the coincidence of the peak value of the belt vibration velocity waveform and the peak value of the noise level waveform, a belt pronunciation evaluation that specifies a sounding time. It is a method.
[0019]
According to a third aspect of the present invention, each frequency spectrum is calculated from a belt vibration velocity waveform caused by interference laser light and a noise level waveform measured in synchronization with the waveform, and a coherence function is calculated from the pair of frequency spectra. 3. The belt sounding evaluation method according to claim 2, wherein a sounding time and a sounding frequency are specified from the obtained peak value of the coherence function.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram showing a belt vibration measuring method and a sound generation evaluation method according to the embodiment, and FIG. 2 is a flowchart showing a belt vibration measurement method and a sound generation evaluation method according to the embodiment. FIG. 3 is a schematic diagram showing the principle of measuring the vibration of the belt according to the embodiment.
[0021]
4A and 4B are graphs showing a belt vibration measurement result and a sounding evaluation result according to the example. FIGS. 4A and 4B show a time-series belt vibration velocity waveform and a noise level waveform, respectively. (C) shows a frequency spectrum of the belt vibration velocity and the noise level, and a coherence function of the belt vibration velocity and the noise level.
[0022]
FIGS. 8A and 8B are schematic views showing a belt driving device according to the present invention. FIG. 8A shows the entire belt driving device, and FIG. 8B shows a cross section of the belt.
[0023]
First, an example of the belt driving device according to the present invention will be described with reference to FIG. In FIG. 8A, the belt 1 is wound around six pulleys, a rotational force is applied by an engine crank pulley (Crack / P), and each auxiliary pulley (ACG pulley, P / S) is passed through the belt 1. Driving pulleys, W / P pulleys, A / C pulleys, and tensioner pulleys (A / T).
[0024]
As the belt 1 used for serpentine driving as shown in FIG. 8A, a V-ribbed belt having excellent flexibility is usually used. As shown in FIG. 8 (b), this V-ribbed belt is a stretched rubber 1b in which a cord 1c made of a stretched cord, an adhesive rubber 1d for embedding the cord, and a canvas 1a with rubber are laminated on the upper side thereof. On the lower side, a rib is formed with a predetermined number of ribs in the longitudinal direction of the belt.
[0025]
Next, a belt vibration measuring method according to the present invention and a pronunciation evaluation method using the same will be described in detail with reference to FIG. In FIG. 1, a laser beam emitted from an optical Doppler vibration measuring device 3 is split by a first prism (beam splitter) in a direction perpendicular to a straight traveling direction, and a laser beam traveling in the straight traveling direction is irradiated to the back surface of the belt 1 as it is. , Reflected on its back.
[0026]
This reflected light undergoes a Doppler shift due to the belt vibration velocity oscillating in the radial direction of the pulley, re-enters the second prism, and is guided in a right angle direction. This guided reflected light is further guided in a right angle direction via a mirror. On the other hand, the laser beam split in the right angle direction by the first prism is converted into a reference laser beam having undergone a predetermined frequency shift by the optical modulator.
[0027]
The reflected light and the reference laser light interfere with each other via the third prism, and become interference laser light and enter the photoelectric converter. A beat signal is extracted from the FM modulated wave converted by the photoelectric converter into a voltage signal by the optical heterodyne detection and demodulation unit, and a voltage signal proportional to the Doppler shift is output as a vibration velocity.
[0028]
Further, a noise level signal near the laser light irradiation point is measured simultaneously via a microphone 4 installed at a position immediately adjacent to the laser light irradiation point, and the noise level signal is time-series synchronized data together with the vibration velocity waveform. Is input to the FFT analyzer 5.
[0029]
The input time-series waveform is processed in real time, or after being recorded in a storage medium, is subjected to waveform processing as appropriate. In any case, the correlation between the noise level waveform and the belt vibration waveform is appropriately determined, and the processing is effectively performed as a sound generation evaluation method for specifying a sound generation time and a sound generation frequency.
[0030]
Next, the flow of the belt vibration measurement method and the sound generation evaluation method using the same will be described in detail with reference to FIG. In FIG. 2, the procedure for measuring the belt vibration is as follows. First, the belt 1 to be evaluated is prepared in a runnable state, then the microphone 4 for measuring the noise level is installed, and the belt in the radial direction which is a main part of the present invention is provided. An optical Doppler vibrometer 3 for measuring vibration with high accuracy is installed.
[0031]
With the above preparation, the belt 1 is run, and the noise level and the belt vibration velocity are measured simultaneously. This waveform data is temporarily stored in an external storage device, or waveform processing of the noise level and the belt vibration speed is executed in real time. If the peak values of the pair of time-series waveforms match at this stage, it is determined that there is a strong correlation with each other, the sounding time is specified, and the frequency spectra of the belt vibration velocity waveform and the noise level waveform are calculated.
[0032]
A coherence function is calculated from the pair of frequency spectra, and if the peak value of the coherence function is larger than a predetermined determination value α, it is determined that there is a strong causal relationship between the sound generation and the belt vibration speed, and the sound generation frequency is determined. Identify. However, if the peak value is smaller than the determination value α, it is determined that the pronunciation cannot be specified.
[0033]
As described above, the present invention has a remarkable feature in the direction of the belt vibration velocity to be measured, and the conventional method is a method for measuring the component in the belt running direction, that is, the vibration velocity in the pulley circumferential direction. On the other hand, the present invention is characterized in that a belt vibration speed oscillating in a direction perpendicular to this, that is, in a radial direction of the pulley is measured.
[0034]
Next, the difference between the vibration direction according to the conventional method and the vibration direction according to the present invention will be described with reference to FIG. FIG. 3A is a perspective view showing the belt vibration direction, and shows how the belt 1 slightly vibrates in the radial direction of the pulley 2. This fine vibration can be detected by irradiating the back surface of the belt 1 with a laser beam and measuring the optical Doppler shift in the radial direction, so that the vibration speed proportional to the Doppler shift can be detected.
[0035]
More specifically, FIG. 3B shows a cross section of the belt 1 wound around the pulley 2 in the belt width direction, and the belt 1 extends in the pulley radial direction along the groove shape of the pulley 2. You can see how it vibrates. Hereinafter, the operation and effect of the method of the present invention will be described in detail based on examples.
[0036]
【Example】
The belt drive device used in the embodiment is an engine accessory drive belt device used for an in-line four-cylinder 1800 cc engine, and a schematic layout is as shown in FIG. The belt 1 tested in this test was a Mitsuboshi Belt V-ribbed belt 6PK1940 (belt circumference 1940 mm).
[0037]
In order to facilitate the analysis of the test results, a prime mover that drives the belt 1 is separately provided with a prime mover having a rotation fluctuation output function on the output shaft, which is mounted on the crankshaft of the belt unit for driving the engine auxiliary machine. did. At this time, the number of revolutions of the crankshaft was 800 rpm, and the belt tension at this time was 23.5 kgf / 6 rib, which was appropriately applied using an auto tensioner (A / T).
[0038]
The optical Doppler vibration meter 3 uses an Ono Sokki optical Doppler vibration meter (LV-1720), the noise level meter uses an Ono Sokki sound meter (M1-1233), and the A mode Was measured. The FFT analyzer 5 used was DS-2000 manufactured by Ono Sokki.
[0039]
FIG. 4 shows the results obtained based on the above configuration. FIG. 4A is a time-series waveform of the back vibration of the belt 1 measured in the radial direction of the pulley using the optical Doppler vibrometer 3, and FIG. 4B is measured in synchronization with FIG. This is the noise level waveform obtained.
[0040]
From the graphs shown in FIGS. 4A and 4B, it can be determined that a clear peak exists in each of the noise level waveform and the belt vibration velocity waveform. In addition, since the occurrence times of the peaks clearly coincide with each other, it is possible to accurately specify the generation of the sound and the sound generation time.
[0041]
On the other hand, from the vibration data in the circumferential direction of the pulley according to the conventional method, it was not possible to determine the presence of a peak in the belt vibration velocity waveform as shown in the graphs of FIGS. 7 (a) and 7 (b).
[0042]
Next, in order to specify the frequency of the sound, the frequency spectra of the belt vibration velocity waveform and the noise level waveform were calculated, and a coherence function was calculated from the pair of frequency spectra, and the result was displayed in FIG.
[0043]
In other words, it can be seen from the graph of FIG. 4C that the peak of the coherence function exists near the frequency of 6.7 kHz, and the coherent value is extremely large at 0.95.
[0044]
Since this coherent value means that the frequency of the belt vibration velocity waveform and the noise level waveform have an intensity correlation, if this coherent value is registered in advance as the judgment value α of the pronunciation evaluation program, the Time and frequency can be specified accurately.
[0045]
That is, by measuring the belt vibration velocity in the radial direction of the pulley according to the method of the present invention, it becomes possible to measure the fine vibration (high frequency range) which cannot be obtained by the conventional measurement of the vibration velocity in the circumferential direction. The pronunciation can be specified.
[0046]
【The invention's effect】
According to the first aspect of the present invention, it is possible to measure the belt vibration velocity in the pulley radial direction, and to clarify the vibration phenomenon caused by the minute vibration due to misalignment or the like.
[0047]
According to the second aspect of the present invention, it is possible to specify the sound generation time of the sound generated due to the belt minute vibration in the pulley radial direction, and the analysis of the sound generation mechanism is facilitated.
[0048]
According to the third aspect of the present invention, it is possible to specify the sound generation time and the sound generation frequency of the sound caused by the belt micro-vibration in the pulley radial direction, which is effective in elucidating the sound generation mechanism and improving the sound generation performance of the belt. is there.
[Brief description of the drawings]
FIG. 1 is a block diagram illustrating a belt vibration measuring method and a sound generation evaluating method according to an embodiment.
FIG. 2 is a flowchart illustrating a belt vibration measuring method and a sound generation evaluating method according to the embodiment.
FIG. 3 is a schematic diagram illustrating a principle of measuring belt vibration according to the embodiment.
FIGS. 4A and 4B are graphs showing a belt vibration measurement result and a sounding evaluation result according to the embodiment. FIGS. 4A and 4B show a time-series belt vibration velocity waveform and a noise level waveform, respectively. c) shows the frequency spectrum of the belt vibration velocity and the noise level, and the coherence function of the vibration velocity and the noise level.
5A and 5B are graphs showing measurement results of a minute slip of a belt according to a conventional example, where FIG. 5A shows a state without a minute slip and FIG. 5B shows a state with a minute slip.
FIG. 6 is a schematic diagram showing a belt vibration measuring method according to a conventional example.
7A and 7B are graphs showing a belt vibration measurement result and a sounding evaluation result according to a conventional example, wherein FIG. 7A shows a time-series belt vibration velocity waveform and a noise level waveform, and FIG. 2) shows the frequency spectrum of FIG. 2 and the coherence function of the belt vibration velocity and the noise level.
FIGS. 8A and 8B are schematic diagrams showing a belt driving device according to the present invention, wherein FIG. 8A shows the entire belt driving device, and FIG. 8B shows a cross section of the belt.
[Explanation of symbols]
1 Belt 2 Pulley 3 Optical Doppler Vibrometer 4 Microphone 5 FFT Analyzer

Claims (3)

プーリ上を走行するベルトの振動速度を測定するベルト振動測定方法において、
前記ベルトの振動速度はプーリ半径方向の振動速度であり、且つその振動速度は、プーリ半径方向からベルト背面に照射しドップラーシフトさせた反射レーザ光と、照射レーザ光の周波数を所定の周波数だけシフトさせた参照レーザ光とを光干渉させ、得られた干渉レーザ光を電気信号に変換し、これをFM復調することにより、検出されることを特徴とするベルト振動測定方法。
In a belt vibration measuring method for measuring a vibration speed of a belt running on a pulley,
The vibration speed of the belt is a vibration speed in the pulley radial direction, and the vibration speed is the Doppler-shifted reflected laser light irradiated to the back of the belt from the pulley radial direction, and the frequency of the irradiated laser light is shifted by a predetermined frequency. A belt vibration measuring method, wherein light interference occurs between the reference laser light and the obtained interference laser light, the obtained interference laser light is converted into an electric signal, and the signal is detected by FM demodulation.
プーリ上を走行するベルトの振動に起因する発音特性を評価するベルト発音評価方法において、
前記ベルトの振動は、プーリ半径方向のベルト振動速度によって定義される振動であり、且つそのベルト振動速度は、プーリ半径方向からベルト背面に照射しドップラーシフトさせた反射レーザ光と、照射レーザ光の周波数を所定の周波数だけシフトさせた参照レーザ光とを光干渉させ、得られた干渉レーザ光を電気信号に変換し、これをFM復調することにより検出されるものであって、
前記干渉レーザ光によるベルト振動速度波形と、これに同期して検出した騒音レベル波形とを、時系列波形として表出し、このベルト振動速度波形のピーク値と、騒音レベル波形のピーク値の一致から、発音時刻を特定することを特徴とするベルト発音評価方法。
In a belt sounding evaluation method for evaluating sounding characteristics caused by vibration of a belt running on a pulley,
The vibration of the belt is a vibration defined by a belt vibration velocity in a pulley radial direction, and the belt vibration velocity is a reflected laser light irradiated to the back of the belt from the pulley radial direction and subjected to Doppler shift, and an irradiation laser light. Optical interference between the reference laser light whose frequency is shifted by a predetermined frequency, conversion of the obtained interference laser light into an electric signal, which is detected by FM demodulation,
The belt vibration velocity waveform due to the interference laser light and the noise level waveform detected in synchronization with the belt vibration velocity waveform are displayed as a time-series waveform, and the peak value of the belt vibration velocity waveform and the peak value of the noise level waveform are compared. A belt pronunciation evaluation method characterized by specifying a pronunciation time.
前記干渉レーザ光によるベルト振動速度波形と、これに同期して測定した騒音レベル波形と、から夫々の周波数スペクトルを演算し、この一対の周波数スペクトルからコヒーレンス関数を演算し、得られたコヒーレンス関数のピーク値から、発音時刻および発音周波数を特定する請求項2に記載のベルト発音評価方法。A belt vibration velocity waveform by the interference laser light and a noise level waveform measured in synchronization with the belt vibration velocity waveform are calculated, and a coherence function is calculated from the pair of frequency spectra. 3. The belt sounding evaluation method according to claim 2, wherein a sounding time and a sounding frequency are specified from the peak value.
JP2003022940A 2003-01-31 2003-01-31 Belt pronunciation evaluation method Expired - Fee Related JP4067978B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003022940A JP4067978B2 (en) 2003-01-31 2003-01-31 Belt pronunciation evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003022940A JP4067978B2 (en) 2003-01-31 2003-01-31 Belt pronunciation evaluation method

Publications (3)

Publication Number Publication Date
JP2004233226A true JP2004233226A (en) 2004-08-19
JP2004233226A5 JP2004233226A5 (en) 2006-02-23
JP4067978B2 JP4067978B2 (en) 2008-03-26

Family

ID=32951886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003022940A Expired - Fee Related JP4067978B2 (en) 2003-01-31 2003-01-31 Belt pronunciation evaluation method

Country Status (1)

Country Link
JP (1) JP4067978B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103162807A (en) * 2013-03-02 2013-06-19 西南科技大学 System for testing compound vibration of machine tool
CN113945264A (en) * 2021-10-14 2022-01-18 科博达(重庆)智控技术有限公司 Method for estimating noise of automobile actuator
US11635520B2 (en) * 2019-01-23 2023-04-25 Nippon Steel Corporation Measuring device and measuring method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108225540B (en) * 2017-12-29 2020-05-12 北京航天控制仪器研究所 Heterodyne interference type optical fiber hydrophone system with large dynamic range

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103162807A (en) * 2013-03-02 2013-06-19 西南科技大学 System for testing compound vibration of machine tool
US11635520B2 (en) * 2019-01-23 2023-04-25 Nippon Steel Corporation Measuring device and measuring method
CN113945264A (en) * 2021-10-14 2022-01-18 科博达(重庆)智控技术有限公司 Method for estimating noise of automobile actuator
CN113945264B (en) * 2021-10-14 2024-05-28 科博达(重庆)智控技术有限公司 Method for estimating noise of automobile actuator

Also Published As

Publication number Publication date
JP4067978B2 (en) 2008-03-26

Similar Documents

Publication Publication Date Title
Vass et al. Avoidance of speckle noise in laser vibrometry by the use of kurtosis ratio: Application to mechanical fault diagnostics
RU2007123540A (en) METHOD FOR DIAGNOSTIC TECHNICAL CONDITION OF PARTS, UNITS AND DRIVE UNITS OF A GAS TURBINE ENGINE AND DEVICE FOR ITS IMPLEMENTATION
US6679109B2 (en) Acoustic recognition of variator slip of a continuously variable transmission
US7822580B2 (en) Method and a system for monitoring the condition and operation of periodically moving objects
JPH1137898A (en) Facility for judging good/no good of engine
WO2013079530A1 (en) Dynamic belt monitoring apparatus and method
JP4067978B2 (en) Belt pronunciation evaluation method
CN114060483B (en) Device for vehicle equipped with power transmission device
US5952586A (en) Device and method for accurately detecting torque of auxiliary device
JP2002267556A (en) Belt tension measuring device
GB2219657A (en) Method and apparatus for monitoring the tension in an elongate flexible member
RU2298455C1 (en) Method for determining life parameters of moving and rotating cutting tool
Agnani et al. V-belt transverse vibration measurement by means of laser Doppler vibrometry
JP2002022616A (en) Method and system for diagnosing crack
JP2001153607A (en) Device for measuring hoop deviation of transmission belt
JP2016200464A (en) Vibration measurement device of continuously variable transmission
JP4169718B2 (en) Metal ring inspection device
JP2008014676A (en) Tension of belt measurement method, and tension of belt measurement device
JP2009092603A (en) Method and device for evaluating squeal noise of belt, and program therefor
JPH0949786A (en) Method and device for estimation of noise of toothed belt driving mechanism
JP4383570B2 (en) Transmission belt thickness unevenness inspection method and transmission belt
Gatignol et al. Detection of friction-induced instabilities at the origin of the squeal of wet poly-V belts
RU2228518C1 (en) Diagnostic measurement system
KR970066215A (en) Control device of continuously variable transmission
JPH0972394A (en) Auxiliary machine torque detecting system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060105

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4067978

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees