JP2004233092A - Method for electrochemically measuring agmatine combined with enzyme - Google Patents

Method for electrochemically measuring agmatine combined with enzyme Download PDF

Info

Publication number
JP2004233092A
JP2004233092A JP2003019086A JP2003019086A JP2004233092A JP 2004233092 A JP2004233092 A JP 2004233092A JP 2003019086 A JP2003019086 A JP 2003019086A JP 2003019086 A JP2003019086 A JP 2003019086A JP 2004233092 A JP2004233092 A JP 2004233092A
Authority
JP
Japan
Prior art keywords
agmatine
column
amount
measured
immobilized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003019086A
Other languages
Japanese (ja)
Other versions
JP3954973B2 (en
Inventor
Etsuo Watanabe
悦生 渡辺
Yohei Inaba
洋平 稲葉
Chiaki Imada
千秋 今田
Nahoko Hamada
奈保子 濱田
Takeshi Kobayashi
武志 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2003019086A priority Critical patent/JP3954973B2/en
Publication of JP2004233092A publication Critical patent/JP2004233092A/en
Application granted granted Critical
Publication of JP3954973B2 publication Critical patent/JP3954973B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for simply measuring agmatine with excellent reproducibility. <P>SOLUTION: A sample to be measured is supplied to a path, which is measured by a hydrogen peroxide and/or an oxide electrode 3 provided after going by way of only a column 1 filled with only a carrier, where putrescine oxidase is immobilized, and a path, which is measured by a hydrogen peroxide and/or an oxide electrode 4 after going by way of a column 2 filled with filler, where a carrier in which agmatinase (agmatine ureohydrase EC 3. 53. 11) is immobilized is combined with the carrier in which the putrescine oxidase is immobilized, after going by way of only a column, where only the putrescine oxidase is immobilized. The relative value of the measurement value of each path is correlated with the amount of agmatine for calculating the amount of agmatine. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、プトレッシンオキシターゼのみを固定したカラムとアグマチナーゼ(agmatinase)(アグマチンウレオヒドラーゼ、EC 3.53.11)とプトレッシンオキシターゼとの組み合わせを固定したカラムとをそれぞれ酸素電極に接続し前記各カラム内で消費酸素量または生成過酸化水素量の相対値をアグマチン量に対応させて算出する構成としたアグマチン量の検出方法に関する。
【0002】
【従来の技術】
酵素を用いる食品の分析法は,今日広く一般に受け入れられる様になって来た。酵素法の特徴としては、(1)酵素の基質特異性による被分析成分の選択性が良い、(2)高い測定感度、(3)(1)と関連するが分離,前処理が不要乃至比較的簡易であり、熟練を必要とせず高い精度の分析が可能である、(4)検量線の作製が、例えば2点補完で済みまたはNADなどの化学量比から検量線なしでも定量が可能である、(5)特殊な機器を必要としないなどがある。
最近では食品分析用にキット化された酵素製品も市販され、食品添加物の分析においても、例えばグルタミン酸ナトリウム,糖類,有機酸類などの項目で酵素法が準公定法に取り入れられるなど、今後は酵素法の利用が増々盛んになると思われる。
魚介類の鮮度指標K値の測定にも,核酸関連物質の各濃度を酵素法により定量することが研究されている。K値の測定には酸素電極を利用した実用的鮮度測定器や酵素電極を用いた多機能型酵素センサーシステムが開発され注目を集めた。因みに、K値=〔HxR(イノシン)+Hx(ヒポキサンチン)〕/〔ATP+ADT+AMP+IMP+HxR+Hx〕×100であり、ATPの尿酸(UA)への分解程度を測定して、魚介類の鮮度指標とするものである。
【0003】
アグマチンはアルギニンの脱炭酸により合成される物質であり、食物においてはイカやタコ等の海産無脊椎移動物の筋肉中やニシンの精子等に見出されている。また最近アグマチンがイミダゾリン受容体に対する神経伝達物質であることが知られ、脳や血漿中のアグマチンの濃度の測定もされるようになっている。前記のように、アグマチンはイカなどの食品に存在し、それらの鮮度のマーカーとして利用できることが知られている。
【0004】
【非特許文献1】
H.Yamanaka et al,J.Food Sci.52,936−938(1987)
【非特許文献2】
Hirokazu Okuma,Estuo Watanabe,Biosensors & Bioelectronics 17(2002)367−372
【非特許文献3】
Hirokazu Okuma,Hitoshi Takahashi,Seiichi Yazawa,Shuichi Sekimukai,Estuo Watanabe,Analytica Chimica Acta,Vol.260,No.1(1992),93−98
【非特許文献4】
C.SATISHCHANDRAN and STEPHEN M.BOYLE,J.of BACTERIOLOGY,Mar.1986,p843−848,
【特許文献1】
特開2001−249108、特許請求の範囲、図2、〔0011〕
【0005】
前記海産無脊椎動物のエキス成分に含まれるアルギニンが時間の経過と共に脱炭酸されてアグマチンを生成することに着目して、例えばスルメイカの貯蔵条件におけるアグマチンの量をHPLC(高速液体クロマトグラフ)で測定し、アグマチンがスルメイカの鮮度の判定指標となることを発表している(非特許文献1)。
Hirokazu Okumaらは、魚介類の鮮度指標K値を、2系列の酵素リアクターをそれぞれ酸素電極などに結合し、ぞれぞれの系列での、例えば酸素消費量を酸素電極で測定し、それぞれの測定における相対値から高速に、かつ再現性良く、前記HPLCで得られる結果と相関する値が得られることを発表している(非特許文献2、3)。
しかしながら、アグマチンを酵素反応カラムを用いて測定する技術は知られていないし、まして酵素反応カラムと酸素電極とを組み合わせて測定する技術は知られていない。
ただ、アグマチンはアグマチナーゼにより加水分解されプトレッシンと尿素を生成すること、プトレッシンの測定方法として、プトレッシンの分解酵素プトレッシン オキシダーゼによる反応系の成分、例えば酸素消費などを酸素電極により測定して行う方法は公知である(特許文献1、酵素ハンドブック、1987年11月1日朝倉書店発行、119頁、1.4.3,10 Putresciene oxidase,)。
【0006】
【発明が解決しようとする課題】
本発明の課題は、アグマチンを簡易、迅速に計測する方法を提供することである。そこで前記Hirokazu Okuma et al.,の手法をアグマチンの計測に適用できないかを検討するために、アグマチンの加水分解酵素であるアグマチナーゼを前記非特許文献4に記載の方法を工夫して生産性良く合成し、この酵素をLCカラム充填材(ビーズ)表面に固定し、更にアグマチンの加水分解生成物であるプトレッシンの分解酵素プトレッシン オキシダーゼを固定したカラム充填材を作製し、これらを用いたカラムと酸素電極などとを組み合わせて、所望のアグマチンの測定が可能となる手法を検量線の作製と合わせて鋭意検討し、アグマチナーゼ(agmatinase)(アグマチンウレオヒドラーゼ、EC 3.53.11)とプトレッシンオキシターゼとの組み合わせを固定したカラムとプトレッシンオキシターゼのみを固定したカラムとそれぞれのカラムに組み合わせた酸素電極により酸素濃度を電流値として測定し、それらの差とアグマチ濃度との相関の検量線を、アグマチン濃度が既知の少なくとも2つの試料から作製し、該検量線を用いて被測定試料の酸素消費量の相対値からアグマチン濃度を測定できることを確認し、前記課題を解決することが出来た。
前記酸素電極により酸素消費量の測定に変えて、酵素による反応における生成した成分、例えば過酸化水素量を測定しても良い。
【0007】
【課題を解決するための手段】
本発明は、被測定試料をプトレッシンオキシターゼを固定した被測定試料をプトレッシンオキシターゼを固定した担体のみを充填したカラムのみを経由した後に設けられた過酸化水素及び/または酸素電極により測定する経路とプトレッシンオキシターゼのみを固定したカラムのみを経由した後にアグマチナーゼ(agmatinase)(アグマチンウレオヒドラーゼ、EC 3.53.11)を固定した担体とプトレッシンオキシターゼを固定した担体との組み合わせた充填剤を充填したカラムを経緯由後の過酸化水素及び/または酸素電極により測定する経路とに供給し、それぞれ経路の測定値の相対値をアグマチン量に相関させてアグマチン量を算出することを特徴とするアグマチン量の検出方法である。好ましくは、カラム内のアグマチナーゼの活性を高める二価Mn(II)A(AはMnのカウンターイオン、例えばSO 2−である。)を前記カラム内に存在させることを特徴とする前記アグマチン量の検出方法である。また好ましくは、前記各アグマチン量の検出方法を海産無脊椎動物肉の鮮度を評価する方法に適用することを特徴とするアグマチン量の検出方法である。より好ましくは、被測定試料中にTrisを存在させpHを7より大きく9までに調整することを特徴とする前記各アグマチン量の検出方法である。
【0008】
【本発明の実施の態様】
本発明をより詳細に説明する。
A.本発明の特徴を図1に記載の測定原理を参照しながら説明する。
1,プトレッシンオキシターゼによるプトレッシン酸化分解反応は、
プトレッシン+O+HO―→4−アミノブチルアルデヒド+NH+H
であり、この反応はカラム1及び2で進行する。
2,アグマチナーゼによるアグマチンの加水分解反応は、
アグマチン+HO―→ プトレッシン+尿素
である。この反応はカラム2で進行する。
カラム1では被測定試料中に存在する可能性のあるプトレッシンを分解する前記1,の反応が進行する。また、カラム2では、2,の分解反応、1の分解反応が進行する。従って、カラム2での酸素消費量とカラム1での酸素消費量の違いは、実質的にアグマチンの存在量と相関する。プトレッシンオキシターゼ自身の酸素消費があったとしても、その量も補正される。
前記1,の反応の原理からすると、前記反応の検出が可能な被測定成分は、酸素消費量の他に、反応後の各生成物があるが、酸素消費量、H量の測定が簡易である。
【0009】
従って、例えば、それぞれのカラムと結合する酸素電極3及び4により酸素消費量を、エレクトロメータ5で電流値として求め、その相対値を求めればアグマチンの存在量と相関する。この測定結果はレコーダ6に記録される。
カラムに存在させるアグマチナーゼの量は4U(酵素の添加量の単位)、である。測定後の試料はペリスタポンプ(Perista pump)9で廃液槽に排出させる。
B.測定感度は、カラムの条件、酸素電極の条件により変動するから、予めアグマチンの濃度既知試料を測定し、検量線を作製しておけば、正確にアグマチン濃度を知ることができる。検量線の直線性は良いので、2点濃度の補完で充分である。
C.被測定試料は緩衝剤であるTris〔(トリス(ヒドロキシメチル)アミノメタン〕〔tris(hydoxmethyl)aminomethanee〕に加えた緩衝液8の流路に設けられた注入口7注入される。緩衝液にはアグマチナーゼを活性化する2価のマンガン化合物、例えばMnSO等を添加するが好ましい。前記活性剤を添加した場合、アグマチナーゼの使用量は4Uで充分であった。
D.カラム充填材及びカラムの調製;
酵素を担持させる不溶性の担体としては、通常使用されている担体材料が使用される。キトサン、デキストランなどの天然の高分子材料、ポリアクリルアミド、アセチルセルロース、ポリイミドなどの合成樹脂材料、シリケート結晶子多孔体、セラミック、多孔質ガラスなどからビーズ状に整形したものなどを例示できる。酵素の前記担体への固定方法としては、担体結合法、架橋法、包括法等がある。酵素の固定化量は、測定条件、例えば、緩衝液の流速、被測定試料液に含まれる特定物質の量に応じて、適宜選択される。また、アグマチナーゼを担持した充填を充填したカラムの作製方法としては、各酵素を固定化した担体を層状に充填する方法、混合して充填する方法、及び複数の酵素を単一の担体に固定化し充填する方法などがある。
酵素の量はカラムのスケールにより変化し、以下の実施例における酵素量は、実施例でのカラムスケールの場合における数値である。
【0010】
【実施例】
以下に、実施例により本発明を具体的に説明するが、これにより本発明の範囲が限定されない。
実施例1
各カラムの作製;
A,プトレッシンオキシターゼ カラムの作製。
0.5M、pH8のTris−HCl緩衝液1mL中にプトレッシンオキシターゼ40Uの酵素を溶解し、これにグルタールアルデヒド1滴およびキトサンビーズを液面からでない程度に加える。これを5℃で1日放置した。余分のグルタールアルデヒドを除去するために前記緩衝液で洗浄する。グルタールアルデヒドを介してキトサンビーズに固定化したプトレッシンオキシターゼ担持ビーズが得れれた。得られたビーズは前記緩衝液と同組成の液中に5℃で保存する。
前記ビーズを1.5mm×5.5mmのカラムに充填してプトレッシンオキシターゼ(40Uのプトレッシンオキシターゼが存在) カラムを得た。
B,アグマチナーゼ+プトレッシンオキシターゼ カラムの作製。
アグマチナーゼ担持ビーズを、前記A,のプトレッシンオキシターゼビーズと同様に調製した。アグマチナーゼ担持ビーズと前記A,で調製したプトレッシンオキシターゼビーズを1:1に層状になるようφ1.5mm×5.5mmカラムに充填してアグマチナーゼ+プトレッシンオキシターゼ カラムを得た。
但し、プトレッシンオキシターゼの配合単位は40Uとし、アグマチナーゼの配合単位は4Uとした。これは2価のMn塩、MnSOを添加することでアグマチナーゼの活性が10倍に増加することの発見に基づくものである。
【0011】
検量線の作製;
pH9.0、温度30℃、2価のMn(MnSO)の含有0.05MのTrisHCl緩衝液を流速0.2mL/分で前記カラム中を移送させる。測定酸素電極の出力が安定したら、アグマチン濃度、20μM(2.6mg/L)及び80μM(10.4mg/L)の標準サンプルを50μL注入し、それぞれのセンサー出力(電流値)70nAおよび280nAと前記アグマチン濃度との関係をプロットする(図2)。
前記2つの標準点を結んで得られる直線が、測定装置のパラメータ、被測定アグマチンの濃度など測定時の条件を反映した検量線、y=3.5xである。
y=(280−70)/(80−20)x=3.5x
【0012】
被測定試料中のアグマチン濃度の測定。
スルメイカの胴肉をホモジナイズし、肉10gに対し冷却した5%過塩素酸を、含有タンパク量に応じて50〜200mLを加え、除タンパク処理をした。生じた沈澱を10000回転/分で10分間遠心処理することにより除去した。上清50μLを被測定試料とした。測定用酸素電極4及び3の出力を前記検量線の勾配3.5で除すると、前記被測定試料50μL中のアグマチン濃度が得られる。これを1000倍すると100g中に含まれるアグマチンの量(mg)が得られる。
表1に示したサンプルA、B及びCの各保存温度及び経過後の被測定試料中のアグマチン量との関係を表に示す。図2の検量線上にサンプルA、B及びCのアグマチン濃度とセンサー出力との相関をプロットした。
【0013】
【表1】

Figure 2004233092
【0014】
【発明の効果】
以上述べたように、本発明のアグマチンの測定方法によれば、簡易に、かつ再現性良く得られると言う優れた効果がもたらされる。
【図面の簡単な説明】
【図1】本発明のアグマチンの測定装置
【図2】本発明測定法による被測定試料中のアグマチン量算出の検量線、測定試料中のアグマチン量と電流値とのプロット
【符号の説明】
1 プトレッシンオキシダーゼ カラム
2 アグマチナーゼ+プトレッシンオキシダーゼ カラム
3、4 酸素または過酸化水素電極試料注入口 5 算出部
6 算出信号記録部 7 被検出物注入口 8 緩衝液
9 ペリスタポンプ 10 廃液溜[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides an oxygen electrode comprising a column on which only putrescine oxidase is immobilized and a column on which a combination of agmatinase (agmatinase) (agmatine ureohydrase, EC 3.53.11) and putrescine oxidase are immobilized. And a method for calculating the relative value of the amount of consumed oxygen or the amount of generated hydrogen peroxide in each of the columns in accordance with the amount of agmatine.
[0002]
[Prior art]
Analytical methods for foods using enzymes have become widely accepted today. The characteristics of the enzymatic method include (1) good selectivity of the analyte by the substrate specificity of the enzyme, (2) high measurement sensitivity, and (3) related to (1), but requiring no separation or pretreatment or comparison. (4) Calibration curve can be prepared by, for example, complementing two points, or quantification can be performed without a calibration curve based on the stoichiometric ratio of NAD, etc. There are (5) special devices are not required.
Recently, enzyme products in the form of kits for food analysis have also been marketed, and in the analysis of food additives, enzymatic methods have been incorporated into the quasi-official method for items such as sodium glutamate, saccharides, and organic acids. The use of the law is likely to increase.
For the measurement of the freshness index K value of fish and shellfish, studies have been made to quantify each concentration of nucleic acid-related substances by an enzymatic method. For the measurement of the K value, a practical freshness measuring instrument using an oxygen electrode and a multifunctional enzyme sensor system using an enzyme electrode have been developed and attracted attention. Incidentally, K value = [HxR (inosine) + Hx (hypoxanthine)] / [ATP + ADT + AMP + IMP + HxR + Hx] × 100, and the degree of decomposition of ATP into uric acid (UA) is measured and used as a freshness index of fish and shellfish. .
[0003]
Agmatine is a substance synthesized by decarboxylation of arginine, and is found in foods in the muscles of marine invertebrates such as squid and octopus and in sperm of herring. Recently, agmatine is known to be a neurotransmitter for imidazoline receptors, and the concentration of agmatine in the brain and plasma has been measured. As described above, it is known that agmatine is present in foods such as squid and can be used as a marker for their freshness.
[0004]
[Non-patent document 1]
H. Yamanaka et al, J. Mol. Food Sci. 52, 936-938 (1987)
[Non-patent document 2]
Hirokazu Okuma, Estuo Watanabe, Biosensors & Bioelectronics 17 (2002) 367-372.
[Non-Patent Document 3]
Hirokazu Okuma, Hitoshi Takahashi, Seichichi Yawawa, Shuichi Sekimukai, Estuo Watanabe, Analytica Chimica Acta, Vol. 260, no. 1 (1992), 93-98
[Non-patent document 4]
C. SATISHCHANDRAN and STEPHEN M. Boyle, J .; of BACTERIOLOGY, Mar. 1986, p843-848,
[Patent Document 1]
JP-A-2001-249108, Claims, FIG. 2, [0011]
[0005]
Focusing on the fact that arginine contained in the marine invertebrate extract component is decarboxylated with the passage of time to produce agmatine, for example, the amount of agmatine under storage conditions of squid is measured by HPLC (high performance liquid chromatography). However, it has been disclosed that agmatine is an index for judging freshness of squid (Non-patent Document 1).
Hirokazu Okuma et al. Measured the freshness index K value of fish and shellfish by connecting two series of enzyme reactors to oxygen electrodes and the like, and measuring, for example, oxygen consumption in each series with an oxygen electrode. It is disclosed that values correlated with the results obtained by the HPLC can be obtained at high speed and with good reproducibility from relative values in the measurement (Non-Patent Documents 2 and 3).
However, a technique for measuring agmatine using an enzyme reaction column is not known, and a technique for measuring agmatine using an enzyme reaction column and an oxygen electrode in combination is not known.
However, agmatine is hydrolyzed by agmatinase to produce putrescine and urea, and as a method of measuring putrescine, a method of measuring the components of a reaction system by putrescine degrading enzyme putrescine oxidase, for example, oxygen consumption using an oxygen electrode is known. (Patent Document 1, Enzyme Handbook, published by Asakura Shoten on November 1, 1987, 119 pages, 1.4.3, 10 Putresciene oxidase,).
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for simply and quickly measuring agmatine. Thus, the Hirokazu Okuma et al. In order to examine whether the method of (1), (2), or (3) can be applied to the measurement of agmatine, agmatinase, a hydrolase of agmatine, is synthesized with high productivity by devising the method described in Non-Patent Document 4, and this enzyme is subjected to LC column chromatography. A column packing material is immobilized on the surface of the packing material (beads) and further immobilized with putrescine oxidase, an enzyme that decomposes putrescine, a hydrolysis product of agmatine. Of the method that enables the measurement of agmatine in combination with the preparation of a calibration curve, and fixed the combination of agmatinase (agmatin ureohydrase, EC 3.53.11) and putrescine oxidase Column and the column on which only putrescine oxidase is immobilized. The oxygen concentration is measured as a current value with the combined oxygen electrode, and a calibration curve of the correlation between the difference and the agmatism concentration is prepared from at least two samples having a known agmatine concentration, and the measured sample is measured using the calibration curve. It was confirmed that the agmatine concentration could be measured from the relative value of the oxygen consumption of the above, and the above problem could be solved.
Instead of measuring the oxygen consumption by the oxygen electrode, a component generated in the reaction by the enzyme, for example, the amount of hydrogen peroxide may be measured.
[0007]
[Means for Solving the Problems]
In the present invention, a sample to be measured is measured by a hydrogen peroxide and / or oxygen electrode provided after passing the sample to be measured having putrescine oxidase immobilized thereon only through a column filled with only a carrier having immobilized putrescine oxidase. After passing through only a column on which only putrescine oxidase is immobilized and a carrier on which agmatinase (agmatin ureohydrase, EC 3.53.11) is immobilized and a carrier on which putrescine oxidase is immobilized, The column packed with the packing material of the above is supplied to the path measured by the hydrogen peroxide and / or oxygen electrode after the process, and the relative value of the measured value of each path is correlated with the amount of agmatine to calculate the amount of agmatine This is a method for detecting the amount of agmatine. Preferably, the amount of agmatine is characterized in that divalent Mn (II) A (A is a counter ion of Mn, for example, SO 4 2− ) is present in the column to enhance the activity of agmatinase in the column. Is a detection method. Also preferably, a method for detecting the amount of agmatine, wherein the method for detecting each amount of agmatine is applied to a method for evaluating freshness of marine invertebrate meat. More preferably, the method for detecting the amount of each agmatine is characterized in that Tris is present in the sample to be measured and the pH is adjusted to be greater than 7 and up to 9.
[0008]
[Embodiment of the present invention]
The present invention will be described in more detail.
A. The features of the present invention will be described with reference to the measurement principle shown in FIG.
1, Putrescine oxidative degradation by putrescine oxidase
Putrescine + O 2 + H 2 O— → 4-aminobutyraldehyde + NH 3 + H 2 O 2
And the reaction proceeds in columns 1 and 2.
2, the hydrolysis reaction of agmatine by agmatinase,
Agmatine + H 2 O— → putrescine + urea. This reaction proceeds in column 2.
In the column 1, the reaction (1) for decomposing putrescine which may be present in the sample to be measured proceeds. In the column 2, the decomposition reaction of 2, the decomposition reaction of 1 proceeds. Therefore, the difference between the oxygen consumption in column 2 and the oxygen consumption in column 1 substantially correlates with the agmatine abundance. If putrescine oxidase itself consumes oxygen, its amount is also corrected.
According to the principle of the reaction (1), the components to be measured capable of detecting the reaction include products after the reaction in addition to the oxygen consumption, and the measurement of the oxygen consumption and the H 2 O 2 amount Is simple.
[0009]
Therefore, for example, the oxygen consumption is determined as the current value by the electrometer 5 using the oxygen electrodes 3 and 4 connected to the respective columns, and the relative value is correlated with the agmatine abundance. This measurement result is recorded on the recorder 6.
The amount of agmatinase to be present in the column was 4 U (unit of the amount of enzyme added). The sample after the measurement is discharged to a waste liquid tank by a Perista pump 9.
B. Since the measurement sensitivity varies depending on the conditions of the column and the conditions of the oxygen electrode, if a sample with a known agmatine concentration is measured in advance and a calibration curve is prepared, the agmatine concentration can be accurately known. Since the linearity of the calibration curve is good, complementing the two-point concentration is sufficient.
C. The sample to be measured is injected into the injection port 7 provided in the flow path of the buffer 8 added to the buffer Tris [(tris (hydroxymethyl) aminomethane] [tris (hydroxmethyl) aminomethane]. It is preferable to add a divalent manganese compound that activates agmatinase, for example, MnSO 4. When the above-mentioned activator was added, 4 U of the agmatinase was sufficient.
D. Preparation of column packing material and column;
As the insoluble carrier for supporting the enzyme, a commonly used carrier material is used. Examples thereof include natural polymer materials such as chitosan and dextran, synthetic resin materials such as polyacrylamide, acetylcellulose, and polyimide, silicate crystallite porous materials, ceramics, and porous glass formed into beads. Examples of a method for immobilizing the enzyme on the carrier include a carrier binding method, a cross-linking method, and an entrapment method. The amount of the enzyme immobilized is appropriately selected according to the measurement conditions, for example, the flow rate of the buffer solution and the amount of the specific substance contained in the sample liquid to be measured. In addition, as a method for preparing a column filled with a packing supporting agmatinase, a method in which a carrier on which each enzyme is immobilized is packed in a layer, a method in which a mixture is filled, and a method in which a plurality of enzymes are immobilized on a single carrier are used. There is a method of filling.
The amount of the enzyme varies depending on the scale of the column, and the amount of the enzyme in the following examples is a numerical value in the case of the column scale in the examples.
[0010]
【Example】
Hereinafter, the present invention will be described specifically with reference to Examples, but the scope of the present invention is not limited thereto.
Example 1
Preparation of each column;
A, Preparation of putrescine oxidase column.
The enzyme of 40 U of putrescine oxidase is dissolved in 1 mL of 0.5 M, pH 8 Tris-HCl buffer, and one drop of glutaraldehyde and chitosan beads are added to such an extent that it does not come out of the liquid level. This was left at 5 ° C. for 1 day. Wash with the buffer to remove excess glutaraldehyde. Beads carrying putrescine oxidase immobilized on chitosan beads via glutaraldehyde were obtained. The obtained beads are stored at 5 ° C. in a liquid having the same composition as the buffer.
The beads were packed in a 1.5 mm × 5.5 mm column to obtain a putrescine oxidase (40 U putrescine oxidase was present) column.
B, Preparation of agmatinase + putrescine oxidase column.
Agmatinase-carrying beads were prepared in the same manner as the putrescine oxidase beads of A above. The agmatinase + putrescine oxidase column was obtained by packing the agmatinase-bearing beads and the putrescine oxidase beads prepared in the above A in a 1: 1 layer in a φ1.5 mm × 5.5 mm column.
However, the blending unit of putrescine oxidase was 40 U, and the blending unit of agmatinase was 4 U. This is based on the finding that the addition of a divalent Mn salt, MnSO 4 , increases the activity of agmatinase ten-fold.
[0011]
Preparation of calibration curve;
A 0.05 M TrisHCl buffer containing pH 9.0 at a temperature of 30 ° C. and containing divalent Mn (MnSO 4 ) is transferred through the column at a flow rate of 0.2 mL / min. When the output of the measurement oxygen electrode was stabilized, 50 μL of a standard sample having an agmatine concentration of 20 μM (2.6 mg / L) and 80 μM (10.4 mg / L) was injected, and the sensor outputs (current values) of 70 nA and 280 nA, respectively, were obtained. The relationship with agmatine concentration is plotted (FIG. 2).
A straight line obtained by connecting the two standard points is a calibration curve reflecting the measurement conditions such as the parameters of the measuring device and the concentration of the agmatine to be measured, y = 3.5x.
y = (280-70) / (80-20) x = 3.5x
[0012]
Measurement of agmatine concentration in the sample to be measured.
The body meat of the squid was homogenized, and 10 g of the meat was added with 50% to 200 mL of cooled 5% perchloric acid depending on the amount of the contained protein to remove the protein. The resulting precipitate was removed by centrifugation at 10,000 rpm for 10 minutes. 50 μL of the supernatant was used as a sample to be measured. The output of the measurement oxygen electrodes 4 and 3 is divided by the gradient 3.5 of the calibration curve to obtain the agmatine concentration in 50 μL of the sample to be measured. If this is multiplied by 1000, the amount (mg) of agmatine contained in 100 g can be obtained.
The relationship between the storage temperature of each of the samples A, B and C shown in Table 1 and the amount of agmatine in the measured sample after elapse is shown in the table. The correlation between the agmatine concentration of samples A, B and C and the sensor output was plotted on the calibration curve of FIG.
[0013]
[Table 1]
Figure 2004233092
[0014]
【The invention's effect】
As described above, according to the method for measuring agmatine of the present invention, an excellent effect of being obtained easily and with good reproducibility is obtained.
[Brief description of the drawings]
FIG. 1 is an apparatus for measuring agmatine of the present invention. FIG. 2 is a calibration curve for calculating the amount of agmatine in a sample to be measured by the measuring method of the present invention, and a plot of the amount of agmatine in a measured sample and a current value.
DESCRIPTION OF SYMBOLS 1 Putrescine oxidase column 2 Agmatinase + putrescine oxidase column 3, 4 Oxygen or hydrogen peroxide electrode sample inlet 5 Calculator 6 Calculated signal recording unit 7 Detected substance inlet 8 Buffer 9 Peristaltic pump 10 Waste liquid reservoir

Claims (4)

被測定試料をプトレッシンオキシターゼを固定した担体のみを充填したカラムのみを経由した後に設けられた過酸化水素及び/または酸素電極により測定する経路とプトレッシンオキシターゼのみを固定したカラムのみを経由した後にアグマチナーゼ(agmatinase)(アグマチンウレオヒドラーゼ、EC3.53.11)を固定した担体とプトレッシンオキシターゼを固定した担体との組み合わせた充填剤を充填したカラムを経緯由後の過酸化水素及び/または酸素電極により測定する経路とに供給し、それぞれ経路の測定値の相対値をアグマチン量に相関させてアグマチン量を算出することを特徴とするアグマチン量の検出方法。The sample to be measured passes only through the column filled with only the carrier on which putrescine oxidase is immobilized, and then passes through the route for measurement using the hydrogen peroxide and / or oxygen electrode provided only through the column immobilized with putrescine oxidase only After permeation through a column filled with a packing material in which a carrier on which agmatinase (agmatin ureohydrase, EC 3.53.11) is fixed and a carrier on which putrescine oxidase is fixed are packed. A method for detecting the amount of agmatine, comprising supplying to a path measured by a hydrogen and / or oxygen electrode and calculating the amount of agmatine by correlating the relative value of the measured value of each path with the amount of agmatine. カラム内のアグマチナーゼの活性を高める二価Mn(II)A(AはMnのカウンターイオン)を前記カラム内に存在させることを特徴とする請求項1に記載のアグマチン量の検出方法。2. The method for detecting the amount of agmatine according to claim 1, wherein divalent Mn (II) A (A is a counter ion of Mn) that enhances the activity of agmatinase in the column is present in the column. 請求項1または2に記載のアグマチン量の検出方法を海産無脊椎動物肉の鮮度を評価する方法に適用することを特徴とするアグマチン量の検出方法。A method for detecting the amount of agmatine, wherein the method for detecting the amount of agmatine according to claim 1 or 2 is applied to a method for evaluating freshness of marine invertebrate meat. 被測定試料中にTrisを存在させpHを7より大きく9までに調整することを特徴とする請求項1、2または3に記載のアグマチン量の検出方法。The method for detecting the amount of agmatine according to claim 1, 2 or 3, wherein Tris is present in the sample to be measured and the pH is adjusted to be greater than 7 and up to 9.
JP2003019086A 2003-01-28 2003-01-28 Electrochemical assay of agmatine combined with enzyme Expired - Fee Related JP3954973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003019086A JP3954973B2 (en) 2003-01-28 2003-01-28 Electrochemical assay of agmatine combined with enzyme

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003019086A JP3954973B2 (en) 2003-01-28 2003-01-28 Electrochemical assay of agmatine combined with enzyme

Publications (2)

Publication Number Publication Date
JP2004233092A true JP2004233092A (en) 2004-08-19
JP3954973B2 JP3954973B2 (en) 2007-08-08

Family

ID=32949055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003019086A Expired - Fee Related JP3954973B2 (en) 2003-01-28 2003-01-28 Electrochemical assay of agmatine combined with enzyme

Country Status (1)

Country Link
JP (1) JP3954973B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57206387A (en) * 1981-06-11 1982-12-17 Amano Pharmaceut Co Ltd Acmatine oxidase and determining method of agmatine by the same
JPH01119752A (en) * 1987-11-02 1989-05-11 Shokuhin Sangyo Onrain Sensor Gijutsu Kenkyu Kumiai Polyamine sensor
JPH01156664A (en) * 1987-12-15 1989-06-20 New Japan Radio Co Ltd Instrument for measuring freshness of meat
JPH02119757A (en) * 1988-10-28 1990-05-07 Furukawa Seisakusho:Kk Separation of 'inari' fry (japanese food)
JP2001249108A (en) * 2000-03-07 2001-09-14 Tokaseiki Co Ltd Sensor for measuring quality of meat

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57206387A (en) * 1981-06-11 1982-12-17 Amano Pharmaceut Co Ltd Acmatine oxidase and determining method of agmatine by the same
JPH01119752A (en) * 1987-11-02 1989-05-11 Shokuhin Sangyo Onrain Sensor Gijutsu Kenkyu Kumiai Polyamine sensor
JPH01156664A (en) * 1987-12-15 1989-06-20 New Japan Radio Co Ltd Instrument for measuring freshness of meat
JPH02119757A (en) * 1988-10-28 1990-05-07 Furukawa Seisakusho:Kk Separation of 'inari' fry (japanese food)
JP2001249108A (en) * 2000-03-07 2001-09-14 Tokaseiki Co Ltd Sensor for measuring quality of meat

Also Published As

Publication number Publication date
JP3954973B2 (en) 2007-08-08

Similar Documents

Publication Publication Date Title
Evtugyn Biosensors: essentials
Scheller et al. Biosensors
Okuma et al. Flow system for fish freshness determination based on double multi-enzyme reactor electrodes
Serra et al. Rapid and highly sensitive electrochemical determination of alkaline phosphatase using a composite tyrosinase biosensor
CA2109896A1 (en) Method and system for determining bioactive substances
Tombach et al. Amperometric creatinine biosensor for hemodialysis patients
Mascini et al. Clinical uses of enzyme electrode probes
Karube et al. Amperometric determination of ammonia gas with immobilized nitrifying bacteria
Verma et al. Biosensor based on ion selective electrode for detection of L-arginine in fruit juices
Wollenberger et al. A specific enzyme electrode for L-glutamate-development and application
JPS6347649A (en) Enzyme sensor for measuring glutamic acid
Saurina et al. Amperometric determination of lysine using a lysine oxidase biosensor based on rigid-conducting composites
Kwong et al. Comparative study of hydrogel-immobilized L-glutamate oxidases for a novel thick-film biosensor and its application in food samples
Siontorou et al. Detection of DNA hybridization using self‐assembled bilayer lipid membranes (BLMs)
Tran et al. An enzyme electrode for specific determination of l‐lysine: A real‐time control sensor
Hitzmann et al. Computational neural networks for the evaluation of biosensor FIA measurements
Mieliauskiene et al. Amperometric determination of acetate with a tri-enzyme based sensor
Krznarić et al. Alternating current voltammetric determination of DNA concentrations at a microgram per liter level
Yao et al. On‐line amperometric assay of glucose, l‐glutamate, and acetylcholine using microdialysis probes and immobilized enzyme reactors
Simonian et al. Flow-injection amperometric biosensor based on immobilized L-lysine-α-oxidase for L-lysine determination
Linares et al. Flow injection analysis in clinical chemistry
JP3954973B2 (en) Electrochemical assay of agmatine combined with enzyme
Karube et al. Biosensors fob food industry
JPH01237446A (en) Biosensor
Li et al. Development of a trimethylamine gas biosensor system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070427

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees