JP2004232844A - Double row ball bearing - Google Patents

Double row ball bearing Download PDF

Info

Publication number
JP2004232844A
JP2004232844A JP2003025546A JP2003025546A JP2004232844A JP 2004232844 A JP2004232844 A JP 2004232844A JP 2003025546 A JP2003025546 A JP 2003025546A JP 2003025546 A JP2003025546 A JP 2003025546A JP 2004232844 A JP2004232844 A JP 2004232844A
Authority
JP
Japan
Prior art keywords
diameter
ball bearing
row ball
double
pinion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003025546A
Other languages
Japanese (ja)
Inventor
Tomonori Nakashita
智徳 中下
Kiyoshi Ogino
清 荻野
Toshihiro Kawaguchi
敏弘 川口
Hideo Ueda
英雄 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP2003025546A priority Critical patent/JP2004232844A/en
Publication of JP2004232844A publication Critical patent/JP2004232844A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/182Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact in tandem arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6685Details of collecting or draining, e.g. returning the liquid to a sump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/546Systems with spaced apart rolling bearings including at least one angular contact bearing
    • F16C19/547Systems with spaced apart rolling bearings including at least one angular contact bearing with two angular contact rolling bearings
    • F16C19/548Systems with spaced apart rolling bearings including at least one angular contact bearing with two angular contact rolling bearings in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/70Diameters; Radii
    • F16C2240/80Pitch circle diameters [PCD]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/61Toothed gear systems, e.g. support of pinion shafts

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem in a differential device that as a pinion shaft is supported by a tapered roller bearing, the rotating torque is increased, and the efficiency of the differential device is impaired. <P>SOLUTION: This double row ball bearing 10 is used as a ball bearing at a pinion gear 6 side where the load higher than that at an anti-pinion 6 side, acts. Further as a discharging space 60 is formed by largely opening the pinion side of a ball 17 in a group of balls at large-diameter side, the oil can be quickly and smoothly discharged to the external of the double row ball bearing 10 from the discharging space 60, and the metal abrasion powder which may be mixed in the oil can be discharged with the oil from the discharging space 60 to the external of a first double row ball bearing 10 in a short time. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、例えば車両に搭載されるディファレンシャル装置等に用いられる玉軸受に関する。
【0002】
【従来の技術】
一般に、車両には図4で示すようなディファレンシャル装置が付設されている(例えば特許文献1参照)。
【0003】
このディファレンシャル装置70は、ケース71内に、左右の車輪を差動連動する差動変速機構72、一側にピニオンギヤ73を有するピニオン軸(ドライブピニオン)74を内装している。ピニオンギヤ73は、差動変速機構72のリングギヤ75に噛合されている。またケース71内には、軸受装着用の環状壁76,77が形成されている。ピニオン軸74はその一方側および他方側を、それぞれ環状壁76,77に、円すいころ軸受78,79を介して軸心回りに回転自在に支持されている。
【0004】
【特許文献1】
特開平11−48805号(第3頁,第1図)
【0005】
【発明が解決しようとする課題】
上記従来のディファレンシャル装置70では、ピニオン軸74を円すいころ軸受78,79で支持している。このため、回転トルクが大きくなり、ディファレンシャル装置70の効率が低下することが考えられる。そこで、ピニオン軸74を複列玉軸受でもって支持するようにした技術が提案されている。
【0006】
【課題を解決するための手段】
本発明の複列玉軸受は、互いに軸方向に離隔した大径および小径の軌道面を有する内輪部材と、この内輪部材と同心に配置され、かつ前記内輪部材の各軌道面と対応する大径および小径の軌道面を有する外輪部材と、前記内外輪部材それぞれの軌道面間に配置される複列の玉とを有し、前記外輪部材の大径軌道面側の軸方向端面が、前記内輪部材の大径軌道面側の軸方向端面に比べて、軸方向で内輪部材の小径軌道面寄りに位置している。
【0007】
このように、外輪部材の大径軌道面側の軸方向端面が、内輪部材の大径軌道面側の軸方向端面に比べて、軸方向で内輪部材の小径軌道面寄りに位置した構成によれば、大径軌道面間に嵌合する玉の側方が大きく開放されるので、潤滑剤が円滑かつ短時間で軸受外方に排出され、潤滑剤とともに例えば金属摩耗粉などの異物も排出される。
【0008】
なお、この複列玉軸受における大径軌道面側軸受部分の作用線は、小径軌道面側軸受部分に向けて傾斜している。
【0009】
この構成によれば、大径軌道面間に嵌合する玉の側方が大きく開放されていたとしても、荷重負荷能力など、軸受としての機能を低下させることはない。
【0010】
【発明の実施の形態】
以下、本発明の複列玉軸受を、車両に付設されるディファレンシャル装置のピニオン軸支持用軸受に適用させたタンデム型の複列玉軸受を例に、図面に基づいて説明する。
【0011】
図1はディファレンシャル装置の概略構成を示す全体断面図、図2は要部拡大断面図、図3は図2の一部をさらに拡大した図で第一の複列玉軸受の断面図である。
【0012】
まずディファレンシャル装置1の全体構成を説明する。図1に示すように、ディファレンシャル装置1は、ディファレンシャルケース2を有する。このディファレンシャルケース2は、フロントケース3とリヤケース4とからなり、両者3,4は、ボルト・ナット2aにより取付けられている。
【0013】
ディファレンシャルケース2内には、オイル50が運転停止状態においてレベルLにて貯留されている。
【0014】
フロントケース3の内方に、軸受装着用の環状壁27A,27Bが形成されている。ディファレンシャルケース2は、左右の車輪を差動連動する差動変速機構5、一側にピニオンギヤ6を有するピニオン軸(ドライブピニオン)7を内装している。ピニオンギヤ6は、差動変速機構5のリングギヤ8に噛合されている。ピニオン軸7の軸部9は、一側に比べて他側ほど小径となるよう段状に形成されている。
【0015】
ピニオン軸7の軸部9は、その一側を、第一の複列アンギュラ玉軸受(以下単に「複列玉軸受」という)10を介して環状壁27Aに、軸心回りに回転自在に支持されている。ピニオン軸7の軸部9は、その他側を、第二の複列アンギュラ玉軸受(以下単に「複列玉軸受」という)25を介して環状壁27Bに軸心回りに回転自在に支持されている。
【0016】
フロントケース3の外壁と一側の環状壁27Aの間に、オイル循環路40が形成されており、このオイル循環路40のオイル入口41は、オイル循環路40のリングギヤ8側に開口され、オイル循環路40のオイル出口42は、環状壁27A,27B間に開口されている。
【0017】
図2に示すように、第一の複列玉軸受10は、ピニオン側の大径外輪軌道面11aおよび反ピニオン側の小径外輪軌道面11bを有する単一の第一の外輪部材11と、第一の組品21とから構成されている。第一の複列玉軸受10は、第一の外輪部材11に第一の組品21をピニオン側から反ピニオン側に向けて軸心方向から組付けることで構成されている。
【0018】
第一の外輪部材11は、環状壁27Aの内周面に嵌着されている。第一の外輪部材11の大径外輪軌道面11aと小径外輪軌道面11bとの間に、小径外輪軌道面11bより大径で大径外輪軌道面11aに連続する平面部11cが形成されている。この構成により、第一の外輪部材11の内周面は段状に形成されている。
【0019】
第一の組品21は、第一の外輪部材11の大径外輪軌道面11aに径方向で対向する大径内輪軌道面13a、および小径外輪軌道面11bに径方向で対向する小径内輪軌道面13bを有する単一の第一の内輪部材13と、ピニオン側の大径側玉群15および反ピニオン側の小径側玉群16と、各玉群15,16を構成する玉17,18を円周方向等配位置に保持する保持器(もみ抜き保持器が用いられる)19,20とから構成されている。第一の内輪部材13は、ピニオン軸7に挿通されている。
【0020】
保持器19,20は、それぞれ玉17,18を収納するポケット部19a,20aと、これらポケット部19a,20aの軸方向両側に一体的に形成された環状部(符号省略)とを有する。
【0021】
第一の内輪部材13におけるピニオン側端面は、ピニオンギヤ6の端面に軸心方向から当接し、第一の内輪部材13は、ピニオンギヤ6の端面と、ピニオン軸7の軸部9の途中に外嵌された予圧設定用の塑性スペーサ23とで軸心方向から挟まれている。
【0022】
大径内輪軌道面13aと小径内輪軌道面13bとの間に、小径内輪軌道面13bより大径で大径内輪軌道面13aに連続する平面部13cが形成されている。この構成により、第一の内輪部材13の外周面は段状に形成されている。
【0023】
図3に示すように、第一の複列玉軸受10において、大径側玉群15における玉17の径と、小径側玉群16における玉18の径とは等しく形成され、各玉群15,16のピッチ円直径D1,D2はそれぞれ異なる。すなわち、大径側玉群15のピッチ円直径D1は、小径側玉群16のピッチ円直径D2より大きく設定されている。このようにピッチ円直径D1,D2が異なる玉群15,16を有する第一の複列玉軸受10は、タンデム型の複列玉軸受と称される。
【0024】
さらに第一の複列玉軸受10において、第一の外輪部材11のピニオン側端面、すなわち大径軌道面側の軸方向端面11dが、第一の内輪部材13のピニオン側端面、すなわち大径軌道面側の軸方向端面13dに比べて、軸方向に沿って小径軌道面側に位置している。
【0025】
この構成により、大径側玉群15における玉17のピニオン側は大きく開放されて、オイル50を排出するための環状の排出空間60とされている。
【0026】
この第一の複列玉軸受10における作用線61,62は同方向を向いている。すなわち作用点P1,P2は、第一の複列玉軸受10の軸方向中心に対してピニオン側に位置している。特に、第一の複列玉軸受10のピニオン側(大径軌道面側)軸受部分において、軸受中心軸Cに垂直なラジアル平面と、第一の外輪部材11および第一の内輪部材13の軌道面11a,13aによって玉17に伝えられる力の合力の作用線61とがなす接触角θ1は、排出空間60を避けるように存在している。そして、作用線61は排出空間60内にないため、外輪部材11の大径軌道面側の軸方向端面11dが、内輪部材13の大径軌道面側の軸方向端面13dに比べて小径軌道面側に位置したとしても、第一の複列玉軸受10は、荷重負荷能力など、軸受としての機能が低下することはない。
【0027】
図2に示すように、第二の複列玉軸受25は、第一の複列玉軸受10に比べて径が小さく設定されているものである。第二の複列玉軸受25は、ピニオン側の小径外輪軌道面12aおよび反ピニオン側の大径外輪軌道面12bを有する単一の第二の外輪部材12と、第二の組品22とから構成されている。
【0028】
第二の複列玉軸受25は、第二の外輪部材12に第二の組品22を反ピニオン側からピニオン側へ向けて軸心方向から組付けることで構成されている。この第二の外輪部材12には、大径外輪軌道面12aと小径外輪軌道面12bとの間に、小径外輪軌道面12bより大径で大径外輪軌道面12aに連続する平面部12cが形成されている。この構成により、第二の外輪部材12の内周面は段状に形成されている。第二の外輪部材12は、環状壁27Bの内周面に嵌着されている。
【0029】
第二の組品22は、第二の外輪部材12の小径外輪軌道面12aに径方向で対向する小径内輪軌道面14a、および大径外輪軌道面12bに径方向で対向する大径内輪軌道面14bを有する単一の第二の内輪部材14と、ピニオン側の小径側玉群28および反ピニオン側の大径側玉群29と、各玉群28,29を構成する玉30,31を円周方向等配位置に保持する保持器(もみ抜き保持器が用いられる)32,33とから構成されている。
【0030】
保持器32,33は、それぞれ玉30,31を収納するポケット部30a,31aと、これらポケット部30a,31aの軸方向両側に一体的に形成された環状部(符号省略)とを有する。
【0031】
第二の内輪部材14は、ピニオン軸7の途中に挿通され、第二の内輪部材14は、予圧設定用の塑性スペーサ23と遮蔽板37とで軸心方向から挟まれている。
【0032】
小径内輪軌道面14aと大径内輪軌道面14bとの間に、大径内輪軌道面14bより小径で小径内輪軌道面14aに連続する平面部14cが形成されている。この構成により、第一の内輪部材14の外周面は段状に形成されている。
【0033】
第二の複列玉軸受25において、小径側玉群28における玉30の径と大径側玉群29における玉31の径とは等しく形成され、各玉群28,29のピッチ円直径D3,D4はそれぞれ異なる。すなわち、大径側玉群28のピッチ円直径D3は、小径側玉群28のピッチ円直径D4より小さく設定されている。この第二の複列玉軸受25もタンデム型の複列玉軸受である。
【0034】
さらに第二の複列玉軸受25において、第二の外輪部材12の反ピニオン側端面、すなわち大径軌道面側の軸方向端面12dが、第二の内輪部材22の反ピニオン側端面、すなわち大径軌道面側の軸方向端面14dに比べて、軸方向に沿って小径軌道面側に位置している。
【0035】
この構成により、大径側玉群29における玉31の反ピニオン側は大きく開放されて、オイル50を排出するための環状の排出空間65とされている。なお、第二の複列玉軸受25における作用線(図示せず)の傾斜方向は、第一の複列玉軸受10における作用線61,62と逆方向の傾斜であり、特に反ピニオン側軸受部分の接触角は、排出空間65を避けるように存在している。
【0036】
図1に示すように、ディファレンシャル装置1は、コンパニオンフランジ43を有する。このコンパニオンフランジ43は、胴部44と、この胴部44に一体的に形成されるフランジ部45とを有する。胴部44は、ピニオン軸7の軸部9の他側、すなわち不図示のドライブシャフト側に外嵌するものである。
【0037】
前記遮蔽板37は、前記胴部44の一側端面と第二の複列玉軸受25の第二の内輪部材14端面との間に介装されている。胴部44の外周面とフロントケース3の他側開口内周面との間に、オイルシール46が配置されている。オイルシール46を覆うためのシール保護カップ47が、フロントケース3の他側開口部に取付けられている。軸部9の他側外端部にねじ部48が形成され、このねじ部48は、フランジ部45の中心凹部41に突出している。ねじ部48に、ナット49が螺着されている。
【0038】
このように、ねじ部48にナット49が螺着されることで、第一の複列玉軸受10の第一の内輪部材13、および第二の複列玉軸受25の第二の内輪部材14がピニオンギヤ6の端面とコンパニオンフランジ43の端面とで軸心方向に挟み込まれ、遮蔽板37および塑性スペーサ23を介して、第一の複列玉軸受10の玉17,18および第二の複列玉軸受25の玉30,31に対して所定の予圧が付与された状態となる。
【0039】
上記構成のディファレンシャル装置1では、オイル50は、運転時にリングギヤ8の回転に伴って跳ね上げられ、フロントケース3内のオイル循環路40を通って第一の複列玉軸受10、および第二の複列玉軸受25の上部に供給されるように導かれ、第一の複列玉軸受10および第二の複列玉軸受25を潤滑するようディファレンシャルケース2内を循環する。
【0040】
以下オイル50の流れを、第一の複列玉軸受10側を例に説明する。第一の複列玉軸受10において、これはタンデム型の複列玉軸受であるので、上記のようにしてオイル50が供給されると、第一の外輪部材11、および第一の内輪部材13の間の環状空間Aを、タンデム型でない通常の複列玉軸受に比べてオイル5は高速で流れることになる。従って、オイル50が環状空間Aに供給されにくい環境であるなら、第一の複列玉軸受10は貧潤滑になり易いが、オイル5は順次供給されるためこのような貧潤滑状態に陥ることはない。
【0041】
ところで、本発明の実施形態では、大径側玉群15における玉17のピニオン側は大きく開放されて環状の排出空間60が形成されているため、オイル50は、さらに高速かつ円滑に排出空間60から第一の複列玉軸受10の外部に排出されることになる。従って、オイル5とともに、オイル5中に金属摩耗粉が混在していたとしても、これがオイル50とともに短時間で、排出空間60から第一の複列玉軸受10の外部に排出されることになる。
【0042】
これにより、内外輪軌道面11a,13a,11b,13bに金属摩耗粉による圧痕が生じるのを最小限に抑えることができる。
【0043】
第二の複列玉軸受25の場合は、オイル50の流れの方向が第一の複列玉軸受10とは反対方向(ピニオン側から反ピニオン側)になるだけであるため詳細な説明は省略するが、第二の複列玉軸受25の環状空間B内に供給されたオイル50は、潤滑に充分な量のオイル50でもって確実に潤滑して環状空間B内を移動し、オイル5中に金属摩耗粉が混在していたとしても、これがオイル50とともに短時間で、排出空間65から外部に排出されることになる。
【0044】
これにより、内外輪軌道面12a,14a,12b,14bに金属摩耗粉による圧痕が生じるのを最小限に抑えることができる。
【0045】
さらに、この実施形態では、反ピニオン6側に比べて大きな荷重が働くピニオンギヤ6側の玉軸受として、摩擦抵抗の小さい第一の複列玉軸受10を用いている。これにより、従来用いていた円すいころ軸受に比べて回転トルクが小さくなり、ディファレンシャル装置1の効率を向上させることができる。しかも、単列の玉軸受でなく、複列の玉軸受を用いたことにより、単列の玉軸受に比べて負荷容量を大きくすることができ、十分な支持剛性が得られる。
【0046】
加えて、第一の複列玉軸受10として、ピニオンギヤ6側の大径側玉群15のピッチ円直径D1を、小径側玉群16のピッチ円直径D2に比べて大きくしたタンデム型の第一の複列玉軸受10を用いたことにより、両列の玉17,18が同径であれば、より大きな荷重が働くピニオンギヤ6側の大径側玉群15における玉17の数を増加させることができ、このため大きな負荷に耐え得る。
【0047】
上記実施の形態では、第一の複列玉軸受10および第二の複列玉軸受25を、車両のディファレンシャル装置1のピニオン軸支持用軸受に用いた例を示したが、これに限定されるものではない。
【0048】
【発明の効果】
以上の説明から明らかな通り、本発明の複列玉軸受によれば、軸受内に必要で充分な量の潤滑剤を供給することができとともに、潤滑剤とともに軸受内部に入り込んだ金属摩耗粉などの異物を短時間で軸受外部に排出することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態を示すディファレンシャル装置の全体構成を示す断面図である。
【図2】同じく要部拡大断面図である。
【図3】同じく第一の複列玉軸受を示す拡大断面図である。
【図4】従来のディファレンシャル装置の全体構成を示す断面図である。
【符号の説明】
1 ディファレンシャル装置
7 ピニオン軸
9 軸部
10 複列玉軸受
11 第一の外輪部材
11d 第一の外輪部材の大径軌道面側の軸方向端面
13 第一の内輪部材
13d 第一の内輪部材の大径軌道面側の軸方向端面
25 複列玉軸受
27A 環状壁
27B 環状壁
50 オイル
60 排出空間
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a ball bearing used for, for example, a differential device mounted on a vehicle.
[0002]
[Prior art]
Generally, a vehicle is provided with a differential device as shown in FIG. 4 (for example, see Patent Document 1).
[0003]
The differential device 70 has a case 71 in which a differential transmission mechanism 72 for differentially interlocking left and right wheels and a pinion shaft (drive pinion) 74 having a pinion gear 73 on one side are provided. The pinion gear 73 is meshed with a ring gear 75 of the differential transmission mechanism 72. In the case 71, annular walls 76 and 77 for mounting bearings are formed. One side and the other side of the pinion shaft 74 are rotatably supported on the annular walls 76 and 77 via tapered roller bearings 78 and 79 around the axis.
[0004]
[Patent Document 1]
JP-A-11-48805 (page 3, FIG. 1)
[0005]
[Problems to be solved by the invention]
In the above-described conventional differential device 70, the pinion shaft 74 is supported by tapered roller bearings 78 and 79. Therefore, it is conceivable that the rotational torque increases and the efficiency of the differential device 70 decreases. Therefore, a technique has been proposed in which the pinion shaft 74 is supported by a double-row ball bearing.
[0006]
[Means for Solving the Problems]
The double row ball bearing of the present invention has an inner ring member having a large diameter and a small diameter raceway surface which are axially separated from each other, and a large diameter corresponding to each raceway surface of the inner race member, which is disposed concentrically with the inner ring member. And an outer ring member having a small diameter raceway surface, and a plurality of rows of balls disposed between the raceway surfaces of the inner and outer ring members, wherein the axial end surface of the outer ring member on the large diameter raceway surface side is the inner ring. The member is located closer to the small-diameter raceway surface of the inner race member in the axial direction than the axial end surface on the large-diameter raceway surface side of the member.
[0007]
As described above, the axial end face of the outer race member on the large-diameter raceway side is located closer to the small-diameter raceway surface of the inner race member in the axial direction than the axial end face of the inner race member on the large-diameter raceway side. For example, since the sides of the balls fitted between the large-diameter raceway surfaces are largely opened, the lubricant is smoothly and quickly discharged to the outside of the bearing, and foreign substances such as metal wear powder are also discharged together with the lubricant. You.
[0008]
The action line of the large-diameter raceway-side bearing portion of the double-row ball bearing is inclined toward the small-diameter raceway-side bearing portion.
[0009]
According to this configuration, even if the side of the ball fitted between the large-diameter raceway surfaces is largely opened, the function as a bearing such as a load-bearing capacity is not reduced.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a tandem type double row ball bearing in which the double row ball bearing of the present invention is applied to a pinion shaft support bearing of a differential device attached to a vehicle will be described with reference to the drawings.
[0011]
1 is an overall cross-sectional view showing a schematic configuration of a differential device, FIG. 2 is an enlarged cross-sectional view of a main part, and FIG. 3 is a cross-sectional view of a first double-row ball bearing in which a part of FIG. 2 is further enlarged.
[0012]
First, the overall configuration of the differential device 1 will be described. As shown in FIG. 1, the differential device 1 has a differential case 2. The differential case 2 includes a front case 3 and a rear case 4, and the two cases 3 and 4 are attached by bolts and nuts 2a.
[0013]
The oil 50 is stored in the differential case 2 at the level L when the operation is stopped.
[0014]
Inside the front case 3, annular walls 27A and 27B for mounting bearings are formed. The differential case 2 includes a differential transmission mechanism 5 for differentially interlocking left and right wheels, and a pinion shaft (drive pinion) 7 having a pinion gear 6 on one side. The pinion gear 6 is meshed with the ring gear 8 of the differential transmission mechanism 5. The shaft portion 9 of the pinion shaft 7 is formed in a stepped shape so that the diameter is smaller on the other side than on one side.
[0015]
One side of the shaft portion 9 of the pinion shaft 7 is rotatably supported on the annular wall 27A via a first double-row angular ball bearing (hereinafter, simply referred to as “double-row ball bearing”) 10 around the axis. Have been. The other end of the shaft portion 9 of the pinion shaft 7 is rotatably supported around an axis by an annular wall 27B via a second double-row angular ball bearing (hereinafter simply referred to as “double-row ball bearing”) 25. I have.
[0016]
An oil circulation path 40 is formed between the outer wall of the front case 3 and the annular wall 27A on one side. An oil inlet 41 of the oil circulation path 40 is opened to the ring gear 8 side of the oil circulation path 40, and The oil outlet 42 of the circulation path 40 is open between the annular walls 27A and 27B.
[0017]
As shown in FIG. 2, the first double-row ball bearing 10 includes a single first outer ring member 11 having a large-diameter outer raceway surface 11a on the pinion side and a small-diameter outer raceway surface 11b on the anti-pinion side; And one assembly 21. The first double-row ball bearing 10 is configured by assembling the first assembly 21 to the first outer ring member 11 from the pinion side to the anti-pinion side in the axial direction.
[0018]
The first outer ring member 11 is fitted on the inner peripheral surface of the annular wall 27A. Between the large-diameter outer raceway surface 11a and the small-diameter outer raceway surface 11b of the first outer race member 11, a flat portion 11c having a diameter larger than the small-diameter outer raceway surface 11b and continuing to the large-diameter outer raceway surface 11a is formed. . With this configuration, the inner peripheral surface of the first outer ring member 11 is formed in a stepped shape.
[0019]
The first assembly 21 includes a large-diameter inner raceway surface 13a radially opposed to the large-diameter outer raceway surface 11a of the first outer race member 11, and a small-diameter inner raceway surface radially opposed to the small-diameter outer raceway surface 11b. A single first inner ring member 13 having a ring 13b, a large-diameter-side ball group 15 on the pinion side, a small-diameter-side ball group 16 on the anti-pinion side, and balls 17 and 18 constituting each of the ball groups 15 and 16 are circled. Cages 19 and 20 (in which a machined cage is used) for holding at equal positions in the circumferential direction. The first inner ring member 13 is inserted through the pinion shaft 7.
[0020]
The retainers 19 and 20 have pocket portions 19a and 20a for accommodating the balls 17 and 18, respectively, and annular portions (reference numerals omitted) integrally formed on both axial sides of the pocket portions 19a and 20a.
[0021]
The pinion-side end surface of the first inner ring member 13 abuts the end surface of the pinion gear 6 from the axial direction, and the first inner ring member 13 is fitted to the end surface of the pinion gear 6 and the shaft 9 of the pinion shaft 7. The plastic spacer 23 for setting the preload is sandwiched from the axial direction.
[0022]
Between the large-diameter inner raceway surface 13a and the small-diameter inner raceway surface 13b, a flat portion 13c larger in diameter than the small-diameter inner raceway surface 13b and connected to the large-diameter inner raceway surface 13a is formed. With this configuration, the outer peripheral surface of the first inner ring member 13 is formed in a step shape.
[0023]
As shown in FIG. 3, in the first double-row ball bearing 10, the diameter of the ball 17 in the large-diameter ball group 15 and the diameter of the ball 18 in the small-diameter ball group 16 are formed to be equal. , 16 have different pitch circle diameters D1, D2. That is, the pitch circle diameter D1 of the large diameter ball group 15 is set to be larger than the pitch circle diameter D2 of the small diameter ball group 16. The first double-row ball bearing 10 having the ball groups 15 and 16 having different pitch circle diameters D1 and D2 is called a tandem-type double-row ball bearing.
[0024]
Further, in the first double row ball bearing 10, the pinion side end surface of the first outer ring member 11, that is, the axial end surface 11d on the large diameter raceway surface side is the pinion side end surface of the first inner ring member 13, that is, the large diameter raceway. It is located on the small-diameter raceway surface side along the axial direction as compared with the axial end surface 13d on the surface side.
[0025]
With this configuration, the pinion side of the ball 17 in the large-diameter-side ball group 15 is largely opened to form an annular discharge space 60 for discharging the oil 50.
[0026]
The action lines 61 and 62 in the first double row ball bearing 10 are directed in the same direction. That is, the action points P1 and P2 are located on the pinion side with respect to the axial center of the first double-row ball bearing 10. In particular, in the pinion-side (large-diameter raceway side) bearing portion of the first double-row ball bearing 10, a radial plane perpendicular to the bearing center axis C and the raceways of the first outer ring member 11 and the first inner ring member 13 are provided. The contact angle θ1 between the line of action 61 of the resultant force transmitted to the ball 17 by the surfaces 11a and 13a exists so as to avoid the discharge space 60. Since the action line 61 is not in the discharge space 60, the axial end face 11 d of the outer race member 11 on the large diameter raceway surface side is smaller than the axial end face 13 d of the inner race member 13 on the large diameter raceway surface side. Even if it is located on the side, the function of the first double-row ball bearing 10 as a bearing, such as a load-bearing capacity, does not decrease.
[0027]
As shown in FIG. 2, the diameter of the second double-row ball bearing 25 is set smaller than that of the first double-row ball bearing 10. The second double-row ball bearing 25 is composed of a single second outer ring member 12 having a small-diameter outer raceway surface 12a on the pinion side and a large-diameter outer raceway surface 12b on the anti-pinion side, and the second assembly 22. It is configured.
[0028]
The second double-row ball bearing 25 is configured by assembling the second assembly 22 to the second outer race member 12 from the anti-pinion side to the pinion side in the axial direction. The second outer race member 12 has a plane portion 12c formed between the large-diameter outer raceway surface 12a and the small-diameter outer raceway surface 12b and having a diameter larger than the small-diameter outer raceway surface 12b and continuous with the large-diameter outer raceway surface 12a. Have been. With this configuration, the inner peripheral surface of the second outer ring member 12 is formed in a step shape. The second outer ring member 12 is fitted on the inner peripheral surface of the annular wall 27B.
[0029]
The second assembly 22 includes a small-diameter inner raceway surface 14a radially opposed to the small-diameter outer raceway surface 12a of the second outer race member 12, and a large-diameter inner raceway surface radially opposed to the large-diameter outer raceway surface 12b. The single second inner ring member 14 having the small diameter ball 14b, the small diameter ball group 28 on the pinion side and the large diameter ball group 29 on the anti-pinion side, and the balls 30 and 31 constituting each of the ball groups 28 and 29 are circled. And retainers 32 and 33 (in which an extruded retainer is used) which are retained at equal circumferential positions.
[0030]
The retainers 32, 33 have pockets 30a, 31a for accommodating the balls 30, 31, respectively, and annular portions (reference numerals omitted) integrally formed on both axial sides of the pockets 30a, 31a.
[0031]
The second inner race member 14 is inserted in the middle of the pinion shaft 7, and the second inner race member 14 is sandwiched between the plastic spacer 23 for setting a preload and the shielding plate 37 in the axial direction.
[0032]
Between the small-diameter inner raceway surface 14a and the large-diameter inner raceway surface 14b, a flat portion 14c smaller in diameter than the large-diameter inner raceway surface 14b and continuous with the small-diameter inner raceway surface 14a is formed. With this configuration, the outer peripheral surface of the first inner ring member 14 is formed in a step shape.
[0033]
In the second double row ball bearing 25, the diameter of the ball 30 in the small diameter ball group 28 and the diameter of the ball 31 in the large diameter ball group 29 are formed to be equal, and the pitch circle diameter D3 of each ball group 28, 29 is formed. D4 is different. That is, the pitch circle diameter D3 of the large diameter ball group 28 is set smaller than the pitch circle diameter D4 of the small diameter ball group 28. The second double row ball bearing 25 is also a tandem type double row ball bearing.
[0034]
Further, in the second double row ball bearing 25, the anti-pinion side end face of the second outer ring member 12, that is, the axial end face 12 d on the large-diameter raceway surface side is the anti-pinion side end face of the second inner ring member 22, that is, the large It is located on the small-diameter raceway surface side along the axial direction as compared with the axial end surface 14d on the radial raceway surface side.
[0035]
With this configuration, the anti-pinion side of the ball 31 in the large-diameter-side ball group 29 is largely opened to form an annular discharge space 65 for discharging the oil 50. In addition, the inclination direction of the action line (not shown) in the second double row ball bearing 25 is opposite to the action lines 61 and 62 in the first double row ball bearing 10, and particularly the anti-pinion side bearing. The contact angle of the part exists so as to avoid the discharge space 65.
[0036]
As shown in FIG. 1, the differential device 1 has a companion flange 43. The companion flange 43 has a body 44 and a flange 45 formed integrally with the body 44. The body portion 44 is fitted on the other side of the shaft portion 9 of the pinion shaft 7, that is, on the drive shaft side (not shown).
[0037]
The shielding plate 37 is interposed between one end surface of the body portion 44 and the end surface of the second inner race member 14 of the second double row ball bearing 25. An oil seal 46 is arranged between the outer peripheral surface of the body 44 and the inner peripheral surface of the opening on the other side of the front case 3. A seal protection cup 47 for covering the oil seal 46 is attached to the opening on the other side of the front case 3. A screw portion 48 is formed at the outer end on the other side of the shaft portion 9, and the screw portion 48 projects into the central recess 41 of the flange portion 45. A nut 49 is screwed into the screw portion 48.
[0038]
As described above, the nut 49 is screwed into the screw portion 48, so that the first inner race member 13 of the first double-row ball bearing 10 and the second inner race member 14 of the second double-row ball bearing 25 are formed. Are axially sandwiched between the end face of the pinion gear 6 and the end face of the companion flange 43, and the balls 17, 18 and the second double row of the first double row ball bearing 10 are interposed via the shielding plate 37 and the plastic spacer 23. A state where a predetermined preload is applied to the balls 30, 31 of the ball bearing 25 is established.
[0039]
In the differential device 1 having the above-described configuration, the oil 50 jumps up with the rotation of the ring gear 8 during operation, passes through the oil circulation path 40 in the front case 3, and the first double-row ball bearing 10 and the second It is guided so as to be supplied to the upper part of the double-row ball bearing 25 and circulates through the differential case 2 so as to lubricate the first double-row ball bearing 10 and the second double-row ball bearing 25.
[0040]
Hereinafter, the flow of the oil 50 will be described by taking the first double row ball bearing 10 side as an example. In the first double row ball bearing 10, since this is a tandem type double row ball bearing, when the oil 50 is supplied as described above, the first outer ring member 11 and the first inner ring member 13 The oil 5 flows at a higher speed in the annular space A between the two than in a normal double row ball bearing which is not a tandem type. Therefore, in an environment where the oil 50 is not easily supplied to the annular space A, the first double-row ball bearing 10 is likely to be poorly lubricated. There is no.
[0041]
By the way, in the embodiment of the present invention, since the pinion side of the ball 17 in the large-diameter-side ball group 15 is largely opened to form the annular discharge space 60, the oil 50 can be discharged even more quickly and smoothly. From the first double row ball bearing 10. Therefore, even if the metal wear powder is mixed in the oil 5 together with the oil 5, the metal wear powder is discharged from the discharge space 60 to the outside of the first double row ball bearing 10 in a short time together with the oil 50. .
[0042]
This can minimize the occurrence of indentations on the inner and outer raceway surfaces 11a, 13a, 11b, and 13b due to metal abrasion powder.
[0043]
In the case of the second double-row ball bearing 25, the flow direction of the oil 50 is only in the opposite direction (from the pinion side to the anti-pinion side) with respect to the first double-row ball bearing 10, so a detailed description is omitted. However, the oil 50 supplied into the annular space B of the second double-row ball bearing 25 is surely lubricated with an amount of oil 50 sufficient for lubrication and moves in the annular space B. Even if metal abrasion powder is mixed in the oil, this is discharged from the discharge space 65 to the outside together with the oil 50 in a short time.
[0044]
As a result, it is possible to minimize the occurrence of indentations on the inner and outer raceway surfaces 12a, 14a, 12b, and 14b due to metal abrasion powder.
[0045]
Further, in this embodiment, the first double-row ball bearing 10 having a small frictional resistance is used as the ball bearing on the pinion gear 6 side on which a larger load acts than the pinion 6 side. As a result, the rotational torque is smaller than that of a conventionally used tapered roller bearing, and the efficiency of the differential device 1 can be improved. Moreover, by using a double-row ball bearing instead of a single-row ball bearing, the load capacity can be increased as compared with a single-row ball bearing, and sufficient support rigidity can be obtained.
[0046]
In addition, as the first double-row ball bearing 10, a tandem-type first ball bearing in which the pitch circle diameter D1 of the large-diameter ball group 15 on the pinion gear 6 side is larger than the pitch circle diameter D2 of the small-diameter ball group 16 is used. By using the double-row ball bearing 10, the number of the balls 17 in the large-diameter ball group 15 on the pinion gear 6 side on which a larger load acts can be increased if the balls 17, 18 in both rows have the same diameter. And can withstand large loads.
[0047]
In the above-described embodiment, an example in which the first double-row ball bearing 10 and the second double-row ball bearing 25 are used as a pinion shaft support bearing of the differential device 1 for a vehicle has been described, but the present invention is not limited to this. Not something.
[0048]
【The invention's effect】
As is apparent from the above description, according to the double row ball bearing of the present invention, it is possible to supply a necessary and sufficient amount of lubricant into the bearing, and to remove metal wear powder or the like that has entered the bearing together with the lubricant. Foreign matter can be discharged to the outside of the bearing in a short time.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating an entire configuration of a differential device according to an embodiment of the present invention.
FIG. 2 is an enlarged sectional view of a main part of the same.
FIG. 3 is an enlarged sectional view showing the first double-row ball bearing.
FIG. 4 is a cross-sectional view showing the entire configuration of a conventional differential device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Differential device 7 Pinion shaft 9 Shaft part 10 Double row ball bearing 11 First outer ring member 11d Axial end face 13 on the large-diameter raceway side of first outer ring member First inner ring member 13d Large first inner ring member Axial end face 25 on radial raceway side Double row ball bearing 27A Annular wall 27B Annular wall 50 Oil 60 Discharge space

Claims (2)

互いに軸方向に離隔した大径および小径の軌道面を有する内輪部材と、この内輪部材と同心に配置され、かつ前記内輪部材の各軌道面と対応する大径および小径の軌道面を有する外輪部材と、前記内外輪部材それぞれの軌道面間に配置される複列の玉とを有する複列玉軸受であって、
前記外輪部材の大径軌道面側の軸方向端面が、前記内輪部材の大径軌道面側の軸方向端面に比べて、軸方向で内輪部材の小径軌道面寄りに位置している、ことを特徴とする複列玉軸受。
An inner ring member having large and small diameter raceways separated from each other in the axial direction, and an outer ring member arranged concentrically with the inner ring member and having large and small raceways corresponding to the respective raceways of the inner ring member And a double-row ball bearing having a double-row ball disposed between the raceway surfaces of the inner and outer ring members,
The axial end face of the outer race member on the large-diameter raceway surface side is located closer to the small-diameter raceway surface of the inner race member in the axial direction than the axial end face of the inner race member on the large-diameter raceway surface side. Characteristic double row ball bearing.
請求項1記載の複列玉軸受において、
大径軌道面側軸受部分の作用線は、小径軌道面側軸受部分に向けて傾斜している、ことを特徴とする複列玉軸受。
The double row ball bearing according to claim 1,
A double-row ball bearing, wherein the action line of the large-diameter raceway surface side bearing portion is inclined toward the small-diameter raceway surface side bearing portion.
JP2003025546A 2003-02-03 2003-02-03 Double row ball bearing Pending JP2004232844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003025546A JP2004232844A (en) 2003-02-03 2003-02-03 Double row ball bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003025546A JP2004232844A (en) 2003-02-03 2003-02-03 Double row ball bearing

Publications (1)

Publication Number Publication Date
JP2004232844A true JP2004232844A (en) 2004-08-19

Family

ID=32953796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003025546A Pending JP2004232844A (en) 2003-02-03 2003-02-03 Double row ball bearing

Country Status (1)

Country Link
JP (1) JP2004232844A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005029983A1 (en) * 2005-06-28 2007-01-11 Schaeffler Kg Multi-row angular contact bearing, in particular for supporting the bevel pinion shaft in a motor vehicle rear-axle transmission
JP2008169921A (en) * 2007-01-11 2008-07-24 Ntn Corp Tandem type double-row angular ball bearing, and differential device
CN112145557A (en) * 2019-06-27 2020-12-29 纳博特斯克有限公司 Bearing and speed reducer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005029983A1 (en) * 2005-06-28 2007-01-11 Schaeffler Kg Multi-row angular contact bearing, in particular for supporting the bevel pinion shaft in a motor vehicle rear-axle transmission
JP2008169921A (en) * 2007-01-11 2008-07-24 Ntn Corp Tandem type double-row angular ball bearing, and differential device
CN112145557A (en) * 2019-06-27 2020-12-29 纳博特斯克有限公司 Bearing and speed reducer

Similar Documents

Publication Publication Date Title
JP4285017B2 (en) Differential equipment
US7175351B2 (en) Tapered roller bearing
JP4535018B2 (en) Roller bearing device for pinion shaft support
JP4715745B2 (en) Oblique contact type double row ball bearing and pinion shaft support bearing device
JP2003314541A (en) Double row rolling bearing
US20090028483A1 (en) Double row ball bearing
US7909515B2 (en) Double row ball bearing and differential gear device
JP2007092860A (en) Double row angular ball bearing and pinion shaft supporting device for vehicle
JP2006234100A (en) Double-row angular ball bearing and pinion shaft supporting device for vehicle
JP2003294032A (en) Double-row rolling bearing and assembling method therefor
JP2005233406A (en) Double-row slant contact ball bearing and its preloading method
JP4075437B2 (en) Assembly method of double row rolling bearing
JP2004232844A (en) Double row ball bearing
US20070104403A1 (en) Bearing apparatus for supporting pinion shaft
JP2004183745A (en) Double-row ball bearing
JP2011190859A (en) Rolling bearing
JP5803234B2 (en) Tandem angular contact ball bearings
US9752619B2 (en) Double row ball bearing and shaft support device
JP2003294030A (en) Double-row ball bearing and assembling method thereof
JP4321092B2 (en) Double row tapered roller bearing
JP5007585B2 (en) Double row ball bearing
JP5050582B2 (en) Bearing device for rotating shaft support
JP2008223847A (en) Double row ball bearing
JP2003148597A (en) Pinion shaft supporting bearing device
JP2016205435A (en) Double-row ball bearing and shaft support device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080722

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080930