JP2004232114A - Polymer alloy fiber - Google Patents

Polymer alloy fiber Download PDF

Info

Publication number
JP2004232114A
JP2004232114A JP2003020105A JP2003020105A JP2004232114A JP 2004232114 A JP2004232114 A JP 2004232114A JP 2003020105 A JP2003020105 A JP 2003020105A JP 2003020105 A JP2003020105 A JP 2003020105A JP 2004232114 A JP2004232114 A JP 2004232114A
Authority
JP
Japan
Prior art keywords
fiber
polymer
polymer alloy
pet
yarn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003020105A
Other languages
Japanese (ja)
Other versions
JP4100180B2 (en
Inventor
Takashi Ochi
隆志 越智
Takaaki Sakai
崇晃 堺
Akira Kidai
明 木代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2003020105A priority Critical patent/JP4100180B2/en
Publication of JP2004232114A publication Critical patent/JP2004232114A/en
Application granted granted Critical
Publication of JP4100180B2 publication Critical patent/JP4100180B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polymer alloy fiber which comprises a blend of polymers having largely different performances but has excellent spinnability and dynamic characteristics, differently from conventional polymer blend fibers having sea-island structures. <P>SOLUTION: This polymer alloy fiber is characterized by having a bicontinuous structure comprising two or more polymers having different dissolving properties, respectively, in an amount of ≥50% per the cross sectional area of the fiber. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、従来のポリマーブレンド繊維の海島構造とは異なる、共連続構造を有するポリマーアロイ繊維に関するものである。
【0002】
【従来の技術】
ナイロン6(N6)やナイロン66(N66)に代表されるポリアミド繊維やポリエチレンテレフタレート(PET)やポリブチレンテレフタレート(PBT)に代表されるポリエステル繊維は力学特性や寸法安定性に優れるため、衣料用途のみならずインテリアや車両内装、産業用途等幅広く利用されている。また、ポリエチレン(PE)やポリプロピレン(PP)等に代表されるポリオレフィン繊維は軽さを活かして産業用途に幅広く利用されている。
【0003】
しかし、単一のポリマーからなる繊維ではその性能に限界があるため、従来から共重合やポリマーブレンドといったポリマー改質、また複合紡糸や混繊紡糸による機能の複合化が検討されてきた。中でも、ポリマーブレンドは新しくポリマーを設計する必要が無く、しかも単成分紡糸機を用いても製造が可能であることから特に活発な検討が行われてきた。
【0004】
例えば、PET/制電性ポリマーブレンドによる制電性付与やPET/ポリスチレンブレンドによる紡糸時の分子配向抑制効果を狙ったもの(特許文献1)があった。これらは、PETが海、ブレンドポリマーが島となったいわゆる海島構造ブレンドであり、ブレンドポリマーのドメインサイズは細かくともサブミクロンオーダーであった。そして、PETとブレンドポリマーの親和性がほとんど無いため、ブレンド比率を上げると紡糸性や力学特性が極端に悪化するものであった。
【0005】
一方、親和性の良いポリマーブレンドの例としてはPETとPBTのブレンドが挙げられる(特許文献2)が、これは完全に均一に混合され海島構造とはならず、ブレンド比率を上げても紡糸性や力学特性の極端な低下はなく、ポリマーブレンド繊維として扱いやすい物であった。しかしながら、似たもの同士であるが故、単にPETとPBTの中間の性能しか発揮されず、性能が中途半端で利用価値に乏しい物であった。
【0006】
このため、ポリマーブレンドでの性能向上をより発揮するため、特性の全く異なるポリマーブレンドでありながら、紡糸性や力学特性にも優れたポリマーアロイ繊維が望まれていた。
【0007】
【特許文献1】
特開昭56−91013号公報(p1〜5)
【0008】
【特許文献2】
特開2000−273727号公報(p1〜7)
【0009】
【発明が解決しようとする課題】
本発明は、従来のポリマーブレンド繊維の海島構造とは異なり、性能が大きく異なるポリマー同士のブレンドでありながら優れた紡糸性と力学特性を有するポリマーアロイ繊維を提供するものである。
【0010】
【課題を解決するための手段】
上記目的は、溶解性の異なる2種以上のポリマーからなる共連続構造を繊維横断面積あたり50%以上有するポリマーアロイ繊維により達成される。
【0011】
【発明の実施の形態】
本発明でいうポリマーとはポリエステルやポリアミド、またポリオレフィンに代表される熱可塑性ポリマーやフェノール樹脂等のような熱硬化性ポリマー、ポリビニルアルコール、ポリアクリロニトリルに代表される熱可塑性に乏しいポリマーや生体ポリマー等のことを言うが、熱可塑性ポリマーが成形性の点から好ましい。中でもポリエステルやポリアミドに代表される重縮合系ポリマーは融点が高いものが多く、より好ましい。ポリマーの融点は165℃以上であると耐熱性が良好であり好ましい。例えば、ポリ乳酸(PLA)は170℃、PETは255℃、N6は220℃である。また、ポリマーには粒子、難燃剤、帯電防止剤等の添加物を含有させていても良い。またポリマーの性質を損なわない範囲で他の成分が共重合されていても良い。
【0012】
本発明では、2種以上のポリマーが共連続構造を採っていることが重要であるが、ここで共連続構造とは、繊維横断面を透過型電子顕微鏡(TEM)で観察した時、以下の状態を示すものである。すなわち、ブレンドされた異種ポリマー同士が層を形成し互いに入り組み合って存在している状態である(図1、繊維横断面TEM写真)。このため、異種ポリマー同士の界面が従来の海島構造(図6、繊維横断面TEM写真)に比べはるかに大きくなっており、相溶性が海島構造の物に比べると向上しているが、PET/PBTのようないわゆる均一構造のものと比べると低いという極めて特異な構造である。ここで、TEMのサンプルはリンタングステン酸により金属染色されており、濃い部分が難溶解ポリマーであるN6、淡い部分が易溶解ポリマーである共重合PETである。また、層を形成するという点でいわゆる海海構造(図7、繊維横断面TEM写真)とも明確に区別されるものである。海海構造はポリマーブレンドにおいて海/島が逆転する近傍のブレンド比で現れる極めて不安定な構造であり、当然この領域では安定紡糸を行うのは極めて困難である。
【0013】
ここで、繊維横断面に占める共連続構造の割合は50%以上であることが重要である。これにより、後述するようなナノポーラスファイバーの形成が容易となり合成繊維の永年の課題であった吸湿・吸着性に優れた繊維を得ることができるとともに、力学特性や耐熱性を著しく向上することが可能なのである。繊維横断面に占める共連続構造の割合は好ましくは95%以上である。なお、ここで繊維横断面に占める共連続構造の割合は繊維横断面のTEM写真から求めることができる。例えば、実施例1の場合には図2に示すように、点線で囲んだ部分が共連続構造領域であり、それ以外(繊維表層部分)は海島構造である。この場合には、繊維横断面積と共連続構造部分の面積から、繊維横断面に占める共連続構造の割合を計算することができる。
【0014】
ここで、繊維横断面方向における易溶解成分の共連続層の1層の厚みは1〜100nmであれば、異種ポリマーが十分超微分散しており、少量ブレンドでもブレンドポリマーの性能を十分発揮できる点から好ましい。また、この共連続層は繊維長手方向には筋として伸びているものである(図3、繊維縦断面TEM写真)。
【0015】
本発明の共連続構造を有するポリマーアロイ繊維はそのままでも使用可能であるが、易溶解ポリマーを溶媒により除去することによりナノレベルの細孔を無数に有するナノポーラスファイバーを得ることができる。ここで、ナノレベルの細孔とは細孔直径が30nm以下のものを言うものである。本発明のポリマーアロイ繊維から作製したナノポーラスファイバーの一例を図4(繊維横断面TEM写真)に示すが、金属染色による濃淡は前駆体であるポリマーアロイ繊維よりも微細になっており、繊維および易溶解成分が除去された跡が潰れていることが分かる。ここでは濃い部分はN6高密度領域、淡い部分はN6低密度領域を示している。ここで淡い部分が細孔に相当すると考えられる。すなわち、ポリマーアロイ段階での易溶解性ポリマーの分散サイズよりも細孔サイズを小さくすることができるという利点がある。なお、易溶解性ポリマーの除去に伴い細孔だけでなく繊維径自体も収縮をする。さらにこのナノポーラスファイバーの繊維縦断面を図5に示すが、ポリマーアロイ繊維では易溶解ポリマーは筋状に伸びていた(図3)が、ナノポーラスファイバーでは筋が所々潰れ、粒状の濃淡パターンを示していることが分かる。
【0016】
このナノポーラスファイバーは無数のナノレベルの細孔により比表面積が増大し、優れた吸湿・吸着性を示すというメリットがある。実際に、N6ナノポーラスファイバーでは吸湿性の指標であるΔMRが5〜6%に達し、綿(ΔMR=4%)以上の優れた吸湿性を示すのである。また、このナノポーラスファイバーは水蒸気だけでなく種々の物質の吸着特性にも優れ、消臭繊維としても有用である。さらに、綿並の吸水性を発揮する場合もあるだけでなく、ウールのように糸長手方向に可逆的な水膨潤性を示す場合もあり、合成繊維でありながら天然繊維の機能を発現することも可能である。
【0017】
本発明の共連続構造を有するポリマーアロイ繊維は、そのままでも優れた特性を発揮する。例えば、ポリ乳酸(PLA)繊維はバイオマス原料、生分解性の点から注目されている繊維であるが、ガラス転移温度である60℃以上で急激に軟化し、90℃程度では流動に近い状態となり寸法安定性に劣るばかりか強度低下も著しく、高温雰囲気での使用が困難であるという問題を抱えている。このため、様々なポリマーとのポリマアロイも検討されたが、相溶性が悪く安定して紡糸ができるものがなかった。しかし、発明者らはビスフェノールA等を共重合した分子鎖の空間的拡がりを大きくしたPETとPLAが特異的に相溶性が改善され、共連続構造アロイを形成することを見いだした。そして、PLAにこの共重合PETを20%程度ブレンドするだけで、前記したPLA繊維の高温での軟化を著しく改善できることを見いだした。
【0018】
以上のように、本発明の共連続構造ポリマーアロイ繊維は、紡糸性が良好でしかも力学特性・耐熱性を著しく向上できるだけでなく、また吸湿・吸着特性に優れたナノポーラスファイバー前駆体としても有用なのである。
【0019】
本発明のポリマーアロイ繊維をナノポーラスファイバー前駆体として使用する場合には、易溶解性ポリマーはアルカリ溶解性のあるポリエステルやポリカーボネートを使用すると、溶出処理の際、防爆設備が不要であり好ましい。また、熱水可溶性のあるポリアルキレンオキサイド変性物等を用いることも好ましい。難溶解性ポリマーとしてはアルカリ難溶解のナイロンやPP、PE等のポリオレフィンを用いることが好ましい。
【0020】
また、易溶解性ポリマーと難溶解性ポリマーのブレンド率は、用途に応じて設定されるが、ナノポーラスファイバー前駆体とする場合には易溶解性ポリマーのブレンド率は5〜55重量%とすることが好ましい。易溶解性ポリマーのブレンド率は、より好ましくは10〜25重量%である。
【0021】
また、本発明のポリマーアロイ繊維は通常の海島構造ポリマーブレンド繊維に比べ相溶性が良いため、糸斑の小さな繊維が得られやすいという特徴を有する。糸斑はウースター斑(U%)で評価することが可能であるが、本発明ではU%を0.1〜5%とすると、アパレルやインテリア、車両内装等の繊維製品にした際、染色斑が小さく品位の高い物が得られ好ましい。U%はより好ましくは0.1〜2%、さらに好ましくは0.1〜1.5%である。また、特にアパレル用途で杢調を出す場合には、U%が3〜10%の太細糸とすることもできる。
【0022】
本発明のポリマーアロイ繊維の強度は2cN/dtex以上とすることで、撚糸や製織・製編工程等での工程通過性を向上することができ好ましい。強度は好ましくは3cN/dtex以上である。また、伸度は15〜70%であれば、やはり撚糸や製織・製編工程等での工程通過性を向上することができ好ましい。また、延伸仮撚り加工用原糸として用いる際は伸度は100〜200%とすることが仮撚り加工での工程通過性の点から好ましい。延伸用の原糸の場合には伸度は100〜500%程度とすることが延伸での工程通過性の点から好ましい。
【0023】
本発明のポリマーアロイ繊維の製造方法は特に制限されるものではないが、例えば下記のような方法を採用することができる。
【0024】
すなわち、難溶解性ポリマーと易溶解性ポリマーを溶融混練し、難溶解性ポリマーおよび/または易溶解性ポリマーが微分散化した難溶解性ポリマー/易溶解性ポリマーからなるポリマーアロイを得る。そして、これを溶融紡糸することにより本発明のポリマーアロイ繊維を得ることができる。ここで、ポリマーの組み合わせが重要であり、両者の親和性を上げることで共連続構造とし易くなる。例えば、難溶解性ポリマーとしてナイロン、易溶解性ポリマーとしてポリエチレンテレフタレート(PET)を用いる場合には、ホモポリマー同士では親和性が無いため共連続構造ポリマーアロイは得られず、紡糸性も劣悪である。そこで、例えばPETに親水性成分である5−ナトリウムスルホイソフタル酸(SSIA)を共重合した親水化PETを用いると、ナイロンとの親和性を向上させることができる。特にSSIAの共重合率が4mol%以上の親水化PETを用いると共連続構造が得られやすい。また、混練方法も重要であり、100万分割以上の静止混練器を用いると共連続構造が得られやすい。しかし、押し出し混練機を用いる場合は、同じ組成のポリマーアロイとしても共連続構造が得られにくい。また、単純なチップブレンドしただけで溶融紡糸した場合、ブレンドチップの段階でブレンド斑が生じ易く、また混練不十分のため共連続構造が得られないばかりか、ポリマー分散径が300nm以上となるブレンドが粗い部分が生じたり、ブレンド斑によりポリマーアロイの粘弾性バランスが崩れ紡糸吐出斑により糸の太さ斑が生じたり、曳糸性が著しく低下する問題が発生してしまう。
【0025】
また、上記製造方法で用いるナイロンの相対粘度は2以上、親水化PETの極限粘度は0.45以上とすると紡糸性を向上できるため好ましい。
【0026】
本発明のポリマーアロイ繊維は、三葉断面、十字断面、中空断面等様々な繊維断面形状を採用することができる。また、フラットヤーンでも捲縮糸でも良く、また、長繊維、短繊維、不織布、熱成形体等様々な繊維製品形態を採ることができる。そして、シャツやブルゾン、パンツ、コートといった快適衣料用途のみならず、カップやパッド等の衣料資材用途、カーテンやカーペット、マット、家具等のインテリア用途、さらにフィルター等の産業資材用途、車両内装用途にも好適に用いることができる。
【0027】
【実施例】
以下、本発明を実施例を用いて詳細に説明する。なお、実施例中の測定方法は以下の方法を用いた。
【0028】
A.ナイロンの相対粘度
0.01g/mlの98%硫酸溶液を調製し、25℃で測定した。
【0029】
B.ポリエステルの極限粘度[η]
オルソクロロフェノール中25℃で測定した。
【0030】
C.ポリ乳酸の重量平均分子量
試料のクロロホルム溶液にテトラヒドロフランを混合し測定溶液とした。これをGPCで測定し、ポリスチレン換算で重量平均分子量を求めた。
【0031】
D.可逆的水膨潤性および糸長手方向の膨潤率
繊維を60℃で4時間乾燥した後、原長(L0)を測定する。そしてこの繊維を25℃の水に10分間浸漬した後、水から取り出し素早く処理後長(L1)を測定する。さらにこの繊維を60℃で4時間乾燥後、乾燥後長(L2)を測定する。そして、乾燥/水浸漬の3回繰り返し、3回目の糸長手方向の膨潤率が1回目の糸長手方向の膨潤率に対して50%以上であれば可逆的水膨潤性を有しているとした。糸長手方向の膨潤率は以下のようにして計算した。なお、繊維の長さは、繊維の2カ所に色つきの糸を結びその間の距離を測定した。この距離は約100mmとなるようにした。
【0032】
糸長手方向の膨潤率(%)=((L1−L0)/L0)×100(%)
E.吸湿性(ΔMR)
繊維を秤量瓶に1〜2g程度はかり取り、110℃に2時間保ち乾燥させ重量を測定し(W0)、次に対象物質を20℃、相対湿度65%に24時間保持した後重量を測定する(W65)。そして、これを30℃、相対湿度90%に24時間保持した後重量を測定する(W90)。そして、以下の式にしたがい計算を行う。
【0033】
MR65=[(W65−W0)/W0]×100% ・・・・・ (1)
MR90=[(W90−W0)/W0]×100% ・・・・・ (2)
ΔMR=MR90−MR65 ・・・・・・・・・・・・ (3)
F.吸水性
サンプルを60℃で2時間乾燥した後、重量を測定し乾燥重量を求めた。サンプルを20℃のイオン交換水に1時間浸漬し十分吸水させた後、これを取り出し20℃、相対湿度65%の部屋に2分間に吊し水切りを行った。さらに家庭用洗濯機で3分間脱水し、布帛として吸水している水や繊維表面の水を除去した。そして、これの重量を測定し吸水重量を求め、下記式から吸水率を計算した。
【0034】
吸水率(%)={(吸水重量−乾燥重量)/乾燥重量}×100(%)
G.TEM観察
繊維の横断面方向に超薄切片を切り出し、透過型電子顕微鏡(TEM)で繊維横断面を観察した。また、ナイロンはリンタングステン酸で金属染色した。
【0035】
TEM装置 : 日立社製H−7100FA型
H.強度および伸度
初期試料長=200mm、引っ張り速度=200mm/分とし、JIS L1013に示される条件で荷重−伸長曲線を求めた。次に破断時の荷重値を初期の繊度で割り、それを強度とし、破断時の伸びを初期試料長で割り伸度として強伸度曲線を求めた。
【0036】
I.広角X線回折
理学電機社製4036A2型X線回折装置を用い、以下の条件で赤道線方向の回折強度を測定した。
【0037】
X線源 : Cu−Kα線(Niフィルター)
出力 : 40kV×20mA
スリット : 2mmφ−1゜−1゜
検出器 : シンチレーションカウンター
計数記録装置 : 理学電機社製RAD−C型
ステップスキャン : 0.05゜ステップ
積算時間 : 2秒
J.小角X線散乱
理学電機社製RU−200型X線発生装置を用い、小角X線散乱写真を撮影した。
【0038】
X線源 : Cu−Kα線(Niフィルター)
出力 : 50kV×150mA
スリット : 0.5mmφ
カメラ半径 : 405mm
露出時間 : 300分
フィルム : Kodak DEF−5
そして、写真上の散乱点間距離r(mm)からBraggの式を用いて長周期を算出した。
【0039】
J=λ/2sin[{tan−1(r/R)}/2]
J :長周期(nm)
R :カメラ半径(405mm)
λ:X線の波長(0.15418nm)
K.仮撚加工糸の捲縮特性、CR値
仮撚加工糸をかせ取りし、実質的に荷重フリーの状態で沸騰水中15分間処理し、24時間風乾した。このサンプルに0.088cN/dtex(0.1gf/d)相当の荷重をかけ水中に浸漬し、2分後のかせ長L’0を測定した。次に、水中で0.088cN/dtex相当の荷重を除き0.0018cN/dtex(2mgf/d)相当の微荷重に交換し、2分後のかせ長L’1を測定した。そして下式によりCR値を計算した。
【0040】
CR(%)=[(L’0−L’1)/L’0]×100(%)
実施例1
相対粘度2.15の低粘度ホモナイロン6と極限粘度0.60の5−ナトリウムスルホイソフタル酸を5mol%共重合した親水化PETを図8の装置を用いてそれぞれ270℃、290℃で溶融した後、パック3内に設置した静止混練器4(東レエンジニアリング社製“ハイミキサー”10段)により104万分割して混合した。そして、これを絶対濾過径20μmの金属不織布フィルターで濾過した後、孔径0.35mmの口金孔から吐出した。この時、紡糸温度は280℃、口金5からチムニー6の上端までの距離は70mmとした。これを紡糸速度900m/分で引き取り、第2引き取りローラー10を介して巻き取った。1tの紡糸を行ったが、紡糸での糸切れは皆無であり、良好な紡糸性を示した。これを図9の装置を用いて延伸・熱処理した。この時、延伸倍率は3.2倍、予熱ローラー14温度は70℃、熱セットローラー15温度は130℃とした。延伸・熱処理での糸切れは皆無であり、良好な延伸性を示した。
【0041】
これにより56dtex、12フィラメントのポリマーアロイ繊維を得たが、U%は1.5%と充分糸斑の小さなものであった。また、これの繊維横断面をTEMで観察したところ、金属染色により濃く染まったN6部分と淡いPET部分が共連続構造を形成しており、PET層部分の厚みは概ね20nm程度であった(図1)。また、この繊維は繊維表層から150nm程度までは共連続構造が崩れ海島構造となっていたが、共連続構造部分の面積を見積もったところ、繊維横断面全体に対して98%であり、繊維断面のほとんどが共連続構造を形成していた(図2)。また、このポリマーアロイ繊維の縦断面をTEMで観察したところ共連続層が筋状になっていた(図3)。
【0042】
この共連続構造を形成しているポリマーアロイ繊維を用いて丸編みを作製したが、製編工程でのトラブルは皆無であり、良好な工程通過性を示した。さらにこの丸編みを95℃の3%水酸化ナトリウム水溶液に1時間浸漬し、ポリマーアロイ繊維からPETを完全に除去し、N6ナノポーラスファイバーからなる丸編みを得た。この丸編みはΔMR=5.7%と綿を凌駕する優れた吸湿性を示した。さらに糸長手方向に7%の可逆的な吸水膨潤/乾燥収縮挙動を示し、吸水率も綿並の84%であった。また、このナノポーラスファイバーの繊維横断面をTEMで観察した(図4)ところ、金属染色による濃淡斑が元のポリマーアロイ繊維よりも微細になっていた。ここで、濃い部分はN6高密度部分、淡い部分はN6低密度部分である。そして淡い部分が細孔に相当すると考えられる。また、繊維縦断面を観察したところ、元のポリマーアロイではPETが筋状に伸びていた(図3)のに対し、ナノポーラスファイバーでは粒状の淡い部分が観察され(図5)、細孔が潰れていることが示唆された。また、繊維径自体も易溶解性ポリマー除去により収縮していた。このため、直径が50nm以上の大きな細孔は皆無であった。
【0043】
実施例2
親水化PETを極限粘度0.60の5−ナトリウムスルホイソフタル酸を12.5mol%、イソフタル酸を26mol%共重合したPETとして、N6を270℃、親水化PETを250℃で溶融した後、N6とPETの重量比を50重量%/50重量%として実施例1と同様にして溶融紡糸、延伸・熱処理を行い、120dtex、24フィラメントのポリマーアロイ繊維を得た。この時、1tの製糸を行ったが紡糸、延伸での糸切れはゼロであった。
【0044】
これの繊維横断面をTEMで観察したところ、金属染色により濃く染まったN6部分と淡いPET部分が共連続構造を形成しており、PET層部分の厚みは概ね15nm程度であった。また、共連続構造部分の面積を見積もったところ、繊維横断面全体に対して98%であり、繊維断面のほとんどが共連続構造を形成していた。
【0045】
この共連続構造を形成しているポリマーアロイ繊維を用いて丸編みを作製したが、製編工程でのトラブルは皆無であり、良好な工程通過性を示した。さらにこの丸編みを95℃の3%水酸化ナトリウム水溶液に1時間浸漬し、ポリマーアロイ繊維からPETを完全に除去し、N6ナノポーラスファイバーからなる丸編みを得た。この丸編みはΔMR=5.9%と綿を凌駕する優れた吸湿性を示した。さらに糸長手方向に11%の可逆的な吸水膨潤/乾燥収縮挙動を示し、吸水率も綿並の85%であった。また、このナノポーラスファイバーの繊維横断面をTEMで観察したところ、金属染色による濃淡斑が元のポリマーアロイ繊維よりも微細になっていた。ここで、濃い部分はN6高密度部分、淡い部分はN6低密度部分である。また、繊維縦断面を観察したところ、元のポリマーアロイではPETが筋状に伸びていたのに対し、ナノポーラスファイバーでは粒状の淡い部分が観察され、細孔が潰れていることが示唆された。このため、直径が50nm以上の大きな細孔は皆無であった。
【0046】
比較例1
混練方法を静止混練器ではなく単純なチップブレンドとして図11の装置を用い、実施例1と同様に溶融紡糸、延伸・熱処理を行いポリマーアロイ繊維を得たが、ブレンド状態は共連続構造ではなく海島構造となった。また、島PETの直径も平均で300nmと粗いブレンドであり、ブレンド斑も大きかった。また、ポリマーの吐出が安定せず、紡糸中に糸切れが頻発した。
【0047】
比較例2
2軸押出混練機であらかじめポリマーアロイチップを作製して図11の装置を用い、実施例1と同様に溶融紡糸、延伸・熱処理を行った。この時、ポリマーアロイの溶融温度は280℃とした。得られた繊維中でのブレンド状態は共連続構造ではなく海島構造(図6)となり、島PETの直径は平均で50nm以下であった
比較例3
易溶解性ポリマーを極限粘度0.65のホモPET、ブレンド比をN6が70重量%、PETが30重量%として実施例1と同様に溶融紡糸を行ったが、N6とホモPETは親和性が低いため、紡糸時の粘弾性バランスが崩れ、曳糸性に乏しく実質的に巻き取り不能であった。
【0048】
比較例4
難溶解性ポリマーを相対粘度2.61のホモナイロン6として、ブレンド比をN6が50重量%、親水化PETを50重量%として1軸押し出し混練機であらかじめポリマーアロイチップを作製し、図11の装置を用い、として実施例1と同様に溶融紡糸を行ったが、曳糸性が低く糸切れが頻発した。それでもわずかに得られた未延伸糸を用いて延伸・熱処理を行いポリマーアロイ繊維を得たが、ブレンド状態は共連続構造ではなくブレンド状態の安定しない海海構造(図7)となった。このため、ポリマーの吐出が安定せず、紡糸中に糸切れが頻発したものと考えられる。
【0049】
比較例5
易溶解性ポリマーを極限粘度0.40のSSIA20mol%共重合した親水化PETとし、ブレンド比をN6を70重量%、親水化PETを30重量%、混練方法を1024分割の静止混練器として実施例1と同様に溶融紡糸、延伸・熱処理を行いポリマーアロイ繊維を得たが、ブレンド状態は共連続構造ではなく海島構造となった。また、親水化PETの分子量(極限粘度)が低いため、糸が弱く紡糸中に糸切れが頻発した。
【0050】
比較例6
比較例4で用いたN6を77重量%、比較例3で用いたPETを20重量%、相溶化剤としてブロックポリエーテルポリアミド(ポリエチレングリコール部分45重量%+ポリ−ε−カプロラクタム部分55重量%)を3重量%を単純にチップブレンドして図11の装置を用い、実施例1と同様に溶融紡糸、延伸・熱処理を行いポリマーアロイ繊維を得たが、ブレンド状態は共連続構造ではなく海島構造となった。また、チップブレンドのためブレンド斑も大きく、ポリマーの吐出が安定せず、紡糸中に糸切れが頻発した。
【0051】
比較例7
比較例4で用いたN6を70重量%、極限粘度0.60の5−ナトリウムスルホイソフタル酸を4.5mol%、分子量4000のポリエチレングリコールを8.5重量%共重合したポリエチレンテレフタレートを30重量%を単純にチップブレンドして280℃で溶融し、孔径0.6mmの丸孔口金から吐出し、図11の装置を用い、溶融紡糸を行った。これを1000m/分で巻き取り未延伸糸を得た。そして、これを延伸倍率3.35倍、予熱ローラー14温度90℃、熱セットローラー15温度130℃で延伸熱処理した。これにより、85dtex、24フィラメントのポリマーアロイ繊維を得たが、ブレンド状態は共連続構造ではなく海島構造となった。
【0052】
そして、これから実施例1同様に共重合PETを28重量%溶解除去した。この時に、実施例1とは異なり繊維半径はほとんど変化しなかった。
【0053】
比較例8
比較例4で用いたN6を50重量%と極限粘度0.60の5−ナトリウムスルホイソフタル酸を2.5mol%、ビスフェノールAエチレンオキサイド付加物3.5mol%共重合したポリエチレンテレフタレートを50重量%を単純にチップブレンドした後、290℃で溶融し、孔径0.6mmの丸孔口金から吐出し、図11の装置を用い、溶融紡糸を行った。これを1200m/分で巻き取り未延伸糸を得た。そして、これを120℃の熱プレートを用い延伸倍率2.7倍で延伸した。これにより、85dtex、24フィラメントのポリマーアロイ繊維を得たが、ブレンド状態は共連続構造ではなく海島構造となった。
【0054】
【表1】

Figure 2004232114
【0055】
実施例3
口金5からチムニー6上端までの距離を200mmとして実施例1と同様に溶融紡糸、延伸・熱処理を行い56dtex、12フィラメントのポリマーアロイ繊維を得た。この時、若干紡糸が不安定となり、1tの紡糸において3回糸切れが発生した。また、このポリマーアロイ繊維のU%は3%とやや大きいものであった。
【0056】
これの繊維横断面をTEMで観察したところ、金属染色により濃く染まったN6部分と淡いPET部分が共連続構造を形成しており、PET層部分の厚みは概ね40nm程度であった。また、共連続構造部分の面積を見積もったところ、繊維横断面全体に対して95%であり、繊維断面のほとんどが共連続構造を形成していた。
【0057】
実施例4
口金孔径を0.2mmとして実施例1と同様に溶融紡糸、延伸・熱処理を行い56dtex、12フィラメントのポリマーアロイ繊維を得た。この時、若干紡糸が不安定となり、1tの紡糸において5回糸切れが発生した。また、このポリマーアロイ繊維のU%は6%と大きいものであった。
【0058】
これの繊維横断面をTEMで観察したところ、金属染色により濃く染まったN6部分と淡いPET部分が共連続構造を形成しており、PET層部分の厚みは概ね50nm程度であった。また、共連続構造部分の面積を見積もったところ、繊維横断面全体に対して88%であり、繊維断面のほとんどが共連続構造を形成していた。
【0059】
実施例5
紡糸速度を4000m/分として実施例1と同様に溶融紡糸を行い、90dtex、12フィラメントのポリマーアロイ繊維を得たが、U%は1.2%、強度2.8cN/dtex、伸度140%と優れた特性のポリマーアロイ繊維であった。また、これの繊維横断面をTEMで観察したところ、金属染色により濃く染まったN6部分と淡いPET部分が共連続構造を形成しており、PET層部分の厚みは概ね20nm程度であった。また、この繊維の共連続構造部分の面積を見積もったところ、繊維横断面全体に対して98%であり、繊維断面のほとんどが共連続構造を形成していた。
【0060】
この高配向未延伸糸に図10の装置を用い、延伸倍率1.5倍、ヒーター20温度165℃で延伸仮撚りを施した。回転子22としては3軸ウレタンディスクツイスターを用いた。得られた仮撚り加工糸はCR値が40%の優れた捲縮特性を示し、また、これの繊維横断面をTEMで観察したところ、金共連続構造を形成しており、PET層部分の厚みは概ね17nm程度であった。また、この繊維の共連続構造部分の面積を見積もったところ、繊維横断面全体に対して98%であり、繊維断面のほとんどが共連続構造を形成していた。
【0061】
この共連続構造を形成しているポリマーアロイ捲縮糸を用いて丸編みを作製したが、製編工程でのトラブルは皆無であり、良好な工程通過性を示した。さらにこの丸編みを95℃の3%水酸化ナトリウム水溶液に1時間浸漬し、ポリマーアロイ繊維からPETを完全に除去し、N6ナノポーラスファイバー捲縮糸からなる丸編みを得た。この丸編みはΔMR=5.7%と綿を凌駕する優れた吸湿性を示した。また、このナノポーラスファイバーの繊維横断面をTEMで観察したところ、金属染色による濃淡斑が元のポリマーアロイ繊維よりも微細になっていた。また、繊維縦断面を観察したところ、元のポリマーアロイではPETが筋状に伸びていたのに対し、ナノポーラスファイバーでは粒状の淡い部分が観察され、細孔が潰れていることが示唆された。また、繊維径自体も易溶解性ポリマー除去により収縮していた。このため、直径が50nm以上の大きな細孔は皆無であった。
【0062】
実施例6
実施例1および2で得たN6ナノポーラスファイバーを用い長袖Tシャツを作製し、7人の被験者に着せた。
【0063】
そして、「接触冷感」の官能評価を4段階で行った。「接触冷感」については4級:強く冷感を感じる、3級:冷感を感じる、2級:やや冷感を感じる、1級:全く冷感を感じないで判定を行い、3級以上を合格とした。
【0064】
その後、30cmの段差のあるステップを用い、15分間踏み台昇降運動をした後、15分間安静を保ち「ムレ感」の官能評価を4段階で行った。「ムレ感」については4級:非常に快適、3級:快適、2級:やや不快、1級:非常に不快で判定を行い、3級以上を合格とした。
【0065】
実施例1のナノポーラスファイバーを用いたTシャツは平均で「接触冷感」3.9級、「ムレ感」3.7級、実施例2のナノポーラスファイバーを用いたTシャツは平均で「接触冷感」3.7級、「ムレ感」3.6級であり、優れた着用快適性を示した。
【0066】
比較例9
従来のナイロン糸を用い長袖Tシャツを作製し、実施例3と同様に「接触冷感」、「ムレ感」の評価を行った。いずれも「接触冷感」、「ムレ感」とも2級以下であり不合格であった。
【0067】
実施例7
ビスフェノールAエチレンオキサイド付加物を6mol%、さらにイソフタル酸を6mol%共重合した極限粘度0.65の共重合PET(融点220℃)を用い、これと重量平均分子量15万のホモポリL乳酸(光学純度99%L乳酸)を235℃で2軸押し出し混練機を用い溶融ブレンドし、ポリマーアロイチップを得た。この時、共重合PETのブレンド比はブレンドポリエステルに対し20重量%とした。このポリマーアロイチップのガラス転移温度は61℃とホモポリL乳酸の60℃とほぼ同等であった。紡糸温度を235℃として図11の装置を用いて溶融紡糸し、紡糸速度1500m/分で巻き取った。この時、口金孔径は0.35mm、口金5からチムニー6上端までの距離は120mmであった。この未延伸糸を予熱ローラー14温度90℃で予熱した後、2.8倍に延伸し、熱セットローラー15で130℃で熱セットを行い、デリバリーローラー16を介し巻き取り、84dtex、36フィラメント、U%=1.0%の延伸糸を得た。ここでの紡糸、延伸性には全く問題が無く、1t巻き取りでの糸切れはゼロであった。
【0068】
得られた繊維の90℃での強伸度曲線を図12に示すが、従来のポリ乳酸繊維に比べ降伏応力が高く、90℃での力学特性が大幅に向上していた。また、これの広角X線回折を行ったところ、PET部分が配向結晶化していることが確認された。さらに、これの小角X線散乱により長周期を測定したところ19nmと共重合PET単独糸の10nmに比べ大幅に増加していた。また、糸横断面のTEM観察を行ったところ、共連続構造を形成していた(図13)。ここで、濃い領域が共重合PETリッチ相、薄い領域がPLAリッチ相である。また、画像解析により求めたブンレンド比は45面積%(薄い領域):55面積%(濃い領域)であり、仕込み比から予想された81面積%:19面積%よりも大幅に共重合PET比が大きく、ポリ乳酸が共重合PET相に侵入し見かけ上共重合PET比が増大しているものと考えられた。さらに、PET部分の長周期構造が19nmと共重合PET単独糸の10nmに比べ約2倍となっていることから、PET分子鎖がポリ乳酸分子鎖を挟み込んで強く拘束していると考えられた。
【0069】
さらにこの繊維を筒編みし、180℃でアイロン掛けテストを行ったが、筒編み地に穴が空くことは無く、従来のポリ乳酸繊維に比べ耐熱性が格段に向上していた。
【0070】
このように、共連続構造を採ることで、ポリマーアロイにおける製糸性と大幅な性能向上を両立できるのである。
【0071】
比較例10
実施例7で使用したポリ乳酸を乾燥した後、220℃で実施例7と同様に溶融紡糸、延伸熱処理し、84dtex、24フィラメント、丸断面のポリ乳酸延伸糸を得た。これの90℃での強伸度曲線を図12に示すが、高温での力学特性が低いものであった。さらにこの繊維を筒編みし、180でアイロン掛けテストを行ったが、ポリ乳酸繊維の融解のため筒編み地に大きな穴が空き、耐熱性が不良なものであった。
【0072】
【発明の効果】
本発明の共連続構造を有するポリマーアロイ繊維は、紡糸性が良好で繊維の耐熱性・力学特性を向上することができるのみならず、ナノポーラスファイバー前駆体としても有用なものである。
【図面の簡単な説明】
【図1】実施例1のポリマーアロイ繊維の繊維横断面を示すTEM写真である。
【図2】実施例1のポリマーアロイ繊維の繊維横断面(繊維表層付近)を示すTEM写真である。
【図3】実施例1のポリマーアロイ繊維の繊維縦断面を示すTEM写真である。
【図4】ナノポーラスファイバーの繊維横断面を示すTEM写真である。
【図5】ナノポーラスファイバーの繊維縦断面を示すTEM写真である。
【図6】海島構造のポリマーアロイ繊維の繊維横断面を示すTEM写真である。
【図7】海海構造のポリマーアロイ繊維の繊維横断面を示すTEM写真である。
【図8】紡糸装置を示す図である。
【図9】延伸装置を示す図である。
【図10】延伸仮撚り装置を示す図である。
【図11】紡糸装置を示す図である
【図12】実施例7のポリマーアロイ繊維の強伸度曲線を示す図である。
【図13】実施例7のポリマーアロイ繊維の繊維横断面を示すTEM写真である。
【符号の説明】
1:ホッパー
2:溶融部
3:紡糸パック
4:静止混練器
5:口金
6:チムニー
7:糸条
8:集束給油ガイド
9:第1引き取りローラー
10:第2引き取りローラー
11:巻き取り糸
12:未延伸糸
13:フィードローラー
14:予熱ローラー
15:熱セットローラー
16:デリバリーローラー(室温)
17:延伸糸
18:未延伸糸
19:フィードローラー
20:ヒーター
21:冷却板
22:回転子
23:デリバリーローラー
24:仮撚加工糸[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a polymer alloy fiber having a bicontinuous structure different from the sea-island structure of a conventional polymer blend fiber.
[0002]
[Prior art]
Polyamide fibers typified by nylon 6 (N6) and nylon 66 (N66) and polyester fibers typified by polyethylene terephthalate (PET) and polybutylene terephthalate (PBT) have excellent mechanical properties and dimensional stability. Rather, it is widely used for interiors, vehicle interiors, industrial uses, and the like. In addition, polyolefin fibers represented by polyethylene (PE), polypropylene (PP) and the like are widely used for industrial applications by utilizing their lightness.
[0003]
However, there is a limit to the performance of a single polymer fiber. Therefore, polymer modification such as copolymerization or polymer blending, and compounding of functions by composite spinning or mixed fiber spinning have been studied. Among them, polymer blends have been studied particularly actively because there is no need to design a new polymer and the polymer blend can be produced using a single-component spinning machine.
[0004]
For example, there is a technique which aims to impart an antistatic property by using a PET / antistatic polymer blend or to suppress a molecular orientation during spinning by using a PET / polystyrene blend (Patent Document 1). These are so-called sea-island structure blends in which PET is a sea and the blend polymer is an island, and the domain size of the blend polymer is at most submicron order. Since PET and the blend polymer have little affinity, spinning properties and mechanical properties are extremely deteriorated when the blend ratio is increased.
[0005]
On the other hand, an example of a polymer blend having good affinity is a blend of PET and PBT (Patent Literature 2). However, the blend is completely uniform and does not have a sea-island structure. There was no extreme decrease in mechanical properties or mechanical properties, and it was easy to handle as a polymer blend fiber. However, because they are similar to each other, only performance intermediate between PET and PBT is exhibited, and the performance is halfway and has poor utility value.
[0006]
For this reason, in order to further enhance the performance of the polymer blend, a polymer alloy fiber which is excellent in spinnability and mechanical properties while being a polymer blend having completely different properties has been desired.
[0007]
[Patent Document 1]
JP-A-56-91013 (p1-5)
[0008]
[Patent Document 2]
JP-A-2000-273727 (p1-7)
[0009]
[Problems to be solved by the invention]
An object of the present invention is to provide a polymer alloy fiber having excellent spinnability and mechanical properties while being a blend of polymers having greatly different performances, unlike the conventional sea-island structure of a polymer blend fiber.
[0010]
[Means for Solving the Problems]
The above object is achieved by a polymer alloy fiber having a bicontinuous structure composed of two or more polymers having different solubilities of 50% or more per fiber cross-sectional area.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
The polymer referred to in the present invention is a thermoplastic polymer represented by polyester, polyamide, or polyolefin, a thermosetting polymer such as phenol resin, a polymer having poor thermoplasticity represented by polyvinyl alcohol or polyacrylonitrile, or a biopolymer. However, thermoplastic polymers are preferred from the viewpoint of moldability. Among them, polycondensation polymers typified by polyester and polyamide have many high melting points and are more preferable. It is preferable that the melting point of the polymer is 165 ° C. or higher, since the heat resistance is good. For example, polylactic acid (PLA) is 170 ° C., PET is 255 ° C., and N6 is 220 ° C. Further, the polymer may contain additives such as particles, a flame retardant, and an antistatic agent. Other components may be copolymerized as long as the properties of the polymer are not impaired.
[0012]
In the present invention, it is important that two or more kinds of polymers have a co-continuous structure. Here, the bi-continuous structure is defined as follows when a cross section of a fiber is observed with a transmission electron microscope (TEM). It shows the status. That is, the blended heterogeneous polymers are in a state of forming a layer and intermingling with each other (FIG. 1, fiber cross-sectional TEM photograph). For this reason, the interface between the different polymers is much larger than that of the conventional sea-island structure (FIG. 6, TEM photograph of the fiber cross section), and the compatibility is improved as compared with the sea-island structure. This is an extremely unique structure that is lower than that of a so-called uniform structure such as PBT. Here, the TEM sample is metal-stained with phosphotungstic acid, and the dark portion is N6, which is a hardly soluble polymer, and the light portion is copolymerized PET, which is an easily soluble polymer. Further, it is clearly distinguished from a so-called sea-sea structure (FIG. 7, fiber cross-sectional TEM photograph) in that a layer is formed. The sea-sea structure is a very unstable structure that appears at a blend ratio near the sea / island reversal in the polymer blend, and it is naturally extremely difficult to perform stable spinning in this region.
[0013]
Here, it is important that the proportion of the bicontinuous structure in the fiber cross section is 50% or more. This facilitates the formation of nanoporous fibers as described later, and can provide fibers with excellent moisture absorption / adsorption properties, which have long been issues of synthetic fibers, and can significantly improve mechanical properties and heat resistance. That's it. The proportion of the bicontinuous structure in the fiber cross section is preferably 95% or more. Here, the proportion of the bicontinuous structure in the fiber cross section can be determined from a TEM photograph of the fiber cross section. For example, in the case of Example 1, as shown in FIG. 2, a portion surrounded by a dotted line is a co-continuous structure region, and the other portion (fiber surface layer portion) has a sea-island structure. In this case, the proportion of the bicontinuous structure in the fiber cross section can be calculated from the fiber cross-sectional area and the area of the bicontinuous structure.
[0014]
Here, when the thickness of one layer of the co-continuous layer of the easily soluble component in the fiber cross-sectional direction is 1 to 100 nm, the heterogeneous polymer is sufficiently ultrafinely dispersed, and the performance of the blended polymer can be sufficiently exhibited even with a small amount of blend. Preferred from the point. This co-continuous layer extends as a streak in the longitudinal direction of the fiber (FIG. 3, TEM photograph of fiber longitudinal section).
[0015]
Although the polymer alloy fiber having a bicontinuous structure of the present invention can be used as it is, a nanoporous fiber having a myriad of nano-level pores can be obtained by removing the easily soluble polymer with a solvent. Here, the nano-level pore refers to a pore having a pore diameter of 30 nm or less. An example of a nanoporous fiber produced from the polymer alloy fiber of the present invention is shown in FIG. 4 (a TEM photograph of a cross section of the fiber). It can be seen that the trace from which the dissolved component was removed is crushed. Here, the dark portion indicates the N6 high density region, and the light portion indicates the N6 low density region. Here, the light portion is considered to correspond to the pore. That is, there is an advantage that the pore size can be made smaller than the dispersion size of the easily soluble polymer in the polymer alloy stage. In addition, not only the pores but also the fiber diameter itself shrinks with the removal of the easily soluble polymer. Further, FIG. 5 shows the fiber longitudinal section of this nanoporous fiber. In the polymer alloy fiber, the easily soluble polymer extended in a streak shape (FIG. 3). I understand that there is.
[0016]
This nanoporous fiber has the merit that the specific surface area is increased by countless nano-level pores, and that it exhibits excellent moisture absorption / adsorption properties. Actually, in the case of the N6 nanoporous fiber, ΔMR, which is an index of hygroscopicity, reaches 5 to 6% and exhibits excellent hygroscopicity more than cotton (ΔMR = 4%). In addition, the nanoporous fiber has excellent adsorption characteristics of various substances as well as water vapor, and is useful as a deodorant fiber. Furthermore, in addition to exhibiting the same level of water absorption as cotton, in some cases it exhibits reversible water swelling in the yarn longitudinal direction like wool. Is also possible.
[0017]
The polymer alloy fiber having a bicontinuous structure of the present invention exhibits excellent properties as it is. For example, polylactic acid (PLA) fiber is a biomass raw material and is a fiber that is attracting attention from the viewpoint of biodegradability. However, it rapidly softens at a glass transition temperature of 60 ° C. or higher, and becomes almost fluid at about 90 ° C. Not only is the dimensional stability inferior, but also the strength is significantly reduced, and there is a problem that it is difficult to use in a high-temperature atmosphere. For this reason, polymer alloys with various polymers were also studied, but none of them had poor compatibility and could be stably spun. However, the present inventors have found that PET and PLA in which the spatial expansion of the molecular chain obtained by copolymerizing bisphenol A or the like is specifically improved in compatibility and a bicontinuous alloy is formed. Then, it was found that the softening of the PLA fiber at a high temperature can be remarkably improved only by blending about 20% of the copolymerized PET with PLA.
[0018]
As described above, the bicontinuous polymer alloy fiber of the present invention has good spinnability and can not only significantly improve the mechanical properties and heat resistance, but also is useful as a nanoporous fiber precursor having excellent moisture absorption and adsorption properties. is there.
[0019]
When the polymer alloy fiber of the present invention is used as a nanoporous fiber precursor, it is preferable to use an alkali-soluble polyester or polycarbonate as the easily soluble polymer because explosion-proof equipment is not required at the time of elution treatment. It is also preferable to use a modified polyalkylene oxide which is soluble in hot water. As the hardly soluble polymer, it is preferable to use a polyolefin such as nylon or PP or PE which is hardly soluble in alkali.
[0020]
In addition, the blending ratio of the easily soluble polymer and the poorly soluble polymer is set according to the application, but when the precursor is a nanoporous fiber precursor, the blending ratio of the easily soluble polymer should be 5 to 55% by weight. Is preferred. The blending ratio of the easily soluble polymer is more preferably from 10 to 25% by weight.
[0021]
Further, the polymer alloy fiber of the present invention has a better compatibility than ordinary sea-island structure polymer blend fiber, and thus has a feature that a fiber having a small thread spot is easily obtained. Yarn spots can be evaluated in worcester spots (U%), but in the present invention, if U% is 0.1 to 5%, dyed spots may occur when fabrics such as apparel, interior, and vehicle interior are made. It is preferable to obtain a small and high-quality product. U% is more preferably 0.1 to 2%, even more preferably 0.1 to 1.5%. In particular, in the case of producing a heather for apparel use, a thick thread having U% of 3 to 10% can be used.
[0022]
By setting the strength of the polymer alloy fiber of the present invention to 2 cN / dtex or more, the processability in twisting, weaving, knitting and the like can be improved, which is preferable. The strength is preferably at least 3 cN / dtex. Further, if the elongation is 15 to 70%, the processability in twisting, weaving, knitting and the like can be improved, which is preferable. Further, when used as a raw yarn for stretch false twisting, the elongation is preferably 100 to 200% from the viewpoint of processability in false twisting. In the case of a raw yarn for drawing, the elongation is preferably about 100 to 500% from the viewpoint of processability in drawing.
[0023]
The method for producing the polymer alloy fiber of the present invention is not particularly limited, and for example, the following method can be adopted.
[0024]
That is, the hardly soluble polymer and the easily soluble polymer are melt-kneaded to obtain a polymer alloy comprising the hardly soluble polymer and / or the easily soluble polymer in which the hardly soluble polymer and / or the easily soluble polymer is finely dispersed. Then, the polymer alloy fiber of the present invention can be obtained by melt-spinning this. Here, the combination of polymers is important, and it is easy to form a co-continuous structure by increasing the affinity between the two. For example, when nylon is used as the poorly soluble polymer and polyethylene terephthalate (PET) is used as the easily soluble polymer, homopolymers have no affinity, so that a bicontinuous polymer alloy cannot be obtained, and the spinnability is poor. . Therefore, for example, by using hydrophilic PET which is obtained by copolymerizing PET with 5-sodium sulfoisophthalic acid (SSIA), which is a hydrophilic component, affinity with nylon can be improved. In particular, when a hydrophilic PET having an SSIA copolymerization ratio of 4 mol% or more is used, a bicontinuous structure is easily obtained. Also, the kneading method is important, and a co-continuous structure can be easily obtained by using a static kneader of 1,000,000 or more. However, when using an extrusion kneader, it is difficult to obtain a bicontinuous structure even with a polymer alloy having the same composition. In addition, when melt-spinning is performed simply by blending chips, blend spots are liable to occur at the stage of blending chips. In addition, not only kneading is insufficient, but a bicontinuous structure cannot be obtained, but also a polymer dispersion diameter of 300 nm or more. However, there is a problem that coarse portions are generated, the viscoelastic balance of the polymer alloy is lost due to blending unevenness, yarn thickness unevenness is caused by spinning discharge unevenness, and spinnability is significantly reduced.
[0025]
Further, it is preferable that the relative viscosity of nylon used in the above production method is 2 or more, and the limiting viscosity of hydrophilic PET is 0.45 or more, since spinnability can be improved.
[0026]
The polymer alloy fiber of the present invention can adopt various fiber cross-sectional shapes such as a trilobal cross section, a cross cross section, and a hollow cross section. In addition, flat yarn or crimped yarn may be used, and various fiber product forms such as long fiber, short fiber, non-woven fabric, and thermoformed body can be adopted. Not only for comfortable clothing such as shirts, blousons, pants and coats, but also for clothing materials such as cups and pads, interior uses such as curtains, carpets, mats and furniture, industrial materials such as filters, and vehicle interiors. Can also be suitably used.
[0027]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples. In addition, the following method was used for the measuring method in an Example.
[0028]
A. Relative viscosity of nylon
A 98% sulfuric acid solution of 0.01 g / ml was prepared and measured at 25 ° C.
[0029]
B. Intrinsic viscosity of polyester [η]
Measured in orthochlorophenol at 25 ° C.
[0030]
C. Weight average molecular weight of polylactic acid
Tetrahydrofuran was mixed with a chloroform solution of the sample to prepare a measurement solution. This was measured by GPC, and the weight average molecular weight was calculated in terms of polystyrene.
[0031]
D. Reversible water swellability and swelling ratio in the yarn longitudinal direction
After drying the fiber at 60 ° C. for 4 hours, the original length (L0) is measured. Then, the fiber is immersed in water at 25 ° C. for 10 minutes, taken out of the water, and quickly measured for the length after treatment (L1). Further, after drying the fiber at 60 ° C. for 4 hours, the length (L2) after drying is measured. Then, drying / water immersion is repeated three times, and if the swelling ratio in the third yarn longitudinal direction is 50% or more of the swelling ratio in the first yarn longitudinal direction, the material has reversible water swellability. did. The swelling ratio in the longitudinal direction of the yarn was calculated as follows. The length of the fiber was measured by connecting a colored yarn to two places of the fiber and measuring the distance between them. This distance was set to be about 100 mm.
[0032]
Swelling ratio (%) in the yarn longitudinal direction = ((L1−L0) / L0) × 100 (%)
E. FIG. Hygroscopicity (ΔMR)
The fiber is weighed in a weighing bottle in an amount of about 1 to 2 g, kept at 110 ° C. for 2 hours, dried and weighed (W0). Then, the target substance is kept at 20 ° C. and a relative humidity of 65% for 24 hours and then weighed. (W65). Then, it is kept at 30 ° C. and a relative humidity of 90% for 24 hours, and then its weight is measured (W90). Then, calculation is performed according to the following equation.
[0033]
MR65 = [(W65−W0) / W0] × 100% (1)
MR90 = [(W90−W0) / W0] × 100% (2)
ΔMR = MR90-MR65 (3)
F. Water absorption
After drying the sample at 60 ° C. for 2 hours, the weight was measured to determine the dry weight. The sample was immersed in ion-exchanged water at 20 ° C. for 1 hour to absorb water sufficiently, taken out, suspended in a room at 20 ° C. and 65% relative humidity for 2 minutes, and drained. Further, the fabric was dehydrated with a home washing machine for 3 minutes to remove water absorbed as the fabric and water on the fiber surface. The weight was measured to determine the water absorption weight, and the water absorption was calculated from the following equation.
[0034]
Water absorption (%) = {(water absorption weight-dry weight) / dry weight} x 100 (%)
G. FIG. TEM observation
Ultra-thin sections were cut out in the cross-sectional direction of the fiber, and the cross-section of the fiber was observed with a transmission electron microscope (TEM). Nylon was metal-dyed with phosphotungstic acid.
[0035]
TEM equipment: Model H-7100FA manufactured by Hitachi, Ltd.
H. Strength and elongation
The initial sample length was set to 200 mm and the pulling speed was set to 200 mm / min, and a load-elongation curve was obtained under the conditions shown in JIS L1013. Next, the load value at break was divided by the initial fineness, which was taken as the strength, and the elongation at break was divided by the initial sample length, and the elongation curve was determined as the elongation.
[0036]
I. Wide-angle X-ray diffraction
Using a 4036A2 type X-ray diffractometer manufactured by Rigaku Corporation, the diffraction intensity in the equator direction was measured under the following conditions.
[0037]
X-ray source: Cu-Kα ray (Ni filter)
Output: 40kV × 20mA
Slit: 2mmφ-1 ゜ -1 ゜
Detector: Scintillation counter
Count recording device: RAD-C type manufactured by Rigaku Denki
Step scan: 0.05mm step
Total time: 2 seconds
J. Small angle X-ray scattering
Using a RU-200 X-ray generator manufactured by Rigaku Corporation, small-angle X-ray scattering photographs were taken.
[0038]
X-ray source: Cu-Kα ray (Ni filter)
Output: 50kV × 150mA
Slit: 0.5mmφ
Camera radius: 405mm
Exposure time: 300 minutes
Film: Kodak DEF-5
Then, a long period was calculated from the distance r (mm) between the scattering points on the photograph using the Bragg equation.
[0039]
J = λ / 2 sin [@tan -1 (R / R)} / 2]
J: long period (nm)
R: Camera radius (405 mm)
λ: wavelength of X-ray (0.15418 nm)
K. Crimp characteristics, CR value of false twisted yarn
The false twisted yarn was removed, treated for 15 minutes in boiling water in a substantially load-free state, and air-dried for 24 hours. The sample was immersed in water under a load equivalent to 0.088 cN / dtex (0.1 gf / d), and the skein length L'0 after 2 minutes was measured. Next, the water was replaced with a fine load equivalent to 0.0018 cN / dtex (2 mgf / d) except for a load equivalent to 0.088 cN / dtex in water, and the skein length L′ 1 after 2 minutes was measured. Then, the CR value was calculated by the following equation.
[0040]
CR (%) = [(L′ 0−L′1) / L′ 0] × 100 (%)
Example 1
Hydrophilic PET obtained by copolymerizing low-viscosity homonylon 6 having a relative viscosity of 2.15 and 5-sodium sulfoisophthalic acid having an intrinsic viscosity of 0.60 by 5 mol% was melted at 270 ° C. and 290 ° C. using the apparatus shown in FIG. Thereafter, the mixture was divided into 1,040,000 portions and mixed by a static kneader 4 (10 stages of “High Mixer” manufactured by Toray Engineering Co., Ltd.) installed in the pack 3. Then, this was filtered through a metal nonwoven fabric filter having an absolute filtration diameter of 20 μm, and then discharged from a die having a hole diameter of 0.35 mm. At this time, the spinning temperature was 280 ° C., and the distance from the die 5 to the upper end of the chimney 6 was 70 mm. This was taken up at a spinning speed of 900 m / min and wound up via a second take-up roller 10. The spinning of 1 t was performed, but there was no yarn breakage during spinning, and good spinnability was exhibited. This was stretched and heat-treated using the apparatus shown in FIG. At this time, the draw ratio was 3.2 times, the temperature of the preheating roller 14 was 70 ° C, and the temperature of the heat setting roller 15 was 130 ° C. There was no yarn breakage during stretching and heat treatment, indicating good stretchability.
[0041]
As a result, a polymer alloy fiber of 56 dtex and 12 filaments was obtained, and the U% was 1.5%, which was sufficiently small. Further, when the cross section of the fiber was observed by TEM, the N6 portion and the light PET portion which were deeply dyed by metal dyeing formed a co-continuous structure, and the thickness of the PET layer portion was about 20 nm (FIG. 1). Further, this fiber had a sea-island structure in which the co-continuous structure collapsed from the fiber surface layer to about 150 nm, but when the area of the co-continuous structure portion was estimated, it was 98% of the entire fiber cross section, and the fiber cross section was Most formed a bicontinuous structure (FIG. 2). When the longitudinal section of this polymer alloy fiber was observed with a TEM, the co-continuous layer was found to be streaked (FIG. 3).
[0042]
Circular knitting was produced using the polymer alloy fiber forming the bicontinuous structure, but there was no trouble in the knitting process, and good processability was exhibited. The circular knit was further immersed in a 3% aqueous solution of sodium hydroxide at 95 ° C. for 1 hour to completely remove PET from the polymer alloy fiber, thereby obtaining a circular knit composed of N6 nanoporous fibers. This circular knitting showed ΔMR = 5.7%, showing excellent hygroscopicity exceeding cotton. Further, the yarn exhibited reversible water absorption swelling / drying shrinkage behavior of 7% in the yarn longitudinal direction, and the water absorption was 84%, which was comparable to cotton. The cross section of the fiber of this nanoporous fiber was observed with a TEM (FIG. 4). As a result, the density spots due to metal staining were finer than the original polymer alloy fiber. Here, the dark part is the N6 high density part, and the light part is the N6 low density part. It is considered that the light portion corresponds to the pore. When the longitudinal section of the fiber was observed, PET was stretched in a streak shape in the original polymer alloy (FIG. 3), whereas a light granular portion was observed in the nanoporous fiber (FIG. 5), and the pores were crushed. It was suggested that. Further, the fiber diameter itself shrank due to the removal of the soluble polymer. Therefore, there were no large pores having a diameter of 50 nm or more.
[0043]
Example 2
After hydrophilizing PET was copolymerized with 12.5 mol% of 5-sodium sulfoisophthalic acid having an intrinsic viscosity of 0.60 and 26 mol% of isophthalic acid, N6 was melted at 270 ° C. and hydrophilized PET was melted at 250 ° C. Melt spinning, drawing and heat treatment were performed in the same manner as in Example 1 except that the weight ratio of PET and PET was 50% by weight / 50% by weight to obtain a polymer alloy fiber of 120 dtex and 24 filaments. At this time, 1 t of the yarn was produced, but the yarn breakage during spinning and drawing was zero.
[0044]
Observation of the cross section of the fiber by TEM revealed that the N6 portion and the light PET portion which were deeply dyed by metal dyeing formed a co-continuous structure, and the thickness of the PET layer portion was about 15 nm. Further, when the area of the bicontinuous structure portion was estimated, it was 98% of the entire fiber cross section, and almost all of the fiber cross section formed a bicontinuous structure.
[0045]
Circular knitting was produced using the polymer alloy fiber forming the bicontinuous structure, but there was no trouble in the knitting process, and good processability was exhibited. The circular knit was further immersed in a 3% aqueous solution of sodium hydroxide at 95 ° C. for 1 hour to completely remove PET from the polymer alloy fiber, thereby obtaining a circular knit composed of N6 nanoporous fibers. This circular knit showed excellent hygroscopicity exceeding that of cotton with ΔMR = 5.9%. Further, it exhibited a reversible water absorption swelling / drying shrinkage behavior of 11% in the longitudinal direction of the yarn and a water absorption of 85%, which is comparable to cotton. When the cross section of the fiber of this nanoporous fiber was observed with a TEM, the shading due to metal staining was finer than the original polymer alloy fiber. Here, the dark part is the N6 high density part, and the light part is the N6 low density part. In addition, when the longitudinal section of the fiber was observed, PET was stretched in a streak shape in the original polymer alloy, whereas a light granular portion was observed in the nanoporous fiber, suggesting that the pores were crushed. Therefore, there were no large pores having a diameter of 50 nm or more.
[0046]
Comparative Example 1
The kneading method was not a static kneader but a simple chip blend, and the apparatus shown in FIG. 11 was used, and melt spinning, drawing and heat treatment were performed in the same manner as in Example 1 to obtain a polymer alloy fiber. It became a sea-island structure. The diameter of the island PET was a coarse blend of 300 nm on average, and the blend unevenness was large. Further, the ejection of the polymer was not stable, and yarn breakage frequently occurred during spinning.
[0047]
Comparative Example 2
A polymer alloy chip was prepared in advance using a twin-screw extruder and melt spinning, drawing and heat treatment were performed in the same manner as in Example 1 using the apparatus shown in FIG. At this time, the melting temperature of the polymer alloy was 280 ° C. The blend state in the obtained fiber was not a co-continuous structure but a sea-island structure (FIG. 6), and the diameter of the island PET was 50 nm or less on average.
Comparative Example 3
Melt spinning was carried out in the same manner as in Example 1 except that the easily soluble polymer was homo PET having an intrinsic viscosity of 0.65, and the blend ratio was 70% by weight of N6 and 30% by weight of PET. Due to the low viscosity, the viscoelastic balance at the time of spinning was lost, and the spinning property was poor and it was virtually impossible to wind up.
[0048]
Comparative Example 4
Using a hardly soluble polymer as homonylon 6 having a relative viscosity of 2.61 and a blend ratio of N6 of 50% by weight and hydrophilized PET of 50% by weight, a polymer alloy chip was prepared in advance by a single-screw extruder and kneader. Melt spinning was performed in the same manner as in Example 1 using the apparatus, but the spinnability was low and thread breakage occurred frequently. The polymer alloy fibers were drawn and heat-treated using the slightly drawn undrawn yarn to obtain a polymer alloy fiber, but the blended state was not a co-continuous structure but a sea-sea structure in which the blended state was unstable (FIG. 7). For this reason, it is considered that the ejection of the polymer was not stable, and yarn breakage occurred frequently during spinning.
[0049]
Comparative Example 5
Example: A hydrophilic kneaded PET obtained by copolymerizing an easily soluble polymer with 20 mol% of SSIA having an intrinsic viscosity of 0.40, a blending ratio of 70% by weight of N6, 30% by weight of hydrophilized PET, and a kneading method of a 1024-part static kneader. Melt spinning, drawing and heat treatment were performed in the same manner as in Example 1 to obtain a polymer alloy fiber, but the blend state was not a co-continuous structure but a sea-island structure. Further, since the molecular weight (intrinsic viscosity) of the hydrophilized PET was low, the yarn was weak and the yarn was frequently broken during spinning.
[0050]
Comparative Example 6
77% by weight of N6 used in Comparative Example 4, 20% by weight of PET used in Comparative Example 3, and block polyether polyamide as a compatibilizer (polyethylene glycol part 45% by weight + poly-ε-caprolactam part 55% by weight) Was melt-spun, stretched and heat-treated in the same manner as in Example 1 using the apparatus shown in FIG. 11 to obtain a polymer alloy fiber, but the blend state was not a co-continuous structure but a sea-island structure It became. In addition, because of the chip blend, the blend unevenness was large, the ejection of the polymer was not stable, and yarn breakage frequently occurred during spinning.
[0051]
Comparative Example 7
70% by weight of N6 used in Comparative Example 4, 4.5% by mole of 5-sodium sulfoisophthalic acid having an intrinsic viscosity of 0.60, 8.5% by weight of polyethylene glycol having a molecular weight of 4000, and 30% by weight of polyethylene terephthalate copolymerized with 8.5% by weight. Was melted at 280 ° C. by simple chip blending, discharged from a round hole die having a hole diameter of 0.6 mm, and melt-spun using the apparatus shown in FIG. This was wound at 1000 m / min to obtain an undrawn yarn. This was subjected to a stretching heat treatment at a stretching ratio of 3.35 times, a preheating roller 14 temperature of 90 ° C., and a heat setting roller 15 temperature of 130 ° C. As a result, a polymer alloy fiber of 85 dtex and 24 filaments was obtained, but the blend state was not a co-continuous structure but a sea-island structure.
[0052]
Then, as in Example 1, 28% by weight of the copolymerized PET was dissolved and removed. At this time, unlike Example 1, the fiber radius hardly changed.
[0053]
Comparative Example 8
50 wt% of N6 used in Comparative Example 4, 2.5 mol% of 5-sodium sulfoisophthalic acid having an intrinsic viscosity of 0.60, and 50 wt% of polyethylene terephthalate copolymerized with 3.5 mol% of bisphenol A ethylene oxide adduct. After simple chip blending, the mixture was melted at 290 ° C., discharged from a round hole die having a hole diameter of 0.6 mm, and melt-spun using the apparatus shown in FIG. This was wound at 1200 m / min to obtain an undrawn yarn. Then, this was stretched at a stretch ratio of 2.7 times using a hot plate at 120 ° C. As a result, a polymer alloy fiber of 85 dtex and 24 filaments was obtained, but the blend state was not a co-continuous structure but a sea-island structure.
[0054]
[Table 1]
Figure 2004232114
[0055]
Example 3
Melt spinning, stretching and heat treatment were performed in the same manner as in Example 1 except that the distance from the die 5 to the upper end of the chimney 6 was 200 mm, to obtain a 56 dtex, 12 filament polymer alloy fiber. At this time, spinning became slightly unstable, and three times of yarn breakage occurred in 1 t of spinning. The U% of this polymer alloy fiber was as large as 3%.
[0056]
Observation of the cross section of the fiber with a TEM revealed that the N6 portion and the light PET portion which were deeply dyed by metal staining formed a co-continuous structure, and the thickness of the PET layer portion was about 40 nm. The area of the bicontinuous structure was estimated to be 95% of the entire fiber cross section, and almost all of the fiber cross section formed a bicontinuous structure.
[0057]
Example 4
Melt spinning, drawing and heat treatment were performed in the same manner as in Example 1 except that the hole diameter of the die was 0.2 mm, to obtain a polymer alloy fiber of 56 dtex and 12 filaments. At this time, the spinning became slightly unstable, and the yarn was broken five times during the spinning of 1t. The U% of this polymer alloy fiber was as large as 6%.
[0058]
Observation of the cross section of the fiber with a TEM showed that the N6 portion and the light PET portion which were deeply dyed by metal dyeing formed a co-continuous structure, and the thickness of the PET layer portion was about 50 nm. Further, when the area of the bicontinuous structure portion was estimated, it was 88% of the entire fiber cross section, and almost all of the fiber cross section formed a bicontinuous structure.
[0059]
Example 5
Melt spinning was performed at a spinning speed of 4000 m / min in the same manner as in Example 1 to obtain a polymer alloy fiber having 90 dtex and 12 filaments. The U% was 1.2%, the strength was 2.8 cN / dtex, and the elongation was 140%. It was a polymer alloy fiber having excellent characteristics. When the cross section of the fiber was observed with a TEM, the N6 portion and the light PET portion which were deeply dyed by metal dyeing formed a co-continuous structure, and the thickness of the PET layer portion was about 20 nm. Further, when the area of the bicontinuous structure portion of the fiber was estimated, it was 98% of the entire fiber cross section, and almost all of the fiber cross section formed a cocontinuous structure.
[0060]
The highly oriented unstretched yarn was subjected to draw false twist at a draw ratio of 1.5 times and a heater temperature of 165 ° C. using the apparatus shown in FIG. As the rotor 22, a triaxial urethane disk twister was used. The obtained false twisted yarn has excellent crimping characteristics with a CR value of 40%. When the fiber cross section was observed with a TEM, a co-continuous gold structure was formed. The thickness was about 17 nm. Further, when the area of the bicontinuous structure portion of the fiber was estimated, it was 98% of the entire fiber cross section, and almost all of the fiber cross section formed a bicontinuous structure.
[0061]
Circular knitting was produced using the polymer alloy crimped yarn forming the co-continuous structure, but there was no trouble in the knitting process, and good processability was exhibited. The circular knit was further immersed in a 3% aqueous solution of sodium hydroxide at 95 ° C. for 1 hour to completely remove PET from the polymer alloy fiber to obtain a circular knit made of crimped N6 nanoporous fiber. This circular knitting showed ΔMR = 5.7%, showing excellent hygroscopicity exceeding cotton. When the cross section of the fiber of this nanoporous fiber was observed with a TEM, the shading due to metal staining was finer than the original polymer alloy fiber. In addition, when the longitudinal section of the fiber was observed, PET was stretched in a streak shape in the original polymer alloy, whereas a light granular portion was observed in the nanoporous fiber, suggesting that the pores were crushed. Further, the fiber diameter itself shrank due to the removal of the soluble polymer. Therefore, there were no large pores having a diameter of 50 nm or more.
[0062]
Example 6
Long-sleeved T-shirts were produced using the N6 nanoporous fibers obtained in Examples 1 and 2, and were worn by seven subjects.
[0063]
Then, the sensory evaluation of “contact cooling sensation” was performed in four stages. Regarding the “cool contact sensation”, the fourth grade: feels a strong cold sensation, the third grade: feels a cold sensation, the second grade: feels a little cold sensation, the first grade: judges without feeling any cold sensation, and the third grade or more Was passed.
[0064]
After that, using a step having a step of 30 cm, the stepping up / down movement was performed for 15 minutes, and then resting was performed for 15 minutes, and sensory evaluation of “moistiness” was performed in four steps. With regard to the feeling of stuffiness, grade 4: very comfortable, grade 3: comfortable, grade 2: slightly uncomfortable, grade 1: very uncomfortable.
[0065]
On average, the T-shirt using the nanoporous fiber of Example 1 has a “contact cooling feeling” of 3.9 grade and the “stuffy feeling” of 3.7 grade, and the T-shirt using the nanoporous fiber of Example 2 has an average of “contact cooling feeling”. The feeling was 3.7 grade and the feeling of stuffiness was 3.6 grade, showing excellent wearing comfort.
[0066]
Comparative Example 9
A long-sleeved T-shirt was produced using a conventional nylon thread, and evaluated for “cool contact sensation” and “moistness” in the same manner as in Example 3. In each case, both the “contact cooling sensation” and the “moistness sensation” were grade 2 or lower, and were unacceptable.
[0067]
Example 7
Bisphenol A ethylene oxide adduct 6 mol%, isophthalic acid 6 mol% copolymerized PET having a limiting viscosity of 0.65 (melting point 220 ° C.) was used and homopoly L lactic acid having a weight average molecular weight of 150,000 (optical purity (99% L lactic acid) was melt-blended at 235 ° C. using a twin-screw extruder to obtain a polymer alloy chip. At this time, the blend ratio of the copolymerized PET was 20% by weight based on the blended polyester. The glass transition temperature of this polymer alloy chip was 61 ° C., which was almost equivalent to 60 ° C. of homopoly L-lactic acid. The spinning temperature was set to 235 ° C., and the fiber was melt-spun using the apparatus shown in FIG. 11 and wound at a spinning speed of 1500 m / min. At this time, the die hole diameter was 0.35 mm, and the distance from the die 5 to the upper end of the chimney 6 was 120 mm. After preheating the undrawn yarn at a preheating roller 14 temperature of 90 ° C., it is stretched 2.8 times, heat set at 130 ° C. with a heat setting roller 15, wound up via a delivery roller 16, and 84 dtex, 36 filaments. A drawn yarn of U% = 1.0% was obtained. There was no problem with the spinning and stretchability at this point, and the thread breakage during 1t winding was zero.
[0068]
The strength and elongation curve at 90 ° C. of the obtained fiber is shown in FIG. 12. The yield stress was higher than that of the conventional polylactic acid fiber, and the mechanical properties at 90 ° C. were significantly improved. In addition, when wide angle X-ray diffraction was performed, it was confirmed that the PET portion was oriented and crystallized. Further, when the long period was measured by small-angle X-ray scattering, it was found to be 19 nm, which was significantly increased as compared with 10 nm of the copolymerized PET single yarn. TEM observation of the cross section of the yarn revealed a co-continuous structure (FIG. 13). Here, the dark region is the copolymerized PET rich phase, and the light region is the PLA rich phase. The Bunrend ratio determined by image analysis was 45 area% (light area): 55 area% (dark area), and the copolymer PET ratio was much larger than 81 area%: 19 area% expected from the charging ratio. It was considered that polylactic acid penetrated into the copolymerized PET phase, and the copolymerized PET ratio was apparently increased. Furthermore, since the long-period structure of the PET portion was 19 nm, which was about twice as large as 10 nm of the copolymerized PET single yarn, it was considered that the PET molecular chains sandwiched the polylactic acid molecular chains and were strongly constrained. .
[0069]
Further, this fiber was knitted in a tube and subjected to an ironing test at 180 ° C., but no hole was formed in the knitted tube, and the heat resistance was remarkably improved as compared with the conventional polylactic acid fiber.
[0070]
As described above, by adopting the co-continuous structure, it is possible to achieve both the spinning property and the significant improvement in performance of the polymer alloy.
[0071]
Comparative Example 10
After drying the polylactic acid used in Example 7, melt spinning and drawing heat treatment were performed at 220 ° C. in the same manner as in Example 7, to obtain a 84 dtex, 24-filament, polylactic acid drawn yarn having a round cross section. FIG. 12 shows the strength-elongation curve at 90 ° C., but the mechanical properties at high temperature were low. Further, the fiber was knitted in a tube and an ironing test was performed at 180. As a result, a large hole was formed in the tube knitted fabric due to melting of the polylactic acid fiber, and the heat resistance was poor.
[0072]
【The invention's effect】
The polymer alloy fiber having a bicontinuous structure of the present invention has good spinnability and can improve the heat resistance and mechanical properties of the fiber, and is also useful as a nanoporous fiber precursor.
[Brief description of the drawings]
FIG. 1 is a TEM photograph showing a fiber cross section of a polymer alloy fiber of Example 1.
FIG. 2 is a TEM photograph showing a fiber cross section (near a fiber surface layer) of the polymer alloy fiber of Example 1.
FIG. 3 is a TEM photograph showing a fiber longitudinal section of the polymer alloy fiber of Example 1.
FIG. 4 is a TEM photograph showing a fiber cross section of a nanoporous fiber.
FIG. 5 is a TEM photograph showing a fiber longitudinal section of a nanoporous fiber.
FIG. 6 is a TEM photograph showing a fiber cross section of a polymer alloy fiber having a sea-island structure.
FIG. 7 is a TEM photograph showing a fiber cross section of a polymer alloy fiber having a sea-sea structure.
FIG. 8 is a view showing a spinning device.
FIG. 9 is a view showing a stretching device.
FIG. 10 is a view showing a stretch false twist apparatus.
FIG. 11 is a view showing a spinning device.
FIG. 12 is a graph showing a strength and elongation curve of a polymer alloy fiber of Example 7.
FIG. 13 is a TEM photograph showing a fiber cross section of the polymer alloy fiber of Example 7.
[Explanation of symbols]
1: Hopper
2: Melting part
3: Spinning pack
4: Stationary kneader
5: base
6: Chimney
7: Thread
8: Focusing refueling guide
9: First take-up roller
10: Second take-up roller
11: winding yarn
12: undrawn yarn
13: Feed roller
14: Preheating roller
15: Heat set roller
16: Delivery roller (room temperature)
17: drawn yarn
18: undrawn yarn
19: Feed roller
20: heater
21: Cooling plate
22: Rotor
23: Delivery roller
24: False twisted yarn

Claims (5)

溶解性の異なる2種以上のポリマーからなる共連続構造を繊維横断面積あたり50%以上有するポリマーアロイ繊維。A polymer alloy fiber having a bicontinuous structure composed of two or more polymers having different solubilities of 50% or more per fiber cross-sectional area. 易溶解性ポリマーの共連続層の厚みが1〜100nmである請求項1記載のポリマーアロイ繊維。The polymer alloy fiber according to claim 1, wherein the co-continuous layer of the easily soluble polymer has a thickness of 1 to 100 nm. 易溶解成分がアルカリ易溶解ポリマーからなる請求項1または2記載のポリマーアロイ繊維。3. The polymer alloy fiber according to claim 1, wherein the easily soluble component comprises an alkali easily soluble polymer. ウースター斑が0.1〜5%である請求項1〜3のうちいずれか1項記載のポリマーアロイ繊維。The polymer alloy fiber according to any one of claims 1 to 3, wherein the Worster spot is 0.1 to 5%. 請求項1〜4のうちのいずれかに記載のポリマーアロイ繊維を少なくとも一部に有する繊維製品。A textile product having at least a part of the polymer alloy fiber according to any one of claims 1 to 4.
JP2003020105A 2003-01-29 2003-01-29 Polymer alloy fiber Expired - Fee Related JP4100180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003020105A JP4100180B2 (en) 2003-01-29 2003-01-29 Polymer alloy fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003020105A JP4100180B2 (en) 2003-01-29 2003-01-29 Polymer alloy fiber

Publications (2)

Publication Number Publication Date
JP2004232114A true JP2004232114A (en) 2004-08-19
JP4100180B2 JP4100180B2 (en) 2008-06-11

Family

ID=32949820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003020105A Expired - Fee Related JP4100180B2 (en) 2003-01-29 2003-01-29 Polymer alloy fiber

Country Status (1)

Country Link
JP (1) JP4100180B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006233375A (en) * 2005-02-25 2006-09-07 Toray Ind Inc Synthetic fiber and fiber structure composed of the same
JP2008057095A (en) * 2005-10-19 2008-03-13 Toray Ind Inc Internal trim material with high abrasion resistance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006233375A (en) * 2005-02-25 2006-09-07 Toray Ind Inc Synthetic fiber and fiber structure composed of the same
JP4661266B2 (en) * 2005-02-25 2011-03-30 東レ株式会社 Synthetic fiber and fiber structure comprising the same
JP2008057095A (en) * 2005-10-19 2008-03-13 Toray Ind Inc Internal trim material with high abrasion resistance

Also Published As

Publication number Publication date
JP4100180B2 (en) 2008-06-11

Similar Documents

Publication Publication Date Title
KR101029515B1 (en) Porous fiber
JP2004162244A (en) Nano-fiber
TW200536971A (en) Island-in-sea type composite fibers and process for producing same
KR20050056265A (en) Nanofiber aggregate, polymer alloy fiber, hybrid fiber, fibrous structures, and processes for production of them
WO2017114313A1 (en) Core-sheath type composite fibre, false-twist yarns and fibrous structure
JP2004169261A (en) Polymer alloy fiber
JP5040270B2 (en) Composite processed yarn
CN100363541C (en) Nanofiber aggregate, polymer alloy fiber, hybrid fiber, fibrous structures, and processes for production of them
JP4134829B2 (en) Nanofiber mixed yarn
JP2008007870A (en) Polyester fine fiber and its fiber product
JP2004285538A (en) Method for producing polymer alloy filament and method for producing nano fiber
JP4315009B2 (en) Blended yarn and textile products comprising the same
JP2012193476A (en) Polyester microfiber
JP2005133250A (en) Core-sheath conjugate fiber
JP4100180B2 (en) Polymer alloy fiber
JP4292893B2 (en) Polymer alloy crimped yarn
JP3770254B2 (en) Nanoporous fiber
JP2005200593A (en) Pellet
JP4236657B2 (en) Textile structure and manufacturing method thereof
JP4325616B2 (en) Nanoporous fiber
JP2004270110A (en) Polymer alloy fiber
JP4269804B2 (en) Special fiber
JP2011084827A (en) Core-sheath type conjugate fiber
JP2019090135A (en) Nanovoid conjugate polyester fiber
JP4699072B2 (en) Stretch polyester composite fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080310

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees