【0001】
【発明の属する技術分野】
本発明は、温度変化により脱着を制御でき、再生が極めて容易なアニオン吸着樹脂に関する。
【0002】
【従来の技術】
アニオン吸着樹脂は、電気透析、拡散透析、電解透析等の分野において、各種イオン性物質の分離、回収、除去、精製等に広く利用されている。
このうち、イオン性モノマーを光グラフト重合したポリエチレン(PE)フィルムは高い含水量と膨潤状態で実用強度を保持するためアニオン吸着樹脂としての利用が可能であることから、期待されている素材である。
【0003】
【発明が解決しようとする課題】
しかしながら、従来のグラフト重合ポリエチレンでは吸着性、脱着性及び再利用性等の点で未だ十分満足するものは得られておらず、アニオン吸着樹脂として実用に耐えるものが得られていなく、温度変化を利用した例はほとんどないのが現状である。
従って、本発明の目的は優れた吸着性、脱着性及び再利用性を有する新たなアニオン吸着樹脂を提供することにある。
【0004】
【課題を解決するための手段】
そこで、本発明者は、樹脂に種々のイオン性モノマーをグラフト重合させ、得られた樹脂のイオン交換特性について種々検討してきたところ、フッ素系樹脂にジアルキルアミノアルキル(メタ)アクリレートをグラフト重合させて得られた樹脂が、アニオン性物質の優れた吸着性及び脱着性を有し、また再利用も極めて簡単で且つ良好であることを見出した。更に、この樹脂は、温度を変化させることによって脱着性を制御できるという新しい機能も有することを見出し、本発明を完成するに至った。
【0005】
すなわち、本発明は、フッ素系樹脂にジアルキルアミノアルキル(メタ)アクリレートをグラフト重合させたアニオン吸着樹脂、それを用いたアニオン性物質の吸着方法及びそれの再生をする方法を提供するものである。
【0006】
【発明の実施の形態】
本発明で使用するフッ素系樹脂は、含フッ素ポリマーであって、例えば、ポリテトラフルオロエチレン(PTFT)、テトラフルオロエチレン−ペルフルオロアルコキシエチレンコポリマー(PFA)、テトラフルオロエチレン−ヘキサフルオロプロピレンコポリマー(FEP)、テトラフルオロエチレン−ヘキサフルオロプロピレン−ペルフルオロアルコキシエチレンターポリマー(EPE)、テトラフルオロエチレン−エチレンコポリマー(ETFE)等が挙げられる。
フッ素系樹脂としては、ポリテトラフルオロエチレンが好ましい。
【0007】
フッ素系樹脂は、密度が2.1〜2.3g/cm3のものが好ましい。フッ素樹脂はフィルムであるのが好ましく、当該フィルムの厚さは、1〜500μm、特に20〜100μmのものが好ましい。
また、フッ素系樹脂は、延伸されているフィルムであるのが好ましい。延伸フッ素系樹脂フィルムの場合は、延伸による平均孔径が、0.1〜5μm、更に3〜5μmであるのが好ましく、多孔度は60〜83%、更に75〜83%であるのが好ましい。ここで多孔度とは、延伸により開孔した部分のフィルム面積に占める割合をいう。
このようなフッ素系樹脂フィルムとしては、メンブランフィルターとして市販されているものが好ましく、例えばPTFEタイプメンブランフィルター(T300A、T100A等)、親水性PTFEタイプメンブランフィルター(H100A、H050A等)(アドバンテック(株)製)等が挙げられる。
【0008】
フッ素系樹脂は、予めプラズマ処理を行っておくと、次いで行うジアルキルアミノアルキル(メタ)アクリレートとの光グラフト重合化率が飛躍的に増加し、イオン交換能が高く、熱による脱着制御がより効果的に行え好ましい。
【0009】
フッ素系樹脂は、ガス雰囲気下、例えばアルゴン、ヘリウム等の不活性ガス、水素、酸素、窒素、水素と窒素の混合ガス、乾燥空気等のガス雰囲気下で、低温プラズマ処理を行うのがよい。雰囲気ガスは、表面酸化できる雰囲気が好ましく、空気、酸素ガスが好ましく、特に酸素ガスが好ましい。フッ素系樹脂表面に酸素含有基が生じ、グラフト重合化率が高まるので好ましい。
プラズマ処理は、低温プラズマ処理が好ましく、例えば、スパッタエッチング法、プラズマエッチング法、パレル型プラズマエッチング法等で行われる。
真空度(雰囲気圧)は、スパッタエッチング法の場合は5〜20Pa、好ましくは10〜20Pa、プラズマエッチング法又はパレル型プラズマエッチング法の場合は1〜10Pa、更に5〜10Paであるのが好ましい。高周波周波数は5〜20kHz、更に10〜20kHz、特に13.56kHzであるのが好ましい。電力は、通常50〜400W、更に150〜250Wであるのが好ましい。雰囲気ガスの注入量は通常、5〜20mL/分が好ましい。プラズマ処理時間は、0.5〜5分、更に1〜3分であるのが好ましい。
【0010】
本発明のアニオン吸着樹脂は、フッ素樹脂の表面又は全体にポリ(ジアルキルアミノアルキル(メタ)アクリレート)がグラフト結合してなるものである。グラフト重合に用いるジアルキルアミノアルキル(メタ)アクリレートとしては、次の一般式(1)
【0011】
【化2】
【0012】
(式中、R1は水素原子又はメチル基を示し、R2は炭素数1〜4のアルキル基を示し、nは2〜4の数を示す)
で表されるジアルキルアミノアルキル(メタ)アクリレートが好ましい。
【0013】
上記一般式(1)で表されるジアルキルアミノアルキル(メタ)アクリレートとしては、R1がメチル基である場合が、含水量、膨潤性等の点で特に好ましい。また、R2としてはメチル基、エチル基、イソプロピル基等が挙げられるが、メチル基が特に好ましい。nは2〜4であるが、2又は3、特に2が好ましい。
【0014】
本発明のアニオン吸着樹脂は、フッ素系樹脂に一般式(1)で表されるジアルキルアミノアルキル(メタ)アクリレートをグラフト重合させて得られる。グラフト重合は光グラフト重合により行うのが好ましい。
【0015】
光グラフト重合は、光増感剤を塗布したフッ素系樹脂をジアルキルアミノアルキル(メタ)アクリレート水溶液中に入れ、紫外線等の活性光線を照射することにより行われる。
光増感剤としては、ベンゾフェノン、2−ヒドロキシ−4−(2’−メタクリロイルオキシエトキシ)ベンゾフェノン、2−ヒドロキシ−4−(2’−アクリロイルオキシエトキシ)ベンゾフェノン等のベンゾフェノン系化合物、2−(2’−ヒドロキシ−3’−アリル−5’−t−ブチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’−アリル−5’−t−オクチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’−イソプロペニル−5’−t−オクチルフェニル)ベンゾトリアゾール、2−(2’−アクリロイルオキシ−5’−メチル)ベンゾトリアゾール等のベンゾトリアゾール系化合物が挙げられる。光増感剤としては、ベンゾール系化合物、特にベンゾフェノンが好ましい。
【0016】
グラフト重合を行わせる活性光線としては、紫外線が最も好ましく、紫外線照射の光源として超高圧水銀灯、高圧水銀灯、メタルハロライドランプ、キセノンランプ、低圧殺菌ランプ等が挙げられる。400W高圧水銀灯を用いた場合、照射時間は30〜120分、更に60〜120分であるのが好ましい。
【0017】
フッ素系樹脂に対するポリ(ジアルキルアミノアルキル(メタ)アクリレート)のグラフト量は、0.1〜2mmol/g、特に0.8〜1.2mmol/gがアニオンの吸着能及び脱着能の点から好ましい。
【0018】
得られたアニオン吸着樹脂はグラフト鎖中のジアルキルアミノ基に基づき、アニオン性化合物を吸着する能力を有する。本発明のアニオン吸着樹脂は、粒子状、膜状の何れでもよいが、膜状、すなわちアニオン吸着膜が好ましい。
【0019】
本発明のアニオン吸着樹脂は、水中に含有するアニオン性物質に接触することによりアニオン性物質を吸着する。吸着できるアニオン性物質としては、カルボキシル基、スルホン酸基、硫酸基、リン酸基等のアニオン性基を有する化合物が挙げられる。吸着時の水温は0〜25℃が好ましい。
【0020】
本発明のアニオン吸着樹脂は、温度を上げると脱着率が上昇するという特性を有するため、温水により脱着を制御し、アニオン吸着樹脂の再生をすることができる。ここで温水は、吸着時の水温よりも高い温度の水であればよく、吸着時の水温よりも5℃以上高い温度の水がより好ましい。具体的な温水の温度は30〜95℃、更に40〜85℃であるのが好ましい。すなわち、アニオン吸着樹脂からのアニオン性物質の脱着、例えば、アニオン吸着樹脂の再生は、低温のアニオン性物質を含まない水、例えば純水等の水中に、アニオン性物質を吸着した樹脂を入れ昇温し又は高温の純水に入れ、必要により次いでアニオン吸着樹脂を低温の水中に入れる操作を繰り返すことにより、容易に再生ができ、吸着物の脱着時間を短縮することができる。
従って、本発明のアニオン吸着樹脂は温度変化により極めて容易に再生を促進することができる。
【0021】
【実施例】
次に実施例を挙げて本発明をさらに詳細に説明するが、本発明は何らこれに限定されるものではない。
【0022】
実施例1
厚さ75μm、密度2.1g/cm3の延伸ポリテトラフルオロエチレンフィルム(アドバンテック(株)製)を出力200W、内圧6.67Paで、2分間の条件で酸素プラズマ処理した後、ベンゾフェノンを0.25g/cm3のアセトン溶液に浸漬することで塗布した後、60℃で400W高圧水銀灯からの紫外線を照射し、pHを8.0に調整した1.0mmol/Lジメチルアミノエチルメタクリレートモノマー水溶液中で光グラフト重合を行い、ジメチルアミノエチルメタクリレートがグラフト重合したポリテトラフルオロエチレンフィルム(ePTFT−g−PDMAEMAフィルム)を製造した。紫外線の照射時間を変化させてポリ(ジメチルアミノエチルメタクリレート)のグラフト量が0.66、0.85、1.10及び1.39mmol/gであるePTFT−g−PDMAEMAフィルムを製造した。
【0023】
実施例2
ePTFT−g−PDMAEMAフィルム(1×1cm)をpH3.0、容量50cm3、初期濃度0.2mmol/dm3のメタニルイエロー(スルホン基数:1、C.I.No.13065)水溶液(25℃)に浸漬し、所定時間ごとに吸光度を測定し吸着量を求めた。
実施例1で製造したグラフト量を変えたePTFT−g−PDMAEMAフィルムを、メタニルイエロー水溶液中に浸漬し、吸着量の時間変化を測定した結果を図1に示す。
浸漬時間と共に染料濃度は減少し、その後吸着平衡に達した。ジメチルアミノエチルメタクリレートのグラフト量の増加と共に平衡吸着量が増大した。
グラフト量0.85mmol/gのePTFT−g−PDMAEMAフィルムの平衡吸着量は0.632mol/g、吸着率84.4%で、グラフト量が1.10mol/gのePTFT−g−PDMAEMAフィルムの平衡吸着量は0.908mol/g、吸着率97.7%であった。
【0024】
実施例3
実施例2と同じ吸着方法でメタニルイエローを吸着したePTFT−g−PDMAEMAフィルム(グラフト量0.85mmol/g)を80℃の純水に浸漬し、脱着がほぼ平衡に達した後、25℃の純水に浸漬し再び80℃の純水に浸漬する操作を繰返し、脱着率を測定した。測定結果を図2に示す。3回の80℃純水交換後の全脱着率は80.1%であった。
ePTFT−g−PDMAEMAフィルムにメタニルイエローを吸着させた後、40、60℃の純水に浸漬し、浸漬温度を変えた以外は上記と同じ方法で脱着率を測定した結果を図3に示す。4回の40℃又は60℃純水交換後の全脱着率は、40℃で55.6%、60℃で82.9%であった。
温度上昇と共に脱着率が上昇し、熱によってアニオン吸着樹脂の再生ができることが確認された。
時間tの脱着量をQt’、平衡脱着量をQeq’としln(1−Qt’/Qeq’)〜時間より脱着速度定数を求めると、40℃で6.20l/s、60℃で8.21l/s、80℃で11.13l/sであった。
【0025】
実施例4
実施例1のメタニルイエローに替えて、スルホン基数2のサンセットイエロー(SY、C.I.No.15985)、スルホン基数3のアマランス(AM、C.I.No.16185)を吸着させたグラフト量1.09mmol/gのePTFT−g−PDMAEMAフィルムの、高温純水温度を変えて実施例2と同様に脱着率を測定した結果を表1に示す。
【0026】
【表1】
【0027】
温度上昇と共に脱着率が上昇し、熱によってアニオン吸着樹脂の再生ができることが確認された。
【0028】
実施例5
グラフト量1.10mmol/gのePTFT−g−PDMAEMAフィルムを、実施例2と同方法でメタニルイエローを吸着させ、次いで20℃及び80℃の純水中に浸漬を繰り返しメタニルイエローを脱着させ、続いて再度メタニルイエローを吸着させた後に脱着操作を繰り返し再利用性を検討した。結果を図4に示す。
2回の80℃純水交換後の脱着率は、初回使用で97.9%、再利用1回で91.6%、再利用2回で90.3%であって、再利用性に優れていた。
【0029】
【表2】
【0030】
【発明の効果】
本発明のアニオン吸着樹脂は、吸着したアニオン化合物を水の温度を上昇させることで容易に脱着させることができるイオン交換樹脂である。従って、アニオン吸着樹脂を、低温水と高温水に繰り返し浸漬することで、吸着したアニオン化合物の脱着が安価に容易に速くでき、アニオン吸着樹脂の再生が可能である。本発明のアニオン吸着樹脂は、水質浄化、有価物質の回収等に有用である。
【図面の簡単な説明】
【図1】メタニルイエローの吸着量の時間変化を示す図である。
【図2】メタニルイエローの脱着率を示す図である。
【図3】メタニルイエローの脱着率の温度変化を示す図である。
【図4】本発明のアニオン吸着樹脂の再利用性を示す図である。[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to an anion-adsorbing resin in which desorption can be controlled by a change in temperature and regeneration is extremely easy.
[0002]
[Prior art]
Anion adsorption resins are widely used in fields such as electrodialysis, diffusion dialysis, and electrodialysis for separation, recovery, removal, and purification of various ionic substances.
Among them, polyethylene (PE) film obtained by photo-grafting ionic monomer is a promising material because it can be used as an anion adsorption resin because it retains practical strength in a high water content and swollen state. .
[0003]
[Problems to be solved by the invention]
However, conventional graft-polymerized polyethylene has not yet obtained satisfactory ones in terms of adsorptivity, desorbability, reusability, etc., and has not obtained a practically usable anion-adsorbing resin. At present, there are few examples of use.
Accordingly, an object of the present invention is to provide a new anion-adsorbing resin having excellent adsorptivity, desorbability and reusability.
[0004]
[Means for Solving the Problems]
Thus, the present inventors have graft-polymerized various ionic monomers to the resin and have variously studied the ion exchange properties of the obtained resin. As a result, the dialkylaminoalkyl (meth) acrylate was graft-polymerized to the fluororesin. It has been found that the obtained resin has excellent adsorption and desorption properties of the anionic substance, and is very easy and good to reuse. Further, they have found that this resin also has a new function of controlling the desorption property by changing the temperature, and have completed the present invention.
[0005]
That is, the present invention provides an anion-adsorbing resin obtained by graft-polymerizing a dialkylaminoalkyl (meth) acrylate onto a fluorine-based resin, a method for adsorbing an anionic substance using the resin, and a method for regenerating the same.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
The fluororesin used in the present invention is a fluoropolymer, for example, polytetrafluoroethylene (PTFT), tetrafluoroethylene-perfluoroalkoxyethylene copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (FEP) , Tetrafluoroethylene-hexafluoropropylene-perfluoroalkoxyethylene terpolymer (EPE), tetrafluoroethylene-ethylene copolymer (ETFE) and the like.
As the fluorine-based resin, polytetrafluoroethylene is preferable.
[0007]
The fluororesin preferably has a density of 2.1 to 2.3 g / cm 3 . The fluororesin is preferably a film, and the thickness of the film is preferably 1 to 500 μm, particularly preferably 20 to 100 μm.
Further, the fluororesin is preferably a stretched film. In the case of a stretched fluororesin film, the average pore size after stretching is preferably 0.1 to 5 μm, more preferably 3 to 5 μm, and the porosity is preferably 60 to 83%, more preferably 75 to 83%. Here, the porosity means the ratio of the portion opened by stretching to the area of the film.
As such a fluororesin film, those commercially available as a membrane filter are preferable. For example, a PTFE type membrane filter (T300A, T100A, etc.), a hydrophilic PTFE type membrane filter (H100A, H050A, etc.) (Advantech Co., Ltd.) Manufactured).
[0008]
If the fluororesin is pre-treated with plasma, the rate of subsequent photograft polymerization with dialkylaminoalkyl (meth) acrylate increases dramatically, the ion exchange capacity is high, and desorption control by heat is more effective. This is preferable.
[0009]
The fluorine-based resin is preferably subjected to low-temperature plasma treatment in a gas atmosphere, for example, in a gas atmosphere such as an inert gas such as argon or helium, hydrogen, oxygen, nitrogen, a mixed gas of hydrogen and nitrogen, or dry air. The atmosphere gas is preferably an atmosphere capable of oxidizing the surface, preferably air and oxygen gas, and particularly preferably oxygen gas. Oxygen-containing groups are generated on the surface of the fluorine-based resin, and the graft polymerization rate is increased.
The plasma treatment is preferably a low-temperature plasma treatment, and is performed by, for example, a sputter etching method, a plasma etching method, a barrel-type plasma etching method, or the like.
The degree of vacuum (atmospheric pressure) is 5 to 20 Pa, preferably 10 to 20 Pa for the sputter etching method, and 1 to 10 Pa, and more preferably 5 to 10 Pa for the plasma etching method or the parallel type plasma etching method. The high frequency is preferably 5 to 20 kHz, more preferably 10 to 20 kHz, and particularly preferably 13.56 kHz. The electric power is usually 50 to 400 W, preferably 150 to 250 W. Usually, the injection amount of the atmosphere gas is preferably 5 to 20 mL / min. The plasma processing time is preferably 0.5 to 5 minutes, more preferably 1 to 3 minutes.
[0010]
The anion-adsorbing resin of the present invention is obtained by grafting poly (dialkylaminoalkyl (meth) acrylate) onto the surface or the whole of a fluororesin. The dialkylaminoalkyl (meth) acrylate used for the graft polymerization includes the following general formula (1)
[0011]
Embedded image
[0012]
(Wherein, R 1 represents a hydrogen atom or a methyl group, R 2 represents an alkyl group having 1 to 4 carbon atoms, and n represents a number of 2 to 4)
The dialkylaminoalkyl (meth) acrylate represented by these is preferable.
[0013]
As the dialkylaminoalkyl (meth) acrylate represented by the general formula (1), the case where R 1 is a methyl group is particularly preferable in terms of water content, swelling property and the like. Examples of R 2 include a methyl group, an ethyl group, and an isopropyl group, and a methyl group is particularly preferable. n is 2 to 4, preferably 2 or 3, and particularly preferably 2.
[0014]
The anion-adsorbing resin of the present invention is obtained by graft-polymerizing a dialkylaminoalkyl (meth) acrylate represented by the general formula (1) to a fluororesin. The graft polymerization is preferably performed by photograft polymerization.
[0015]
Photograft polymerization is carried out by placing a fluororesin coated with a photosensitizer in a dialkylaminoalkyl (meth) acrylate aqueous solution and irradiating it with actinic rays such as ultraviolet rays.
Examples of the photosensitizer include benzophenone-based compounds such as benzophenone, 2-hydroxy-4- (2′-methacryloyloxyethoxy) benzophenone, 2-hydroxy-4- (2′-acryloyloxyethoxy) benzophenone, and 2- (2 '-Hydroxy-3'-allyl-5'-t-butylphenyl) benzotriazole, 2- (2'-hydroxy-3'-allyl-5'-t-octylphenyl) benzotriazole, 2- (2'- Benzotriazole compounds such as hydroxy-3′-isopropenyl-5′-t-octylphenyl) benzotriazole and 2- (2′-acryloyloxy-5′-methyl) benzotriazole are exemplified. As the photosensitizer, a benzol compound, particularly benzophenone, is preferred.
[0016]
Ultraviolet rays are most preferred as the actinic rays for performing the graft polymerization, and ultra-high pressure mercury lamps, high pressure mercury lamps, metal halide lamps, xenon lamps, low pressure germicidal lamps and the like can be mentioned as light sources for ultraviolet irradiation. When a 400 W high pressure mercury lamp is used, the irradiation time is preferably 30 to 120 minutes, more preferably 60 to 120 minutes.
[0017]
The graft amount of poly (dialkylaminoalkyl (meth) acrylate) to the fluorine-based resin is preferably from 0.1 to 2 mmol / g, particularly preferably from 0.8 to 1.2 mmol / g, from the viewpoint of anion adsorption and desorption ability.
[0018]
The obtained anion-adsorbing resin has an ability to adsorb an anionic compound based on the dialkylamino group in the graft chain. The anion-adsorbing resin of the present invention may be in the form of particles or a film, but is preferably in the form of a film, ie, an anion-adsorbing film.
[0019]
The anion adsorption resin of the present invention adsorbs an anionic substance by contacting the anionic substance contained in water. Examples of the anionic substance that can be adsorbed include compounds having an anionic group such as a carboxyl group, a sulfonic group, a sulfate group, and a phosphate group. The water temperature at the time of adsorption is preferably 0 to 25 ° C.
[0020]
Since the anion-adsorbing resin of the present invention has a characteristic that the desorption rate increases when the temperature is raised, the desorption can be controlled by warm water to regenerate the anion-adsorbing resin. Here, the warm water may be water having a temperature higher than the water temperature at the time of adsorption, and more preferably water having a temperature 5 ° C. or more higher than the water temperature at the time of adsorption. Specifically, the temperature of the hot water is preferably 30 to 95C, more preferably 40 to 85C. That is, desorption of the anionic substance from the anion-adsorbing resin, for example, regeneration of the anion-adsorbing resin is performed by placing the resin adsorbing the anionic substance in low-temperature water containing no anionic substance, for example, pure water or the like. By repeating the operation of placing the resin in warm or high-temperature pure water and then placing the anion-adsorbing resin in low-temperature water as required, regeneration can be easily performed, and the desorption time of the adsorbate can be reduced.
Therefore, the anion-adsorbing resin of the present invention can very easily promote regeneration by temperature change.
[0021]
【Example】
Next, the present invention will be described in more detail by way of examples, but the present invention is not limited thereto.
[0022]
Example 1
A stretched polytetrafluoroethylene film (manufactured by Advantech Co., Ltd.) having a thickness of 75 μm and a density of 2.1 g / cm 3 was subjected to oxygen plasma treatment at 200 W output and an internal pressure of 6.67 Pa for 2 minutes. After applying by dipping in a 25 g / cm 3 acetone solution, the mixture was irradiated with ultraviolet light from a 400 W high-pressure mercury lamp at 60 ° C. and adjusted to pH 8.0 in a 1.0 mmol / L dimethylaminoethyl methacrylate monomer aqueous solution. Photograft polymerization was performed to produce a polytetrafluoroethylene film (ePTFT-g-PDMAEMA film) on which dimethylaminoethyl methacrylate was graft-polymerized. An ePTFT-g-PDMAEMA film having grafting amounts of poly (dimethylaminoethyl methacrylate) of 0.66, 0.85, 1.10, and 1.39 mmol / g was produced by changing the irradiation time of ultraviolet rays.
[0023]
Example 2
An ePTFT-g-PDMAEMA film (1 × 1 cm) was treated with an aqueous solution of metanil yellow (sulfone group number: 1, CI No. 13065) having a pH of 3.0, a capacity of 50 cm 3 , and an initial concentration of 0.2 mmol / dm 3 (25 ° C.). ), And the absorbance was measured at predetermined time intervals to determine the amount of adsorption.
The ePTFT-g-PDMAEMA film produced in Example 1 with a different graft amount was immersed in an aqueous solution of metanil yellow, and the change in the amount of adsorption over time was measured. The result is shown in FIG.
The dye concentration decreased with immersion time and then reached adsorption equilibrium. The equilibrium adsorption amount increased with an increase in the amount of dimethylaminoethyl methacrylate grafted.
The equilibrium adsorption amount of the ePTFT-g-PDMAEMA film with a graft amount of 0.85 mmol / g is 0.632 mol / g, the adsorption ratio is 84.4%, and the equilibrium of the ePTFT-g-PDMAEMA film with a graft amount of 1.10 mol / g is shown. The amount of adsorption was 0.908 mol / g, and the adsorption rate was 97.7%.
[0024]
Example 3
An ePTFT-g-PDMAEMA film (graft amount: 0.85 mmol / g) adsorbing metanil yellow by the same adsorption method as in Example 2 was immersed in pure water at 80 ° C., and after desorption almost reached equilibrium, 25 ° C. The operation of immersing in pure water and then immersing again in pure water at 80 ° C. was repeated, and the desorption rate was measured. FIG. 2 shows the measurement results. The total desorption rate after three 80 ° C pure water exchanges was 80.1%.
After adsorbing metanil yellow on the ePTFT-g-PDMAEMA film, the film was immersed in pure water at 40 and 60 ° C., and the desorption rate was measured by the same method as described above except that the immersion temperature was changed. FIG. 3 shows the results. . The total desorption rates after four 40 ° C. or 60 ° C. pure water exchanges were 55.6% at 40 ° C. and 82.9% at 60 ° C.
It was confirmed that the desorption rate increased as the temperature increased, and that the anion-adsorbing resin could be regenerated by heat.
When the desorption amount at time t is Qt ', and the equilibrium desorption amount is Qeq', the desorption rate constant is calculated from ln (1-Qt '/ Qeq') to time: 6.20 l / s at 40 ° C and 8.60 at 60 ° C. It was 21 l / s and 11.13 l / s at 80 ° C.
[0025]
Example 4
Instead of methanyl yellow of Example 1, sunset yellow having 2 sulfone groups (SY, CI No. 15985) and amaranth having 3 sulfone groups (AM, CI No. 16185) were adsorbed. Table 1 shows the results of measuring the desorption rate of the ePTFT-g-PDMAEMA film having a graft amount of 1.09 mmol / g in the same manner as in Example 2 while changing the high-temperature pure water temperature.
[0026]
[Table 1]
[0027]
It was confirmed that the desorption rate increased as the temperature increased, and that the anion-adsorbing resin could be regenerated by heat.
[0028]
Example 5
The ePTFT-g-PDMAEMA film having a graft amount of 1.10 mmol / g was made to adsorb metanil yellow in the same manner as in Example 2, and then was repeatedly immersed in pure water at 20 ° C. and 80 ° C. to desorb metanil yellow. Then, after adsorbing metanil yellow again, the desorption operation was repeated to examine the reusability. FIG. 4 shows the results.
The desorption rate after two 80 ° C pure water exchanges is 97.9% for the first use, 91.6% for one reuse, and 90.3% for two reuses, indicating excellent reusability. I was
[0029]
[Table 2]
[0030]
【The invention's effect】
The anion adsorption resin of the present invention is an ion exchange resin that can easily desorb the adsorbed anion compound by increasing the temperature of water. Therefore, by repeatedly immersing the anion-adsorbing resin in low-temperature water and high-temperature water, desorption of the adsorbed anion compound can be performed easily and quickly at a low cost, and the anion-adsorbing resin can be regenerated. The anion adsorption resin of the present invention is useful for water purification, recovery of valuable substances, and the like.
[Brief description of the drawings]
FIG. 1 is a diagram showing a change over time in the adsorption amount of metanil yellow.
FIG. 2 is a graph showing the desorption rate of metanil yellow.
FIG. 3 is a diagram showing a temperature change of a desorption rate of metanil yellow.
FIG. 4 is a diagram showing the reusability of the anion adsorption resin of the present invention.