JP2004231729A - Curable resin composition and its cured product - Google Patents

Curable resin composition and its cured product Download PDF

Info

Publication number
JP2004231729A
JP2004231729A JP2003020150A JP2003020150A JP2004231729A JP 2004231729 A JP2004231729 A JP 2004231729A JP 2003020150 A JP2003020150 A JP 2003020150A JP 2003020150 A JP2003020150 A JP 2003020150A JP 2004231729 A JP2004231729 A JP 2004231729A
Authority
JP
Japan
Prior art keywords
resin composition
curable resin
resin
carbon atoms
less carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003020150A
Other languages
Japanese (ja)
Other versions
JP4300401B2 (en
Inventor
Kenji Ishii
賢治 石井
Yasumasa Norisue
泰正 則末
Onori Ono
大典 大野
Michio Nawata
道生 名和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2003020150A priority Critical patent/JP4300401B2/en
Priority to US10/747,237 priority patent/US7071266B2/en
Priority to EP04250136A priority patent/EP1439209B1/en
Priority to DE602004000607T priority patent/DE602004000607T2/en
Priority to TW093100762A priority patent/TWI309666B/en
Priority to KR1020040003475A priority patent/KR101052312B1/en
Priority to CNB2004100010156A priority patent/CN1305962C/en
Publication of JP2004231729A publication Critical patent/JP2004231729A/en
Priority to HK05100742A priority patent/HK1069407A1/en
Application granted granted Critical
Publication of JP4300401B2 publication Critical patent/JP4300401B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a curable resin composition excellent in heat resistance and electrical characteristics. <P>SOLUTION: A cured product is obtained by curing the resin composition comprising a combination of a bifunctional phenylene ether oligomer and a cyanic ester resin, and has a high glass transition temperature, a low dielectric constant, and a low dielectric dissipation factor, and well-balanced properties inheriting excellent properties of the polyphenylene ether skeleton and the cyanic ester resin. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、特定の構造を有する2官能性フェニレンエーテルオリゴマーと多官能シアン酸エステル樹脂の組み合わせからなる硬化性樹脂組成物およびその硬化物に関する。本発明の硬化性樹脂組成物は、硬化させることによって耐熱性および低誘電特性に優れた高分子材料を得ることができるものであり、かかる硬化性樹脂組成物は、半導体封止材、電気絶縁材料、銅張り積層板用樹脂、レジスト、電子部品の封止用樹脂、液晶のカラーフィルター用樹脂、塗料、各種コーティング剤、接着剤、ビルドアップ積層板材料、FRP等の広範な用途に用いることができる。
【0002】
【従来の技術】
従来、シアネート樹脂は機能性高分子材料の原料として用いられている。近年これらの応用分野における要求性能の高度化に伴い、機能性高分子材料として求められる物性はますます厳しくなってきている。かかる物性として、例えば、耐熱性、耐候性、耐薬品性、低吸水性、高破壊靭性、低誘電率、低誘電正接等が求められている。
【0003】
例えば、印刷配線板分野では信号の高周波化に伴う信号減衰の問題から、低誘電特性を有する基板材料が望まれている。シアン酸エステル樹脂は熱硬化性樹脂の中でも耐熱性、低誘電特性に優れることから、これまでに、例えば、シアン酸エステル樹脂とエポキシ樹脂からなる組成物(例えば、特許文献1参照。)、ビスマレイミド、シアン酸エステル樹脂およびエポキシ樹脂からなる組成物(例えば、特許文献2参照。)を用いる方法、多官能フェノール化合物とシアン酸エステル樹脂を組み合わせる方法(例えば、特許文献3参照。)、単官能フェノール化合物とシアン酸エステル樹脂を組み合わせる方法(例えば、特許文献4参照。)等が提案されている。
【0004】
しかしながら、特許文献3に例示された多官能フェノール化合物とシアン酸エステル樹脂を組み合わせる方法は、GHz帯域での誘電特性が悪化するために高周波用途には不十分であった。また、特許文献4の単官能フェノールとシアン酸エステル樹脂の組み合わせは高周波特性には優れるものの単官能化合物を用いるために架橋密度が低下し耐熱性が低下するという問題点があった。
【0005】
【特許文献1】特公昭46−41112号公報(第1−8頁)
【特許文献2】特公昭52−31279号公報(第1−11頁)
【特許文献3】特公平7−47637号公報(第1−5頁)
【特許文献4】特許3261061号公報(第1−7頁)
【0006】
【本発明が解決しようとする課題】
本発明は、耐熱性に優れ、低誘電率、低誘電正接である硬化物を与える硬化性樹脂組成物およびその硬化物を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者等は、鋭意検討を重ねた結果、PPE骨格の優れた誘電特性・耐熱性を引継いだ、数平均分子量が500〜3000であり、特定の構造を有する2官能性フェニレンエーテルオリゴマーと多官能シアン酸エステル樹脂を組み合わせて硬化させることにより、優れた耐熱性を有し、低誘電特性である硬化物が得られることを見出し、本発明を完成するに至った。すなわち、本発明は、一般式(1)に表される特定の構造を有する2官能性フェニレンエーテルオリゴマーと多官能シアン酸エステル樹脂を組み合わせてなる硬化性樹脂組成物に関し、さらに該組成物を硬化させてなる硬化物に関する。
【化3】

Figure 2004231729
(式中、−(O−X−O)−は構造式(2)で示され、R1,R2, R7,R8は、同一または異なってもよく、ハロゲン原子または炭素数6以下のアルキル基またはフェニル基である。R3,R4,R5,R6は、同一または異なってもよく、水素原子、ハロゲン原子または炭素数6以下のアルキル基またはフェニル基である。Aは、炭素数20以下の直鎖状あるいは、分岐状あるいは、環状の炭化水素である。−(Y−O)−は構造式(3)で定義される1種類の構造、または構造式(3)で定義される2種類以上の構造がランダムに配列したものである。R9,R10は、同一または異なってもよく、ハロゲン原子または炭素数6以下のアルキル基またはフェニル基である。R11,R12は、同一または異なってもよく、水素原子、ハロゲン原子または炭素数6以下のアルキル基またはフェニル基である。a,bは、少なくともいずれか一方が0でない、0〜30の整数を示す。)
【0008】
【発明実施の形態】
以下、本発明を詳細に説明する。一般式(1)で表される化合物において、R1,R2, R7,R8は、同一または異なってもよく、ハロゲン原子または炭素数6以下のアルキル基またはフェニル基である。R3,R4,R5,R6は、同一または異なってもよく、水素原子、ハロゲン原子または炭素数6以下のアルキル基またはフェニル基である。Aは、炭素数20以下の直鎖状あるいは、分岐状あるいは、環状の炭化水素である。−(Y−O)−は構造式(3)で定義される1種類の構造、または構造式(3)で定義される2種類以上の構造がランダムに配列したものである。R9,R10は、同一または異なってもよく、ハロゲン原子または炭素数6以下のアルキル基またはフェニル基である。R11,R12は、同一または異なってもよく、水素原子、ハロゲン原子または炭素数6以下のアルキル基またはフェニル基である。a,bは、少なくともいずれか一方が0でない、0〜30の整数を示す。これらのなかでも好ましくは、R1,R2, R7,R8は炭素数3以下のアルキル基、R3,R4,R5,R6は水素原子または炭素数3以下のアルキル基、R9,R10は炭素数3以下のアルキル基、R11,R12は水素原子または炭素数3以下のアルキル基である。分子量は小さすぎるとフェニレンエーテル骨格の有する耐熱性、電気特性が得られず、また、大きすぎると汎用溶剤への溶解性が低下することから、好ましくは数平均分子量が500〜3000である。
【0009】
一般式(1)で表される2官能性フェニレンエーテルオリゴマーの製法は、特に限定されず、いかなる方法で製造してもよい。例えば、特願2002−018508に記載の方法で、2官能フェノール化合物と1官能フェノール化合物を銅、アミン存在下、酸化カップリングにより製造することができる。
【0010】
本発明で使用される多官能シアン酸エステル化合物(b)は下記一般式(6)で示される。
一般式 : R−(O−CN)…(6)
(式中のmは2以上、通常5以下の整数であり、Rは芳香族性の有機基であって、上記のシアネート基は該有機基Rの芳香環に直接結合しているもの)
【0011】
具体的に例示すると、1,3−または1,4−ジシアナトベンゼン、1,3,5−トリシアナトベンゼン、1,3−、1,4−、1,6−、1,8−、2,6−または2,7−ジシアナトナフタレン、1,3、6−トリシアナトナフタレン、4,4’−ジシアナトビフェニル、ビス(4−シアナトフェニル)メタン、ビス(3,5−ジメチル−4−シアナトフェニル)メタン、2,2−ビス(4−シアナトフェニル)プロパン、2,2−ビス(3,5−ジブロモ−4−シアナトフェニル)プロパン、ビス(4−シアナトフェニル)エーテル、ビス(4−シアナトフェニル)チオエーテル、ビス(4−シアナトフェニル)スルホン、トリス(4−シアナトフェニル)ホスファイト、トリス(4−シアナトフェニル)ホスフェート、およびノボラック樹脂とハロゲン化シアンとの反応により得られるシアネート類、特願2002−040063、特願2002−041321に記載のPPE骨格を有するシアン酸エステル樹脂等である。
【0012】
また、これらの多官能シアン酸エステル樹脂のシアネート基を三量化することによって形成されるトリアジン環を有するプレポリマーも使用できる。このプレポリマーは、上記の多官能シアン酸エステル樹脂モノマーを、例えば、鉱酸、ルイス酸などの酸、ナトリウムアルコラート、第三級アミン類などの塩基、炭酸ナトリウムなどの塩類を触媒として重合させることにより得られる。
【0013】
これらの多官能シアン酸エステル樹脂、多官能シアン酸エステル樹脂プレポリマーは1種または2種以上混合して用いることができる。また、2官能性ポリフェニレンエーテルオリゴマーとシアン酸エステル樹脂の配合比は2官能性ポリフェニレンエーテルオリゴマーの水酸基のモル(A)とシアン酸エステル樹脂のシアネート基のモル(B)のモル比(B/A)が2〜100になるように配合するのが好ましい。
【0014】
次に、本発明の硬化性樹脂組成物は必要に応じて、硬化促進剤、エポキシ樹脂、オキセタン樹脂、重合可能な不飽和基を有する化合物を添加することも可能である。
【0015】
多官能シアン酸エステル樹脂の硬化促進剤としては、一般に公知のものが使用できる。例えば、オクチル酸亜鉛、オクチル酸錫、ナフテン酸コバルト、ナフテン酸亜鉛、アセチルアセトン鉄などの有機金属錯体、塩化アルミニウム、塩化錫、塩化亜鉛などの金属塩、トリエチルアミン、ジメチルベンジルアミン等のアミン類が挙げられるが、これらに限定されない。これらの硬化促進剤は1種または2種以上混合して用いることができる。これらの硬化促進剤の使用量は、2官能性フェニレンエーテルオリゴマーと多官能シアン酸エステル樹脂の合計重量に対して、好ましくは、0.001wt%〜0.5wt%であり、さらに、好ましくは、0.01wt%〜0.2wt%である。
【0016】
エポキシ樹脂としては、一般に公知のものが使用できる。例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、キシレンノボラック型エポキシ樹脂、トリグリシジルイソシアヌレート、脂環式エポキシ樹脂、ジシクロペンタジエンノボラック型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、特願2001−353194、特願2002−018508に示されるPPE骨格を有するエポキシ樹脂等が挙げられる。これらのエポキシ樹脂は1種あるいは2種以上混合して用いられる。
【0017】
オキセタン樹脂としては、一般に公知のものが使用できる。例えば、オキセタン、2−メチルオキセタン、2,2−ジメチルオキセタン、3−メチルオキセタン、3,3−ジメチルオキセタン、等のアルキルオキセタン、3−メチル−3−メトキシメチルオキセタン、3,3’−ジ(トリフルオロメチル)パーフルオキセタン、2−クロロメチルオキセタン、3,3−ビス(クロロメチル)オキセタン、OXT−101(東亞合成製商品名)、OXT−121(東亞合成製商品名)等が挙げられる。これらのオキセタン樹脂は1種あるいは2種以上混合して用いられる。
【0018】
本発明の硬化性樹脂組成物にエポキシ樹脂および/またはオキセタン樹脂を使用する場合にはエポキシ樹脂硬化剤および/またはオキセタン樹脂硬化剤を使用することができる。該エポキシ樹脂硬化剤としては、一般に公知のものが使用でき、例えば、2−メチルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニルイミダゾール、1−シアノエチル−2−フェニルイミダゾール、1−シアノエチル−2−エチル−4−メチルイミダゾール、2−フェニル−4,5−ジヒドロキシメチルイミダゾール、2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール等のイミダゾール誘導体、ジシアンジアミド、ベンジルジメチルアミン、4−メチル−N,N−ジメチルベンジルアミン等のアミン化合物、ホスフィン系はホスホニウム系のリン化合物を挙げることができる。該オキセタン樹脂硬化剤としては公知のカチオン重合開始剤が使用できる。例えば、市販のものではサンエードSI−60L、サンエードSI−80L、サンエードSI−100L(三新化学工業製)、CI−2064(日本曹達製)、イルガキュア261(チバスペシャリティーケミカル製)、アデカオプトマーSP−170、アデカオプトマーSP−150(旭電化製)、サイラキュアーUVI−6990(UCC製)等が挙げられる。カチオン重合開始剤はエポキシ樹脂硬化剤としても使用できる。これらの硬化剤は1種あるいは2種以上組み合わせて使用される。
【0019】
重合可能な不飽和基を有する化合物としては、一般に公知のものが使用できる。例えば、エチレン、プロピレン、スチレン等のビニル化合物、メチル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の1価または多価アルコールの(メタ)アクリレート類、ビスフェノールA型エポキシ(メタ)アクリレート、ビスフェノールF型エポキシ(メタ)アクリレート、特願2001−387968、特願2002−038156に示されるPPE骨格を有するエポキシ(メタ)アクリレート等のエポキシ(メタ)アクリレート類、特願2002−053653、特願2002−055765に示されるPPE骨格を有する(メタ)アクリレート、特願2002−216724、特願2002−224937に示されるPPE骨格を有するビニル化合物、ベンゾシクロブテン樹脂等が挙げられる。これらの不飽和基を有する化合物は1種あるいは2種以上混合して用いられる。
【0020】
不飽和基を有する化合物を用いる場合は必要に応じて、公知の光および/または熱重合開始剤をもちいることができる。
【0021】
さらに本発明の硬化性樹脂組成物を製造する際には、必要に応じて、溶剤、ガラス繊維、有機基材、無機充填剤、着色顔料、消泡剤、表面調整剤、難燃剤、紫外線吸収剤、酸化防止剤、重合禁止剤、流動調整剤、熱可塑樹脂等の公知の添加剤を添加することができる。無機充填剤としては、例えば、天然シリカ、溶融シリカ、アモルファスシリカ等のシリカ類、ホワイトカーボン、チタンホワイト、アエロジル、アルミナ、タルク、天然マイカ、合成マイカ、カオリン、クレー、水酸化アルミニウム、硫酸バリウム、E−ガラス、A−ガラス、C−ガラス、L−ガラス、D−ガラス、S−ガラス、NE−ガラス、M−ガラスG20等が挙げられる。このようにして得られた硬化性樹脂組成物は、半導体封止材、電気絶縁材料、銅張り積層板用樹脂、レジスト、電子部品の封止用樹脂、液晶のカラーフィルター用樹脂、塗料、各種コーティング剤、接着剤、ビルドアップ積層板材料、FRP等の各種用途に有用である。
【0022】
本発明の硬化物は、前述の方法で得られた本発明の硬化性樹脂組成物を、公知の方法、例えば、電子線、紫外線および熱による硬化方法に従って硬化することにより得られる。
【0023】
【実施例】
以下、本発明を実施例により更に具体的に説明するが、本発明は以下の実施例により特に限定されるものではない。なお、数平均分子量および重量平均分子量の測定にゲル・パーミエーション・クロマトグラフィー(GPC)法により求めた。
【0024】
(2官能性フェニレンエーテルオリゴマー体の合成)
(合成例1)
撹拌装置、温度計、空気導入管、じゃま板のついた2Lの縦長反応器にCuCl1.3 g(0.012 mol)、ジ−n−ブチルアミン70.7g(0.55 mol)、メチルエチルケトン 400gを仕込み、反応温度40℃にて撹拌を行い、あらかじめ800gのメチルエチルケトンに溶解させた2価のフェノール4,4’−(1−メチルエチリデン)ビス(2,6−ジメチルフェノール)45.4g(0.16mol)と2,6−ジメチルフェノール58.6g(0.48mol)を2 L/minの空気のバブリングを行いながら120分かけて滴下し、さらに滴下終了後60分間、2 L/minの空気のバブリングを続けながら撹拌を行った。これにエチレンジアミン四酢酸二水素二ナトリウム水溶液を加え、反応を停止した。その後、1Mの塩酸水溶液で3回洗浄を行った後、イオン交換水で洗浄を行った。得られた溶液をエバポレイタ−で濃縮し、さらに減圧乾燥を行い、上記一般式(1)で示される樹脂イを98.8g得た。樹脂イの数平均分子量は845、重量平均分子量1106、水酸基当量が451であった。
【0025】
(合成例2)
撹拌装置、温度計、空気導入管、じゃま板のついた2Lの縦長反応器にCuCl1.3 g(0.012 mol)、ジ−n−ブチルアミン70.7g(0.55 mol)、メチルエチルケトン 400gを仕込み、反応温度40℃にて撹拌を行い、あらかじめ800gのメチルエチルケトンに溶解させた2価のフェノール4,4’−シクロヘキシリデンビス(2,6−ジメチルフェノール)51.8g(0.16mol)と2,6−ジメチルフェノール58.6g(0.48mol)を2L/minの空気のバブリングを行いながら120分かけて滴下し、さらに滴下終了後60分間、2 L/minの空気のバブリングを続けながら撹拌を行った。これにエチレンジアミン四酢酸二水素二ナトリウム水溶液を加え、反応を停止した。その後、1Mの塩酸水溶液で3回洗浄を行った後、イオン交換水で洗浄を行った。得られた溶液をエバポレイタ−で濃縮し、さらに減圧乾燥を行い、上記一般式(1)で示される樹脂ロを102.6g得た。樹脂ロの数平均分子量は877、重量平均分子量1183、水酸基当量が477であった。
【0026】
(合成例3)
撹拌装置、温度計、空気導入管、じゃま板のついた2Lの縦長反応器にCuCl1.3 g(0.012 mol)、ジ−n−ブチルアミン70.7g(0.55 mol)、メチルエチルケトン 400gを仕込み、反応温度40℃にて撹拌を行い、あらかじめ800gのメチルエチルケトンに溶解させた2価のフェノール4,4’−メチリデンビス(2,3,6−トリメチルフェノール)45.4g(0.16mol)と2,6−ジメチルフェノール58.6g(0.48mol)を2 L/minの空気のバブリングを行いながら120分かけて滴下し、さらに滴下終了後60分間、2 L/minの空気のバブリングを続けながら撹拌を行った。これにエチレンジアミン四酢酸二水素二ナトリウム水溶液を加え、反応を停止した。その後、1Mの塩酸水溶液で3回洗浄を行った後、イオン交換水で洗浄を行った。得られた溶液をエバポレイタ−で濃縮し、さらに減圧乾燥を行い、上記一般式(1)で示される樹脂ハを97.4g得た。樹脂ハの数平均分子量は852、重量平均分子量1133、水酸基当量が460であった。
【0027】
(合成例4)
撹拌装置、温度計、空気導入管、じゃま板のついた2Lの縦長反応器にCuCl1.3 g(0.012 mol)、ジ−n−ブチルアミン70.7g(0.55 mol)、メチルエチルケトン 400gを仕込み、反応温度40℃にて撹拌を行い、あらかじめ800gのメチルエチルケトンに溶解させた2価のフェノール4,4’−[1,4−フェニレンビス(1−メチルエチリデン)]ビス(2,3,6−トリメチルフェノール)68.8g(0.16mol)と2,6−ジメチルフェノール58.6g(0.48mol)を2 L/minの空気のバブリングを行いながら120分かけて滴下し、さらに滴下終了後60分間、2 L/minの空気のバブリングを続けながら撹拌を行った。これにエチレンジアミン四酢酸二水素二ナトリウム水溶液を加え、反応を停止した。その後、1Mの塩酸水溶液で3回洗浄を行った後、イオン交換水で洗浄を行った。得られた溶液をエバポレイタ−で濃縮し、さらに減圧乾燥を行い、上記一般式(1)で示される樹脂ニを114.6g得た。樹脂ニの数平均分子量は934、重量平均分子量1223、水酸基当量が496であった。
(合成例5)
撹拌装置、温度計、空気導入管、じゃま板のついた2Lの縦長反応器にCuCl1.3 g(0.012 mol)、ジ−n−ブチルアミン70.7g(0.55 mol)、メチルエチルケトン 400gを仕込み、反応温度40℃にて撹拌を行い、あらかじめ800gのメチルエチルケトンに溶解させた2価のフェノール4,4’−メチレンビス(2,6−ジメチルフェノール)41.0g(0.16mol)と2,6−ジメチルフェノール58.6g(0.48mol)を2 L/minの空気のバブリングを行いながら120分かけて滴下し、さらに滴下終了後60分間、2 L/minの空気のバブリングを続けながら撹拌を行った。これにエチレンジアミン四酢酸二水素二ナトリウム水溶液を加え、反応を停止した。その後、1Mの塩酸水溶液で3回洗浄を行った後、イオン交換水で洗浄を行った。得られた溶液をエバポレイタ−で濃縮し、さらに減圧乾燥を行い、上記一般式(1)で示される樹脂ホを94.6g得た。樹脂ホの数平均分子量は801、重量平均分子量1081、水酸基当量が455であった。
【0028】
(合成例6)
撹拌装置、温度計、空気導入管、じゃま板のついた5Lの縦長反応器にCuC27.1g(0.028 mol)、ジ−n−ブチルアミン169.7g(1.32 mol)、メチルエチルケトン 1000gを仕込み、反応温度40℃にて撹拌を行い、あらかじめ1900gのメチルエチルケトンに溶解させた2価のフェノール4,4’−メチレンビス(2,6−ジメチルフェノール)41.0g(0.16mol)と2,6−ジメチルフェノール195.3g(1.6mol)を2 L/minの空気のバブリングを行いながら120分かけて滴下し、さらに滴下終了後60分間、2L/minの空気のバブリングを続けながら撹拌を行った。これにエチレンジアミン四酢酸二水素二ナトリウム水溶液を加え、反応を停止した。その後、1Mの塩酸水溶液で3回洗浄を行った後、イオン交換水で洗浄を行った。得られた溶液をエバポレイタ−で濃縮し、さらに減圧乾燥を行い、上記一般式(1)で示される樹脂ヘを212.5g得た。樹脂ヘの数平均分子量は1613、重量平均分子量2420、水酸基当量が834であった。
【0029】
(合成例7)
撹拌装置、温度計、空気導入管、じゃま板のついた5Lの縦長反応器にCuC37.9g(0.039mol)、ジ−n−ブチルアミン237.5g(1.84 mol)、メチルエチルケトン 1300gを仕込み、反応温度40℃にて撹拌を行い、あらかじめ1700gのメチルエチルケトンに溶解させた2価のフェノール4,4’−メチレンビス(2,6−ジメチルフェノール)41.0g(0.16mol)と2,6−ジメチルフェノール292.9g(2.4mol)を2 L/minの空気のバブリングを行いながら120分かけて滴下し、さらに滴下終了後60分間、2L/minの空気のバブリングを続けながら撹拌を行った。これにエチレンジアミン四酢酸二水素二ナトリウム水溶液を加え、反応を停止した。その後、1Mの塩酸水溶液で3回洗浄を行った後、イオン交換水で洗浄を行った。得られた溶液をエバポレイタ−で濃縮し、さらに減圧乾燥を行い、上記一般式(1)で示される樹脂トを305g得た。樹脂トの数平均分子量は2150、重量平均分子量3256、水酸基当量が1093であった。
【0030】
(実施例1〜9)
合成例1〜7で得られた樹脂イ〜トとシアン酸エステル樹脂、硬化促進剤を表1の通り配合し、150℃で10分攪拌し溶融させ、脱気、注型した後、230℃10時間硬化させて、硬化物を得た。
【0031】
(比較例1、2)
シアン酸エステル樹脂と硬化促進剤を表1の通り配合し、130℃で10分攪拌し溶融させ、脱気、注型した後、230℃10時間硬化させて、硬化物を得た。
【0032】
【表1】
Figure 2004231729
ArocyB−10:2,2−ビス(4−シアナトフェニル)プロパン
ArocyM−10:ビス(3,5−ジメチル−4−シアナトフェニル)メタン
【0033】
実施例1〜9、比較例1〜2で得られた硬化物の特性を以下の方法により評価した。
ガラス転移温度(Tg):動的粘弾性測定(DMA)により求めた。振動周波数10Hzで測定を行った。
誘電率、誘電正接:空洞共振摂動法により求めた。
【0034】
以上の物性の評価結果を表2に示す。
【表2】
Figure 2004231729
【0035】
【発明の効果】
本発明の硬化性樹脂組成物は、高いガラス転移温度を有し、低誘電率、低誘電正接である硬化物を与えることから、高機能性高分子材料として極めて有用であり、熱的、電気的に優れた材料として半導体封止材、電気絶縁材料、銅張り積層板用樹脂、レジスト、電子部品の封止用樹脂、液晶のカラーフィルター用樹脂、塗料、各種コーティング剤、接着剤、ビルドアップ積層板材料、FRPなどの幅広い用途に使用することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a curable resin composition comprising a combination of a bifunctional phenylene ether oligomer having a specific structure and a polyfunctional cyanate resin, and a cured product thereof. The curable resin composition of the present invention is capable of obtaining a polymer material having excellent heat resistance and low dielectric properties by being cured. Use in a wide range of applications, including materials, resins for copper-clad laminates, resists, resins for sealing electronic components, resins for liquid crystal color filters, paints, various coating agents, adhesives, build-up laminate materials, and FRP. Can be.
[0002]
[Prior art]
Conventionally, a cyanate resin has been used as a raw material for a functional polymer material. In recent years, with the advancement of required performance in these application fields, physical properties required as functional polymer materials have become increasingly severe. As such physical properties, for example, heat resistance, weather resistance, chemical resistance, low water absorption, high fracture toughness, low dielectric constant, low dielectric loss tangent, and the like are required.
[0003]
For example, in the field of printed wiring boards, there is a demand for a substrate material having low dielectric properties due to the problem of signal attenuation accompanying higher frequency signals. Cyanate ester resins are excellent in heat resistance and low dielectric properties among thermosetting resins, and so far, for example, a composition comprising a cyanate ester resin and an epoxy resin (for example, see Patent Document 1), bis A method using a composition comprising a maleimide, a cyanate ester resin and an epoxy resin (for example, see Patent Document 2), a method of combining a polyfunctional phenol compound and a cyanate ester resin (for example, see Patent Document 3), monofunctional A method of combining a phenol compound and a cyanate ester resin (for example, see Patent Document 4) has been proposed.
[0004]
However, the method of combining a polyfunctional phenol compound and a cyanate ester resin exemplified in Patent Document 3 is insufficient for high-frequency applications because the dielectric properties in the GHz band deteriorate. Further, although the combination of the monofunctional phenol and the cyanate ester resin of Patent Document 4 is excellent in high-frequency characteristics, the use of the monofunctional compound has a problem that the crosslink density is reduced and the heat resistance is reduced.
[0005]
[Patent Document 1] Japanese Patent Publication No. 46-41112 (pages 1-8)
[Patent Document 2] Japanese Patent Publication No. 52-31279 (pages 1-11)
[Patent Document 3] Japanese Patent Publication No. 7-47637 (pages 1-5)
[Patent Document 4] Japanese Patent No. 3261061 (pages 1 to 7)
[0006]
[Problems to be solved by the present invention]
An object of the present invention is to provide a curable resin composition which gives a cured product having excellent heat resistance and a low dielectric constant and a low dielectric loss tangent, and a cured product thereof.
[0007]
[Means for Solving the Problems]
As a result of intensive studies, the present inventors have found that a bifunctional phenylene ether oligomer having a number-average molecular weight of 500 to 3000 and a specific structure, which inherits the excellent dielectric properties and heat resistance of the PPE skeleton, is used. The inventors have found that a cured product having excellent heat resistance and low dielectric properties can be obtained by combining and curing a functional cyanate ester resin, thereby completing the present invention. That is, the present invention relates to a curable resin composition comprising a combination of a bifunctional phenylene ether oligomer having a specific structure represented by the general formula (1) and a polyfunctional cyanate resin, and further comprising curing the composition. The present invention relates to a cured product.
Embedded image
Figure 2004231729
(In the formula,-(OXO)-is represented by the structural formula (2), and R1, R2, R7, and R8 may be the same or different, and include a halogen atom or an alkyl group having 6 or less carbon atoms or R3, R4, R5, and R6 may be the same or different and are a hydrogen atom, a halogen atom, an alkyl group having 6 or less carbon atoms, or a phenyl group, and A is a straight chain having 20 or less carbon atoms. -(YO)-is one type of structure defined by the structural formula (3) or two or more types defined by the structural formula (3). R9 and R10 may be the same or different and are a halogen atom or an alkyl group or a phenyl group having 6 or less carbon atoms, and R11 and R12 may be the same or different; Hydrogen atom, A halogen atom, an alkyl group having 6 or less carbon atoms, or a phenyl group, and a and b each represent an integer of 0 to 30 in which at least one of them is not 0.)
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail. In the compound represented by the general formula (1), R1, R2, R7, and R8 may be the same or different and are a halogen atom, an alkyl group having 6 or less carbon atoms, or a phenyl group. R3, R4, R5 and R6 may be the same or different and are a hydrogen atom, a halogen atom, an alkyl group having 6 or less carbon atoms or a phenyl group. A is a linear, branched, or cyclic hydrocarbon having 20 or less carbon atoms. -(YO)-is one type of structure defined by Structural Formula (3) or two or more types of structures defined by Structural Formula (3) randomly arranged. R9 and R10 may be the same or different and are a halogen atom, an alkyl group having 6 or less carbon atoms, or a phenyl group. R11 and R12 may be the same or different and are a hydrogen atom, a halogen atom, an alkyl group having 6 or less carbon atoms, or a phenyl group. a and b represent an integer of 0 to 30, at least one of which is not 0. Of these, R1, R2, R7, and R8 are preferably an alkyl group having 3 or less carbon atoms, R3, R4, R5, and R6 are a hydrogen atom or an alkyl group having 3 or less carbon atoms, and R9 and R10 are 3 or less carbon atoms. R11 and R12 are a hydrogen atom or an alkyl group having 3 or less carbon atoms. If the molecular weight is too small, the heat resistance and electrical properties of the phenylene ether skeleton cannot be obtained, and if it is too large, the solubility in a general-purpose solvent is reduced. Therefore, the number average molecular weight is preferably 500 to 3,000.
[0009]
The method for producing the bifunctional phenylene ether oligomer represented by the general formula (1) is not particularly limited, and may be produced by any method. For example, a bifunctional phenol compound and a monofunctional phenol compound can be produced by oxidative coupling in the presence of copper and an amine by the method described in Japanese Patent Application No. 2002-018508.
[0010]
The polyfunctional cyanate compound (b) used in the present invention is represented by the following general formula (6).
General formula: R- (O-CN) m (6)
(M in the formula is an integer of 2 or more, usually 5 or less, R is an aromatic organic group, and the above cyanate group is directly bonded to the aromatic ring of the organic group R)
[0011]
Specific examples include 1,3- or 1,4-dicyanatobenzene, 1,3,5-tricyanatobenzene, 1,3-, 1,4-, 1,6-, 1,8-, , 6- or 2,7-dicyanatonaphthalene, 1,3,6-tricyanatonaphthalene, 4,4'-dicyanatobiphenyl, bis (4-cyanatophenyl) methane, bis (3,5-dimethyl-4) -Cyanatophenyl) methane, 2,2-bis (4-cyanatophenyl) propane, 2,2-bis (3,5-dibromo-4-cyanatophenyl) propane, bis (4-cyanatophenyl) ether , Bis (4-cyanatophenyl) thioether, bis (4-cyanatophenyl) sulfone, tris (4-cyanatophenyl) phosphite, tris (4-cyanatophenyl) phosphate, and novolak Cyanates obtained by the reaction of a cyanide resin with a cyanogen halide, and cyanate ester resins having a PPE skeleton described in Japanese Patent Application Nos. 2002-040063 and 2002-041321.
[0012]
Further, a prepolymer having a triazine ring formed by trimerizing the cyanate group of these polyfunctional cyanate ester resins can also be used. This prepolymer is obtained by polymerizing the above-mentioned polyfunctional cyanate resin monomer with, for example, an acid such as a mineral acid or a Lewis acid, a base such as sodium alcoholate or a tertiary amine, or a salt such as sodium carbonate as a catalyst. Is obtained by
[0013]
These polyfunctional cyanate ester resins and polyfunctional cyanate ester resin prepolymers can be used alone or in combination of two or more. The mixing ratio of the bifunctional polyphenylene ether oligomer to the cyanate ester resin is such that the molar ratio of the hydroxyl group (A) of the bifunctional polyphenylene ether oligomer to the cyanate group of the cyanate ester resin (B) is (B / A). ) Is preferably 2 to 100.
[0014]
Next, the curable resin composition of the present invention may optionally contain a curing accelerator, an epoxy resin, an oxetane resin, and a compound having a polymerizable unsaturated group.
[0015]
As a curing accelerator for the polyfunctional cyanate ester resin, generally known ones can be used. Examples thereof include organometallic complexes such as zinc octylate, tin octylate, cobalt naphthenate, zinc naphthenate, and iron acetylacetone; metal salts such as aluminum chloride, tin chloride and zinc chloride; and amines such as triethylamine and dimethylbenzylamine. But not limited to these. These curing accelerators can be used alone or in combination of two or more. The use amount of these curing accelerators is preferably 0.001 wt% to 0.5 wt% with respect to the total weight of the bifunctional phenylene ether oligomer and the polyfunctional cyanate ester resin, and more preferably, It is 0.01 wt% to 0.2 wt%.
[0016]
As the epoxy resin, a generally known epoxy resin can be used. For example, bisphenol A epoxy resin, bisphenol F epoxy resin, biphenyl epoxy resin, phenol novolak epoxy resin, cresol novolak epoxy resin, xylene novolak epoxy resin, triglycidyl isocyanurate, alicyclic epoxy resin, dicyclo Pentadiene novolak type epoxy resin, biphenyl novolak type epoxy resin, epoxy resin having a PPE skeleton shown in Japanese Patent Application Nos. 2001-353194 and 2002-018508, and the like are exemplified. These epoxy resins are used alone or in combination of two or more.
[0017]
As the oxetane resin, generally known ones can be used. For example, alkyl oxetane such as oxetane, 2-methyl oxetane, 2,2-dimethyl oxetane, 3-methyl oxetane, 3,3-dimethyl oxetane, etc., 3-methyl-3-methoxymethyl oxetane, 3,3′-di ( (Trifluoromethyl) perfluoxetane, 2-chloromethyloxetane, 3,3-bis (chloromethyl) oxetane, OXT-101 (trade name, manufactured by Toagosei), OXT-121 (tradename, manufactured by Toagosei), and the like. . These oxetane resins are used alone or in combination of two or more.
[0018]
When an epoxy resin and / or an oxetane resin is used for the curable resin composition of the present invention, an epoxy resin curing agent and / or an oxetane resin curing agent can be used. As the epoxy resin curing agent, generally known ones can be used, for example, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl- Imidazole derivatives such as 2-ethyl-4-methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, dicyandiamide, benzyldimethylamine, 4-methyl-N , N-dimethylbenzylamine and the like, and phosphine-based compounds include phosphonium-based phosphorus compounds. As the oxetane resin curing agent, a known cationic polymerization initiator can be used. For example, commercially available products include Sanade SI-60L, Sanade SI-80L, Sanade SI-100L (manufactured by Sanshin Chemical Industry), CI-2064 (manufactured by Nippon Soda), Irgacure 261 (manufactured by Ciba Specialty Chemical), and Adeka Optomer. SP-170, Adeka Optomer SP-150 (manufactured by Asahi Denka), Cyracure UVI-6990 (manufactured by UCC) and the like. The cationic polymerization initiator can also be used as an epoxy resin curing agent. These curing agents are used alone or in combination of two or more.
[0019]
As the compound having a polymerizable unsaturated group, generally known compounds can be used. For example, vinyl compounds such as ethylene, propylene, and styrene, methyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, polypropylene glycol di (meth) acrylate, and trimethylolpropanedi (meth) ) (Meth) acrylates of monohydric or polyhydric alcohols such as acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, and bisphenol A type epoxy (meth) Acrylate, bisphenol F type epoxy (meth) acrylate, epoxy (meth) acrylate having a PPE skeleton described in Japanese Patent Application No. 2001-389968 and Japanese Patent Application No. 2002-038156. (Meth) acrylates having a PPE skeleton shown in Japanese Patent Application Nos. 2002-053653 and 2002-055765, and having a PPE skeleton shown in Japanese Patent Application Nos. 2002-216724 and 2002-224937. Examples include vinyl compounds and benzocyclobutene resins. These compounds having an unsaturated group are used alone or in combination of two or more.
[0020]
When a compound having an unsaturated group is used, a known light and / or thermal polymerization initiator can be used as necessary.
[0021]
Further, when producing the curable resin composition of the present invention, if necessary, a solvent, a glass fiber, an organic base material, an inorganic filler, a coloring pigment, a defoaming agent, a surface conditioner, a flame retardant, and an ultraviolet absorber Known additives such as an agent, an antioxidant, a polymerization inhibitor, a flow regulator, and a thermoplastic resin can be added. Examples of the inorganic filler include natural silica, fused silica, silicas such as amorphous silica, white carbon, titanium white, aerosil, alumina, talc, natural mica, synthetic mica, kaolin, clay, aluminum hydroxide, barium sulfate, E-glass, A-glass, C-glass, L-glass, D-glass, S-glass, NE-glass, M-glass G20 and the like. The curable resin composition thus obtained can be used as a semiconductor sealing material, an electrical insulating material, a resin for a copper-clad laminate, a resist, a resin for sealing an electronic component, a resin for a color filter of a liquid crystal, a paint, It is useful for various uses such as coating agents, adhesives, build-up laminate materials, and FRP.
[0022]
The cured product of the present invention can be obtained by curing the curable resin composition of the present invention obtained by the above-described method according to a known method, for example, a curing method using an electron beam, ultraviolet light, and heat.
[0023]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not particularly limited to the following Examples. In addition, the number average molecular weight and the weight average molecular weight were determined by gel permeation chromatography (GPC).
[0024]
(Synthesis of bifunctional phenylene ether oligomer)
(Synthesis example 1)
1.3 g (0.012 mol) of CuCl, 70.7 g (0.55 mol) of di-n-butylamine, and 400 g of methyl ethyl ketone were placed in a 2 L vertical reactor equipped with a stirrer, a thermometer, an air introduction tube, and a baffle plate. The mixture was charged and stirred at a reaction temperature of 40 ° C., and 45.4 g (0.4 g) of divalent phenol 4,4 ′-(1-methylethylidene) bis (2,6-dimethylphenol) previously dissolved in 800 g of methyl ethyl ketone. 16 mol) and 58.6 g (0.48 mol) of 2,6-dimethylphenol were added dropwise over 120 minutes while bubbling air at 2 L / min. Stirring was performed while bubbling was continued. An aqueous solution of disodium dihydrogen ethylenediaminetetraacetate was added thereto to stop the reaction. Thereafter, the substrate was washed three times with a 1 M aqueous hydrochloric acid solution, and then washed with ion-exchanged water. The obtained solution was concentrated by an evaporator, and further dried under reduced pressure to obtain 98.8 g of a resin A represented by the general formula (1). Resin A had a number average molecular weight of 845, a weight average molecular weight of 1106, and a hydroxyl equivalent of 451.
[0025]
(Synthesis example 2)
1.3 g (0.012 mol) of CuCl, 70.7 g (0.55 mol) of di-n-butylamine, and 400 g of methyl ethyl ketone were placed in a 2 L vertical reactor equipped with a stirrer, a thermometer, an air introduction tube, and a baffle plate. The mixture was charged and stirred at a reaction temperature of 40 ° C., and 51.8 g (0.16 mol) of divalent phenol 4,4′-cyclohexylidenebis (2,6-dimethylphenol) dissolved in 800 g of methyl ethyl ketone in advance was added. 58.6 g (0.48 mol) of 2,6-dimethylphenol was added dropwise over 120 minutes while bubbling air at 2 L / min, and after completion of the dropwise addition, bubbling of air at 2 L / min was continued for 60 minutes. Stirring was performed. An aqueous solution of disodium dihydrogen ethylenediaminetetraacetate was added thereto to stop the reaction. Thereafter, the substrate was washed three times with a 1 M aqueous hydrochloric acid solution, and then washed with ion-exchanged water. The obtained solution was concentrated with an evaporator, and further dried under reduced pressure to obtain 102.6 g of a resin resin represented by the above general formula (1). The resin B had a number average molecular weight of 877, a weight average molecular weight of 1183, and a hydroxyl equivalent of 477.
[0026]
(Synthesis example 3)
1.3 g (0.012 mol) of CuCl, 70.7 g (0.55 mol) of di-n-butylamine, and 400 g of methyl ethyl ketone were placed in a 2 L vertical reactor equipped with a stirrer, a thermometer, an air introduction tube, and a baffle plate. The mixture was charged and stirred at a reaction temperature of 40 ° C., and 45.4 g (0.16 mol) of divalent phenol 4,4′-methylidenebis (2,3,6-trimethylphenol) dissolved in 800 g of methyl ethyl ketone in advance was added. , 6-dimethylphenol (58.6 g, 0.48 mol) was added dropwise over 120 minutes while bubbling air at 2 L / min, and after completion of the dropwise addition, bubbling with 2 L / min air was continued for 60 minutes. Stirring was performed. An aqueous solution of disodium dihydrogen ethylenediaminetetraacetate was added thereto to stop the reaction. Thereafter, the substrate was washed three times with a 1 M aqueous hydrochloric acid solution, and then washed with ion-exchanged water. The obtained solution was concentrated by an evaporator, and further dried under reduced pressure to obtain 97.4 g of a resin C represented by the above general formula (1). Resin C had a number average molecular weight of 852, a weight average molecular weight of 1133, and a hydroxyl equivalent of 460.
[0027]
(Synthesis example 4)
1.3 g (0.012 mol) of CuCl, 70.7 g (0.55 mol) of di-n-butylamine, and 400 g of methyl ethyl ketone were placed in a 2 L vertical reactor equipped with a stirrer, a thermometer, an air introduction tube, and a baffle plate. Charged and stirred at a reaction temperature of 40 ° C., and divalent phenol 4,4 ′-[1,4-phenylenebis (1-methylethylidene)] bis (2,3,6) previously dissolved in 800 g of methyl ethyl ketone. 68.8 g (0.16 mol) and 58.6 g (0.48 mol) of 2,6-dimethylphenol were added dropwise over 120 minutes while bubbling air at 2 L / min. Stirring was continued for 60 minutes while bubbling air at 2 L / min. An aqueous solution of disodium dihydrogen ethylenediaminetetraacetate was added thereto to stop the reaction. Thereafter, the substrate was washed three times with a 1 M aqueous hydrochloric acid solution, and then washed with ion-exchanged water. The obtained solution was concentrated with an evaporator, and further dried under reduced pressure to obtain 114.6 g of a resin D represented by the general formula (1). The resin d had a number average molecular weight of 934, a weight average molecular weight of 1223, and a hydroxyl equivalent of 496.
(Synthesis example 5)
1.3 g (0.012 mol) of CuCl, 70.7 g (0.55 mol) of di-n-butylamine, and 400 g of methyl ethyl ketone were placed in a 2 L vertical reactor equipped with a stirrer, a thermometer, an air introduction tube, and a baffle plate. The mixture was stirred at a reaction temperature of 40 ° C., and 41.0 g (0.16 mol) of divalent phenol 4,4′-methylenebis (2,6-dimethylphenol) dissolved in 800 g of methyl ethyl ketone and 2,6 -58.6 g (0.48 mol) of dimethylphenol was added dropwise over 120 minutes while bubbling air at 2 L / min, and after completion of the addition, stirring was continued for 60 minutes while bubbling air at 2 L / min. went. An aqueous solution of disodium dihydrogen ethylenediaminetetraacetate was added thereto to stop the reaction. Thereafter, the substrate was washed three times with a 1 M aqueous hydrochloric acid solution, and then washed with ion-exchanged water. The obtained solution was concentrated by an evaporator and further dried under reduced pressure to obtain 94.6 g of a resin resin represented by the above general formula (1). The resin (e) had a number average molecular weight of 801, a weight average molecular weight of 1081, and a hydroxyl equivalent of 455.
[0028]
(Synthesis example 6)
A 2 L vertical reactor having a stirrer, a thermometer, an air inlet tube, and a baffle plate was charged with 27.1 g (0.028 mol) of CuC, 169.7 g (1.32 mol) of di-n-butylamine, and 1000 g of methyl ethyl ketone. The mixture was stirred at a reaction temperature of 40 ° C., and 41.0 g (0.16 mol) of divalent phenol 4,4′-methylenebis (2,6-dimethylphenol) previously dissolved in 1900 g of methyl ethyl ketone and 2,6- 195.3 g (1.6 mol) of dimethylphenol was added dropwise over 120 minutes while bubbling air at 2 L / min. After the completion of the addition, stirring was continued for 60 minutes while bubbling air at 2 L / min. . An aqueous solution of disodium dihydrogen ethylenediaminetetraacetate was added thereto to stop the reaction. Thereafter, the substrate was washed three times with a 1 M aqueous hydrochloric acid solution, and then washed with ion-exchanged water. The obtained solution was concentrated by an evaporator and dried under reduced pressure to obtain 212.5 g of a resin represented by the above general formula (1). The resin had a number average molecular weight of 16,13, a weight average molecular weight of 2420, and a hydroxyl equivalent of 834.
[0029]
(Synthesis example 7)
In a 5 L vertical reactor equipped with a stirrer, a thermometer, an air introduction tube, and a baffle plate, 37.9 g (0.039 mol) of CuC, 237.5 g (1.84 mol) of di-n-butylamine, and 1300 g of methyl ethyl ketone were charged. The mixture was stirred at a reaction temperature of 40 ° C., and 41.0 g (0.16 mol) of divalent phenol 4,4′-methylenebis (2,6-dimethylphenol) previously dissolved in 1700 g of methyl ethyl ketone and 2,6-dimethyl Phenol 292.9 g (2.4 mol) was added dropwise over 120 minutes while bubbling air at 2 L / min, and after completion of the addition, stirring was continued for 60 minutes while bubbling air at 2 L / min. An aqueous solution of disodium dihydrogen ethylenediaminetetraacetate was added thereto to stop the reaction. Thereafter, the substrate was washed three times with a 1 M aqueous hydrochloric acid solution, and then washed with ion-exchanged water. The obtained solution was concentrated by an evaporator and further dried under reduced pressure to obtain 305 g of a resin represented by the above general formula (1). The resin had a number average molecular weight of 2150, a weight average molecular weight of 3256, and a hydroxyl equivalent of 1093.
[0030]
(Examples 1 to 9)
After blending the resin (I) obtained in Synthesis Examples 1 to 7, the cyanate ester resin, and the curing accelerator as shown in Table 1, stirring at 150 ° C. for 10 minutes to melt, degassing, casting, and then 230 ° C. After curing for 10 hours, a cured product was obtained.
[0031]
(Comparative Examples 1 and 2)
The cyanate ester resin and the curing accelerator were blended as shown in Table 1, stirred at 130 ° C. for 10 minutes, melted, deaerated, cast, and then cured at 230 ° C. for 10 hours to obtain a cured product.
[0032]
[Table 1]
Figure 2004231729
ArocyB-10: 2,2-bis (4-cyanatophenyl) propane ArocyM-10: bis (3,5-dimethyl-4-cyanatophenyl) methane
The properties of the cured products obtained in Examples 1 to 9 and Comparative Examples 1 and 2 were evaluated by the following methods.
Glass transition temperature (Tg): determined by dynamic viscoelasticity measurement (DMA). The measurement was performed at a vibration frequency of 10 Hz.
Dielectric constant and dielectric tangent: determined by the cavity resonance perturbation method.
[0034]
Table 2 shows the evaluation results of the above physical properties.
[Table 2]
Figure 2004231729
[0035]
【The invention's effect】
The curable resin composition of the present invention has a high glass transition temperature, provides a cured product having a low dielectric constant and a low dielectric loss tangent, and is therefore extremely useful as a high-functional polymer material, Excellent materials include semiconductor encapsulants, electrical insulating materials, resins for copper-clad laminates, resists, resins for electronic components, resins for liquid crystal color filters, paints, various coatings, adhesives, and build-up. It can be used for a wide range of applications such as laminate materials and FRP.

Claims (4)

一般式(1)で示される特定の構造を有する数平均分子量が500〜3000の2官能性フェニレンエーテルオリゴマーおよび多官能シアン酸エステル樹脂からなる硬化性樹脂組成物
Figure 2004231729
(式中、−(O−X−O)−は構造式(2)で示され、R1,R2, R7,R8は、同一または異なってもよく、ハロゲン原子または炭素数6以下のアルキル基またはフェニル基である。R3,R4,R5,R6は、同一または異なってもよく、水素原子、ハロゲン原子または炭素数6以下のアルキル基またはフェニル基である。Aは、炭素数20以下の直鎖状あるいは、分岐状あるいは、環状の炭化水素である。−(Y−O)−は構造式(3)で定義される1種類の構造、または構造式(3)で定義される2種類以上の構造がランダムに配列したものである。R9,R10は、同一または異なってもよく、ハロゲン原子または炭素数6以下のアルキル基またはフェニル基である。R11,R12は、同一または異なってもよく、水素原子、ハロゲン原子または炭素数6以下のアルキル基またはフェニル基である。a,bは、少なくともいずれか一方が0でない、0〜30の整数を示す。)
A curable resin composition comprising a bifunctional phenylene ether oligomer having a specific structure represented by the general formula (1) and having a number average molecular weight of 500 to 3000, and a polyfunctional cyanate ester resin
Figure 2004231729
(In the formula,-(OXO)-is represented by the structural formula (2), and R1, R2, R7, and R8 may be the same or different, and include a halogen atom or an alkyl group having 6 or less carbon atoms or R3, R4, R5, and R6 may be the same or different and are a hydrogen atom, a halogen atom, an alkyl group having 6 or less carbon atoms, or a phenyl group, and A is a straight chain having 20 or less carbon atoms. -(YO)-is one type of structure defined by the structural formula (3) or two or more types defined by the structural formula (3). R9 and R10 may be the same or different and are a halogen atom or an alkyl group or a phenyl group having 6 or less carbon atoms, and R11 and R12 may be the same or different; Hydrogen atom, A halogen atom, an alkyl group having 6 or less carbon atoms, or a phenyl group, and a and b each represent an integer of 0 to 30 in which at least one of them is not 0.)
−(O−X−O)−の構造式(2)において、R1,R2,R7,R8がメチル基であり、−(Y−O)−が構造式(4)あるいは、構造式(5)あるいは、構造式(4)と構造式(5)がランダムに配列した構造を有することを特徴とする請求項1記載の硬化性樹脂組成物
Figure 2004231729
In the structural formula (2) of — (O—X—O) —, R1, R2, R7, and R8 are methyl groups, and — (YO) — is a structural formula (4) or a structural formula (5). Alternatively, the curable resin composition according to claim 1, wherein the curable resin composition has a structure in which the structural formulas (4) and (5) are randomly arranged.
Figure 2004231729
2官能性フェニレンエーテルオリゴマーの水酸基のモル(A)と多官能シアン酸エステル樹脂のシアネート基のモル(B)のモル比(B/A)が2〜100である請求項1または請求項2に記載の硬化性樹脂組成物The mole ratio (B / A) of the mole (A) of the hydroxyl group of the bifunctional phenylene ether oligomer to the mole (B) of the cyanate group of the polyfunctional cyanate ester resin is from 2 to 100. Curable resin composition as described 請求項1または請求項2または請求項3に記載の硬化性樹脂組成物を硬化してなる硬化物A cured product obtained by curing the curable resin composition according to claim 1 or claim 2.
JP2003020150A 2003-01-17 2003-01-29 Curable resin composition and cured product thereof Expired - Lifetime JP4300401B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2003020150A JP4300401B2 (en) 2003-01-29 2003-01-29 Curable resin composition and cured product thereof
US10/747,237 US7071266B2 (en) 2003-01-17 2003-12-30 Curable resin composition and cured product thereof
DE602004000607T DE602004000607T2 (en) 2003-01-17 2004-01-13 Hardenable resin composition and cured product thereof
TW093100762A TWI309666B (en) 2003-01-17 2004-01-13 Curable resin composition and cured product thereof
EP04250136A EP1439209B1 (en) 2003-01-17 2004-01-13 Curable resin composition and cured product thereof
KR1020040003475A KR101052312B1 (en) 2003-01-17 2004-01-16 Curable resin composition and hardened | cured material thereof
CNB2004100010156A CN1305962C (en) 2003-01-17 2004-01-16 Cured resin composition and its cured product
HK05100742A HK1069407A1 (en) 2003-01-17 2005-01-28 Curable resin composition and cured product thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003020150A JP4300401B2 (en) 2003-01-29 2003-01-29 Curable resin composition and cured product thereof

Publications (2)

Publication Number Publication Date
JP2004231729A true JP2004231729A (en) 2004-08-19
JP4300401B2 JP4300401B2 (en) 2009-07-22

Family

ID=32949860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003020150A Expired - Lifetime JP4300401B2 (en) 2003-01-17 2003-01-29 Curable resin composition and cured product thereof

Country Status (1)

Country Link
JP (1) JP4300401B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010138366A (en) * 2008-04-01 2010-06-24 Mitsubishi Gas Chemical Co Inc Resin composition, prepreg and metal foil-clad laminate
WO2013047041A1 (en) * 2011-09-30 2013-04-04 三菱瓦斯化学株式会社 Resin composition, prepreg, and metal foil-clad laminate
WO2013146302A1 (en) * 2012-03-29 2013-10-03 三菱瓦斯化学株式会社 Resin composition, prepreg, resin sheet, and metal foil-clad laminate
WO2023166948A1 (en) * 2022-03-02 2023-09-07 本州化学工業株式会社 (meth)acrylate-terminated polyphenylene ether oligomer, and resin composition, varnish, prepreg, and cured product containing same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010138366A (en) * 2008-04-01 2010-06-24 Mitsubishi Gas Chemical Co Inc Resin composition, prepreg and metal foil-clad laminate
WO2013047041A1 (en) * 2011-09-30 2013-04-04 三菱瓦斯化学株式会社 Resin composition, prepreg, and metal foil-clad laminate
JPWO2013047041A1 (en) * 2011-09-30 2015-03-26 三菱瓦斯化学株式会社 Resin composition, prepreg and metal foil-clad laminate
US10028377B2 (en) * 2011-09-30 2018-07-17 Mitsubishi Gas Chemical Company, Inc. Resin composition, prepreg and metal foil-clad laminate
WO2013146302A1 (en) * 2012-03-29 2013-10-03 三菱瓦斯化学株式会社 Resin composition, prepreg, resin sheet, and metal foil-clad laminate
JPWO2013146302A1 (en) * 2012-03-29 2015-12-10 三菱瓦斯化学株式会社 Resin composition, prepreg, resin sheet, and metal foil-clad laminate
US9394439B2 (en) 2012-03-29 2016-07-19 Mitsubishi Gas Chemical Company, Inc. Resin composition, prepreg, resin sheet, and metal foil-clad laminate
WO2023166948A1 (en) * 2022-03-02 2023-09-07 本州化学工業株式会社 (meth)acrylate-terminated polyphenylene ether oligomer, and resin composition, varnish, prepreg, and cured product containing same

Also Published As

Publication number Publication date
JP4300401B2 (en) 2009-07-22

Similar Documents

Publication Publication Date Title
JP4407823B2 (en) Novel cyanate ester compound, flame retardant resin composition, and cured product thereof
US7071266B2 (en) Curable resin composition and cured product thereof
KR101710854B1 (en) Polyphenylene ether derivative having n-substituted maleimide group, and heat curable resin composition, resin varnish, prepreg, metal-clad laminate, and multilayer printed wiring board using same
KR100919943B1 (en) Bifunctional phenylene ether oligomer, its derivatives, its use and process for the production thereof
US10155835B2 (en) Cyanate ester compound and method for producing the same, and curable resin composition comprising the compound, and cured product thereof composition
JP5104312B2 (en) Cyanate ester polymer
JP4654770B2 (en) Cyanate ester compound, flame retardant resin composition, and prepreg and laminate using the same
US20040147715A1 (en) Epoxy resin curing agent, curable epoxy resin composition and cured product
JP6662098B2 (en) Thermosetting resin composition, prepreg, copper-clad laminate and printed wiring board
JP2004231728A (en) Epoxy resin curing agent, curable epoxy resin composition and cured product
JP3879831B2 (en) Thermosetting PPE oligomer
JP4300401B2 (en) Curable resin composition and cured product thereof
JP2017066280A (en) Thermosetting resin composition and manufacturing method therefor, and prepreg, metal-clad laminate and multilayer printed board having the thermosetting resin composition
JP4359746B2 (en) Curable resin composition and cured product thereof
JP2004224860A (en) Epoxy resin curing agent, curable epoxy resin composition and cured material
JP3874096B2 (en) Thermosetting PPE oligomer
WO2023013711A1 (en) Thermosetting resin composition, prepreg, and printed wiring board
JP2003238677A (en) Oligomer of thermosetting ppe
JP2014028929A (en) Method of producing electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090325

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090407

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4300401

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140501

Year of fee payment: 5

EXPY Cancellation because of completion of term