JP2004231519A - Method for preparing optically active karanone - Google Patents

Method for preparing optically active karanone Download PDF

Info

Publication number
JP2004231519A
JP2004231519A JP2003018130A JP2003018130A JP2004231519A JP 2004231519 A JP2004231519 A JP 2004231519A JP 2003018130 A JP2003018130 A JP 2003018130A JP 2003018130 A JP2003018130 A JP 2003018130A JP 2004231519 A JP2004231519 A JP 2004231519A
Authority
JP
Japan
Prior art keywords
optically active
karanone
caranone
tartaric acid
acid derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2003018130A
Other languages
Japanese (ja)
Inventor
Masakazu Ishihara
正和 石原
Taro Kitaura
太郎 北浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shiono Koryo Kaisha Ltd
Original Assignee
Shiono Koryo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shiono Koryo Kaisha Ltd filed Critical Shiono Koryo Kaisha Ltd
Priority to JP2003018130A priority Critical patent/JP2004231519A/en
Publication of JP2004231519A publication Critical patent/JP2004231519A/en
Abandoned legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for preparing both enantiomers of karanone which are contained in aromatic woods such as aloeswood and agilawood and are useful as a perfume material of a perfuming composition for fragrant cosmetics, foods, drinks, and the like. <P>SOLUTION: The method for preparing the optically active karanone comprises mixing a mixture containing (+)-karanone and/or (-)-karanone with an optically active tartaric acid derivative to form a clathrate compound of an optically active isomer of karanone with the optically active tartaric acid derivative and subsequently separating the optically active isomer of karanone from the clathrate compound. The method permits acquisition of the both enantiomers of the optically active karanone, which is heretofore hard to obtain, by a simple operation in a high yield and yet at a high chemical and optical purity. The optically active tartaric acid derivative used is readily available and can be almost quantitatively recovered and repeatedly used thereby permitting reduction of the preparation cost. The both enantiomers of karanone obtained have excellent properties different from each other from the view point of perfume chemistry and therefore are supplied as a promising fragrant substance for perfuming fragrant cosmetics, foods, drinks, and the like. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【産業上の利用分野】本発明は、沈香,伽羅などの香木に含まれ,香粧品や飲食品等の賦香用組成物の香料原料として有用なキャラノンの両鏡像体の製造方法に関する。
【0002】
【従来の技術および発明が解決しようとする課題】キャラノン(Karanone)は,長島らによって高級沈香の一種である伽南香の抽出物から単離・同定された既知化合物で,(+)の旋光度を有している(特許文献1)。その絶対構造は,(4aR,5S)−(+)−4,4a,5,6−テトラヒドロ−4a,5−ジメチル−3−(1−メチルエチリデン)−2(3H)−ナフタレノンである。その鏡像異性体である(4aS,5R)−(−)−体{(−)−キャラノン},トランスジメチル基を有する(4aR,5R)−(+)−体(4−エピキャラノン)と(4aS,5S)−(−)−体(5−エピキャラノン)は天然からまだ見つかっていない。
【0003】(+)及び(−)−キャラノンの合成については,合成で得た(±)−デヒドロフキノン(ジヒドロキャラノンとも呼ばれるので,以後,ジヒドロキャラノンと言う)をDDQで脱水素して(±)−キャラノンを合成し,このものに(+)−δ−(α−フェニルプロピル)−セミカルバジド塩酸塩を作用させて生じた結晶から(+)−体,母液から(−)−体を合成する例,或いは天然から単離した(+)−フキノンを原料にして,上記と同様にDDQを二段階にわたって作用させて(+)−キャラノンを合成する方法が提案されている(以上,特許文献1)。
【0004】上記方法の内,(±)−キャラノンの光学分割では,光学分割剤として高価な(+)−δ−(α−フェニルプロピル)−セミカルバジド塩酸塩を使用すること,その結晶化に1週間を要する上にさらに再結晶を行うなど,操作が煩雑で必ずしも有利な方法とはいえない。また,(+)−フキノンを原料とする方法は,原料の入手が非常に困難である。
【0005】
本出願の発明に関する先行技術文献情報としては次のものがある。
【特許文献1】特開昭59−27847号公報
【非特許文献1】P. Duhamel, et al., 「J. Chem. Soc. Perkin Trans. 1」, p. 387−396 (1992)
【0006】ところで,(+)−キャラノンとその鏡像体である(−)−キャラノンの香料化学的な性質は異なっており,(+)−体が強い華やかなウッディー−アンバーノートであるのに対して,(−)−体は柑橘的な雰囲気を持った弱いウッディーノートを有している。ラセミ体は強いウッディーノートを有するが,(−)−体が影響して華やかさに欠けて調合原料としての魅力に乏しい。すなわち,(+)−体は燻煙的で華やかなアンバー的なアンダートーンを持ったウッディー感を,(−)−体は柑橘の底味的なウッディー調を有していることから,調合香料の原料として用いる場合,両者の使用目的は全く異なってくる。
【0007】従って、本発明の目的は、華やかで強いウッディーノートを有する(+)−キャラノンと柑橘的でマイルドなウッディーノートを有する(−)−キャラノンを,高い化学および光学純度で工業的に製造し,有用な香料原料として提供することにある。
本発明者らは、上記課題を解決するために鋭意研究した結果、両光学異性体を簡単な操作で高収率,しかも高化学および光学純度で得られる下記発明を完成した。
【0008】
【課題を解決するための手段】本発明は、式(1)
【化3】

Figure 2004231519
で表される(+)−キャラノンおよび/または式(2)
【化4】
Figure 2004231519
で表される(−)−キャラノンを含む混合物と,光学活性な酒石酸誘導体とを混合して,式(1)または式(2)で表されるキャラノンの光学活性体と光学活性な酒石酸誘導体との包接化合物を形成させ,この包接化合物から式(1)または式(2)で表されるキャラノンの光学活性体を分離して得ることを特徴とする,光学活性なキャラノンの製造方法である。
【0009】また本発明は、式(1)
【化5】
Figure 2004231519
で表される(+)−キャラノン、式(2)
【化6】
Figure 2004231519
で表される(−)−キャラノン,式(3)
【化7】
Figure 2004231519
で表される(+)−4−エピキャラノン,および式(4)
【化8】
Figure 2004231519
で表される(−)−5−エピキャラノンの混合物と,光学活性な酒石酸誘導体とを混合して,式(1)または式(2)で表されるキャラノンの光学活性体と光学活性な酒石酸誘導体との包接化合物を形成させ,この包接化合物から式(1)または式(2)で表されるキャラノンの光学活性体を分離して得ることを特徴とする,光学活性なキャラノンの製造方法である。
【0010】
【発明の実施の形態】本発明において,前記の(+)−キャラノンおよび/または(−)−キャラノンを含む混合物とは、(+)−キャラノンまたは(−)−キャラノン、更には(+)−キャラノンおよび(−)−キャラノンを含む混合物であれば、特に制限はない。
【0011】(+)−キャラノンおよび(−)−キャラノンを含む混合物の調製法の一例を下記反応工程図Aに示す。前記非特許文献1記載の方法に準じて、2,3−ジメチルシクロヘキサノン(5)を出発原料として合成される,式(10)で表されるジヒドロキャラノンとエピジヒドロキャラノンのラセミ体を主とする混合物を,前記特許文献1記載の方法に準じて脱水素して,式(1),式(2),式(3)および式(4)で表される化合物のラセミ体を主とする混合物を得ることができる。
【0012】
【化9】
反応工程図A
Figure 2004231519
【0013】上記反応で得られるキャラノンのラセミ体{(1):(2)=1:1}とエピキャラノンのラセミ体{(3):(4)=1:1}の比率は,反応条件等によって、例えば{(1)+(2)}:{(3)+(4)}=75:25から95:5であるが,式(3)と式(4)で表されるエピキャラノンは本発明で用いられる光学活性な酒石酸誘導体(ホスト化合物)と包接化合物を形成し難いので,光学活性な酒石酸誘導体と光学活性なキャラノン(ゲスト化合物)との包接化合物を形成・単離するためには、エピキャラノンが共存していても問題にはならない、即ちキャラノンの化学純度は,特に限定されない。
さらに,エピキャラノン以外の不純物が混在しても,本発明におけるゲスト化合物であるキャラノンとホスト化合物の包接化が優先するので問題にならず,ゲスト化合物の化学的な精製も同時に行うことが可能である。
【0014】また,本発明におけるゲスト化合物であるキャラノンの光学純度は,上記のようなラセミ体から片方の鏡像異性体を過剰に含むものまでいかなる純度のものを用いてもよい。例えば,片方の鏡像異性体が過剰な場合には,まず過剰に存在する異性体と包接化合物を形成する光学活性なホスト化合物を用いて包接化合物を形成させれば,過剰に存在する鏡像異性体の光学純度を上げて製造することができる。
【0015】(+)−キャラノンまたは(−)−キャラノンを含む混合物の他の例としては、(+)−ジヒドロキャラノンまたは(−)−ジヒドロキャラノンをDDQで脱水素して合成する例がある。これらの場合も、本発明を問題なく適用する事ができる。
【0016】次に、本発明で用いられるホスト化合物である光学活性な酒石酸誘導体としては、(+)−キャラノンまたは(−)−キャラノンと包接化合物を形成するものであれば特に限定されないが、なかでも、分離能,入手のしやすさ,取扱いのしやすさなどから,下記の式(11a),(11b),(12a)または(12b)で表される光学活性な酒石酸誘導体が好ましい。
【化10】
Figure 2004231519
(式中,R及びRは同一または異なった水素原子、炭素数1〜6の低級アルキル基またはフェニル基を示す。Arはフェニル基,低級アルキル化フェニル基、ハロゲン化フェニル基、またはナフチル基を示す。n=2〜7である。)
なかでも、前記式中,R及びRは同一または異なったメチル基またはエチル基を示し、Arはフェニル基,トリル基、またはナフチル基を示し、n=4または5である酒石酸誘導体が好ましい。
より具体的には、前記(11a)または(11b)では、R及びRがメチル基の場合,Arはフェニル基,トリル基,またはナフチル基を,R及びRがエチル基の場合,Arはフェニル基,トリル基,またはナフチル基を,Rがメチル基でRがエチル基の場合,Arはフェニル基,トリル基,またはナフチル基を示す。同様に,前記(12a)または(12b)では、n=4の場合,Arはフェニル基,トリル基,またはナフチル基,n=5の場合,Arはフェニル基,トリル基,またはナフチル基である。
更には、前記(11a)または(11b)では、R及びRがメチル基またはエチル基で,Arはフェニル基またはトリル基、およびRがメチル基、Rがエチル基で,Arはフェニル基またはトリル基である酒石酸誘導体が好ましい。同様に,前記(12a)または(12b)では、n=4または5で,Arはフェニル基またはトリル基である酒石酸誘導体が好ましい。
上記の式(11a)〜(12b)で表される光学活性な酒石酸誘導体は公知であり,光学活性な酒石酸から容易に合成でき,光学分割した後に回収して再利用することができる。
【0017】本発明において,混合物中に存在する式(1)あるいは式(2)であらわされる光学活性なキャラノンと光学活性な酒石酸誘導体との包接化合物を形成させるためには,公知のいかなる方法を用いてもよい。例えば,上記混合物中に存在する(+)−あるいは(−)−キャラノンと光学活性な酒石酸誘導体を,適当な溶媒を用いて溶解し,冷却または溶解度の低い溶媒を徐々に加えることにより包接化合物の結晶を得ることができる。また,適当な溶媒を用いて溶解させた後,減圧下溶媒を留去して結晶化させることも可能である。
本発明において使用する,混合物中に存在する(+)または(−)−キャラノンと、光学活性な酒石酸誘導体との比率は、モル比で 3:1〜1:2が好ましい。
析出した包接化合物の結晶を混合物中から単離する方法は,例えば該混合物を減圧もしくは常圧下でフィルター濾過して結晶と濾液を分離して取得することができる。
【0018】包接化合物から光学活性なキャラノンを取得する方法は,加熱により分離する方法、その他いかなる方法であってもよい。例えば,包接化合物を直接減圧蒸留して光学活性なキャラノンと光学活性な酒石酸誘導体とを分離する方法,包接化合物にメタノールを加えてメタノールと光学活性な酒石酸誘導体との包接化合物を形成させて光学活性なキャラノンを分離する方法,包接化合物をカラムクロマトグラフィー処理することにより,光学活性なキャラノンと光学活性な酒石酸誘導体とを分離する方法などがある。
【0019】また,上述の反応工程図Aで得た、式(1),式(2),式(3)および式(4)で表される化合物のようにラセミ体を主とする混合物に本発明を適用した場合,(+)−あるいは(−)−キャラノンを取得した後の回収母液には,主としてキャラノンの残ったどちらかの鏡像体と4−および5−エピキャラノンが含まれる。このものから残ったキャラノンの鏡像体を取得するためには,先に用いた光学活性な酒石酸誘導体の鏡像体を用いて包接化合物を形成させ,上記と同様の操作をすればよい。
尚、包接化合物は、(+)−キャラノンと(+)−体の酒石酸誘導体とで形成され、また同様に(−)−キャラノンと(−)−体の酒石酸誘導体とで形成される。
【0020】
【実施例】以下,実施例によって本発明をさらに具体的に説明するが,本発明はこれらに限定されるものではない。なお,実施例中での生成物の純度測定は,ガスクロマトグラフィー(GC)と旋光度計で行った。条件は以下の通りである。
GC:HP5890ガスクロマトグラフ(ヒューレット・パッカード社製)
カラム:DB−1(0.25mm×60m)(J&W社製)
検出器:FID
旋光度:JASCO DIP−370旋光度計(日本分光社製)
【0021】実施例1 (+)−キャラノンの調製
下記の式(13)で表される酒石酸誘導体の(S,S)−(+)−体(2.47 g, 5.3 mmol)と,前記反応工程図Aに示した文献記載の方法に準じて合成した式(1),式(2),式(3)および式(4)で表される化合物の混合物{2.3 g, 10.6 mmol,(1)+(2)の化学純度:78.2%;(3)+(4)の化学純度:8.3%;および未反応の(10)を10.4%含む}を50 gの10%酢酸エチル/n−ヘキサンに溶解した後,室温で静置して包接結晶を析出させた。混合物を吸引濾過して白色の包接結晶3.12 gを得た。母液を濃縮して1.59 gの回収母液を得た。得られた包接結晶をシリカゲルカラム(SiO: 35 g)に通して,5%酢酸エチル/n−ヘキサン留出部から0.72 gの(+)−キャラノン,20%酢酸エチル/n−ヘキサン留出部から2.30 gの酒石酸誘導体(13)を取得した。(+)−キャラノンの収率:81%
【0022】
【化11】
Figure 2004231519
【0023】得られた(+)−キャラノンのキャピラリーGC分析による化学純度は93.7%で,旋光度 [α] 23 +259.8°(c 1.0, CHCl)を示した。この旋光度値は,前記特許文献1記載の値[α] 29 +179.2°に比べて大きく,光学純度も高いといえる。
【0024】上記で回収した母液 (1.59 g)をシリカゲルカラムクロマトグラフィーに付し,1.48 gのオイルと0.10 gの(+)−酒石酸誘導体(13)を回収した。回収された酒石酸誘導体の量は合計で2.4 gになり,97%の回収率であった。
【0025】実施例2 (−)−キャラノンの調製
実施例1で回収したオイル部(1.47 g)と下記の式(14)で表される酒石酸誘導体の(R,R)−(−)−体(2.44 g, 5.2 mmol)を用いて,実施例1と同様の操作を行って,0.70 gの(−)−キャラノンを得,2.35 gの酒石酸誘導体を回収した。(−)−キャラノンの収率:77%;(−)−酒石酸誘導体(14)の回収率:96%
【0026】
【化12】
Figure 2004231519
【0027】得られた(−)−キャラノンのキャピラリーGC分析による化学純度は92.9%で,旋光度 [α] 23 −254.2°(c 1.0, CHCl)を示した。
【0028】
【実施例3】(+)−キャラノンの調製
実施例1で用いたものと同じ純度の(±)−キャラノンを含む混合物(2.1 g, 9.7 mmol)と下記の式(15)で表される酒石酸誘導体の(S,S)−(+)−体(2.43 g, 4.8 mmol)を用いて,実施例1と同様の操作を行って,0.69 gの(+)−キャラノンを得,2.38 gの(+)−酒石酸誘導体(15)を回収した。
【0029】得られた(+)−キャラノンのキャピラリーGC分析による化学純度は93.3%で,旋光度 [α] 23 +254.1°(c 1.00, CHCl)を示した。
【0030】
【化13】
Figure 2004231519
【発明の効果】本発明により,従来入手が困難であった光学活性なキャラノンの両鏡像体を,簡単な操作で高収率,しかも高化学および光学純度で得られるようになった。また,本発明に用いる光学活性な酒石酸誘導体は,入手が容易であると同時にほぼ定量的に回収して繰り返し使用できるので,製造コストを抑えることもできる。また、得られるキャラノンの両鏡像体は,それぞれ異なった優れた香料化学的な性質を有する化合物であるので、今後、香粧品や飲食品等への賦香用に有望な香料物質として提供できる。[0001]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing both enantiomers of caranone, which is contained in incense wood such as agarwood and kara, and is useful as a perfume raw material for perfuming compositions such as cosmetics and foods and drinks.
[0002]
2. Description of the Related Art Karanone is a known compound that was isolated and identified by Nagashima et al. From the extract of Kananka, a kind of high-grade agarwood. It has an optical rotation (Patent Document 1). Its absolute structure is (4aR, 5S)-(+)-4,4a, 5,6-tetrahydro-4a, 5-dimethyl-3- (1-methylethylidene) -2 (3H) -naphthalenone. (4aS, 5R)-(-)-form {(-)-caranone}, its enantiomer, (4aR, 5R)-(+)-form (4-epicaranone) having a transdimethyl group; The (4aS, 5S)-(-)-form (5-epicaranone) has not yet been found in nature.
With respect to the synthesis of (+) and (−)-caranone, (±) -dehydrofuquinone (also referred to as dihydrocaranone, hereinafter referred to as dihydrocaranone) obtained by the synthesis is dehydrogenated with DDQ. (+)-Δ- (α-phenylpropyl) -semicarbazide hydrochloride to give a (+)-isomer, and (−) from the mother liquor. -An example of synthesizing a compound, or a method of synthesizing (+)-caranone by using DDQ in two steps in the same manner as described above using (+)-fuquinone isolated from nature as a raw material has been proposed. (The above is patent document 1).
Among the above methods, in the optical resolution of (±) -caranone, expensive (+)-δ- (α-phenylpropyl) -semicarbazide hydrochloride is used as an optical resolving agent, and its crystallization is carried out. The operation is complicated and requires one week and further recrystallization is performed, so that it is not necessarily an advantageous method. Further, in the method using (+)-fuquinone as a raw material, it is very difficult to obtain the raw material.
[0005]
Prior art document information relating to the invention of the present application is as follows.
[Patent Document 1] JP-A-59-27847 [Non-Patent Document 1] Duhamel, et al. , "J. Chem. Soc. Perkin Trans. 1", p. 387-396 (1992)
By the way, (+)-caranone and its enantiomer (-)-caranone have different fragrance chemical properties, and the (+)-body is a strong ornate woody-amber note. In contrast, the (-)-body has a weak woody note with a citrus atmosphere. The racemic form has strong woody notes, but lacks gorgeousness due to the influence of the (-)-form and is less attractive as a raw material for preparation. In other words, the (+)-body has a woody feeling with a smokey and gorgeous amber undertone, and the (-)-body has a citrus bottomy woody tone. When they are used as raw materials, the purposes of use of both are completely different.
Accordingly, it is an object of the present invention to provide (+)-caranone with gorgeous and strong woody notes and (-)-caranone with citrus and mild woody notes with high chemical and optical purity in industrial applications. And provide it as a useful perfume raw material.
The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have completed the following invention in which both optical isomers can be obtained with a simple operation in a high yield and with high chemical and optical purity.
[0008]
According to the present invention, there is provided an image processing apparatus comprising:
Embedded image
Figure 2004231519
(+)-Caranone and / or formula (2)
Embedded image
Figure 2004231519
A mixture containing (−)-caranone represented by the formula: and an optically active tartaric acid derivative are mixed to form an optically active form of the caranone represented by the formula (1) or (2) and an optically active tartaric acid. Forming an clathrate with a derivative, and separating the clathrate from the optically active caranone represented by the formula (1) or (2) to obtain an optically active caranone. Is a manufacturing method.
Further, the present invention provides a method of formula (1)
Embedded image
Figure 2004231519
(+)-Characternon represented by the formula (2)
Embedded image
Figure 2004231519
(−)-Caranon represented by the formula (3)
Embedded image
Figure 2004231519
(+)-4-epicaranone represented by
Embedded image
Figure 2004231519
A mixture of (−)-5-epicaranone represented by the formula (1) and an optically active tartaric acid derivative are mixed to form an optically active substance and an optical activity of the caranone represented by the formula (1) or (2). An optically active compound of the formula (1) or (2) from the clathrate to form an clathrate with a novel tartaric acid derivative. This is a method for manufacturing Caranon.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the above-mentioned mixture containing (+)-caranone and / or (-)-caranone means (+)-caranone or (-)-caranone, and furthermore, There is no particular limitation as long as the mixture contains (+)-caranone and (-)-caranone.
An example of a method for preparing a mixture containing (+)-caranone and (-)-caranone is shown in the following reaction scheme A. According to the method described in Non-patent Document 1, racemic dihydrocaranone and epidihydrocaranone represented by the formula (10), which are synthesized using 2,3-dimethylcyclohexanone (5) as a starting material, are mainly used. Is dehydrogenated according to the method described in the above-mentioned Patent Document 1, and a racemate of a compound represented by the formula (1), (2), (3) or (4) is mainly used. To obtain a mixture.
[0012]
Embedded image
Reaction process diagram A
Figure 2004231519
The ratio of the racemic form of cananone {(1) :( 2) = 1: 1} and the racemic form of epicharanone {(3) :( 4) = 1: 1} obtained by the above reaction is as follows: Depending on the reaction conditions and the like, for example, {(1) + (2)}: {(3) + (4)} = 75:25 to 95: 5, and is expressed by Expressions (3) and (4). Epicaranone is difficult to form an inclusion compound with the optically active tartaric acid derivative (host compound) used in the present invention, and thus forms an inclusion compound between the optically active tartaric acid derivative and the optically active caranone (guest compound). -For isolation, it does not matter if epicaranone coexists, that is, the chemical purity of caranone is not particularly limited.
Furthermore, even if impurities other than epicaranone are present, the inclusion of the guest compound, caranone, and the host compound in the present invention takes precedence, so there is no problem. Is possible.
The optical purity of the guest compound of the present invention, caranone, may be any purity from the above-mentioned racemate to an excess of one enantiomer. For example, if one of the enantiomers is excessive, the clathrate is first formed by using an optically active host compound that forms an clathrate with the excess isomer. It can be produced by increasing the optical purity of the isomer.
As another example of a mixture containing (+)-caranone or (-)-caranone, (+)-dihydrocaranone or (-)-dihydrocaranone is synthesized by dehydrogenation with DDQ. There are examples. In these cases, the present invention can be applied without any problem.
Next, the optically active tartaric acid derivative as the host compound used in the present invention is not particularly limited as long as it forms an inclusion compound with (+)-caranone or (−)-caranone. However, among them, optically active tartaric acid derivatives represented by the following formulas (11a), (11b), (12a) or (12b) are preferred because of their resolving power, availability, and ease of handling. preferable.
Embedded image
Figure 2004231519
(Wherein, R 1 and R 2 are the same or different and represent a hydrogen atom, a lower alkyl group having 1 to 6 carbon atoms or a phenyl group. Ar is a phenyl group, a lower alkylated phenyl group, a halogenated phenyl group, or a naphthyl group) Represents a group, n = 2 to 7.)
Among them, in the above formula, R 1 and R 2 represent the same or different methyl group or ethyl group, Ar represents a phenyl group, tolyl group or naphthyl group, and a tartaric acid derivative wherein n = 4 or 5 is preferable. .
More specifically, in the above (11a) or (11b), when R 1 and R 2 are a methyl group, Ar is a phenyl group, a tolyl group or a naphthyl group, and when R 1 and R 2 are an ethyl group. , Ar represents a phenyl group, a tolyl group, or a naphthyl group. When R 1 is a methyl group and R 2 is an ethyl group, Ar represents a phenyl group, a tolyl group, or a naphthyl group. Similarly, in the above (12a) or (12b), when n = 4, Ar is a phenyl group, a tolyl group, or a naphthyl group, and when n = 5, Ar is a phenyl group, a tolyl group, or a naphthyl group. .
Further, in the above (11a) or (11b), R 1 and R 2 are a methyl group or an ethyl group, Ar is a phenyl group or a tolyl group, and R 1 is a methyl group, R 2 is an ethyl group, and Ar is Tartaric acid derivatives which are phenyl or tolyl groups are preferred. Similarly, in the above (12a) or (12b), a tartaric acid derivative in which n = 4 or 5 and Ar is a phenyl group or a tolyl group is preferable.
The optically active tartaric acid derivatives represented by the above formulas (11a) to (12b) are known, can be easily synthesized from optically active tartaric acid, and can be recovered after optical resolution and reused.
In the present invention, in order to form an inclusion compound of an optically active caranone represented by the formula (1) or (2) present in the mixture and an optically active tartaric acid derivative, any known compound can be used. A method may be used. For example, (+)-or (-)-caranone and the optically active tartaric acid derivative present in the above mixture are dissolved in an appropriate solvent, and then cooled or gradually added with a solvent having low solubility to form a clathrate. Compound crystals can be obtained. Further, after dissolving with an appropriate solvent, the solvent can be distilled off under reduced pressure for crystallization.
The molar ratio of (+) or (−)-caranone present in the mixture to the optically active tartaric acid derivative used in the present invention is preferably 3: 1 to 1: 2.
A method for isolating the precipitated clathrate compound crystals from the mixture can be obtained, for example, by filtering the mixture under reduced pressure or normal pressure and separating the crystals and the filtrate.
The method of obtaining the optically active caranone from the clathrate compound may be a method of separation by heating or any other method. For example, a method in which an inclusion compound is directly distilled under reduced pressure to separate optically active caranone and an optically active tartaric acid derivative, and methanol is added to the inclusion compound to form an inclusion compound of methanol and an optically active tartaric acid derivative. There are a method of separating the optically active caranone and a method of separating the optically active caranone and the optically active tartaric acid derivative by subjecting the clathrate compound to column chromatography.
Further, a mixture mainly composed of a racemate such as the compounds represented by the formulas (1), (2), (3) and (4) obtained in the above reaction scheme A is prepared. When the present invention is applied, the recovered mother liquor after obtaining (+)-or (-)-caranone mainly contains any remaining enantiomer of caranone and 4- and 5-epicaranone. It is. To obtain the enantiomer of the remaining cananone from this, an inclusion compound may be formed using the enantiomer of the optically active tartaric acid derivative used previously, and the same operation as described above may be performed.
The clathrate compound is formed of (+)-caranone and (+)-tartaric acid derivative, and similarly formed of (-)-caranone and (-)-tartaric acid derivative. .
[0020]
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. The purity of the products in the examples was measured by gas chromatography (GC) and a polarimeter. The conditions are as follows.
GC: HP5890 gas chromatograph (Hewlett-Packard)
Column: DB-1 (0.25 mm x 60 m) (manufactured by J & W)
Detector: FID
Optical rotation: JASCO DIP-370 polarimeter (manufactured by JASCO Corporation)
Example 1 Preparation of (+)-Caranone A (S, S)-(+)-form (2.47 g, 5.3 mmol) of a tartaric acid derivative represented by the following formula (13): , A mixture of the compounds represented by the formulas (1), (2), (3) and (4) synthesized according to the method described in the literature shown in the reaction scheme A {2.3 g, 10.6 mmol, chemical purity of (1) + (2): 78.2%; chemical purity of (3) + (4): 8.3%; and 10.4% of unreacted (10) Was dissolved in 50 g of 10% ethyl acetate / n-hexane and allowed to stand at room temperature to precipitate inclusion crystals. The mixture was filtered by suction to obtain 3.12 g of a white clathrate crystal. The mother liquor was concentrated to give 1.59 g of recovered mother liquor. The obtained clathrate crystals were passed through a silica gel column (SiO 2 : 35 g), and 0.72 g of (+)-caranone, 20% ethyl acetate / n was distilled from a 5% ethyl acetate / n-hexane distillate. -2.30 g of tartaric acid derivative (13) was obtained from the hexane distillation section. (+)-Calanone yield: 81%
[0022]
Embedded image
Figure 2004231519
The chemical purity of the obtained (+)-caranone by capillary GC analysis was 93.7%, and showed an optical rotation [α] D 23 + 259.8 ° (c 1.0, CHCl 3 ). This optical rotation value is larger than the value [α] D 29 + 179.2 ° described in Patent Document 1, and it can be said that the optical purity is high.
The mother liquor (1.59 g) recovered above was subjected to silica gel column chromatography to recover 1.48 g of oil and 0.10 g of (+)-tartaric acid derivative (13). The amount of the tartaric acid derivative recovered was 2.4 g in total, with a recovery of 97%.
Example 2 Preparation of (-)-caranone The oil part (1.47 g) recovered in Example 1 and (R, R)-(-) of a tartaric acid derivative represented by the following formula (14) Using the () -form (2.44 g, 5.2 mmol), the same operation as in Example 1 was carried out to obtain 0.70 g of (−)-caranone, and 2.35 g of the tartaric acid derivative Was recovered. (-)-Caranone yield: 77%; (-)-tartaric acid derivative (14) recovery: 96%
[0026]
Embedded image
Figure 2004231519
The chemical purity of the obtained (−)-caranone by capillary GC analysis was 92.9%, and showed an optical rotation [α] D 23 −254.2 ° (c 1.0, CHCl 3 ). .
[0028]
Example 3 Preparation of (+)-caranone A mixture containing (±) -caranone having the same purity as that used in Example 1 (2.1 g, 9.7 mmol) and the following formula (15) Using the (S, S)-(+)-form (2.43 g, 4.8 mmol) of the tartaric acid derivative represented by the formula (1), 0.69 g of tartaric acid derivative was obtained in the same manner as in Example 1. (+)-Caranone was obtained, and 2.38 g of the (+)-tartaric acid derivative (15) was recovered.
The obtained (+)-caranone had a chemical purity of 93.3% by capillary GC analysis, and showed an optical rotation [α] D 23 + 254.1 ° (c 1.00, CHCl 3 ).
[0030]
Embedded image
Figure 2004231519
According to the present invention, both enantiomers of optically active caranone, which have been difficult to obtain conventionally, can be obtained by a simple operation in a high yield and at a high chemical and optical purity. In addition, the optically active tartaric acid derivative used in the present invention is easily available and can be recovered almost quantitatively and used repeatedly, so that the production cost can be reduced. In addition, since the obtained two enantiomers of Caranone are compounds having different excellent flavor chemical properties, they can be provided as promising flavor substances for flavoring in cosmetics and foods and drinks in the future. .

Claims (1)

式(1)
Figure 2004231519
で表される(+)−キャラノンおよび/または式(2)
Figure 2004231519
で表される(−)−キャラノンを含む混合物と,光学活性な酒石酸誘導体とを混合して,式(1)または式(2)で表されるキャラノンの光学活性体と光学活性な酒石酸誘導体との包接化合物を形成させ,この包接化合物から式(1)または式(2)で表されるキャラノンの光学活性体を分離して得ることを特徴とする,光学活性なキャラノンの製造方法。
Equation (1)
Figure 2004231519
(+)-Caranone and / or formula (2)
Figure 2004231519
A mixture containing (−)-caranone represented by the formula: and an optically active tartaric acid derivative are mixed to form an optically active form of the caranone represented by the formula (1) or (2) and an optically active tartaric acid. Forming an clathrate with a derivative, and separating the clathrate from the optically active caranone represented by the formula (1) or (2) to obtain an optically active caranone. Manufacturing method.
JP2003018130A 2003-01-28 2003-01-28 Method for preparing optically active karanone Abandoned JP2004231519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003018130A JP2004231519A (en) 2003-01-28 2003-01-28 Method for preparing optically active karanone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003018130A JP2004231519A (en) 2003-01-28 2003-01-28 Method for preparing optically active karanone

Publications (1)

Publication Number Publication Date
JP2004231519A true JP2004231519A (en) 2004-08-19

Family

ID=32948344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003018130A Abandoned JP2004231519A (en) 2003-01-28 2003-01-28 Method for preparing optically active karanone

Country Status (1)

Country Link
JP (1) JP2004231519A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103858689A (en) * 2014-04-04 2014-06-18 广东国方医药科技有限公司 Manual agilawood producing method
CN108125935A (en) * 2017-12-15 2018-06-08 中国医学科学院药用植物研究所海南分所 A kind of Lignum Aquilariae Resinatum extract with antiasthmatic effect, prescription and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103858689A (en) * 2014-04-04 2014-06-18 广东国方医药科技有限公司 Manual agilawood producing method
CN108125935A (en) * 2017-12-15 2018-06-08 中国医学科学院药用植物研究所海南分所 A kind of Lignum Aquilariae Resinatum extract with antiasthmatic effect, prescription and preparation method thereof

Similar Documents

Publication Publication Date Title
CN101528652B (en) Organic compounds
US7459587B2 (en) Process for purifying menthol
JP2014523415A (en) Hydrogenation of ketones having at least carbon-carbon double bonds at the γ and δ positions
Singh et al. Synthesis of enantiomerically pure all cis-2, 3, 6-trisubstituted piperidine: a silicon mediated total synthesis of (+)-carpamic acid
JP2004536148A (en) Iso-β-bisabolol as aroma and odorant
JP2004231519A (en) Method for preparing optically active karanone
TW200909406A (en) Process for enantioselectively preparing optically active 4-hydroxy-2,6,6-trimethylcyclohex-2-enone derivatives
JP4122389B2 (en) Process for producing optically active dihydrocaranone
JP2872800B2 (en) Optically active biphenyl derivative and optical resolution method
JP4472262B2 (en) Process for producing wine lactone and its intermediate and its application
WO2007032375A1 (en) PROCESS FOR PRODUCTION OF OPTICALLY ACTIVE α-IONONE
JP3780218B2 (en) Novel chiral copper catalyst and method for producing N-acylated amino acid derivative using the same
EP3280704B1 (en) Method for synthesizing a precursor of a single dairy-lactone isomer
JP2001348353A (en) (1s,6r)-2,2,6-trimethylcyclohexyl methyl ketone and/or (1r,6 s)-2,2,6-trimethylcyclohexyl methyl ketone, method for producing the same, and perfume composition containing the same
EP0298695B1 (en) Tartaric acid amide derivative and method of producing the same
JP2001031608A (en) OPTICAL ACTIVE, 1-(p-MENTHA-2&#39;-YL)ETHANOL, PERFUME COMPRISING THE SAME, AS ACTIVE INGREDIENT AND PRODUCTION OF THE COMPOUND
JP2002226415A (en) (+)-4-(2,6,6-trimethyl-1-cyclohexenyl)butan-2-ol, method for producing the same and perfume composition comprising the same
JP2007238508A (en) Method for producing geranyl geraniol
JP2005170822A (en) Method for producing muscone
JP2005132815A (en) Optically active sulfonic acid compound
JPS60500133A (en) Method for producing cycloaddition compounds
JP2002069026A (en) Method for manufacturing (e)-3-methyl-2- cyclopentadecenone
JP3012370B2 (en) Isomer separation method
JP2010083894A (en) Production method and application for wine lactone and intermediate thereof
JPS59216841A (en) Agent for optical resolution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060123

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20070808