JP2004230736A - Manufacturing method of wooden formed board - Google Patents

Manufacturing method of wooden formed board Download PDF

Info

Publication number
JP2004230736A
JP2004230736A JP2003022751A JP2003022751A JP2004230736A JP 2004230736 A JP2004230736 A JP 2004230736A JP 2003022751 A JP2003022751 A JP 2003022751A JP 2003022751 A JP2003022751 A JP 2003022751A JP 2004230736 A JP2004230736 A JP 2004230736A
Authority
JP
Japan
Prior art keywords
resin
heating
molding
board
wooden
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003022751A
Other languages
Japanese (ja)
Inventor
Kenichi Fukushima
健一 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF Dispersion Co Ltd
Original Assignee
BASF Dispersion Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF Dispersion Co Ltd filed Critical BASF Dispersion Co Ltd
Priority to JP2003022751A priority Critical patent/JP2004230736A/en
Publication of JP2004230736A publication Critical patent/JP2004230736A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Dry Formation Of Fiberboard And The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a wooden formed board employing a thermal crosslinking aqueous acrylic resin therein, in which drastic reduction in forming time is achieved and flexural strength, wet flexural strength and water-absorbing swelling coefficient of a board are improved. <P>SOLUTION: This wooden formed board is formed by uniformly blending (A) a polymer obtained through radical polymerization, the 5-100 wt.% of which comprises an ethylenic unsaturated acid anhydride or an ethylenic unsaturated dicarboxylic acid, the carboxylic acid group of which can form an acid anhydride group and (B) 1-50 pts.wt. (in terms of resin) of a thermal crosslinking aqueous acrylic resin as a forming adhesive which is an alkyl amine having at least two hydroxy groups acting as crosslinking component with 100 pts. wt. of a wooden forming board stock under the condition that heating plate heating and high frequency induction heating or microwave heating are employed in combination for hot press forming after the blending. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は木質成形板とそれを製造する方法に関し、詳しくは熱架橋水性アクリル樹脂を接着剤としてホットプレス成形するのに伝熱盤加熱と高周波加熱あるいはマイクロ波加熱を併用することに係る。
【0002】
【従来の技術】
木質成形板は原材料チップ、繊維に接着剤をもちいて貼り合わせて製造する方法が一般的で、木質繊維を用いて成形するMDF板・ハードボード、木質チップを用いて成形するパーティクルボード、薄板を縦・横に積層して貼り合わせる積層合板、あるいはもう少し厚めの材を貼り合わせた集成材など各種成形板または貼り合わせ板がある。これら木質成形板は、通常接着剤を用いて各種成形機で加圧・加熱成形される。そのなかで、多く生産されているのは木質チップをもちいたパーティクルボードである。このパーティクルボードの成形用接着剤として、一般に水溶性の尿素、メラミン樹脂、フェノール樹脂のようなアミノ系熱硬化樹脂が単体あるいは複数で混合して用いられている。しかし、これらの接着用樹脂は接着剤から放出される遊離ホルマリンのガスや刺激臭が作業上や使用上の健康面で問題となり、屋内でのシックハウス症の原因の一つにあげられる。そこで、近年、ホルマリン臭を発生しないイソシアネート系樹脂接着剤やポリビニルアルコールにイソシアネート系樹脂をブレンドした接着剤などを用いて木質成形板を製造する方法が用いられるようになってきている。
【0003】
パーティクルボードを成形するのに接着剤樹脂を使用せず木質チップをあらかじめ高温・高圧の蒸気で処理しておいてその後圧縮成形する工程と高周波加熱による固定化する工程を行なうことで木質成形体を得ている(例えば特許文献1参照)。木質チップの成形に熱圧成形を行ない、接着剤として熱架橋水性アクリル樹脂を用いて成形している(例えば特許文献2参照)。パーティクルボードの成形で木質チップにフェノール樹脂を接着剤として用い、高周波加熱による成形を行なっている(例えば非特許文献1参照)。同様に木質チップにフェノール樹脂を接着剤として用い、高周波予備加熱を行ない、その後ただちに熱圧成形を行なっている(例えば非特許文献2参照)。
【0004】
【特許文献1】
特開2002―192508号公報、岐セン株式会社/山本ビニター株式会社、第1〜3頁、0008〜0011
【特許文献2】
特表2000―507279号公報、ビーエーエスエフアクチェンゲゼルシャフト、第22〜23頁、実施例
【非特許文献1】
高周波加熱によるパーティクルボードの成板(第1報)、黄耀富、森稔、木材学会誌Vol.22、No.1、第15〜16頁
【非特許文献2】
高周波加熱によるパーティクルボードの成板(第2報)、黄耀富、森稔、木材学会誌Vol.22、No.9、第505〜506頁
【0005】
【発明が解決しようとする課題】
反面、イソシアネート樹脂はアミノ系硬化樹脂に比べ、硬化が遅く、硬化の途中では熱可塑的性質を有しているので、成形時にホットプレス機の熱盤に樹脂が熱融着して、成形作業性が劣る問題点があった。
【0006】
この対策として、表層と芯層の積層体にして芯層にイソシアネート系樹脂を用い、表層は熱盤への付着を防止するために、イソシアネート系樹脂にワックスを添加したり、ドデシルベンゼンスルホン酸Na、脂肪酸塩、などの界面活性剤やステアリン酸カルシウム、ステアリン酸アミドなどの滑剤等を添加したり、また熱盤側に離型シリコンなどの付着防止剤を塗布して、熱盤へ付着するのを防止しているが、各組み合わせともにコストアップなどで完全に対応できているわけではない。また、水溶性フェノール樹脂に尿素などを添加して発生ホルムアルデヒド量を低減させたものを、表層部に組み合わせたりして熱盤への付着を防止している方法もあるが、ホルムアルデヒドの発生を完全に無くすことはできない。
【0007】
イソシアネート系樹脂を使用する上で、この樹脂の特性上、水分との反応があるので、取り扱いに十分留意する必要がある。特に夏場、開放系に放置すると大気中の水分により、液の粘度上昇を引き起こしたりして、塗布する時の作業に苦労することが多い。また安全面でも保護マスク、保護面、排気ダクトの設置など気密性の高い安全対策が必要となり、作業環境にも注意を払う必要がある。
【0008】
一方、熱架橋水性アクリル樹脂をもちいてホルムアルデヒドを放出させない木質成形板を成形する方法(特表2000−507279の実施例で示されている)が報告されているが、熱プレスだけによる成形でその成形時間は10分間を必要とし、また成形体の厚みも6〜8mmと薄く、その成形条件における木質チップボードの吸水膨張率は25%以上であり、実用性能を具備しているとはいえない。また成形時間も従来のフェノール樹脂を用いた成形時間の3〜5分間程度に比べて2〜3倍長く、生産性に優れているとはいえない。
【0009】
【課題を解決するための手段】
我々は熱架橋水性アクリル樹脂をもちいた木質成形板の成形法を各種検討した結果、従来の熱プレスによる伝熱盤加熱に高周波誘電加熱あるいはマイクロ波加熱を併用して成形することで、40mmまでの厚みのボードの成形と成形時間の大幅な短縮、曲げ強度、湿潤曲げ強度、ならびに吸水膨張率の向上を得ることができた。
【0010】
ここに用いる樹脂は以下のA)とB)とからなる熱架橋水性アクリル樹脂であり、A)ポリマーの5〜100重量%がエチレン性不飽和酸無水物またはカルボン酸基が酸無水物基を形成することができるエチレン性不飽和ジカルボン酸からなるラジカル重合により得られたポリマー、及びB)少なくとも2つのヒドロキシル基を有するアルキルアミンで、そのヒドロキシ基を架橋成分とするものである。そのポリマーA)のカルボキシル基およびアルキルアミンB)のヒドロキシル基のモル比は20:1〜1:1である。好ましくはその比率は5:1〜1.7:1の割合が有効である。
【0011】
該ポリマーは5〜100重量%、好ましくは10〜40重量%がエチレン性不飽和の酸無水物またはカルボン酸基が酸無水物を形成することができるエチレン性不飽和ジカルボン酸(以下ではモノマーa)と呼ぶ)から構成されているポリマーA)を含有する。酸無水物としてはジカルボン酸無水物がよい。適切なエチレン性不飽和ジカルボン酸は一般に隣接した炭素原子にカルボン酸基を有するものである。カルボン酸基はそれらの塩の形で存在していてもよい。
【0012】
モノマーa)として好ましくは、マレイン酸、無水マレイン酸、イタコン酸、1,2,3,6−テトラヒドロフタル酸、1,2,3,6−テトラヒドロフタル酸無水物、それらのアルカリ金属塩およびアンモニウム塩またはそれらの混合物である。そのなかでマレイン酸および無水マレイン酸は好ましい。
【0013】
モノマーa)以外に、ポリマーA)はさらにモノマーb)を含有していてもよい。モノマーb)はモノエチレン性不飽和のC〜C10−モノカルボン酸(モノマーb1)、直鎖状の1−オレフィン、分岐鎖状の1−オレフィンまたは、環状オレフィン(モノマーb2)、アルキル基中に1〜40個の炭素原子を有するビニル−およびアリルアルキルエーテル(その際該アルキル基はさらに別の置換基、例えば、ヒドロキシル基、アミノ−またはジアルキルアミノ基または一つ以上のアルコキシレート基を有していてもよい)(モノマーb3)、アクリルアミドおよびアルキル置換されたアクリルアミド(モノマーb4)、スルホ基含有モノマー(モノマーb5)、アクリル酸、メタクリル酸またはマレイン酸のC〜C−アルキルエステルまたはC〜C−ヒドロキシアルキルエステルまたは2〜50モルのエチレンオキシド、プロピレンオキシド、ブチレンオキシド、またはこれらの混合物でアルコキシル化したC〜C18−アルコールとアクリル酸、メタクリル酸またはマレイン酸とのエステル(モノマーb6)、アルキルアミノアルキル(メタ)アクリレートまたはアルキルアミノアルキル(メタ)アクリルアミドまたはその四級化生成物(モノマーb7)、C〜C30−モノカルボン酸のビニルエステルおよびアリルエステル(モノマーb8)、更なる(モノマーb9)はN−ビニルホルムアミド、N−ビニル−N−メチルホルムアミド、スチレン、α−メチルスチレン、3−メチルスチレン、ブタジエン、N−ビニルピロリドン、N−ビニルイミダゾール、1−ビニル−2−メチルイミダゾール、N−ビニルカプロラクタム、アクリロニトリル、メタクリロニトリル、アリルアルコール、2−ビニルピリジン、4−ビニルピリジン、ジアリルジメチルアンモニウム塩化物、ビニリデン塩化物、塩化ビニル、アクロレイン、メタクロレインおよびビニルカルバゾールまたはそれらの混合物である。
【0014】
該ポリマーはモノマーa)以外に上記モノマーb1)〜b9)を0〜95重量%含有していてもよい。好ましくは、該ポリマーはモノマーa)以外にさらにモノマーb1)〜b9)を60〜90重量%を含有する。
【0015】
成分Bは架橋剤として少なくとも2つのヒドロキシル基を有するアルキルアミンで、たとえばジエタノールアミン、トリエタノールアミン、ジイソプロパノールアミン、トリイソプロパノールアミン、メチルジエタノールアミン、ブチルジエタノールアミンおよびメチルジイソプロパノールアミンが挙げられ、そのうち特にトリエタノールアミンが好ましい。ホルムアルデヒド不含のバインダーを得るにはポリマーA成分)のカルボキシル基とおよび成分B)のヒドロキシル基のモル比は20:1〜1:1である。好ましくはその比率は5:1〜1.7:1の割合でポリマー成分A)および成分B)を含有する。(酸無水物基はこの場合2つのカルボキシル基として計算する。)さらには水性結合剤としてリン含有反応促進剤を0.3重量%未満含有することもある。リン含有反応促進剤としては、アルカリ金属ハイポホスファイト、ポリフォスファイト、リン酸ニ水素、ポリリン酸、次亜リン酸、リン酸、アルキルホスフィン酸およびこれらの塩および酸のオリゴマーもしくはポリマーが挙げられる。
【0016】
木質成形板は原料の種類、木質板の種類、厚み、大きさ、成形方法など広範な分野に渡っていて、それぞれ要求性能が異なる。そのためには、本熱架橋水性アクリル樹脂に各種水溶性樹脂、あるいは水性樹脂エマルジョンを1種類あるいは1種類以上をブレンドしてそれぞれの要求性能に応じたバインダーを提供することができる。熱架橋水性樹脂100重量%に対する水溶性樹脂あるいは水性エマルジョンの比率は10〜90重量%であるが、熱架橋樹脂の性能を落とさない範囲で10〜50重量%の添加が好ましい。また、水分散タイプのエポキシ樹脂や2価のアルカリ金属イオンあるいは、燐酸・ポリ燐酸などのリン含有反応促進剤などの架橋剤を添加することもある。この熱架橋水性アクリル樹脂を用いてホットプレスすることで、熱盤に接着することなく、また成形時、成形後ともにホルムアルデヒドを発生せず、また異臭の発生のない木質板を得る方法である。
【0017】
【発明の実施の形態】
以下、発明の詳細を木質板の中でパーティクルボードを一例として具体的な方法を述べる。この熱架橋水性アクリル樹脂の木質チップに対する混合比率は、チップ100重量部に対し1〜50重量部(樹脂固形分換算)であり、好ましくは3〜20重量部である。1重量部以下であると、樹脂が接着剤として作用せず、成形後の強度が弱く、製品として実用上問題が生じる。また50重量部以上であると、水分量の増加による生産サイクルの増加と製造コストの増加で経済性が劣ることになる。
【0018】
まず木質チップに熱架橋水性アクリル樹脂を混合する。チップに混合する方法としてはスプレーによる噴霧塗布法がチップに樹脂が最も均一に分散される。スプレーの方法はエアー同伴式、あるいはエアーレス法のどちらでもよく、粒子を微粒化できるものであればどのようなタイプでもよい。熱架橋水性アクリル樹脂のスプレー化は液の粘度が低いほどミクロ粒子になりやすいが、水希釈をして粘度を下げる場合、水分量が増えると、水分を除去するために成形加熱時のエネルギーが増大となり、また時間も費やすことになる。また、水分量が多いと成形後にボードを取りだした後にブリスター(膨れ)が発生することがある。次にこの熱架橋水性アクリル樹脂と混合した木質チップを成形型にフォーミング成板し、そののちホットプレスで所定の厚みに加熱・加圧成形する。
【0019】
成形に要する加熱熱源は上下両面からの伝熱盤であり、150〜250℃の温度をかける。好ましくは熱架橋樹脂が架橋に要する温度と、生産性の面から温度を設定するが、目安としては15mmの厚みで成形・加圧時間を3分間とすると、180〜220℃の設定温度が適している。加熱・成形時間(成形サイクル)は生産性から極力短い方が良いが、厚みが厚いほど、水分量が多いほど、成形温度が低いほど長くとる必要がある。熱架橋水性アクリル樹脂は熱履歴により樹脂が硬化して耐水性や強度などの性能が発現するシステムであるが、成形サイクルを短くとると、その分子間架橋に要する熱量が不足して架橋(硬化)不足となり、要求性能が達成されない。
【0020】
また、逆に成形時間を長くとると、樹脂の架橋は十分となるが、木材の焼けが発生して、劣化による強度の低下と着色が起こる。この対策として、発明者は高周波加熱またはマイクロ波加熱を熱盤加熱と併用することで加熱・成形時間を短縮することができ、これらの問題を解決することができた。
【0021】
伝熱盤加熱と高周波誘電加熱を併用するには、ホットプレスの伝熱盤間に電極を設け、高周波を発生するユニットを接続して伝熱盤加熱と同時に高周波がかけられるように構成する。その伝熱盤間に混合済みの木質チップ+樹脂の混合物を挟み、所定の厚みに圧力をかけセットする。この状態で温度設定された伝熱盤から熱伝導によりウッドチップの温度が上昇する。次に遅れることなく、高周波数を発信させて成形チップ間の熱架橋水性アクリル樹脂の水分あるいは、木質チップ内部に介在する水分を分子間発熱させて成形チップに塗布された樹脂とチップの両方の材料温度の温度上昇を加速させる。高周波による加熱を併用することで材料内部の温度は急速に加熱され、また表面からは伝熱盤からの熱量で急速に加熱される。この併用加熱方式を用いると、熱盤のみでこの樹脂を用いて成形していた時間が、厚みにもよるが、従来10〜25分かかっていたものが、3〜5分となり約1/3〜1/5に短縮され、成形効率は飛躍的に向上した。また、加熱・成形時間が短縮されることでチップの焼け現象も改善された。
【0022】
高周波加熱での発熱量は単位体積・単位時間当たりに誘電体(加熱材料)によって吸収される、高周波エネルギーの量であるが、電界の強さ・周波数が一定の場合は材料固有の比誘電率εr ×誘電正接tanδの値が大きいものが発熱量が大きい。熱架橋水性アクリル樹脂の場合、水は比誘電率εr=78、誘電正接tanδ=0.005であるので、εr ・tanδ=0.39である。アクリル樹脂は比誘電率εr=2.9、誘電正接tanδ=0.02であるので、εr ・tanδ=0.059であり、従って水の部分に大部分のエネルギーが吸収され急激に温度上昇する。それに伴って樹脂が加熱され架橋(硬化)反応が進行することになる。この場合、水の部分に食塩・電解イオンなどの電解質を微量に存在させておくと発熱速度が加速されて有効である。
【0023】
成形されたパーティクルボードを23℃の室内で2日養生した後、電動ノコギリで測定用サンプルに切削加工して、曲げ強度・剥離強度・吸水膨張率などのJIS法における性能試験で測定した結果、実用上の使用を満足させる性能が得られた。またこのボードは成形時、使用時においてホルマリンを発生しない。以下、実施例でもって詳細に説明する。
【0024】
【実施例】
実施例1、まず、回転式混合装置に成形用木質チップ(以下チップと呼ぶ)細粒・表層用を500g添加し、回転装置を起動させてチップを攪拌流動状態にする。次に熱架橋水性アクリル樹脂(BASF社製アクロデュア950L 成分A)アクリル酸/無水マレイン酸80/20をラジカル開始剤として過酸化水素を用いて110℃で重合された共重合体 分子量16万 88重量%に、成分B)トリエタノールアミンを12重量%混合した水溶液。樹脂分濃度44.8%、液粘度1,800mPas、pH3.5)を樹脂濃度30%になるよう水希釈して、167g(樹脂分換算50gでチップに対し10wt%)をスプレーで均一に塗布した。塗布終了後、約5分間そのまま混合攪拌した。次に、芯層用にチップ粗粒500gを同様に混合装置に添加して30%濃度のアクロデュア950L134g(樹脂分換算40gでチップに対し8wt%)をスプレーで均一に塗布した。
【0025】
均一に混合された表層用チップ500gのうち158gを25cm×25cmの成形枠に充填して、型枠よりやや小さいサイズの押さえ板で上部から仮押さえをする。その上に混合された芯層用チップ473gを充填して厚みが均一になるように仮押さえをする。さらにその上に混合された表層用チップ158gを厚みが均一になるように充填して、押さえ板で仮押さえをする。この仮成型するときに芯層用チップの厚みの中心部に熱伝対を装填しておき、材料の実際の温度の変化を測定出来るようにセットをした(図1)。この成形枠に充填したそれぞれのチップを成形プレス(温度かけず)で押さえ板に圧力をかけて仮成形する。70mmの厚みを30mmまで圧縮しておく。次に成形枠を抜き、チップを温度200℃に設定した高周波発生器付熱プレス機(富士電波工機製FDY−620:出力6kw)に圧力30kg/cmをかけて、チップを15mmの厚みまで加熱・加圧成形をした。
【0026】
同時に、高周波加熱の出力の設定を6500V、13MHz、1mAにして、チップに高周波をかけた。最初室温19℃を示していた温度指示は、1分30秒後に200℃を越えた(図2)。材料の内部温度を均一に保つため、出力を70%に下げて0.7mAとし、材料温度を200℃近辺に保った。3分を越えたところで0.5mAに設定を落としてこのまま2分間保持した。5分経過後、熱プレスの圧力を開放して、成形サンプルを取り出した。
【0027】
できたサンプルの寸法を測定したところ、厚み14.86mm、大きさ24.91mm×24.95mmであり、成形体の密度は0.71g/cmであった。JISA5908の各項目の評価法に従い物性値の評価をおこなったところ、基本的な性能をクリアできた。特に加熱熱盤だけの成形板に比べ、曲げ強度と吸水膨張率に予測できない顕著な結果がみられた(第1表)。
【0028】
実施例2は同様の条件で加熱時間を5分から8分に3分間延長したもので、加熱時間を延長することで曲げ強度の向上と吸水膨張率の減少が確認された。実施例3、4は成形板の厚みを40mmにしたときのそれぞれの成形板の性能である。厚みを15mmから40mmに上げても成形時間は5分で樹脂の架橋は終了しており、内温も十分に上昇していることが確認された。
【0029】
比較例1はアクロデュア950Lを用いた熱盤加熱だけの成形板で、実施例1と全く同一条件で作成した。成形板の中心部のチップ温度を検出したところ、5分では100℃にしか上昇しておらず、熱架橋水性アクリル樹脂の架橋温度域ではなかった。そのため、バインダー樹脂は硬化不足で耐水性(湿潤強度・吸水膨張率)が得られていない。比較例2は従来からのフェノール樹脂を用いて成形したもので、成形板の物性値は問題ないが、成形直後の板をサンプリングし、JAS普通合板のデシケーター法でホルムアルデヒドの放出量を測定したところ、0.7mg/Lであった。また、イソシアネート樹脂を用いた成形も同様の成形条件で行なった。
【0030】
以上実施例1)〜4)は従来の熱盤のみの成形に高周波加熱を併用したもので、実施例1)と比較例1)の同一樹脂による同一厚みの成形板で比べると、成形時間は1/2に短縮され、曲げ強度は6.90N/mmから11.84N/mmと、約2倍に上がった。特に飛躍的に向上したのは、湿潤後の曲げ強度であり、1.94N/mmから6.40N/mmになり、吸水膨張率も27.4%から10.09%と減少したことが確認された。熱架橋水性アクリル樹脂に熱が十分に伝わり、それにより架橋が十分に達成できていることになる。実施例2)では時間を5分から8分に延長したものであるが、3分延長しても大幅な物性値の向上は見られず、ほぼ5分の加熱時間で架橋は終了していることが確認された。また、実施例3)、4)では成形板の厚みを15mmから40mmに上げて効果を確認したが、厚みを上げても、吸水膨張率は実施例1)、2)と同一加熱条件でも10%前後を示し、熱盤と高周波加熱を併用することの優位性が確認された。
【0031】
一方、従来の樹脂との比較において、比較例2)はフェノール樹脂を実施例1)とほぼ同一量添加をして熱盤のみで成形したものである。実施例1)の曲げ強度、湿潤曲げ強度、吸水膨張率に比べてやや性能が上回るものの、成形直後のホルムアルデヒド発生量の測定において0.7mg/Lの量が確認され、実用面で屋内において人体に影響を与える数値である。また、イソシアネート樹脂の熱盤のみの成形では、成形時間終了後のサンプル取り出しで樹脂が熱盤にくっつき、成形体の一部が剥離・欠損して製品としての状態が得られなかった。
【0032】
以下、本試験の評価に用いたJIS測定法を記述する。
【0033】
曲げ強さ試験 (N/mm) JIS 5908
厚さ15mmまたは40mm、幅50mm×長さ(厚さの15倍かつ150mm以上)のテストピースを成形板の縦及び横方向各1枚作成する。インストロン試験機の3点圧縮・曲げ試験冶具を装着し、試験片の表面から平均変形速度10mm/minの荷重を加え、その最大荷重を(P)を測定して次の式にて求める。
【0034】
曲げ強さ(N/mm)=3PL/2bt
P:最大荷重(N)
L:スパン(mm)
b:試験片の幅(mm)
t:試験片の厚さ(mm)
湿潤時曲げ強さ試験
試験片を70℃±3℃の温水中に2時間浸せきし、更に常温水中に1時間浸せきした後、濡れたままの状態で上記曲げ強さ試験を行なう。
【0035】
吸水厚さ膨張率試験
試験片:50mm×50mm×厚み(15mmまたは40mm)
あらかじめ試験片の中央部の厚さを0.05mmの精度まで測定し、これを20±1℃の水中に水面下約3mmに水平におき、24時間浸せきした後とりだし、水分をふき取り厚さを測定する。
【0036】
吸水厚さ膨張率(%)=t2−t1/t1×100
t1:吸水前の厚さ(mm)
t2:吸水後の暑さ(mm)
ホルムアルデヒド発生量の測定
JAS 普通合板のホルムアルデヒド放散量法に準じた。成形した15mm厚みのサンプルを150mm×150mmのサイズに10枚作成する。JIS R 3503に規定する大きさ240mmのデシケーターの底部に300mlの蒸留水を入れ、サンプルが蒸留水と接触しない冶具にサンプルをとりつけ、20℃で24時間密閉放置する。ホルムアルデヒドを蒸留水に吸収させて試料溶液とした。試料溶液中のホルムアルデヒドの濃度はアセチルアセトン法により、分光光度計を用いて比色定量した。
【0037】

Figure 2004230736
【0038】
【表1】
Figure 2004230736
【0039】
使用樹脂内容
アクロデュア950L:BASF社製 熱架橋水性アクリル樹脂 樹脂分濃度44.8%
フェノール樹脂:A社製 パーティクルボード用レゾール型フェノール樹脂 樹脂分濃度50.1%
イソシアネート樹脂:B社製 自己乳化型ポリメチレンポリフェニルポリイソシアネートNCO基含量30g/100g
【図面の簡単な説明】
【図1】仮成型時の材料の温度測定のための、中心部に熱伝対を装填した芯層用チップを示す概略図。
【図2】アクロデュアの熱盤加熱と高周波加熱併用時の材料温度を示す線図。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a molded wooden board and a method for producing the same, and more particularly, to the combined use of heat transfer plate heating and high frequency heating or microwave heating for hot press molding using a thermally crosslinked aqueous acrylic resin as an adhesive.
[0002]
[Prior art]
Generally, wood molded boards are manufactured by bonding raw material chips and fibers with an adhesive using an adhesive. MDF boards and hard boards are formed using wood fibers, particle boards and thin boards are formed using wood chips. There are various molded boards or laminated boards such as laminated plywood laminated vertically and horizontally and laminated, or laminated wood laminated with a slightly thicker material. These wooden molded boards are usually pressed and heated by various molding machines using an adhesive. Among them, many of them are particle boards using wood chips. Generally, a water-soluble amino-based thermosetting resin such as urea, melamine resin, or phenol resin is used alone or as a mixture of two or more as an adhesive for molding the particle board. However, in these adhesive resins, free formalin gas and irritating odor released from the adhesive cause problems in working and use health, and are one of the causes of sick house disease indoors. Therefore, in recent years, a method of manufacturing a wood-based molded board using an isocyanate-based resin adhesive that does not generate a formalin odor or an adhesive obtained by blending an isocyanate-based resin with polyvinyl alcohol has been used.
[0003]
The wood chips are processed by applying high-temperature, high-pressure steam to the wood chips in advance without using an adhesive resin to form the particle board, and then performing the compression molding process and the high-frequency heating fixing process. (For example, see Patent Document 1). The wood chips are formed by hot-pressing, and are formed by using a hot-crosslinking aqueous acrylic resin as an adhesive (for example, see Patent Document 2). A phenol resin is used as an adhesive for a wood chip in the molding of a particle board, and molding is performed by high-frequency heating (for example, see Non-Patent Document 1). Similarly, a phenol resin is used as an adhesive for a wood chip, high-frequency preheating is performed, and then hot pressing is immediately performed (for example, see Non-Patent Document 2).
[0004]
[Patent Document 1]
JP-A-2002-192508, Kisen Co., Ltd./Yamamoto Vinita Co., Ltd., pages 1 to 3, 0008 to 0011
[Patent Document 2]
JP-T-2000-507279, BS F. Akchengezelshaft, pages 22-23, Examples [Non-Patent Document 1]
Forming of particle board by high frequency heating (Part 1), Huang Yao, Minoru Mori, Mokuzai Gakkaishi Vol. 22, no. 1, pages 15-16 [Non-Patent Document 2]
Forming of particle board by high frequency heating (Part 2), Huang Yao, Minoru Mori, Mokuzai Gakkaishi Vol. 22, no. 9, pp. 505-506
[Problems to be solved by the invention]
On the other hand, isocyanate resin cures more slowly than amino-based cured resin and has thermoplastic properties during curing. There was a problem that the properties were inferior.
[0006]
As a countermeasure, an isocyanate-based resin is used for the core layer in a laminate of the surface layer and the core layer, and a wax is added to the isocyanate-based resin to prevent the surface layer from adhering to the hot platen, or sodium dodecylbenzenesulfonate is used. Add a surfactant such as a fatty acid salt or a lubricant such as calcium stearate or stearic acid amide, or apply an anti-adhesive such as release silicone to the hot platen side to prevent adhesion to the hot platen. However, each combination is not completely compatible with increased costs. There is also a method of adding formaldehyde to the water-soluble phenol resin to reduce the amount of formaldehyde generated by combining it with the surface layer to prevent adhesion to the hot platen. Cannot be eliminated.
[0007]
When using an isocyanate-based resin, due to the characteristics of the resin, there is a reaction with moisture, so it is necessary to pay close attention to handling. Especially in summer, if left in an open system, the moisture in the air causes an increase in the viscosity of the liquid, and the work at the time of application is often difficult. In terms of safety, a highly airtight safety measure such as the installation of a protective mask, a protective surface, and an exhaust duct is required, and it is necessary to pay attention to the working environment.
[0008]
On the other hand, there has been reported a method of molding a wood-based molded board that does not release formaldehyde using a thermally crosslinked aqueous acrylic resin (shown in Examples of JP-T-2000-507279). The molding time required was 10 minutes, the thickness of the molded body was as thin as 6 to 8 mm, and the water-swelling expansion coefficient of the wood chip board under the molding conditions was 25% or more, so it could not be said that it had practical performance. . Also, the molding time is 2-3 times longer than the molding time using a conventional phenol resin, which is about 3 to 5 minutes, and it cannot be said that the productivity is excellent.
[0009]
[Means for Solving the Problems]
As a result of various examinations on the method of forming a wooden molded board using a thermally crosslinked water-based acrylic resin, it was found that by using conventional heat press heating with a high-frequency dielectric heating or microwave heating in combination with a heating plate, it was possible to mold to 40 mm. It was possible to obtain a board having a thickness of 1 mm and significantly shorten the molding time, and improve the bending strength, the wet bending strength, and the coefficient of expansion due to water absorption.
[0010]
The resin used here is a thermally crosslinked aqueous acrylic resin comprising the following A) and B), wherein 5 to 100% by weight of the polymer A) is an ethylenically unsaturated acid anhydride or a carboxylic acid group having an acid anhydride group. A polymer obtained by radical polymerization of an ethylenically unsaturated dicarboxylic acid which can be formed, and B) an alkylamine having at least two hydroxyl groups, the hydroxyl groups being used as a crosslinking component. The molar ratio of the carboxyl groups of the polymer A) to the hydroxyl groups of the alkylamine B) is between 20: 1 and 1: 1. Preferably, the ratio is 5: 1 to 1.7: 1.
[0011]
The polymer comprises from 5 to 100% by weight, preferably from 10 to 40% by weight, of an ethylenically unsaturated acid anhydride or an ethylenically unsaturated dicarboxylic acid whose carboxylic acid groups can form an acid anhydride (hereinafter referred to as monomer a )). The acid anhydride is preferably a dicarboxylic anhydride. Suitable ethylenically unsaturated dicarboxylic acids are generally those having a carboxylic acid group on an adjacent carbon atom. The carboxylic acid groups may be present in the form of their salts.
[0012]
Preferably as monomers a) maleic acid, maleic anhydride, itaconic acid, 1,2,3,6-tetrahydrophthalic acid, 1,2,3,6-tetrahydrophthalic anhydride, their alkali metal salts and ammonium Salt or a mixture thereof. Among them, maleic acid and maleic anhydride are preferred.
[0013]
In addition to the monomers a), the polymers A) may additionally contain monomers b). Monomer b) is C 3 -C 10 mono-ethylenically unsaturated - monocarboxylic acid (monomer b1), linear 1-olefins, branched 1-olefins or cyclic olefins (monomers b2), an alkyl group Vinyl- and allylalkyl ethers having 1 to 40 carbon atoms in which the alkyl radical is further substituted, for example a hydroxyl, amino- or dialkylamino radical or one or more alkoxylate radicals may have) (monomer b3), acrylamides and alkyl-substituted acrylamides (monomers b4), a sulfo group-containing monomer (monomers b5), C 1 -C 8 acrylic acid, methacrylic acid or maleic acid - alkyl ester or C 1 -C 4 - hydroxyalkyl ester or 2-50 mol Chiren'okishido, propylene oxide, butylene oxide or C 1 -C 18 alkoxylated mixtures thereof, - alcohol and acrylic acid, esters of methacrylic acid or maleic acid (monomers b6), alkylaminoalkyl (meth) acrylate or alkyl aminoalkyl (meth) acrylamide or a quaternized product (monomer b7), C 1 ~C 30 - vinyl ester and allyl ester (monomer b8) of a monocarboxylic acid, a further (monomers b9) is N- vinylformamide, N-vinyl-N-methylformamide, styrene, α-methylstyrene, 3-methylstyrene, butadiene, N-vinylpyrrolidone, N-vinylimidazole, 1-vinyl-2-methylimidazole, N-vinylcaprolactam, Rironitoriru, methacrylonitrile, allyl alcohol, 2-vinylpyridine, 4-vinylpyridine, diallyldimethylammonium chloride, vinylidene chloride, vinyl chloride, acrolein, methacrolein and vinylcarbazole and mixtures thereof.
[0014]
The polymer may contain from 0 to 95% by weight of the monomers b1) to b9) in addition to the monomer a). Preferably, the polymer contains, besides monomer a), also 60 to 90% by weight of monomers b1) to b9).
[0015]
Component B is an alkylamine having at least two hydroxyl groups as a cross-linking agent, such as diethanolamine, triethanolamine, diisopropanolamine, triisopropanolamine, methyldiethanolamine, butyldiethanolamine and methyldiisopropanolamine. Amines are preferred. To obtain a formaldehyde-free binder, the molar ratio of the carboxyl groups of the polymer A component) to the hydroxyl groups of the component B) is from 20: 1 to 1: 1. Preferably, the ratio contains polymer components A) and B) in a ratio of 5: 1 to 1.7: 1. (The acid anhydride group is calculated as two carboxyl groups in this case.) Furthermore, the aqueous binder may contain less than 0.3% by weight of a phosphorus-containing reaction accelerator. Examples of the phosphorus-containing reaction accelerator include alkali metal hypophosphite, polyphosphite, dihydrogen phosphate, polyphosphoric acid, hypophosphorous acid, phosphoric acid, alkylphosphinic acid, and oligomers or polymers of salts and acids thereof. .
[0016]
Wood molded boards cover a wide range of fields, such as the type of raw material, the type, thickness, size, and molding method of the wooden boards, and the required performances differ from one another. For this purpose, one or more kinds of various water-soluble resins or aqueous resin emulsions can be blended with the present thermally crosslinked aqueous acrylic resin to provide binders corresponding to the respective required performances. The ratio of the water-soluble resin or the aqueous emulsion to 100% by weight of the thermally crosslinked aqueous resin is 10 to 90% by weight, but the addition of 10 to 50% by weight is preferable as long as the performance of the thermally crosslinked resin is not deteriorated. A crosslinking agent such as a water-dispersed epoxy resin, a divalent alkali metal ion, or a phosphorus-containing reaction accelerator such as phosphoric acid or polyphosphoric acid may be added. By hot-pressing using the thermally crosslinked aqueous acrylic resin, a method of obtaining a wooden board that does not adhere to a hot platen, does not generate formaldehyde at the time of molding and after molding, and does not generate an odor.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a detailed method of the present invention will be described by taking a particle board as an example among wooden boards. The mixing ratio of the thermally crosslinked water-based acrylic resin to the wood chips is 1 to 50 parts by weight (in terms of resin solid content), preferably 3 to 20 parts by weight, per 100 parts by weight of the chips. If the amount is less than 1 part by weight, the resin does not act as an adhesive, the strength after molding is weak, and a practical problem arises as a product. On the other hand, if the amount is more than 50 parts by weight, the economical efficiency is deteriorated due to an increase in the production cycle due to an increase in the water content and an increase in the production cost.
[0018]
First, a thermally crosslinked aqueous acrylic resin is mixed with the wood chips. As a method for mixing with the chips, a spray coating method using a spray is most uniformly dispersed in the resin on the chips. The spraying method may be either an air entrainment method or an airless method, and any type may be used as long as the particles can be atomized. Spraying of a thermally crosslinked aqueous acrylic resin tends to become microparticles as the viscosity of the liquid is lower, but if the viscosity is reduced by diluting with water, if the amount of water increases, the energy at the time of molding and heating to remove water increases. It will increase and time will be spent. If the water content is large, blisters (bulging) may occur after the board is taken out after molding. Next, the wood chips mixed with the thermally crosslinked aqueous acrylic resin are formed into a forming die, and then heated and pressed to a predetermined thickness by a hot press.
[0019]
The heating heat source required for molding is a heat transfer plate from both upper and lower surfaces, and a temperature of 150 to 250 ° C. is applied. Preferably, the temperature required for the crosslinking of the thermally crosslinked resin and the temperature are set from the viewpoint of productivity. As a guide, when the molding and pressing time is 3 minutes with a thickness of 15 mm, a set temperature of 180 to 220 ° C. is suitable. ing. The heating / molding time (molding cycle) is preferably as short as possible from the viewpoint of productivity. However, it is necessary to increase the thickness / moisture content / moisture content and the molding temperature. Thermally crosslinked water-based acrylic resin is a system in which the resin cures due to heat history and develops performance such as water resistance and strength. However, if the molding cycle is shortened, the amount of heat required for intermolecular crosslinking becomes insufficient and crosslinking (curing) occurs. ) Insufficient and required performance cannot be achieved.
[0020]
On the other hand, if the molding time is long, the crosslinking of the resin is sufficient, but the wood is burned, and the strength is reduced and the coloring is caused by the deterioration. As a countermeasure, the inventor was able to shorten the heating / forming time by using high frequency heating or microwave heating in combination with hot plate heating, and was able to solve these problems.
[0021]
In order to use both the heat transfer plate heating and the high frequency dielectric heating, electrodes are provided between the heat transfer plates of the hot press, and a unit for generating high frequency is connected to apply high frequency simultaneously with heating of the heat transfer plate. A mixture of the mixed wood chips and resin is sandwiched between the heat transfer plates, and the mixture is set by applying pressure to a predetermined thickness. In this state, the temperature of the wood chip rises due to heat conduction from the heat transfer plate whose temperature is set. Then, without delay, the high frequency is transmitted and the moisture of the water-crosslinked aqueous acrylic resin between the molded chips or the moisture existing inside the wood chip is intermolecularly heated to generate both the resin and the chip applied to the molded chip. Accelerate the temperature rise of the material temperature. By using high-frequency heating, the temperature inside the material is rapidly heated, and the surface is rapidly heated by the amount of heat from the heat transfer plate. When this combined heating method is used, the time required for molding using this resin only with a hot platen depends on the thickness, but it takes 3 to 5 minutes instead of 10 to 25 minutes conventionally, and is about 1/3. It was reduced to 向上, and the molding efficiency was dramatically improved. In addition, the burning phenomenon of the chips was also improved by shortening the heating and molding time.
[0022]
The amount of heat generated by high-frequency heating is the amount of high-frequency energy absorbed by a dielectric (heating material) per unit volume / time, but when the strength and frequency of the electric field are constant, the relative dielectric constant inherent to the material Those having a large value of εr × dielectric loss tangent tanδ have a large calorific value. In the case of the thermally crosslinked aqueous acrylic resin, since water has a relative dielectric constant εr = 78 and a dielectric loss tangent tanδ = 0.005, εr · tanδ = 0.39. Since the relative permittivity of the acrylic resin is εr = 2.9 and the dielectric loss tangent tan δ = 0.02, εr · tan δ = 0.59, so that most of the energy is absorbed by water and the temperature rises rapidly. . Accordingly, the resin is heated and a crosslinking (curing) reaction proceeds. In this case, if a small amount of electrolyte such as salt and electrolytic ions is present in the water portion, the heat generation rate is accelerated, which is effective.
[0023]
After curing the molded particle board in a room at 23 ° C. for 2 days, it was cut into a measurement sample with an electric saw, and the results were measured by a performance test according to the JIS method such as bending strength, peel strength, and water absorption expansion coefficient. Performance satisfying practical use was obtained. Also, this board does not generate formalin during molding and use. Hereinafter, the embodiment will be described in detail.
[0024]
【Example】
Example 1 First, 500 g of fine and surface layers of wood chips for molding (hereinafter referred to as chips) are added to a rotary mixing device, and the rotary device is activated to bring the chips into a stirring and flowing state. Next, a thermally crosslinked aqueous acrylic resin (Acrodur 950L, component A, manufactured by BASF), a copolymer obtained by polymerizing acrylic acid / maleic anhydride 80/20 at 110 ° C. using hydrogen peroxide as a radical initiator, molecular weight 160,88 weight % Aqueous solution containing 12% by weight of component B) triethanolamine. (Resin concentration 44.8%, liquid viscosity 1,800 mPas, pH 3.5) diluted with water so that the resin concentration becomes 30%, and 167 g (resin content 50 g, 10 wt% with respect to the chip) applied uniformly by spraying did. After completion of the coating, the mixture was mixed and stirred for about 5 minutes. Next, 500 g of chip coarse particles were similarly added to the mixing apparatus for the core layer, and 134 g of Acrodur 950L having a concentration of 30% (8 wt% with respect to the chip in terms of resin content of 40 g) was uniformly applied by a spray.
[0025]
158 g of the uniformly mixed surface layer chip 500 g is filled in a 25 cm × 25 cm forming frame, and temporarily pressed from above with a pressing plate slightly smaller than the mold frame. Then, 473 g of the mixed core layer chips is filled thereon and temporarily pressed so as to have a uniform thickness. Further, 158 g of the surface chip mixed thereon is filled so as to have a uniform thickness, and is temporarily held by a holding plate. At the time of this temporary molding, a thermocouple was loaded in the center of the thickness of the core layer chip, and the thermocouple was set so that a change in the actual temperature of the material could be measured (FIG. 1). Each of the chips filled in the molding frame is provisionally molded by applying pressure to the holding plate by a molding press (without applying a temperature). A thickness of 70 mm is compressed to 30 mm. Next, the forming frame was removed, and a chip was pressed to a thickness of 15 mm by applying a pressure of 30 kg / cm 2 to a heat press equipped with a high frequency generator (FDY-620 manufactured by Fuji Denki Koki Co., Ltd .: output 6 kw) in which the chip was set at a temperature of 200 ° C. Heat and pressure molding was performed.
[0026]
At the same time, the high-frequency heating output was set to 6500 V, 13 MHz, and 1 mA, and a high frequency was applied to the chip. The temperature reading, which initially indicated a room temperature of 19 ° C., exceeded 200 ° C. after 1 minute and 30 seconds (FIG. 2). In order to keep the internal temperature of the material uniform, the output was reduced to 70% to 0.7 mA and the material temperature was kept around 200 ° C. After 3 minutes, the setting was lowered to 0.5 mA and held for 2 minutes. After 5 minutes, the pressure of the hot press was released, and the molded sample was taken out.
[0027]
When the dimensions of the sample thus obtained were measured, the thickness was 14.86 mm, the size was 24.91 mm × 24.95 mm, and the density of the formed body was 0.71 g / cm 3 . When the physical properties were evaluated according to the evaluation methods for each item of JIS A5908, the basic performance was able to be cleared. In particular, the bending strength and the coefficient of expansion due to water absorption showed remarkable results that could not be predicted as compared to a molded plate comprising only a heating hot plate (Table 1).
[0028]
In Example 2, the heating time was extended from 5 minutes to 8 minutes for 3 minutes under the same conditions. By extending the heating time, it was confirmed that the bending strength was improved and the water absorption expansion coefficient was decreased. Examples 3 and 4 show the performance of each molded plate when the thickness of the molded plate was 40 mm. Even when the thickness was increased from 15 mm to 40 mm, the molding time was 5 minutes and the crosslinking of the resin was completed, and it was confirmed that the internal temperature was sufficiently increased.
[0029]
Comparative Example 1 was a molded plate using Acrodur 950L and heated by a hot plate only, and was produced under exactly the same conditions as in Example 1. When the chip temperature at the center of the molded plate was detected, the temperature rose only to 100 ° C. in 5 minutes, which was not within the crosslinking temperature range of the thermally crosslinked aqueous acrylic resin. For this reason, the binder resin is insufficiently cured, and does not have water resistance (wet strength / water expansion coefficient). Comparative Example 2 was molded using a conventional phenolic resin, and the physical properties of the molded plate were not problematic, but the plate immediately after molding was sampled and the amount of formaldehyde released was measured by the desiccator method of JAS ordinary plywood. , 0.7 mg / L. Molding using an isocyanate resin was also performed under the same molding conditions.
[0030]
In Examples 1) to 4) above, high-frequency heating was used in combination with the conventional hot plate only molding. Compared with Example 1) and Comparative Example 1) using the same resin molded plate having the same thickness, the molding time was shorter. The bending strength was reduced by half, and the bending strength increased from 6.90 N / mm 2 to 11.84 N / mm 2 , about twice. Particularly remarkable improvements were in the flexural strength after wetting, from 1.94 N / mm 2 to 6.40 N / mm 2 , and the water absorption expansion coefficient was reduced from 27.4% to 10.09%. Was confirmed. The heat is sufficiently transmitted to the thermally crosslinked aqueous acrylic resin, so that the crosslinking is sufficiently achieved. In Example 2), the time was extended from 5 minutes to 8 minutes. However, even if the time was extended by 3 minutes, no significant improvement in physical properties was observed, and the crosslinking was completed in a heating time of approximately 5 minutes. Was confirmed. In Examples 3) and 4), the effect was confirmed by increasing the thickness of the molded plate from 15 mm to 40 mm. However, even if the thickness was increased, the coefficient of water expansion was 10% even under the same heating conditions as in Examples 1) and 2). %, Indicating the superiority of using both a hot plate and high-frequency heating.
[0031]
On the other hand, in comparison with the conventional resin, Comparative Example 2) was obtained by adding almost the same amount of the phenolic resin as in Example 1) and molding it with only a hot plate. Although the performance is slightly higher than the bending strength, wet bending strength and coefficient of water expansion of Example 1), an amount of 0.7 mg / L was confirmed in the measurement of the amount of formaldehyde generated immediately after molding. Is a numerical value that affects Further, in the molding of only the hot plate of the isocyanate resin, the resin was stuck to the hot plate at the time of taking out the sample after the completion of the molding time, and a part of the molded product was peeled off or lost, so that a product state could not be obtained.
[0032]
The JIS measurement method used in the evaluation of this test is described below.
[0033]
Flexural strength test (N / mm 2 ) JIS 5908
A test piece having a thickness of 15 mm or 40 mm and a width of 50 mm × length (15 times the thickness and 150 mm or more) is formed in each of the vertical and horizontal directions of the formed plate. A three-point compression / bending test jig of an Instron testing machine is mounted, a load with an average deformation rate of 10 mm / min is applied from the surface of the test piece, and the maximum load is measured by measuring (P) according to the following equation.
[0034]
Flexural strength (N / mm 2 ) = 3PL / 2bt 2
P: Maximum load (N)
L: Span (mm)
b: Width of test piece (mm)
t: thickness of test piece (mm)
Bending strength test when wet The test piece is immersed in warm water of 70 ° C. ± 3 ° C. for 2 hours, further immersed in normal temperature water for 1 hour, and then subjected to the above bending strength test while still wet.
[0035]
Water absorption thickness expansion coefficient test specimen: 50 mm x 50 mm x thickness (15 mm or 40 mm)
Preliminarily measure the thickness of the center of the test piece to an accuracy of 0.05 mm, place it horizontally in water at 20 ± 1 ° C about 3 mm below the surface of the water, soak it for 24 hours, remove it, and wipe off the moisture. Measure.
[0036]
Water absorption thickness expansion coefficient (%) = t2−t1 / t1 × 100
t1: Thickness before water absorption (mm)
t2: Heat after water absorption (mm)
Measurement of Formaldehyde Emission JAS The formaldehyde emission method for ordinary plywood was measured. Ten pieces of the formed sample having a thickness of 15 mm are formed in a size of 150 mm × 150 mm. 300 ml of distilled water is placed in the bottom of a 240 mm desiccator specified in JIS R 3503, and the sample is attached to a jig in which the sample does not come into contact with the distilled water, and left closed at 20 ° C. for 24 hours. Formaldehyde was absorbed in distilled water to obtain a sample solution. The concentration of formaldehyde in the sample solution was colorimetrically determined by the acetylacetone method using a spectrophotometer.
[0037]
Figure 2004230736
[0038]
[Table 1]
Figure 2004230736
[0039]
Content of resin used Acrodur 950L: Thermally crosslinked aqueous acrylic resin manufactured by BASF Co., Ltd. Resin concentration: 44.8%
Phenol resin: Resol type phenol resin for particle board manufactured by Company A Resin concentration 50.1%
Isocyanate resin: Self-emulsifying type polymethylene polyphenyl polyisocyanate manufactured by Company B NCO group content 30 g / 100 g
[Brief description of the drawings]
FIG. 1 is a schematic view showing a core layer chip in which a thermocouple is mounted at a central portion for measuring a temperature of a material during temporary molding.
FIG. 2 is a diagram showing a material temperature when a hot plate heating and high frequency heating are used in combination for an acrodure;

Claims (2)

木質成形板原料100重量部にA)ポリマーの5〜100重量%がエチレン性不飽和酸無水物またはカルボン酸基が酸無水物基を形成することができるエチレン性不飽和ジカルボン酸からなるラジカル重合により得られたポリマー、及びB)少なくとも2つのヒドロキシル基を有するアルキルアミンで、そのヒドロキシル基を架橋成分とする熱架橋水性アクリル樹脂を成形用接着剤として1〜50重量部(樹脂分換算)均一に混合させ、そののちホットプレス成形するのに伝熱盤加熱と高周波誘電加熱あるいはマイクロ波加熱を併用することを特徴とする木質成形板の製造方法。Radical polymerization of A) 5 to 100% by weight of the polymer is an ethylenically unsaturated acid anhydride or an ethylenically unsaturated dicarboxylic acid whose carboxylic acid group can form an acid anhydride group per 100 parts by weight of the wood forming board raw material And B) an alkylamine having at least two hydroxyl groups, and a heat-crosslinkable aqueous acrylic resin having the hydroxyl groups as a crosslinking component, and 1 to 50 parts by weight (resin equivalent) as a molding adhesive. A method for producing a wood-formed board, comprising using heat transfer plate heating and high-frequency dielectric heating or microwave heating in combination for hot press molding. 請求項1記載の製造方法により得られた木質成形板。A wooden molded board obtained by the method according to claim 1.
JP2003022751A 2003-01-30 2003-01-30 Manufacturing method of wooden formed board Pending JP2004230736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003022751A JP2004230736A (en) 2003-01-30 2003-01-30 Manufacturing method of wooden formed board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003022751A JP2004230736A (en) 2003-01-30 2003-01-30 Manufacturing method of wooden formed board

Publications (1)

Publication Number Publication Date
JP2004230736A true JP2004230736A (en) 2004-08-19

Family

ID=32951749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003022751A Pending JP2004230736A (en) 2003-01-30 2003-01-30 Manufacturing method of wooden formed board

Country Status (1)

Country Link
JP (1) JP2004230736A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006335039A (en) * 2005-06-06 2006-12-14 Oshika:Kk Manufacturing method of modified woody material
CN102139501A (en) * 2010-12-24 2011-08-03 南京林业大学 Method for performing high-frequency prepressing treatment on formaldehyde-free soybean glue environment-friendly type China fir floor base material
WO2022258505A1 (en) 2021-06-07 2022-12-15 Basf Se Process of producing a lignocellulosic composite, corresponding lignocellulosic composite, and use thereof
WO2024088944A1 (en) 2022-10-28 2024-05-02 Basf Se Process of producing a lignocellulosic composite and corresponding binder composition, lignocellulosic composite, kit and use

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006335039A (en) * 2005-06-06 2006-12-14 Oshika:Kk Manufacturing method of modified woody material
CN102139501A (en) * 2010-12-24 2011-08-03 南京林业大学 Method for performing high-frequency prepressing treatment on formaldehyde-free soybean glue environment-friendly type China fir floor base material
WO2022258505A1 (en) 2021-06-07 2022-12-15 Basf Se Process of producing a lignocellulosic composite, corresponding lignocellulosic composite, and use thereof
WO2022258510A1 (en) 2021-06-07 2022-12-15 Basf Se Process of producing a lignocellulosic composite, corresponding lignocellulosic composite, and use thereof
WO2022258513A1 (en) 2021-06-07 2022-12-15 Basf Se Process of producing a lignocellulosic composite, corresponding lignocellulosic composite, and use thereof
WO2024088944A1 (en) 2022-10-28 2024-05-02 Basf Se Process of producing a lignocellulosic composite and corresponding binder composition, lignocellulosic composite, kit and use

Similar Documents

Publication Publication Date Title
EP1240205B1 (en) Thermohardening polymer dispersion
TWI354001B (en) Curable composition
US6599455B2 (en) Process for producing wood particleboard
JP2656227B2 (en) Plywood manufacturing method
TW200838924A (en) Curable composition
JP3911614B2 (en) Biomass resin composition, method for producing the same, and molding material comprising the biomass resin composition
Jost et al. Shear strength development of the phenol–formaldehyde adhesive bond during cure
JP2004230736A (en) Manufacturing method of wooden formed board
CN109275273A (en) A kind of preparation method of PTFE base PCB copper-clad plate
CN100564466C (en) Resin emulsion paint special for epoxy pnenolic aldehyde stalloy and preparation method thereof
CN102300909B (en) Prepreg, film with resin, metal foil with resin, metal-clad laminate, and printed wiring board
US6998078B2 (en) Process for producing wood particleboard
US8993062B2 (en) Methods for making laminated, saturated, and abrasive products
López-Suevos et al. Effects of Pinus pinaster bark extracts content on the cure properties of tannin-modified adhesives and on bonding of exterior grade MDF
US2542048A (en) Resinous compositions
CA1212194A (en) Powder phenolic resin composition for dry process resin-bonded felt
JP2005060665A (en) Curable composition and use thereof as binder
RU2720156C2 (en) Flexible film production method and application thereof
JP2001269911A (en) Method for manufacturing waste paper fiberboard
JP2008023919A (en) Wooden board and method for manufacturing the same
CN110499129B (en) Composite curing agent for MUF resin adhesive and application of composite curing agent to production of medium-high density fiberboard
CN103320077A (en) Organosilicon modified high-strength polyester hot melt adhesive
JP2004123781A (en) Resol type phenol resin composition, adhesive for wooden material, and plywood
JP2007320180A (en) Woody board
JPS58500568A (en) Heat-stable phenolic resin moldings

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20051021

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070810

A02 Decision of refusal

Effective date: 20070928

Free format text: JAPANESE INTERMEDIATE CODE: A02