JP2004229668A - alpha-D-GLUCOPYRANOSYLGLYCEROL, METHOD FOR PRODUCING THE SAME AND APPLICATION THEREOF - Google Patents

alpha-D-GLUCOPYRANOSYLGLYCEROL, METHOD FOR PRODUCING THE SAME AND APPLICATION THEREOF Download PDF

Info

Publication number
JP2004229668A
JP2004229668A JP2004097905A JP2004097905A JP2004229668A JP 2004229668 A JP2004229668 A JP 2004229668A JP 2004097905 A JP2004097905 A JP 2004097905A JP 2004097905 A JP2004097905 A JP 2004097905A JP 2004229668 A JP2004229668 A JP 2004229668A
Authority
JP
Japan
Prior art keywords
glycerol
glucopyanosylglycerols
concentration
reaction
maltose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004097905A
Other languages
Japanese (ja)
Other versions
JP3732501B2 (en
Inventor
Takeshi Imamura
武司 今村
Hirobumi Uchiyama
博文 内山
Fumito Takenaka
史人 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TATSUUMA HONKE BREWING CO Ltd
TATSUUMA-HONKE BREWING CO Ltd
Original Assignee
TATSUUMA HONKE BREWING CO Ltd
TATSUUMA-HONKE BREWING CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TATSUUMA HONKE BREWING CO Ltd, TATSUUMA-HONKE BREWING CO Ltd filed Critical TATSUUMA HONKE BREWING CO Ltd
Priority to JP2004097905A priority Critical patent/JP3732501B2/en
Publication of JP2004229668A publication Critical patent/JP2004229668A/en
Application granted granted Critical
Publication of JP3732501B2 publication Critical patent/JP3732501B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cosmetics (AREA)
  • Seasonings (AREA)
  • Alcoholic Beverages (AREA)
  • Saccharide Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide α-D-glucopyanosylglycerols, to provide a method for efficiently producing the α-D-glucopyanosylglycerols, and to provide applications of the α-D-glucopyanosylglycerols. <P>SOLUTION: The α-D-glucopyanosylglycerols have low Maillard reactivity, heating stability, noncariogenic property, indigestible property and high moisture retention. The α-D-glucopyanosylglycerols are produced by allowing α-glucosidase act on a mixture of glycerol with succharides containing glucose, maltose and the like so as to transfer glucosyl into the glycerol. And, by continuously adding saccharides to a reaction mixture, the concentration of α-D-glucopyanosylglycerols is increased and the glycerols are efficiently produced. The α-D-glucopyanosylglycerols are effectively applied to foods, chemicals and medicines. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、すっきりとした甘さを持ち、褐変性やメイラード反応性が極めて低く、優れた加熱安定性があり、且つ、難消化性、非う蝕性、高い保湿性等の機能性を有するα−D−グルコピラノシルグリセロール類及びその効率的な製造方法及びその特性を有効に利用した食品、化成品、医薬品に関するものである。   The present invention has clean sweetness, extremely low browning and Maillard reactivity, excellent heat stability, and has functions such as indigestibility, non-cariogenicity, and high moisture retention. The present invention relates to α-D-glucopyranosylglycerols, a method for efficiently producing the same, and foods, chemicals, and pharmaceuticals that effectively utilize the properties thereof.

麹菌などの多くの糸状菌はα−アミラーゼ、グルコアミラーゼのようなアミラーゼ以外にもα−グルコシダーゼを生産することが知られている。α−グルコシダーゼはエキソ型アミラーゼで、グルコシルトランスフェラーゼ、トランスグルコシダーゼとも呼ばれ、マルトースやオリゴ糖からα−1
,4結合したグルコース残基を他の物質に転移する作用を持つ。たとえば、転移するグルコシル基の受容体が水、エチルアルコール、グルコース、マルトース、イソマルトースの場合はそれぞれグルコース、エチル−α−グルコシド(公開特許:平4−112798)、イソマルトース、パノース、イソマルトトライオースを生成する。なお、受容体が水の場合、グルコアミラーゼなどの作用に似た加水分解とも見られるので、以後これを加水分解と呼ぶ。
Many filamentous fungi such as Aspergillus are known to produce α-glucosidase in addition to amylase such as α-amylase and glucoamylase. α-Glucosidase is an exo-type amylase, also called glucosyltransferase or transglucosidase, which converts α-1 from maltose and oligosaccharides.
, 4 has the effect of transferring the bound glucose residue to another substance. For example, when the acceptor of the glucosyl group to be transferred is water, ethyl alcohol, glucose, maltose, or isomaltose, glucose, ethyl-α-glucoside (Publication No. 4-112798), isomaltose, panose, isomaltose, respectively. Generate an aus. When water is used as the acceptor, it can be seen as hydrolysis similar to the action of glucoamylase and the like, and this is hereinafter referred to as hydrolysis.

清酒醪中でもα−グルコシダーゼの転移作用に関する報告がこれまで多くされているが、本発明者らは糖転移の受容体がグリセロールであるα−D−グルコピラノシルグリセロール類(以後、GGと表記する)を新たに発見し、さらに麹を用いた他の醸造物中、たとえば、みそ、みりんなどもGGを含んでいることが判明した。   Although there have been many reports on the transfer effect of α-glucosidase even in sake mash, the present inventors have reported that α-D-glucopyranosylglycerols (hereinafter referred to as GG) whose glycerol transfer receptor is glycerol. Was newly discovered, and it was further found that among other brews using koji, for example, miso and mirin also contained GG.

本発明におけるGGは、(2R)−1−O−α−D−グルコピラノシルグリセロール、(2S)−1−O−α−D−グルコピラノシルグリセロール、2−O−α−D−グルコピラノシルグリセロールの三成分から成るが、このうち2−O−α−D−グルコピラノシルグリセロールだけは、藍藻類(シアノバクテリアとも呼ばれる)、特に海洋などの高塩濃度環境で生息するものに存在し、本発明とは異なる酵素反応により菌体内で生合成され、浸透圧調整に関わっていることが報告されている(Carbohydr.Res.,73,193〜202,1979;Science,210,650〜651,1980;Mar.Biol.,73,301〜307,1983;J.Gen.Microbiol.,130,1〜4,1984;Planta,163,424〜429,1985;Arch.Microbiol.,148,275〜279,1987;Mikrobiologiya,60,596〜600,1991;J.Gen.Microbiol.,140,1427〜1431,1994など)。しかしこれらの報告では、2−O−α−D−グルコピラノシルグリセロール自体の諸性質は述べられておらず、また1−O−α−D−グルコピラノシルグリセロール類は本発明者らによって清酒醪中から初めて発見されたものである。下にそれぞれの環状構造を示す。

Figure 2004229668
Figure 2004229668
Figure 2004229668
GG in the present invention is (2R) -1-O-α-D-glucopyranosyl glycerol, (2S) -1-O-α-D-glucopyranosyl glycerol, 2-O-α-D- It is composed of three components of glucopyranosyl glycerol, of which only 2-O-α-D-glucopyranosyl glycerol inhabits blue-green algae (also referred to as cyanobacteria), particularly in a high salt environment such as the ocean. It has been reported that the enzyme is present in cells, is biosynthesized in the cells by an enzyme reaction different from the present invention, and is involved in osmotic pressure regulation (Carbohydr. Res., 73, 193-202, 1979; Science, 210). Mar. Biol., 73, 301-307, 1983; J. Gen. Microbiol., 130, 1-4, 1984; lanta, 163,424~429,1985; Arch.Microbiol, 148,275~279,1987;. Mikrobiologiya, 60,596~600,1991;. J.Gen.Microbiol, such as 140,1427~1431,1994). However, in these reports, the properties of 2-O-α-D-glucopyranosylglycerol itself are not described, and 1-O-α-D-glucopyranosylglycerols are disclosed by the present inventors. It was discovered for the first time in sake mash. The respective ring structures are shown below.
Figure 2004229668
Figure 2004229668
Figure 2004229668

清酒中のGGの濃度はせいぜい0.5%程度の低レベルであるが、清酒中のGGは清酒のいわゆる「幅のある味」、「押し味」といった効果をもたらし、すっきりとした甘さを与えていることがわかった。GGの甘味度はシュクロースの約0.55倍であり、またGGは加熱に対して安定で褐変し難く、メイラード反応を起こし難い特性を有す。他にもGGには非う蝕性、難消化性、高い保湿効果が認められ、清酒が飲料以外にも調味料や化粧品として用いられているのは、少なからずこれらのGGの特性が反映していると予想される。   The concentration of GG in sake is as low as 0.5% at most, but GG in sake brings so-called “broad taste” and “push taste” of sake, resulting in a refreshing sweetness. I understood that it was giving. The sweetness of GG is about 0.55 times that of sucrose, and GG is stable to heating, hard to brown, and hard to cause Maillard reaction. In addition, GG has non-cariogenic, indigestible, and high moisturizing effects. Sake is used not only as a beverage but also as a seasoning and cosmetics, not least because of the characteristics of these GGs. It is expected that.

如上のように、清酒中のGG濃度は低レベルで、清酒醸造の副産物である清酒粕中のGG含量も低く、これらからの抽出、精製は効率が悪い。また有機合成法としては、イソマルトース、マルチトールなどを四酢酸鉛や過ヨウ素酸塩でグリコール開裂したものを還元する方法、あるいはKoenigs−Knorr反応により合成したβ−グルコシドをアノメリゼーションした後、β−グルコシダーゼでβ−グルコシドを加水分解する方法などあるが、収率が極めて悪く、精製等が非常に煩雑になる。このように、α−グルコシド類の製造方法には優れた一般的合成方法がなく、効率の良い生産技術が必要である。   As mentioned above, the concentration of GG in sake is low, and the content of GG in sake lees, a by-product of sake brewing, is low, and extraction and purification from these are inefficient. As an organic synthesis method, isomaltose, maltitol, etc., a method in which glycol cleaved with lead tetraacetate or periodate is reduced, or after β-glucoside synthesized by the Koenigs-Knorr reaction is anomerized, There is a method of hydrolyzing β-glucoside with β-glucosidase, but the yield is extremely poor, and purification and the like become very complicated. As described above, there is no excellent general synthesis method for producing α-glucosides, and an efficient production technique is required.

そこで本発明者らは、鋭意検討を重ねた結果、カビ類のα−グルコシダーゼを比較的高濃度のグリセロール溶液中で特定の基質に作用させると、優れた反応性を示し、GGを効率良く生産する技術を確立することができた。すなわちα−グルコシダーゼは比較的高濃度の、たとえば重量対容量百分率25%(以下、各濃度は重量対容量百分率で表記する)以上のグリセロール溶液中でも有効に反応し、またこの条件下で基質、たとえばマルトースの加水分解は起こりにくいことがわかった。   The present inventors have conducted intensive studies and found that when α-glucosidase of fungi is allowed to act on a specific substrate in a glycerol solution having a relatively high concentration, excellent reactivity is exhibited and GG is efficiently produced. Technology was established. That is, α-glucosidase effectively reacts even in a relatively high concentration of glycerol solution, for example, at a weight-to-volume percentage of 25% or more (hereinafter, each concentration is expressed as a weight-to-volume percentage), and under this condition, a substrate such as Maltose hydrolysis was found to be less likely to occur.

本発明によりGGを安価に大量生産することができるようになった。GGは加熱に対し安定で褐変し難く、メイラード反応を起こし難い。また、非う蝕性、難消化性、高い保湿性が認められ、清酒醪などの麹を用いた醸造物中に存在するGGは呈味物質以外にも機能性物質として広範な利用が期待される。   According to the present invention, GG can be mass-produced at low cost. GG is stable to heating, hard to brown, and hard to cause Maillard reaction. In addition, non-cariogenic, indigestible, and high moisturizing properties are recognized, and GG present in brews using koji such as sake mash is expected to be widely used as a functional substance in addition to taste substances. You.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明における基質としてはマルトース以外にも、グルコース、シュクロース、オリゴ糖の混合溶液、水飴、α−アミラーゼなどによる澱粉分解物、マルチトールのような還元性末端を水素添加した糖類を用いることができる。   As a substrate in the present invention, besides maltose, glucose, sucrose, a mixed solution of oligosaccharides, starch syrup, a starch decomposed product such as α-amylase, and a saccharide having a hydrogenated reducing terminal such as maltitol may be used. it can.

本反応に使用できる酵素はα−1,6−グルコシル転移酵素と呼ばれるα−グルコシダーゼである。酵母由来のα−グルコシダーゼはα−1,4−グルコシル転移酵素がほとんどであるため、利用できるものは一部しかないが、カビ由来のα−グルコシダーゼは大部分が利用でき、中でもAsp.oryzae、Asp.nigerなどの生産するα−グルコシダーゼが好適である。精製酵素はもちろん、粗精製酵素でも使用できる。また、基質と酵素を同時に供給する点では、麹も利用可能である。   An enzyme that can be used in this reaction is α-glucosidase called α-1,6-glucosyltransferase. Most of yeast-derived α-glucosidase can be used because α-1,4-glucosyltransferase is mostly used, but most of mold-derived α-glucosidase can be used. Among them, Asp. oryzae, Asp. α-Glucosidase produced by Niger or the like is preferred. Not only purified enzymes but also crudely purified enzymes can be used. In addition, koji can be used in supplying the substrate and the enzyme simultaneously.

作用条件は特定ではないが、たとえば作用温度はグリセロール37.5%で24時間反応させた場合、40℃でGGの生産量は最大であったが、30℃においてもその70%の生産量が認められ利用できる。また、さらに低温で実施すると反応速度は低下するが、GGの生産には支障がない。作用pHは3〜6の範囲が好適である。酵素添加量は、基質に5%マルトースを用いて、基質グラム(g)当たり0.6〜50U(国際単位)の範囲で実験したが、2.5U/gを添加すると充分目的を達成する。また、この条件では基質(マルトース)当たりの収率は66%と高いが、反応に使用されたグリセロールが少なく、後の精製過程の効率を上げるためにも、反応液中のGGの濃度を高める方が好ましい。そこで、基質を24時間毎に添加していったところ、連続10回の基質添加でも酵素は安定に作用しGGの濃度を上げることができた。このような連続バッチ処理により生産量を高める方法は、コストや操作性の面から有効である。   The operating conditions are not specified. For example, when the reaction temperature was 37.5% glycerol for 24 hours, the production of GG was maximum at 40 ° C., but even at 30 ° C., 70% of the GG was produced. Recognized and available. Further, when the reaction is carried out at a lower temperature, the reaction rate decreases, but there is no problem in the production of GG. The working pH is preferably in the range of 3-6. The amount of enzyme to be added was tested in the range of 0.6 to 50 U (international unit) per gram (g) of the substrate using 5% maltose as the substrate. However, the addition of 2.5 U / g sufficiently achieves the purpose. In addition, under these conditions, the yield per substrate (maltose) is as high as 66%, but the glycerol used in the reaction is small, and the concentration of GG in the reaction solution is increased in order to increase the efficiency of the subsequent purification process. Is more preferred. Then, when the substrate was added every 24 hours, the enzyme stably acted and the concentration of GG could be increased even if substrate was added ten times in a row. Such a method of increasing the production amount by continuous batch processing is effective from the viewpoint of cost and operability.

反応を終了した溶液には、GG以外にもグリセロール、グルコース、オリゴ糖などが存在する。食品などの甘味料、保湿剤、呈味改善剤としてはそのまま使用できる。また、高純度のGGを使用する場合、活性炭カラムクロマトグラフィーなどの精製方法が有効で、溶出液を濃縮すればシロップ状のGGが得られる。さらに、精製したGGの一部を比較的高濃度のアセトニトリル、たとえば85%アセトニトリルを溶出液に用いアミノカラムクロマトグラフィーを行うと、2−O−α−D−グルコピラノシルグリセロールと1−O−α−D−グルコピラノシルグリセロール類を分離、精製することができる。   In the solution after the reaction, glycerol, glucose, oligosaccharide and the like exist in addition to GG. It can be used as it is as a sweetener for foods, humectants, and taste improvers. When high-purity GG is used, a purification method such as activated carbon column chromatography is effective. If the eluate is concentrated, syrup-like GG can be obtained. Further, when a part of the purified GG is subjected to amino column chromatography using a relatively high concentration of acetonitrile, for example, 85% acetonitrile as an eluate, 2-O-α-D-glucopyranosyl glycerol and 1-O -Α-D-glucopyranosylglycerols can be separated and purified.

精製したGGを用いて、その特性について調べたところ、GGはグルコース、マルトース、シュクロースに比べ、加熱に対し安定で褐変が少なく、メイラード反応を起こし難いことがわかった。   The characteristics of the purified GG were examined. As a result, it was found that GG is stable to heating, has less browning, and is less likely to cause the Maillard reaction than glucose, maltose, and sucrose.

図1にグルコース、マルトース、シュクロース、GGの各10%水溶液の、pH4または7における60分間加熱後の着色度と加熱温度の関係を示した。横軸が加熱温度、縦軸が着色度(厚さ1cmのセルにおける420nmの吸光度から720nmの吸光度を差し引き、希釈倍率を乗じた値)を示す。   FIG. 1 shows the relationship between the degree of coloring and the heating temperature of 10% aqueous solutions of glucose, maltose, sucrose, and GG after heating at pH 4 or 7 for 60 minutes. The horizontal axis shows the heating temperature, and the vertical axis shows the degree of coloring (the value obtained by subtracting the absorbance at 720 nm from the absorbance at 420 nm in a cell having a thickness of 1 cm and multiplying by the dilution factor).

図2にpHを調整した、0.5%のグリシンを含むグルコース、マルトース、シュクロース、GGの各10%水溶液の100℃、60分間加熱後の着色度とpHの関係を示した。横軸がpH、縦軸が着色度(厚さ1cmのセルにおける420nmの吸光度から720nmの吸光度を差し引き、希釈倍率を乗じた値)を示す。   FIG. 2 shows the relationship between the degree of coloring and the pH of a 10% aqueous solution of glucose, maltose, sucrose, and GG each containing 0.5% glycine after heating at 100 ° C. for 60 minutes. The horizontal axis represents pH, and the vertical axis represents the degree of coloring (the value obtained by subtracting the absorbance at 720 nm from the absorbance at 420 nm in a cell having a thickness of 1 cm and multiplying by the dilution factor).

図3にグルコース、マルトース、シュクロース、GGの各10%水溶液のpH4または7における60分間加熱後の残存率をHPLCで測定した結果を示す。横軸が加熱温度、縦軸が残存率を示す。   FIG. 3 shows the results of HPLC measuring the residual ratio of 10% aqueous solutions of glucose, maltose, sucrose and GG after heating at pH 4 or 7 for 60 minutes. The horizontal axis shows the heating temperature, and the vertical axis shows the residual rate.

また、1.5〜4%(0.5%刻み)のシュクロース水溶液のうち、5%GG水溶液の甘さに相当するシュクロース濃度を8名のパネラーにより官能検査したところ、シュクロース濃度2.5%の甘さに近いとした者が4名、3%に近いとした者が4名という結果になった。よってGGの甘さはシュクロースの約0.55倍であることがわかり、しかもすっきりとした甘さで、多くの糖アルコールで問題になる苦味は感じられないという良い評価が得られた。他にもGGには非う蝕性、難消化性があり、さらに現在保湿剤として広く使用されているグリセロールやソルビトールに比べ、高い保湿性が認められた。   When a sucrose concentration corresponding to the sweetness of a 5% GG aqueous solution in a 1.5 to 4% (0.5% increment) sucrose aqueous solution was subjected to a sensory test by eight panelists, a sucrose concentration of 2% was obtained. The result was that 4 people had a sweetness of about 0.5% and 4 people had a sweetness of about 3%. Therefore, it was found that the sweetness of GG was about 0.55 times that of sucrose, and that it had a clear sweetness and did not have the bitterness that is a problem with many sugar alcohols. In addition, GG is non-cariogenic and indigestible, and has a higher moisturizing property than glycerol and sorbitol, which are widely used as moisturizers at present.

図4はGGの非う蝕性を示す図である。宮村(歯学,60,717〜731,1973)の方法に準じ、水1mlまたは、各1.25%のグルコースまたはGG水溶液1mlに、それぞれハートインフージョンブイヨン1mlと新鮮唾液3mlを添加した溶液について、37℃におけるpHの経時変化を示した。   FIG. 4 is a diagram showing the non-cariogenicity of GG. According to the method of Miyamura (Dental Sciences, 60, 717-731, 1973), a solution obtained by adding 1 ml of heart infusion broth and 3 ml of fresh saliva to 1 ml of water or 1 ml of a 1.25% aqueous glucose or GG solution, respectively. The time-dependent change in pH at 37 ° C. was shown.

図5はGGの保湿性を示す図である。相対湿度約60%で平衡状態にあるグリセロール、ソルビトール、GGを、相対湿度約35%で放湿または相対湿度約75%で吸湿させた時の重量変化を示す。横軸は時間を、縦軸は重量変化を示す。   FIG. 5 is a diagram showing the moisture retention of GG. It shows the weight change when glycerol, sorbitol, and GG, which are in an equilibrium state at a relative humidity of about 60%, are released at about 35% relative humidity or absorbed at about 75% relative humidity. The horizontal axis indicates time, and the vertical axis indicates weight change.

表1はGGの消化性を示す表である。岡田ら(日本栄養・食糧学会誌,43,23〜29,1990)の方法に準じ、ヒト唾液、人工胃液、ブタ膵臓α−アミラーゼ、ラット小腸粘膜酵素による消化性を示した。

Figure 2004229668
Table 1 is a table showing the digestibility of GG. According to the method of Okada et al. (Journal of the Japan Society of Nutrition and Food Science, 43, 23-29, 1990), it showed digestibility by human saliva, artificial gastric juice, porcine pancreatic α-amylase, and rat small intestinal mucosal enzyme.
Figure 2004229668

清酒醪中から初めて発見されたGGは、このように多くの機能を持ち、たとえば甘味料、各種調味料、和洋菓子類、酒類、各種飲料、果実野菜加工食品、畜肉魚肉製品、乳製品、即席食品、冷凍食品、治療食品などの飲食物や練り歯磨き、化粧品などの化成品やうがい剤、内服液などの医薬品への甘味剤、呈味改良剤、矯味剤、保湿剤として有効に利用できる。   GG discovered for the first time in sake mash has many functions such as sweeteners, various seasonings, Japanese and Western confectioneries, alcoholic beverages, various beverages, fruit and vegetable processed foods, livestock meat and fish meat products, dairy products, instantaneous It can be effectively used as a sweetener, a taste improver, a corrigent, and a humectant for foods, frozen foods, therapeutic foods and other foods, toothpastes, cosmetics and other chemicals and gargles, internal medicines and other pharmaceuticals.

(作用)
マルトース濃度5%、グリセロール濃度37.5%の溶液にα−グルコシダーゼ2.5U/gを添加し、40℃、24時間反応させた溶液についてGG、グルコース、オリゴ糖をHPLCにより分離定量した。その結果、イソマルトースなどの二糖類やパノース、イソマルトトライオースなどの三糖類以上のオリゴ糖はほとんど生成しておらず、グルコースとGGが主な生成物として認められた。すなわち、このような濃度のグリセリン溶液中では、α−グルコシダーゼによるグルコースやマルトースなどへの糖転移反応が抑制され、新たにグリセロールへの糖転移反応が起こっていることがわかった。
(Action)
2.5 U / g of α-glucosidase was added to a solution having a maltose concentration of 5% and a glycerol concentration of 37.5%, and GG, glucose, and oligosaccharides were separated and quantified by HPLC for a solution reacted at 40 ° C. for 24 hours. As a result, oligosaccharides such as disaccharides such as isomaltose and trisaccharides such as panose and isomalttriose were hardly produced, and glucose and GG were recognized as main products. That is, it was found that, in the glycerin solution having such a concentration, the transglycosylation reaction of α-glucosidase to glucose or maltose was suppressed, and the transglycosylation reaction to glycerol was newly performed.

表2はマルトース濃度5%、グリセロール濃度37.5%の溶液に、α−グルコシダ−ゼをマルトースグラム当たり2.5U/g添加し、40℃、24時間反応させた溶液の組成をHPLCにより測定した結果を示す表である。

Figure 2004229668
Table 2 shows that the composition of a solution obtained by adding α-glucosidase to a solution having a maltose concentration of 5% and a glycerol concentration of 37.5% per 2.5 g of maltose and reacting at 40 ° C. for 24 hours was measured by HPLC. It is a table | surface which shows the result.
Figure 2004229668

芳川ら(日本食品工業学会誌,41,878〜885,1994)は、α−グルコシダーゼを用いたエチル−α−グルコシド(以下α−EGと表記する)の製造において、マルトースから2個のグルコースへの加水分解作用と、マルトースからグルコースとα−EGを生成する糖転移作用を比べた場合、後者の糖転移作用が優先するとα−EG/グルコース比の値が大きくなると報告している。そこで同様に、本発明のα−グルコシダーゼによるGG製造においても、基質の加水分解作用よりもGGを生成する糖転移作用が優先した時にはGG/G比(重量比)(以下GG/G比と表記する)が増加すると思われる。加水分解作用と糖転移作用が同じ速さで起こると仮定すれば、2モルのマルトースを基質として、水、グリセロールの各々1モルに作用し、グルコース(分子量180)3モルとGG(分子量254)1モルが生じ、GG/G比は254/(180×3)=0.47となる。表2から求めたGG/G比は約1.3で、0.47を越えており、基質の加水分解よりもグリセロールへの転移反応が優先していた。また、このGG/G比と、基質当たりのGGの収率を指標として、基質濃度とグリセロール濃度について検討した。その結果、基質濃度は低濃度で収率が良かったが、GG/G比は基質濃度5%付近で高く、またグリセロール濃度が50%を越えると収率は低下した。   Yoshikawa et al. (Journal of the Japan Food Industry Association, 41, 878-885, 1994) reported that in the production of ethyl-α-glucoside (hereinafter referred to as α-EG) using α-glucosidase, maltose was converted to two glucoses. It has been reported that when comparing the hydrolysis activity of glycerol with the glycosyltransferring effect of producing glucose and α-EG from maltose, the value of the α-EG / glucose ratio increases when the latter glycosyltransferring activity takes precedence. Therefore, similarly, in the production of GG by the α-glucosidase of the present invention, when the sugar transfer effect of producing GG has priority over the hydrolysis effect of the substrate, the GG / G ratio (weight ratio) (hereinafter referred to as GG / G ratio) To increase). Assuming that the hydrolysis action and the transglycosylation action take place at the same speed, 2 moles of maltose as a substrate acts on 1 mole of each of water and glycerol, 3 moles of glucose (molecular weight 180) and 3 moles of GG (molecular weight 254). One mole results and the GG / G ratio is 254 / (180 × 3) = 0.47. The GG / G ratio determined from Table 2 was about 1.3, exceeding 0.47, indicating that the transfer reaction to glycerol had priority over the hydrolysis of the substrate. The substrate concentration and glycerol concentration were examined using the GG / G ratio and the yield of GG per substrate as indices. As a result, the yield was good when the substrate concentration was low, but the GG / G ratio was high near the substrate concentration of 5%, and the yield decreased when the glycerol concentration exceeded 50%.

図6は基質濃度とGG収率およびGG/Gの関係を示す図である。各濃度のマルトースを基質として、25%のグリセロール溶液中でカビ由来のα−グルコシダーゼ2.5U/gをpH5で50℃、24時間反応させた溶液をHPLCによりGGとグルコースを定量した結果を示した。横軸は基質濃度、左側の縦軸の数値にて基質当たりのGGの収率を棒グラフで、右側の縦軸の数値にて反応溶液中のGG/G比を折れ線グラフで示す。   FIG. 6 is a diagram showing the relationship between the substrate concentration and the GG yield and GG / G. The results obtained by quantifying GG and glucose by HPLC using a solution obtained by reacting 2.5 U / g of mold-derived α-glucosidase in a 25% glycerol solution at pH 5 at 50 ° C. for 24 hours using maltose at each concentration as a substrate are shown. Was. The horizontal axis shows the substrate concentration, the numerical value on the left vertical axis shows the yield of GG per substrate in a bar graph, and the right vertical axis shows the GG / G ratio in the reaction solution as a line graph.

図7はグリセロール濃度とGG収率およびGG/Gの関係を示す図である。基質としてマルトースを5%、各濃度のグリセロール溶液中でカビ由来のα−グルコシダーゼ2.5U/gをpH5で50℃、24時間反応させた溶液をHPLCによりGGとグルコースを定量した結果を示した。横軸はグリセロール濃度、左側の縦軸の数値にて基質当たりのGGの収率を棒グラフで、右側の縦軸の数値にて反応溶液中のGG/G比を折れ線グラフで示す。   FIG. 7 is a graph showing the relationship between the glycerol concentration and the GG yield and GG / G. The results obtained by quantifying GG and glucose by HPLC of a solution obtained by reacting 5% of maltose as a substrate and 2.5 U / g of mold-derived α-glucosidase in a glycerol solution of each concentration at pH 5 at 50 ° C. for 24 hours were used. . The horizontal axis shows the glycerol concentration, the numerical value on the left vertical axis shows the GG yield per substrate in a bar graph, and the right vertical axis shows the GG / G ratio in the reaction solution as a line graph.

精製したGGはエムルシンでは分解されず、マルターゼでグルコースとグリセロールに分解されることから、α−アノマーであることを確認した。さらに、精製したGGをトリメチルシリル(以下、TMSと表記する)化後、キャピラリーガスクロマトグラフィー−質量分析装置(以下、GC−MSと表記する)を用いて分析すると、3つのピークに分離した。後述のようにGGは2−O−α−D−グルコピラノシルグリセロール(以下、GG−IIと表記する)、(2R)−1−O−α−D−グルコピラノシルグリセロール(以下、R−GG−Iと表記する)、(2S)−1−O−α−D−グルコピラノシルグリセロール(以下、S−GG−Iと表記する)の三成分の混合物であり、これら三成分の比は、たとえば10:49:41であった。   The purified GG was not decomposed by emulsin, but was decomposed into glucose and glycerol by maltase, confirming that it was an α-anomer. Furthermore, when purified GG was converted into trimethylsilyl (hereinafter, referred to as TMS) and analyzed using a capillary gas chromatography-mass spectrometer (hereinafter, referred to as GC-MS), it was separated into three peaks. As described later, GG is 2-O-α-D-glucopyranosyl glycerol (hereinafter referred to as GG-II), (2R) -1-O-α-D-glucopyranosyl glycerol (hereinafter, referred to as GG-II). R-GG-I) and (2S) -1-O-α-D-glucopyranosylglycerol (hereinafter referred to as S-GG-I). Was 10:49:41, for example.

上記GC−MSで分離した3つのピークの同定は、化学的に合成したGGを用い、溶出時間とマススペクトルから確認した。GG−IIの合成方法については、マルチトールの過ヨウ素酸塩による短時間のグリコール開裂を利用した。すなわち、マルチトールのグルコピラノシル基の2、3、4位の炭素に結合している水酸基はそれぞれシス配置であり、またそのアグリコンであるソルビトールの炭素間の結合は自由に回転するので、過ヨウ素酸塩によるグリコール開裂はソルビトールの炭素間の方が速く進む。反応が進みすぎるとグルコピラノシル基も開裂が進むので、反応時間を制限する必要がある。そこで、4%マルチトール100μlに2%過ヨウ素酸ナトリウム1mlを添加し、4分間室温で反応させた。反応終了後、塩化バリウムを添加し、生じた過ヨウ素酸バリウムの沈殿をろ別、除去した。さらにイオン交換カラムで脱塩後、水素化ホウ素ナトリウムで還元し、活性炭クロマトグラフィー及びHPLCで精製した。合成したGG−IIをTMS化しGC−MSで分析すると、GGのTMS誘導体の3ピークのうちで初めに溶出するピークのみが認められ、GGのTMS誘導体のピークとマススペクトルも一致した。S−GG−Iについては、Kanedaら(Phytochemistry,23,795〜798,1984)がゲンチオビオースの四酢酸鉛によるグリコール開裂により、リリオシドD((2S)−1−O−β−D−グルコピラノシルグリセロール)を合成した方法を参考にし、イソマルトースの四酢酸鉛によるグリコール開裂を利用した。10%イソマルトース500μlに酢酸5mlと四酢酸鉛140mg(イソマルトースの2モル当量)を加え反応させ、沃素澱粉混液200μlに反応液20μlを添加した時、沃素澱粉混液の色が変わらなくなったところを反応の終点とした。この反応液の大部分の酢酸をロータリーエバポレーターで除去し、さらにイオン交換カラムで脱塩後、GG−IIと同様に還元し、精製した。合成したS−GG−IをTMS化しGC−MSで分析すると、GGのTMS誘導体の3ピークのうちで最後に溶出するピークのみが認められ、GGのTMS誘導体のピークとマススペクトルも一致した。また上記S−GG−Iと同様に、トレハルロースを四酢酸鉛(トレハルロースの1モル当量)によるグリコール開裂後、還元、精製したものをTMS化しGC−MSで分析すると、マススペクトルも一致するS−GG−IのTMS誘導体のピークと、GGのTMS誘導体の3ピークのうちでS−GG−IのTMS誘導体の直前に溶出するピークが認められ、GGのTMS誘導体のピークとマススペクトルが一致した。これら2つのピークを与えるトレハルロースの四酢酸鉛による分解物は1つの化合物(3−O−α−D−グルコピラノシル−2−オキソ−1−プロパナール)であるが、還元反応の際にグリセロールの2位の炭素が(R)、(S)−配置となる2種類の化合物を与える。この2種類の化合物のTMS誘導体のマススペクトルに違いがないことから、GGのTMS誘導体の3つのピークのうちで2番目のピークはR−GG−IのTMS誘導体であることがわかった。   The identification of the three peaks separated by the GC-MS was confirmed from the elution time and the mass spectrum using chemically synthesized GG. The method for synthesizing GG-II utilized short glycol cleavage of maltitol with periodate. That is, the hydroxyl groups bonded to carbons 2, 3, and 4 of the glucopyranosyl group of maltitol are each in a cis configuration, and the bond between the carbons of the aglycone sorbitol is free to rotate. Glycol cleavage by salts proceeds faster between the carbons of sorbitol. If the reaction proceeds too much, the glucopyranosyl group will also be cleaved, so the reaction time must be limited. Therefore, 1 ml of 2% sodium periodate was added to 100 μl of 4% maltitol, and reacted at room temperature for 4 minutes. After completion of the reaction, barium chloride was added, and the resulting precipitate of barium periodate was removed by filtration. After desalting with an ion exchange column, the mixture was reduced with sodium borohydride and purified by activated carbon chromatography and HPLC. When the synthesized GG-II was converted to TMS and analyzed by GC-MS, only the peak eluted first among the three peaks of the TMS derivative of GG was recognized, and the peak of the TMS derivative of GG matched the mass spectrum. For S-GG-I, Kaneda et al. (Phytochemistry, 23, 794-798, 1984) reported that lyrioside D ((2S) -1-O-β-D-glucopyrano by cleavage of gentiobiose with lead tetraacetate. With reference to the method of synthesizing (sylglycerol), glycol cleavage of isomaltose with lead tetraacetate was used. 5 ml of acetic acid and 140 mg of lead tetraacetate (2 molar equivalents of isomaltose) were added to 500 μl of 10% isomaltose and reacted, and when the reaction mixture was added to 200 μl of iodine starch and 20 μl of the reaction mixture, the color of the iodine starch mixture remained unchanged. This was the end point of the reaction. Most of the acetic acid in the reaction solution was removed with a rotary evaporator, and further desalted with an ion exchange column, and then reduced and purified in the same manner as GG-II. When the synthesized S-GG-I was converted to TMS and analyzed by GC-MS, only the last eluting peak among the three peaks of the TMS derivative of GG was recognized, and the peak of the TMS derivative of GG matched the mass spectrum. Similarly to the above S-GG-I, when trehalulose is glycol-cleaved with lead tetraacetate (1 molar equivalent of trehalulose), reduced and purified, TMS is formed and analyzed by GC-MS. Among the three peaks of the GG-I TMS derivative and the GG TMS derivative, a peak eluted immediately before the S-GG-I TMS derivative was observed, and the peak of the GG TMS derivative coincided with the mass spectrum. . The decomposition product of trehalulose, which gives these two peaks, with lead tetraacetate is one compound (3-O-α-D-glucopyranosyl-2-oxo-1-propanal). To give two compounds in which the carbon at the position is in the (R), (S) -configuration. Since there was no difference in the mass spectra of the TMS derivatives of these two compounds, it was found that the second peak among the three peaks of the GG TMS derivative was the R-GG-I TMS derivative.

図8はGGのTMS誘導体をGC−MSで分析した時のトータルイオンクロマトグラムである。縦軸はフラグメントイオンのトータルイオン強度、横軸は分析時間を示した。各ピークに対応する成分の略号(GG−IIは2−O−α−D−グルコピラノシルグリセロール、R−GG−Iは(2R)−1−O−α−D−グルコピラノシルグリセロール、S−GG−Iは(2S)−1−O−α−D−グルコピラノシルグリセロール)と括弧内に溶出時間(分)を示した。このクロマトグラムにおける三成分の比(溶出順)は、およそ10:49:41であった。   FIG. 8 is a total ion chromatogram obtained by analyzing a TMS derivative of GG by GC-MS. The vertical axis indicates the total ion intensity of the fragment ions, and the horizontal axis indicates the analysis time. Abbreviations of components corresponding to each peak (GG-II is 2-O-α-D-glucopyranosyl glycerol, R-GG-I is (2R) -1-O-α-D-glucopyranosyl glycerol , S-GG-I (2S) -1-O-α-D-glucopyranosylglycerol) and the elution time (min) in parentheses. The ratio of the three components (elution order) in this chromatogram was approximately 10:49:41.

図9は図8のGG−IIに相当するピークより得たGG−IIのTMS誘導体のマススペクトルである。縦軸はイオン強度、横軸はフラグメントイオンの質量数を表す。   FIG. 9 is a mass spectrum of a TMS derivative of GG-II obtained from a peak corresponding to GG-II in FIG. The vertical axis represents the ion intensity, and the horizontal axis represents the mass number of the fragment ion.

図10は図8のR−GG−Iに相当するピークより得たR−GG−IのTMS誘導体のマススペクトルである。縦軸はイオン強度、横軸はフラグメントイオンの質量数を表す。   FIG. 10 is a mass spectrum of the TMS derivative of R-GG-I obtained from the peak corresponding to R-GG-I in FIG. The vertical axis represents the ion intensity, and the horizontal axis represents the mass number of the fragment ion.

図11は図8のS−GG−Iに相当するピークより得たS−GG−IのTMS誘導体のマススペクトルである。縦軸はイオン強度、横軸はフラグメントイオンの質量数を表す。   FIG. 11 is a mass spectrum of the TMS derivative of S-GG-I obtained from the peak corresponding to S-GG-I in FIG. The vertical axis represents the ion intensity, and the horizontal axis represents the mass number of the fragment ion.

清酒醪中にもこれら三成分が存在したが、GG三成分の比は、たとえば6:66:28であった。この三成分の比の違いについて検討したところ、α−グルコシダーゼの作用によりマルトースとグリセロールから生成するGG三成分のうち、先ずR−GG−I、GG−IIが増加し、それより遅れてS−GG−Iが生成してくる。また、精製したGGにα−アミラーゼ(Bacillus subtilis由来)やグルコアミラーゼ(Rizopus sp.由来)を作用させてもGGは分解されないが、α−グルコシダーゼを作用させると、先ずR−GG−I、GG−IIから分解が起こり、遅れてS−GG−Iの分解が起こる。すなわち、基質であるマルトースがなくなってくると、見かけ上GGがα−グルコシダーゼの基質となり、GG三成分の比の変化が生じてくる。このようにα−グルコシダーゼの受容体結合部位の選択性や基質認識の違いによって、GG三成分の比が微妙に変化していると思われる。よって、本発明において、GG製造時に基質が減少した際、GG三成分の比は変化するが、GGの加水分解による減少を抑えるために、グリセロール濃度は高めの方が望ましい。また、並行複発酵の清酒醪中では、主に酵母の生産したグリセロールへ麹のα−グルコシダーゼによる糖転移反応が生じGGが生成すると思われるが、同時にグルコースやアルコールなどからイソマルトースやエチル−α−グルコシドの生成などが起こりGGの生成と競合した結果、GG三成分の比が本発明のものと異なっていると考えられる。   These three components were also present in the sake mash, but the ratio of the three components of GG was, for example, 6:66:28. When the difference in the ratio of these three components was examined, among the three components of GG generated from maltose and glycerol by the action of α-glucosidase, first, R-GG-I and GG-II increased, and after that, S- GG-I is generated. Further, when α-amylase (derived from Bacillus subtilis) or glucoamylase (derived from Rizopus sp.) Is allowed to act on purified GG, GG is not degraded. However, when α-glucosidase is acted on, R-GG-I, GG -II decomposes and S-GG-I degrades later. That is, when the maltose as the substrate disappears, GG apparently becomes a substrate for α-glucosidase, and the ratio of the three components of GG changes. Thus, it seems that the ratio of the three components of GG is slightly changed due to the difference in the selectivity of the α-glucosidase receptor binding site and the difference in substrate recognition. Therefore, in the present invention, when the amount of the substrate decreases during the production of GG, the ratio of the three components of GG changes. However, in order to suppress the decrease due to hydrolysis of GG, it is desirable to increase the glycerol concentration. In the sake mash of parallel compound fermentation, the sugar transfer reaction of α-glucosidase of koji to glycerol mainly produced by yeast is thought to occur to produce GG, but at the same time, isomaltose or ethyl-α from glucose or alcohol. It is considered that the ratio of the three components of GG is different from that of the present invention as a result of generation of glucoside and competition with generation of GG.

次に本発明の実施例を製造方法と用途に分けて具体的に示すが、本発明はこれらの実施例に限定されるものではない。   Next, examples of the present invention will be specifically described by dividing into production methods and applications, but the present invention is not limited to these examples.

(製造方法の実施例1)マルトース1水和物53g(マルトースとして50g)とグリセロール375gを水で溶解し1000mlとし、カビ(Asp.niger)由来の市販α−グルコシダーゼ製剤(トランスグルコシダーゼL−アマノ、天野製薬製、50U/ml)2.5mlを加え、40℃で24時間反応させた。反応液を80℃で10分間加熱して酵素を失活させた後、生じた浮遊物をろ紙(東洋ろ紙No.2)にてろ過し、除去した。 (Example 1 of production method) 53 g of maltose monohydrate (50 g as maltose) and 375 g of glycerol were dissolved in water to make 1000 ml, and a commercially available α-glucosidase preparation derived from mold (Asp.niger) (transglucosidase L-amano, 2.5 ml of 50 U / ml (manufactured by Amano Pharmaceutical Co., Ltd.) was added, and reacted at 40 ° C. for 24 hours. After the reaction solution was heated at 80 ° C. for 10 minutes to inactivate the enzyme, the resulting suspended matter was removed by filtration through filter paper (Toyo Roshi Kaisha No. 2).

このろ液5μlを高速液体クロマトグラフィー(以下、HPLCと表記する)で分析した。HPLCの条件はカラムにShim−pack SCR−101(N)(内径7.9mm、長さ30cm、島津製作所製)を用い、カラム温度は50℃とし、溶出液には水を用い、流速は毎分0.6ml、検出器に示差屈折率計を用いた。GG濃度は後述の精製GGで約2%の水溶液を作製し、この水溶液と、この水溶液にマルターゼ(酵母由来、オリエンタル酵母製)を加え37℃で一晩反応させた溶液を上記HPLCで測定し、マルターゼの作用によりGGが分解して生成したグルコース濃度と分解し減少したGGのピーク面積とそれぞれの分子量から検量線を作成し算出した。測定の結果、反応ろ液にはGGが3.8%、グルコース3.0%、グリセロール29.5%が含まれ、二糖類以上のオリゴ糖は微量であった。反応ろ液のGG収量は38gで、収率は76%であった。   5 μl of the filtrate was analyzed by high performance liquid chromatography (hereinafter referred to as HPLC). HPLC conditions were Shim-pack SCR-101 (N) (inside diameter 7.9 mm, length 30 cm, manufactured by Shimadzu Corporation), the column temperature was 50 ° C., water was used as the eluent, and the flow rate was A differential refractometer was used as a detector for 0.6 ml per minute. The GG concentration was determined by preparing an aqueous solution of about 2% with purified GG described later, and a solution obtained by adding maltase (derived from yeast, oriental yeast) to the aqueous solution and reacting at 37 ° C. overnight with the above HPLC. A calibration curve was created and calculated from the glucose concentration generated by the decomposition of GG due to the action of maltase, the peak area of GG decomposed and reduced, and the respective molecular weights. As a result of the measurement, the reaction filtrate contained 3.8% of GG, 3.0% of glucose, and 29.5% of glycerol, and the amount of oligosaccharides equal to or higher than disaccharides was very small. The GG yield of the reaction filtrate was 38 g, and the yield was 76%.

また、反応ろ液1μlをスクリューキャップ付き試験管にとり乾燥デシケーター中に一晩置いた後、TMS化剤(TMSI−C、ジーエルサイエンス製)を100μl加え、60℃で10分反応させた溶液1μlをGC−MS(ヒューレットパッカード製HP5890シリーズIIガスクロマトグラフ、モデル5971A質量検出器)で分析した。GC−MS条件はキャピラリーカラムにDB−225(長さ30m、内径0.25mm、膜厚0.15μm、J&W Scientific製)を用い、キャリアガスにヘリウム(カラム背圧8PSI)、スプリット法(スプリット比1:50)で注入し、注入口温度は240℃、インターフェイス温度は280℃、カラム温度は100℃から200℃まで1分間に5℃の割合で昇温し、次に16分から20分の間に溶出する成分を電子衝撃型イオン化法(電子ビームエネルギー70eV)でイオン化し、質量数70〜650amu(原子質量単位)の範囲を1分間に約1.5回の速さで走査し、マススペクトルを採集した。溶出時間と得られたマススペクトルからそれぞれの成分を確認した。また同時に得られるトータルイオンクロマトグラムのピーク面積の測定結果から、反応ろ液中のGG−II、R−GG−I、S−GG−Iの成分比を算出すると11:41:48であった。   Also, 1 μl of the reaction filtrate was placed in a test tube with a screw cap, placed in a desiccator overnight, and 100 μl of a TMS agent (TMSI-C, manufactured by GL Sciences) was added. 1 μl of the solution reacted at 60 ° C. for 10 minutes was added. The analysis was performed by GC-MS (HP5890 series II gas chromatograph manufactured by Hewlett-Packard, model 5971A mass detector). The GC-MS conditions were as follows: DB-225 (length: 30 m, inner diameter: 0.25 mm, film thickness: 0.15 μm, manufactured by J & W Scientific) was used for the capillary column, helium was used as the carrier gas (column back pressure: 8 PSI), and the split method (split ratio: 1). : 50), the inlet temperature is 240 ° C, the interface temperature is 280 ° C, and the column temperature is raised from 100 ° C to 200 ° C at a rate of 5 ° C per minute, and then between 16 minutes and 20 minutes. The eluted components are ionized by an electron impact ionization method (electron beam energy: 70 eV), and the mass spectrum is scanned at a rate of about 1.5 times per minute in a range of mass number of 70 to 650 amu (atomic mass unit). Collected. Each component was confirmed from the elution time and the obtained mass spectrum. Also, the component ratio of GG-II, R-GG-I, and S-GG-I in the reaction filtrate was calculated from the measurement result of the peak area of the total ion chromatogram obtained at the same time, and was 11:41:48. .

反応ろ液をさらに、イオン交換樹脂(アンバーライトMB−2、オルガノ製)を常法に従い、長さ30cmまで充填した内径1.5cmのガラスカラムに通し、除蛋白、脱塩した溶液を得た。この溶液をおよそ半分の量までロータリーエバポレーターで濃縮した。この濃縮液10mlを、クロマトグラフ用活性炭100g及びセライト(No.535)100g(いずれも和光純薬工業製)を常法に従い充填した内径5cmのガラスカラムを用い、活性炭カラムクロマトグラフィーを行った。適宜溶出液を上記HPLCで測定しながら、最初は水で溶出し、グルコースとグリセリンを除去した後、続けて2%アルコールをカラムに通し、GGが単独で溶出した画分を集めた。この活性炭カラムクロマトグラフィーを2回行い、GG溶出画分をロータリーエバポレーターで濃縮すると、無色透明のシロップ状の精製GG約1gが得られた。   The reaction filtrate was passed through a glass column with an inner diameter of 1.5 cm filled with an ion exchange resin (Amberlite MB-2, manufactured by Organo) up to a length of 30 cm according to a conventional method to obtain a deproteinized and desalted solution. . This solution was concentrated on a rotary evaporator to approximately half the volume. Activated carbon column chromatography was performed on 10 ml of this concentrated liquid using a 5 cm inner diameter glass column filled with 100 g of activated carbon for chromatography and 100 g of Celite (No. 535) (both manufactured by Wako Pure Chemical Industries, Ltd.) according to a conventional method. While appropriately measuring the eluate by the above-mentioned HPLC, the eluate was first eluted with water, glucose and glycerin were removed, and then 2% alcohol was passed through the column to collect fractions eluted by GG alone. This activated carbon column chromatography was performed twice, and the GG eluted fraction was concentrated with a rotary evaporator to obtain about 1 g of a colorless and transparent syrup-like purified GG.

(製造方法の実施例2)実施例1の24時間反応後の溶液1000mlに、さらにマルトース1水和物53g(マルトースとして50g)のみを添加し、同じ条件で反応させることを繰り返した。α−グルコシダーゼは10日後も安定に作用し、10日間の繰り返しの結果、GGの収量は164gとなり、1回の反応よりも約5倍増加した。 (Example 2 of Production Method) To the solution after reaction for 24 hours in Example 1, only 53 g of maltose monohydrate (50 g as maltose) was further added, and the reaction was repeated under the same conditions. α-glucosidase stably acted even after 10 days, and as a result of repeating for 10 days, the yield of GG was 164 g, which was about 5-fold increase from one reaction.

図12は、基質を連続して添加することにより、GGの収量が上がったことを示す図である。基質としてマルトースを5%、37.5%グリセロール溶液中でカビ由来のα−グルコシダーゼ2.5U/gをpH5で40℃、24時間反応させた溶液1000mlにさらにマルトースを5%添加し、これを繰り返した。各反応終了時に反応液の一部を取り、HPLCによりGGを定量した結果を示した。横軸はマルトース添加回数と初期反応液1000ml当たりのマルトース添加量の累計、左側の縦軸の数値にて初期反応液1000ml当たりのGGの収量を棒グラフで、右側の縦軸の数値にて基質当たりのGGの収率を折れ線グラフで示す。   FIG. 12 is a diagram showing that the yield of GG was increased by continuously adding the substrate. Maltose was added as a substrate at a concentration of 5% in a 37.5% glycerol solution, and 2.5 U / g of mold-derived α-glucosidase was reacted at pH 5 at 40 ° C. for 24 hours. Repeated. A part of the reaction solution was taken at the end of each reaction, and the result of quantifying GG by HPLC was shown. The horizontal axis is the number of maltose additions and the total amount of maltose added per 1000 ml of the initial reaction solution, the bar graph shows the yield of GG per 1000 ml of the initial reaction solution by the numerical value on the left vertical axis, and the yield on the substrate by the numerical value on the right vertical axis. Is shown by a line graph.

この反応溶液を製造方法の実施例1で行ったGC−MSにて同様に分析するとGG−II、R−GG−I、S−GG−Iの成分比は9:50:41であった。また製造方法の実施例1で行った活性炭カラムクロマトグラフィー及びGG溶出画分の濃縮を繰り返すことで、無色透明のシロップ状の精製GG140gを得た。   When the reaction solution was similarly analyzed by GC-MS performed in Example 1 of the production method, the component ratio of GG-II, R-GG-I, and S-GG-I was 9:50:41. In addition, by repeating the activated carbon column chromatography and the concentration of the GG elution fraction performed in Example 1 of the production method, 140 g of colorless and transparent syrup-like purified GG was obtained.

(製造方法の実施例3)製造方法の実施例2で得たシロップ状の精製GG約20gを水で30mlとし、その一部をカラムにYMC−Pack Polyamine II(内径1cm、長さ25cm、ワイエムシイ製)を用いたHPLCに注入した。HPLCの条件は、カラム温度35℃、85%アセトニトリルにより流速毎分3mlで溶出し、示差屈折率計で検出した。溶出してきた2つのピークをそれぞれ集め、ロータリーエバポレーターで濃縮した。それぞれの溶出画分をTMS化後、製造方法の実施例1で行ったGC−MSで分析すると、最初の画分がGG−II、後の画分がR−GG−I、S−GG−Iの混合物であった。このHPLCによる分離及びそれぞれの画分の濃縮操作を繰り返し行い、それぞれシロップ状の精製GG−IIを約1.5g、精製GG−I類を約15g得た。 (Example 3 of the production method) About 20 g of the purified GG in the syrup obtained in Example 2 of the production method was made up to 30 ml with water, and a part thereof was placed in a column with a YMC-Pack Polyamine II (inner diameter 1 cm, length 25 cm, HPLC). The HPLC conditions were as follows: elution was carried out at a column temperature of 35 ° C. and 85% acetonitrile at a flow rate of 3 ml / min, and detected by a differential refractometer. The two peaks eluted were collected, respectively, and concentrated on a rotary evaporator. When each eluted fraction was converted to TMS and analyzed by GC-MS performed in Example 1 of the production method, the first fraction was GG-II, the later fractions were R-GG-I, S-GG- I was a mixture. This separation by HPLC and concentration of each fraction were repeated to obtain about 1.5 g of purified GG-II and about 15 g of purified GG-I in the form of syrup.

(用途の実施例1 清酒)40%アルコール900ml、無水ブドウ糖50g、粉末水飴70g、製造方法の実施例2で得たシロップ状のGG60g、75%乳酸0.4ml、コハク酸1.1g、グルタミン酸ナトリウム0.2gを水で溶かして1200mlとし、アルコール濃度30%のGG添加調味アルコール液を調製した。また、対照として、40%アルコール900ml、無水ブドウ糖80g、粉末水飴100g、75%乳酸0.4ml、コハク酸1.1g、グルタミン酸ナトリウム0.2gを水で溶かして1200mlとし、アルコール濃度30%の調味アルコール液を調製した。GG添加調味アルコール液1200mlと水500mlまたは対照の調味アルコール液1200mlと水500mlをそれぞれ1250mlの清酒醪に添加し、遠心分離で酒粕を分離し、アルコール約20%の増醸酒を得た。これら各々を火入れ、滓下げ後、アルコール約15%になるように加水し火入れして、GG高含有清酒及び対照の清酒を作製した。これらを5名のパネラーで官能検査した結果、GG高含有清酒は対照の清酒に比べ、「こくがある」、「木目細かく、ソフトである」、「ふくらみがある」、「すっきりとした甘さである」といった良い評価を得た。このように、GGはすっきりとした甘さで深みのある風味を与えること以外にも、GGが難消化性物質であるため、GG高含有清酒はカロリーをやや抑えたものとなった。 (Application Example 1 Sake) 900 ml of 40% alcohol, 50 g of anhydrous glucose, 70 g of powdered starch syrup, 60 g of syrupy GG obtained in Example 2 of the production method, 0.4 ml of 75% lactic acid, 1.1 g of succinic acid, 1.1 g of sodium glutamate 0.2 g was dissolved in water to 1200 ml to prepare a GG-added seasoning alcohol solution having an alcohol concentration of 30%. As a control, 900 ml of 40% alcohol, 80 g of anhydrous glucose, 100 g of powdered starch syrup, 0.4 ml of 75% lactic acid, 1.1 g of succinic acid, and 0.2 g of sodium glutamate were dissolved in water to 1200 ml, and the seasoning at an alcohol concentration of 30% was performed. An alcohol solution was prepared. 1200 ml of GG-added seasoning alcohol solution and 500 ml of water or 1200 ml of control seasoning alcohol solution and 500 ml of water were added to 1250 ml of sake mash, respectively, and sake lees were separated by centrifugation to obtain a brewed sake of about 20% alcohol. Each of these was burned, and after slagging, water was added and heated to about 15% alcohol to prepare a GG-rich sake and a control sake. As a result of a sensory test conducted on these by five panelists, the sake with a high GG content was compared with the control sake, with "Koku", "Fine and soft," "Swelling," and "Clean sweetness." Is good. " As described above, since GG is not only digestible but also has a refreshing sweetness and a deep flavor, sake with a high GG content has slightly reduced calories because GG is an indigestible substance.

(用途の実施例2 練り歯磨き)製造方法の実施例2で得たシロップ状のGG5gと第2りん酸カルシウム15g、プルラン1g、ラウリル硫酸ナトリウム0.5g、グリセロール7g、ポリオキシエチレンソルビタンラウレート0.15g、防腐剤20mg、水4 mlを常法により混合し、練り歯磨きを作製した。GGの甘さと非う蝕性を活かした本品は、とりわけ子供用の練り歯磨きに適している。 (Application Example 2 Toothpaste) 5 g of syrup-like GG obtained in Example 2 of the production method, 15 g of calcium diphosphate, 1 g of pullulan, 0.5 g of sodium lauryl sulfate, 7 g of glycerol, 0 g of polyoxyethylene sorbitan laurate .15 g, a preservative of 20 mg and water of 4 ml were mixed by a conventional method to prepare a toothpaste. This product, which makes use of the sweetness and non-cariogenicity of GG, is particularly suitable for toothpaste for children.

(用途の実施例3 化粧クリーム)製造方法の実施例2で得たシロップ状のGG2gとモノステアリン酸ポリオキシエチレングリコール2g、自己乳化型モノステアリン酸グリセリン5g、α−グルコシルルチン1g、流動パラフィン1g、トリオクタン酸グリセリル10g、防腐剤50mgを常法により加熱溶解し、さらに1,3−ブチレングリコール5g、乳酸2g、精製水66mlを添加し、ホモジナイザーにより乳化後、適量の香料を加え混合し、化粧クリームを作製した。本品はGGの保湿効果により、特に乾燥肌用化粧クリームとして好適である。 (Application Example 3 Cosmetic Cream) 2 g of syrup-like GG obtained in Example 2 of the production method, 2 g of polyoxyethylene glycol monostearate, 5 g of self-emulsifying glyceryl monostearate, 1 g of α-glucosyl rutin, 1 g of liquid paraffin , 10 g of glyceryl trioctanoate and 50 mg of a preservative are dissolved by heating in a conventional manner, and 5 g of 1,3-butylene glycol, 2 g of lactic acid and 66 ml of purified water are added. After emulsification with a homogenizer, an appropriate amount of flavor is added and mixed. A cream was made. This product is particularly suitable as a cosmetic cream for dry skin due to the moisturizing effect of GG.

(用途の実施例4 カルシウム剤)乳酸カルシウム2gを乳鉢ですりつぶし、温湯(精製水)30mlで溶解し、製造方法の実施例2で得たシロップ状のGG4gを加え混合し、カルシウム剤を作製した。本品は小児の発育期におけるカルシウム補給剤として利用できる。本品のように、服用時加温する必要がある内用液剤、とりわけ小児用のものでは、加熱安定性が優れている甘味剤としてGGは好適である。 (Example 4 of use: calcium agent) 2 g of calcium lactate was ground in a mortar, dissolved in 30 ml of hot water (purified water), and 4 g of syrupy GG obtained in Example 2 of the production method was added and mixed to prepare a calcium agent. . This product can be used as a calcium supplement during childhood development. GG is suitable as a sweetener having excellent heat stability in an internal solution which needs to be heated at the time of taking, such as this product, especially for children.

なお、エチル−α−グルコシドにおいて糖転移反応の受容体であるエタノールのように、グルコースとの縮合部位が一個所しかない場合と比べ、グリセロールでは三個所の縮合部位がある。立体選択的グリコシル化反応、特にα−グルコシル化反応は、糖質化学の分野では重要な研究課題の一つになっており、GGはα−グルコシダーゼの受容体結合部位の選択性や基質特異性など、酵素学的にも興味深い物質になる。   It should be noted that glycerol has three condensed sites, as compared with a case where only one condensed site with glucose is present, as in ethanol, which is a receptor for the transglycosylation reaction in ethyl-α-glucoside. Stereoselective glycosylation, particularly α-glucosylation, has become one of the important research topics in the field of carbohydrate chemistry, and GG has the selectivity of α-glucosidase receptor binding site and substrate specificity. It becomes an enzymatically interesting substance.

また、GGは微生物細胞膜構成成分であるグリセロ糖脂質合成の基質になりうる。微生物のグリセロ糖脂質は動植物のものと異なり、構成単糖や結合が多様であり、生合成や分解については一部のものしか明らかになっておらず、これらの生理的役割を解明することは、微生物利用工業の発展につながるものである。さらにGGの一成分である2−O−α−D−グルコピラノシルグリセロールは単離精製が可能であり、一部の藍藻類での浸透圧調整への関与が明確であることからも微生物利用工業分野では興味深い物質となる。   In addition, GG can be a substrate for the synthesis of glyceroglycolipid, which is a component of a microorganism cell membrane. Glyceroglycolipids of microorganisms differ from those of animals and plants in that their constituent monosaccharides and bonds are diverse, and only a part of their biosynthesis and degradation has been elucidated. It will lead to the development of the microbial utilization industry. In addition, 2-O-α-D-glucopyranosylglycerol, which is a component of GG, can be isolated and purified, and its involvement in osmotic pressure regulation in some cyanobacteria is clear. It is an interesting substance in the industrial field.

GGの褐変性を示す図である。It is a figure which shows browning of GG. GGのメイラード反応性を示す図である。It is a figure which shows Maillard reactivity of GG. GGの加熱安定性を示す図である。It is a figure which shows the heating stability of GG. GGの非う蝕性を示す図である。It is a figure which shows the non-caries property of GG. GGの保湿性を示す図である。It is a figure which shows the moisture retention of GG. 基質濃度とGG収率およびGG/Gの関係を示す図である。It is a figure which shows the relationship between a substrate concentration, GG yield, and GG / G. グリセロール濃度とGG収率およびGG/Gの関係を示す図である。It is a figure which shows the relationship between glycerol concentration, GG yield, and GG / G. GGのTMS誘導体をGC−MSで分析した時のトータルイオンクロマトグラムである。It is a total ion chromatogram when the TMS derivative of GG was analyzed by GC-MS. 図8のGG−IIに相当するピークより得たGG−IIのTMS誘導体のマススペクトルである。9 is a mass spectrum of a TMS derivative of GG-II obtained from a peak corresponding to GG-II in FIG. 図8のR−GG−Iに相当するピークより得たR−GG−IのTMS誘導体のマススペクトルである。9 is a mass spectrum of a TMS derivative of R-GG-I obtained from a peak corresponding to R-GG-I in FIG. 図8のS−GG−Iに相当するピークより得たS−GG−IのTMS誘導体のマススペクトルである。9 is a mass spectrum of a TMS derivative of S-GG-I obtained from a peak corresponding to S-GG-I in FIG. 基質を連続して添加することにより、GGの収量が上がったことを示す図である。It is a figure which shows that the yield of GG increased by continuously adding a substrate.

Claims (6)

式1、式2または式3
Figure 2004229668
Figure 2004229668
Figure 2004229668
の(2R)−1−O−α−D−グルコピラノシルグリセロール、(2S)−1−O−α−D−グルコピラノシルグリセロール及び2−O−α−D−グルコピラノシルグリセロールの少なくとも1つを含むα−D−グルコピラノシルグリセロール類を主成分とすることを特徴とする調味料。
Equation 1, Equation 2 or Equation 3
Figure 2004229668
Figure 2004229668
Figure 2004229668
(2R) -1-O-α-D-glucopyranosyl glycerol, (2S) -1-O-α-D-glucopyranosyl glycerol and 2-O-α-D-glucopyranosyl glycerol A seasoning characterized in that α-D-glucopyranosylglycerols containing at least one of the following are used as a main component.
請求項1に記載の調味料を添加した飲食物。   A food or drink to which the seasoning according to claim 1 is added. アルコール飲料である請求項2記載の飲食物。   The food or drink according to claim 2, which is an alcoholic beverage. 式1、式2または式3
Figure 2004229668
Figure 2004229668
Figure 2004229668
の(2R)−1−O−α−D−グルコピラノシルグリセロール、(2S)−1−O−α−D−グルコピラノシルグリセロール及び2−O−α−D−グルコピラノシルグリセロールの少なくとも1つを含むα−D−グルコピラノシルグリセロール類を主成分とすることを特徴とする保湿剤。
Equation 1, Equation 2 or Equation 3
Figure 2004229668
Figure 2004229668
Figure 2004229668
(2R) -1-O-α-D-glucopyranosyl glycerol, (2S) -1-O-α-D-glucopyranosyl glycerol and 2-O-α-D-glucopyranosyl glycerol A moisturizer characterized by comprising α-D-glucopyranosylglycerols containing at least one of the following as main components:
請求項4に記載の保湿剤を添加した化粧品。   A cosmetic to which the humectant according to claim 4 is added. 化粧クリームである請求項5記載の化粧品。

The cosmetic according to claim 5, which is a cosmetic cream.

JP2004097905A 2004-03-30 2004-03-30 α-D-Glucopyranosylglycerols, method for producing the same, and use thereof Expired - Fee Related JP3732501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004097905A JP3732501B2 (en) 2004-03-30 2004-03-30 α-D-Glucopyranosylglycerols, method for producing the same, and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004097905A JP3732501B2 (en) 2004-03-30 2004-03-30 α-D-Glucopyranosylglycerols, method for producing the same, and use thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP03543498A Division JP3569432B2 (en) 1998-02-02 1998-02-02 Method for producing α-D-glucopyranosylglycerols and use thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005258221A Division JP2006008703A (en) 2005-09-06 2005-09-06 Alpha-d-glucopyranosyl-glycerols, production method therefor, and their use

Publications (2)

Publication Number Publication Date
JP2004229668A true JP2004229668A (en) 2004-08-19
JP3732501B2 JP3732501B2 (en) 2006-01-05

Family

ID=32959886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004097905A Expired - Fee Related JP3732501B2 (en) 2004-03-30 2004-03-30 α-D-Glucopyranosylglycerols, method for producing the same, and use thereof

Country Status (1)

Country Link
JP (1) JP3732501B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1712139A1 (en) * 2005-04-15 2006-10-18 Cargill Incorporated Sustained energy release compositions
WO2006122669A1 (en) * 2005-05-19 2006-11-23 Beiersdorf Ag Cosmetic preparations containing glucosyl glycerides and one or more acrylamidomethyl propylsulphonic acid polymers
WO2006122668A1 (en) * 2005-05-19 2006-11-23 Beiersdorf Ag Active ingredient combinations of glucosyl glycerides and creatine and/or creatinine
JP2007137862A (en) * 2005-11-22 2007-06-07 Hyogo Prefecture Antiallergic agent
WO2007124991A1 (en) * 2006-04-27 2007-11-08 Beiersdorf Ag Cosmetic preparation with aquaporin stimulators and the use thereof
JP2013170172A (en) * 2012-02-17 2013-09-02 Toyo Seito Kk Denaturation/degradation inhibitor for inhibiting denaturation and/or degradation of protein due to radical, denaturation/degradation inhibitor-containing composition including the same, and method for inhibiting denaturation and/or degradation of protein due to radical using the same
WO2015016077A1 (en) * 2013-07-31 2015-02-05 東洋精糖株式会社 Method for stabilizing scent component, fragrance composition, and deodorizing composition
WO2015152103A1 (en) * 2014-03-31 2015-10-08 カーリットホールディングス株式会社 Glyceryl glucoside-containing composition and method for producing same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1712139A1 (en) * 2005-04-15 2006-10-18 Cargill Incorporated Sustained energy release compositions
WO2006122669A1 (en) * 2005-05-19 2006-11-23 Beiersdorf Ag Cosmetic preparations containing glucosyl glycerides and one or more acrylamidomethyl propylsulphonic acid polymers
WO2006122668A1 (en) * 2005-05-19 2006-11-23 Beiersdorf Ag Active ingredient combinations of glucosyl glycerides and creatine and/or creatinine
JP2007137862A (en) * 2005-11-22 2007-06-07 Hyogo Prefecture Antiallergic agent
WO2007124991A1 (en) * 2006-04-27 2007-11-08 Beiersdorf Ag Cosmetic preparation with aquaporin stimulators and the use thereof
JP2013170172A (en) * 2012-02-17 2013-09-02 Toyo Seito Kk Denaturation/degradation inhibitor for inhibiting denaturation and/or degradation of protein due to radical, denaturation/degradation inhibitor-containing composition including the same, and method for inhibiting denaturation and/or degradation of protein due to radical using the same
WO2015016077A1 (en) * 2013-07-31 2015-02-05 東洋精糖株式会社 Method for stabilizing scent component, fragrance composition, and deodorizing composition
CN105431509A (en) * 2013-07-31 2016-03-23 东洋精糖株式会社 Method for stabilizing scent component, fragrance composition, and deodorizing composition
CN105431509B (en) * 2013-07-31 2019-01-18 东洋精糖株式会社 Antihunt means, spice composition and the deodorization composition of odour component
WO2015152103A1 (en) * 2014-03-31 2015-10-08 カーリットホールディングス株式会社 Glyceryl glucoside-containing composition and method for producing same
JPWO2015152103A1 (en) * 2014-03-31 2017-04-13 カーリットホールディングス株式会社 Glyceryl glucoside-containing composition and method for producing the same

Also Published As

Publication number Publication date
JP3732501B2 (en) 2006-01-05

Similar Documents

Publication Publication Date Title
JP3569432B2 (en) Method for producing α-D-glucopyranosylglycerols and use thereof
US4219571A (en) Process for producing a sweetener
KR100647405B1 (en) Cozybios phosphorylase, preparation method and use thereof
JP3533239B2 (en) Maltohexaose / maltoheptaose-forming amylase, method for producing the same and use thereof
Takenaka et al. Synthesis of α-D-glucosylglycerol by α-glucosidase and some of its characteristics
KR101129098B1 (en) Cyclic maltosyl maltose, cyclic maltosyl maltose synthase, method of producing the same and use thereof
JP3732501B2 (en) α-D-Glucopyranosylglycerols, method for producing the same, and use thereof
JP2006008703A (en) Alpha-d-glucopyranosyl-glycerols, production method therefor, and their use
KR100875576B1 (en) Method and use of isomaltose
EP0558213B1 (en) Process for preparing neotrehalose, and its uses
EP1380595A1 (en) Branched cyclic tetrassacharide, process for producing the same, and use
JP2010195830A (en) Cyclic maltosyl maltose, cyclic maltosyl maltose synthase, method of producing the same and use thereof
JP2004099472A (en) New glycoside or its mixture, production method and use
CN108715876B (en) Method for preparing low-grafting-number glucosyl stevioside
JP3967438B2 (en) Kojibiose phosphorylase, its production method and use
KR100647404B1 (en) Trehalose phosphorylase, preparation method and use thereof
JP3925356B2 (en) Sweetener and method for producing the same
JPS5948059A (en) Modified stevioside
GB2027423A (en) Sweetener composition and process for its preparation
JP4363967B2 (en) Cyclic pentasaccharide and its glycosyl derivative, production method and use thereof
JPH09313117A (en) Glucide containing trehalose, its production and use
JP4171761B2 (en) Kojibiose phosphorylase, its production method and use
JP4508537B2 (en) Method for producing nigerose acetate, nigerose and nigeritol
WO2005007664A1 (en) 3-α-GLYCOSYLα, α-TREHALOSE COMPOUND, PROCESS FOR PRODUCING THE SAME, AND USE
WO2020122050A1 (en) Cycloisomaltotetraose, cycloisomaltotetraose production enzyme, and production methods and uses thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051012

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees