JP2004228983A - Dual band antenna - Google Patents

Dual band antenna Download PDF

Info

Publication number
JP2004228983A
JP2004228983A JP2003015002A JP2003015002A JP2004228983A JP 2004228983 A JP2004228983 A JP 2004228983A JP 2003015002 A JP2003015002 A JP 2003015002A JP 2003015002 A JP2003015002 A JP 2003015002A JP 2004228983 A JP2004228983 A JP 2004228983A
Authority
JP
Japan
Prior art keywords
conductor
dielectric substrate
capacitive
radiation
band antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003015002A
Other languages
Japanese (ja)
Inventor
Genshu To
元珠 竇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2003015002A priority Critical patent/JP2004228983A/en
Priority to EP04000728A priority patent/EP1441414A1/en
Priority to US10/761,631 priority patent/US6946997B2/en
Publication of JP2004228983A publication Critical patent/JP2004228983A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dual band antenna capable of accelerating reduction in size and height. <P>SOLUTION: On one surface of a dielectric substrate 12 standing on a ground conductor plate 11, a first meandering radiation conductor 13 and the lower stripe pattern 14a of a second radiation conductor 14 are provided. On the rear surface of the dielectric substrate 12, the upper stripe pattern 14b of the second radiation conductor 14 is provided, and a discontinuous part of the second radiation conductor 14 where both patterns 14a and 14b overlap serves as a capacitive coupling part 14c. Furthermore, capacitive conductors 16 and 17 connected with the upper end part of the radiation conductors 13 and 14, respectively, are arranged on the dielectric substrate 12 in parallel with the ground conductor plate 11. When high frequency power having a first frequency f<SB>1</SB>is supplied, the first radiation conductor 13 resonates and when high frequency power having a second frequency f<SB>2</SB>higher than f<SB>1</SB>is supplied, the second radiation conductor 14 having the capacitive coupling part 14c resonates. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、2種類の周波数帯域(バンド)の信号波の送信や受信が可能で、車載用通信機等に組み込んで好適な小型のデュアルバンドアンテナに関する。
【0002】
【従来の技術】
従来より、この種のデュアルバンドアンテナとして、図3に示すように、ピッチが異なる2種類のメアンダラインを連結してなる放射導体を基板表面に設けたアンテナ装置が知られている(例えば、特許文献1参照)。
【0003】
図3に示すデュアルバンドアンテナ1は、接地導体板2上に立設された誘電体基板3の表面に、銅箔等からなる放射導体4がパターニングされており、この放射導体4が、比較的広いピッチで給電点に近い側からメアンダ形状に延出形成された第1の放射導体部4aと、比較的狭いピッチで第1の放射導体部4aの先端からメアンダ形状に延出形成された第2の放射導体部4bとを連結した構成になっている。
【0004】
このように構成されたデュアルバンドアンテナ1では、放射導体4の給電点に同軸ケ−ブル等の給電線を介して第1の高周波電力を供給することにより、第1の放射導体部4aから第2の放射導体部4bへと至る放射導体4の全体を第1の周波数fに共振させることができると共に、該給電点に第2の高周波電力を供給することにより、第1の放射導体部4aだけを第1の周波数fよりも高周波な第2の周波数fに共振させることができる。つまり、狭ピッチのメアンダライン(第2の放射導体部4b)には周波数の高い高周波電流が流れにくいため、第2の周波数fに対しては第1の放射導体部4aだけを放射素子として動作させることが可能となる。また、このように放射導体4が蛇行したメアンダ形状に形成してあると、直線状に延出形成した放射導体に比べて、同じ電気長で高さ寸法を大幅に低減することができるので、アンテナ全体の小型低背化に有利となる。
【0005】
【特許文献1】
特開2001−68917号公報(第3−4頁、図1)
【0006】
【発明が解決しようとする課題】
図3に示す従来のデュアルバンドアンテナ1においては、放射導体4のメアンダピッチ(蛇行部の間隔)を過度に狭くすると高次モードが発生しやすくなってしまうので、低背化を促進するためには放射導体4をより細い帯状に形成するという手法が考えられる。しかしながら、放射導体4を細くすると共振周波数帯域が狭くなってしまうので、結局、アンテナ性能を劣化させないためには、放射導体4をある程度太い帯状に形成してメアンダピッチも狭くなりすぎないように配慮した設計が要求される。それゆえ、従来のデュアルバンドアンテナ1のようにメアンダピッチが異なる2種類の放射導体部4a,4bが直列に連結してあると、必然的に放射導体4が長寸になってしまい、アンテナ全体の低背化が促進しにくいという問題があった。
【0007】
本発明は、このような従来技術の実情に鑑みてなされたもので、その目的は、小型低背化が促進しやすいデュアルバンドアンテナを提供することにある。
【0008】
【課題を解決するための手段】
上述した目的を達成するため、本発明のデュアルバンドアンテナは、平坦な接地導体上に立設された誘電体基板と、該誘電体基板の表面に設けられたメアンダ形状の導体パターンからなる第1の放射導体と、該第1の放射導体から分岐する導体パターンとして前記誘電体基板の表面に設けられ不連続な容量結合部を有する第2の放射導体と、前記誘電体基板上に前記接地導体に対し略平行に配置されて少なくとも前記第1の放射導体の上端部が接続された容量性導体とを備え、前記第1の放射導体の下端部に高周波電力を供給する構成とした。
【0009】
かかる構成において、メアンダ形状の第1の放射導体は、供給される高周波電力の周波数が高くなるほどインダクティブなリアクタンスが増大するため電流が流れにくくなり、逆に第2の放射導体は、容量結合部を有するため周波数が低くなるほど電流が流れにくくなる。それゆえ、上述したデュアルバンドアンテナは、相対的に低い周波数の高周波電力が供給されたときには第1の放射導体を共振させ、相対的に高い周波数の高周波電力が供給されたときには第2の放射導体を共振させることができる。そして、このように高低2種類の周波数に対応する放射導体が並列に連結されていることから、このデュアルバンドアンテナは高さ寸法を低減させやすい。また、少なくとも第1の放射導体の共振時には容量性導体が短縮コンデンサとして機能するため、該放射導体の共振周波数が下がり(低くなり)、所定の周波数に共振させるうえで必要な該放射導体の電気長が短縮されて、アンテナ全体の高さ寸法が一層低減させやすい。
【0010】
なお、前記誘電体基板上に前記接地導体に対して略平行な配置で第2の誘電体基板を設置し、該第2の誘電体基板の表面に設けた導体層を前記容量性導体となしてもよいし、あるいは、第2の誘電体基板を省略し、前記誘電体基板上に設置した金属導体板を容量性導体となしてもよい。いずれの場合も、第1の放射導体だけでなく第2の放射導体についても上端部を容量性導体に接続しておくことにより、第2の放射導体の電気長が短縮可能となる。また、第2の誘電体基板を備えている場合には、該第2の誘電体基板の表面に導体層からなる第2の容量性導体を設けて、該第2の容量性導体に第2の放射導体を接続し、前記容量性導体には第1の放射導体を接続する構成にしてもよい。この場合、各放射導体をそれぞれ最適なキャパシタンスの容量性導体に接続することが可能となる。
【0011】
また、第2の放射導体が前記誘電体基板の片面とその裏面に設けられ、これら両面の該第2の放射導体どうしが該誘電体基板を介して対向する部分を前記容量結合部となしたデュアルバンドアンテナにおいては、容量結合部に必要なキャパシタンスが誘電体基板を利用して簡単に確保できると共に、第2の放射導体の高さ寸法も低減させやすいので好ましい。
【0012】
【発明の実施の形態】
発明の実施の形態について図面を参照して説明すると、図1は本発明の実施形態例に係るデュアルバンドアンテナの斜視図、図2は該デュアルバンドアンテナの背面図である。
【0013】
これらの図に示すデュアルバンドアンテナ10には、接地導体板11上に立設された誘電体基板12の表裏両面に銅箔等をパターニングしてなる第1の放射導体13および第2の放射導体14が設けられている。また、誘電体基板12上には接地導体板11に対して平行な配置で誘電体小基板15が載置固定されており、この誘電体小基板15に銅箔等の導体層からなる第1の容量性導体16および第2の容量性導体17が設けられている。誘電体基板12の片面(表面)に設けられた第1の放射導体13は蛇行したメアンダ形状に形成され、その下端部に同軸ケ−ブル等の図示せぬ給電線が接続されており、該給電線を介して高低2種類の高周波電力が供給されるようになっている。また、第1の放射導体13の上端部は第1の容量性導体16に接続されている。一方、第2の放射導体14は、誘電体基板12の片面に設けられて第1の放射導体13から分岐して上方へ延びる短冊状下部パターン14aと、誘電体基板12の裏面に設けられて短冊状下部パターン14aと一部が重なり合う短冊状上部パターン14bとに分割されており、この短冊状上部パターン14bの上端部は第2の容量性導体17に接続されている。また、短冊状下部パターン14aと短冊状上部パターン14bとが誘電体基板12を介して重なり合う部分は、第2の放射導体14の容量結合部14cとなっている。
【0014】
このように構成されたデュアルバンドアンテナ10は、前記給電線から第1の周波数fの高周波電力が供給されると第1の放射導体13が共振し、第1の周波数fよりも高周波な第2の周波数fが供給されると第2の放射導体14が共振するようになっている。すなわち、メアンダ形状の第1の放射導体13は、供給される高周波電力の周波数が高くなるほどインダクティブなリアクタンスが増大するため電流が流れにくくなり、逆に第2の放射導体14は、容量結合部14cを有するため周波数が低くなるほど電流が流れにくくなる。それゆえ、上述したように相対的に低い周波数fの高周波電力が供給されたときにはメアンダ形状の第1の放射導体13を共振させ、相対的に高い周波数fの高周波電力が供給されたときには第2の放射導体14を共振させることができる。そして、高低2種類の周波数に対応する第1および第2の放射導体13,14が並列に連結されているため、このデュアルバンドアンテナ10は高さ寸法を低減させやすくなっている。また、第1の放射導体13の共振時には第1の容量性導体16が共振周波数を下げる短縮コンデンサとして機能し、第2の放射導体14の共振時には第2の容量性導体17が共振周波数を下げる短縮コンデンサとして機能するため、いずれの放射導体13,14も電気長が短縮されており、この点でも高さ寸法を低減させやすくなっている。したがって、このデュアルバンドアンテナ10は小型低背化を無理なく促進することができる。
【0015】
なお、本実施形態例において、第2の放射導体14は、誘電体基板12の表裏両面に設けた短冊状下部パターン14aと短冊状上部パターン14bとが重なり合う不連続部分を容量結合部14cとなしているため、容量結合部14cに必要なキャパシタンスが誘電体基板12を利用して簡単に確保できると共に、第2の放射導体14の高さ寸法も低減させやすい。ただし、誘電体基板12の片面に短冊状下部パターンおよび短冊状上部パターンを上下に離して設け、その不連続部分を容量結合部となしてもよい。
【0016】
また、本実施形態例では、誘電体小基板15に第1の容量性導体16と第2の容量性導体17とを設けて、各容量性導体16,17をそれぞれ各放射導体13,14の上端部に接続しているため、各放射導体13,14をそれぞれ最適なキャパシタンスの容量性導体に接続することが可能である。ただし、共通の容量性導体に各放射導体13,14を接続する構成にしてもよく、その場合、誘電体小基板15を省略し、誘電体基板12上に設置した金属導体板を容量性導体となしてもよい。
【0017】
【発明の効果】
本発明は、以上説明したような形態で実施され、以下に記載されるような効果を奏する。
【0018】
第1の周波数の高周波電力を供給したときにメアンダ形状の第1の放射導体を共振させ、それよりも高周波な第2の周波数の高周波電力を供給したときに容量結合部を有する第2の放射導体を共振させるというデュアルバンドアンテナであって、これら第1および第2の放射導体が並列に連結されているので、アンテナ全体の高さ寸法を低減させやすい。また、少なくとも第1の放射導体の共振時には容量性導体が短縮コンデンサとして機能するため、該放射導体の電気長が短縮されて、この点でもアンテナ全体の高さ寸法を低減させやすい。それゆえ、小型低背化を無理なく促進することができる。
【図面の簡単な説明】
【図1】本発明の実施形態例に係るデュアルバンドアンテナの斜視図である。
【図2】該デュアルバンドアンテナの背面図である。
【図3】従来例を示す説明図である。
【符号の説明】
11 接地導体板
12 誘電体基板
13 第1の放射導体
14 第2の放射導体
14a 短冊状下部パターン
14b 短冊状上部パターン
14c 容量結合部
15 誘電体小基板(第2の誘電体基板)
16 第1の容量性導体
17 第2の容量性導体
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a small dual-band antenna capable of transmitting and receiving signal waves of two kinds of frequency bands, and suitable for being incorporated in a vehicle-mounted communication device or the like.
[0002]
[Prior art]
Conventionally, as this type of dual-band antenna, an antenna device in which a radiation conductor formed by connecting two types of meander lines having different pitches is provided on a substrate surface as shown in FIG. Reference 1).
[0003]
In the dual-band antenna 1 shown in FIG. 3, a radiation conductor 4 made of copper foil or the like is patterned on a surface of a dielectric substrate 3 erected on a ground conductor plate 2. A first radiating conductor 4a extending in a meander shape from the side close to the feeding point at a wide pitch, and a first radiating conductor 4a extending and forming in a meander shape from the tip of the first radiating conductor 4a at a relatively narrow pitch. The two radiating conductors 4b are connected to each other.
[0004]
In the dual-band antenna 1 configured as described above, the first high-frequency power is supplied to the feed point of the radiation conductor 4 via a feed line such as a coaxial cable, so that the first radiation conductor section 4a transmits the first high-frequency power. with the entire radiation conductor 4 reaches the second radiation conductor portion 4b can be resonated in the first frequency f 1, by supplying the second high-frequency power to power feed point, the first radiation conductor portion 4a only can be resonated with the frequency f 2 of the high-frequency second than first frequency f 1. In other words, as the pitch of the meander line for (the second radiation conductor portion 4b) high frequency RF current does not easily flow in, for the second frequency f 2 radiating element only the first radiation conductor portion 4a It can be operated. Further, when the radiation conductor 4 is formed in a meandering shape in a meandering manner, the height dimension can be greatly reduced with the same electric length as compared with the radiation conductor formed to extend linearly. This is advantageous for reducing the size and height of the entire antenna.
[0005]
[Patent Document 1]
JP 2001-68917 A (page 3-4, FIG. 1)
[0006]
[Problems to be solved by the invention]
In the conventional dual-band antenna 1 shown in FIG. 3, if the meander pitch (interval of the meandering portion) of the radiation conductor 4 is excessively narrow, a higher-order mode is likely to be generated. For example, a method of forming the radiation conductor 4 into a thinner band may be considered. However, if the radiating conductor 4 is made thinner, the resonance frequency band becomes narrower. In order to prevent the antenna performance from being deteriorated, the radiating conductor 4 is formed in a somewhat thick band shape so that the meander pitch is not too narrow. Design is required. Therefore, if two types of radiation conductor portions 4a and 4b having different meander pitches are connected in series as in the conventional dual-band antenna 1, the radiation conductor 4 inevitably becomes long, and the entire antenna becomes inevitable. There is a problem that it is difficult to promote a reduction in height.
[0007]
The present invention has been made in view of such a situation of the related art, and an object of the present invention is to provide a dual band antenna in which reduction in size and height can be easily promoted.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, a dual-band antenna according to the present invention includes a first dielectric substrate erected on a flat ground conductor, and a meander-shaped conductor pattern provided on a surface of the dielectric substrate. A radiating conductor, a second radiating conductor provided on the surface of the dielectric substrate as a conductor pattern branched from the first radiating conductor and having a discontinuous capacitive coupling portion, and the ground conductor on the dielectric substrate And a capacitive conductor connected at least to the upper end of the first radiating conductor, and supplying high-frequency power to the lower end of the first radiating conductor.
[0009]
In such a configuration, the meander-shaped first radiating conductor increases the inductive reactance as the frequency of the supplied high-frequency power increases, so that it becomes difficult for current to flow. Conversely, the second radiating conductor has a capacitive coupling portion. Therefore, the lower the frequency, the more difficult the current to flow. Therefore, the above-described dual-band antenna resonates the first radiation conductor when a relatively low-frequency high-frequency power is supplied, and the second radiation conductor when a relatively high-frequency high-frequency power is supplied. Can resonate. Since the radiation conductors corresponding to the two different frequencies are connected in parallel, it is easy to reduce the height of the dual-band antenna. Further, at least at the time of resonance of the first radiation conductor, the capacitive conductor functions as a shortening capacitor, so that the resonance frequency of the radiation conductor is lowered (lowered), and the electric power of the radiation conductor necessary for resonating to a predetermined frequency is obtained. The length is shortened, and the height dimension of the entire antenna is easily reduced.
[0010]
In addition, a second dielectric substrate is disposed on the dielectric substrate so as to be substantially parallel to the ground conductor, and a conductive layer provided on the surface of the second dielectric substrate is regarded as the capacitive conductor. Alternatively, the second dielectric substrate may be omitted, and the metal conductor plate provided on the dielectric substrate may be used as the capacitive conductor. In any case, the electrical length of the second radiation conductor can be shortened by connecting the upper end of the second radiation conductor as well as the first radiation conductor to the capacitive conductor. In the case where the second dielectric substrate is provided, a second capacitive conductor made of a conductive layer is provided on the surface of the second dielectric substrate, and the second capacitive conductor is provided on the second capacitive substrate. And a first radiating conductor may be connected to the capacitive conductor. In this case, each radiation conductor can be connected to a capacitive conductor having an optimum capacitance.
[0011]
In addition, a second radiation conductor is provided on one surface and the back surface of the dielectric substrate, and a portion where the second radiation conductors on both surfaces face each other via the dielectric substrate is the capacitive coupling portion. In the dual band antenna, the capacitance required for the capacitive coupling portion can be easily secured by using the dielectric substrate, and the height dimension of the second radiation conductor is easily reduced, which is preferable.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a perspective view of a dual band antenna according to an embodiment of the present invention, and FIG. 2 is a rear view of the dual band antenna.
[0013]
In the dual band antenna 10 shown in these figures, a first radiating conductor 13 and a second radiating conductor formed by patterning copper foil or the like on both front and back surfaces of a dielectric substrate 12 erected on a ground conductor plate 11 are provided. 14 are provided. A small dielectric substrate 15 is mounted and fixed on the dielectric substrate 12 in a parallel arrangement with respect to the ground conductor plate 11. The first small dielectric substrate 15 is made of a conductive layer such as a copper foil. And the second capacitive conductor 17 are provided. The first radiating conductor 13 provided on one surface (front surface) of the dielectric substrate 12 is formed in a meandering meander shape, and a lower end of the first radiating conductor 13 is connected to a power supply line (not shown) such as a coaxial cable. Two kinds of high and low high frequency powers are supplied via the power supply line. The upper end of the first radiation conductor 13 is connected to the first capacitive conductor 16. On the other hand, the second radiation conductor 14 is provided on one surface of the dielectric substrate 12, and is a strip-shaped lower pattern 14 a branched from the first radiation conductor 13 and extending upward, and is provided on the back surface of the dielectric substrate 12. It is divided into a strip-shaped lower pattern 14a and a strip-shaped upper pattern 14b that partially overlaps, and the upper end of the strip-shaped upper pattern 14b is connected to the second capacitive conductor 17. A portion where the strip-shaped lower pattern 14a and the strip-shaped upper pattern 14b overlap with each other via the dielectric substrate 12 is a capacitive coupling portion 14c of the second radiation conductor 14.
[0014]
Such dual band antenna 10 constructed as above, the the first high-frequency power having a frequency f 1 is supplied from the feed line first radiating conductor 13 resonates, a first frequency higher than the frequency f 1 When the second frequency f 2 is supplied the second radiating conductor 14 is adapted to resonate. That is, in the meander-shaped first radiating conductor 13, the higher the frequency of the supplied high-frequency power, the more inductive reactance increases, so that it becomes difficult for current to flow. Conversely, the second radiating conductor 14 is connected to the capacitive coupling portion 14 c , The lower the frequency, the more difficult the current to flow. Therefore, as described above, when the high-frequency power of the relatively low frequency f 1 is supplied, the meander-shaped first radiation conductor 13 resonates, and when the high-frequency power of the relatively high frequency f 2 is supplied, The second radiation conductor 14 can resonate. Since the first and second radiating conductors 13 and 14 corresponding to two different frequencies are connected in parallel, the height of the dual-band antenna 10 can be easily reduced. Also, when the first radiation conductor 13 resonates, the first capacitive conductor 16 functions as a shortening capacitor for lowering the resonance frequency, and when the second radiation conductor 14 resonates, the second capacitive conductor 17 lowers the resonance frequency. Since the radiation conductors 13 and 14 function as shortening capacitors, the electrical length of each of the radiation conductors 13 and 14 is shortened. In this regard, the height dimension can be easily reduced. Therefore, the dual-band antenna 10 can facilitate the reduction in size and height.
[0015]
In the present embodiment, the second radiation conductor 14 has a discontinuous portion where the strip-shaped lower pattern 14a and the strip-shaped upper pattern 14b provided on both the front and back surfaces of the dielectric substrate 12 overlap each other, and does not have the capacitive coupling portion 14c. Therefore, the capacitance required for the capacitive coupling portion 14c can be easily secured using the dielectric substrate 12, and the height of the second radiation conductor 14 can be easily reduced. However, a strip-shaped lower pattern and a strip-shaped upper pattern may be provided on one surface of the dielectric substrate 12 so as to be vertically separated from each other, and the discontinuous portion may be a capacitive coupling portion.
[0016]
Further, in the present embodiment, the first capacitive conductor 16 and the second capacitive conductor 17 are provided on the small dielectric substrate 15, and the capacitive conductors 16, 17 are respectively connected to the radiation conductors 13, 14. Since it is connected to the upper end, it is possible to connect each of the radiation conductors 13 and 14 to a capacitive conductor having an optimum capacitance. However, the radiation conductors 13 and 14 may be connected to a common capacitive conductor. In this case, the small dielectric substrate 15 is omitted, and the metal conductor plate provided on the dielectric substrate 12 is replaced with the capacitive conductor. It may be.
[0017]
【The invention's effect】
The present invention is implemented in the form described above, and has the following effects.
[0018]
When the high-frequency power of the first frequency is supplied, the meander-shaped first radiation conductor resonates, and when the high-frequency power of the second frequency higher than that is supplied, the second radiation having the capacitive coupling portion is provided. This is a dual-band antenna that resonates conductors, and since the first and second radiation conductors are connected in parallel, it is easy to reduce the overall height of the antenna. Further, at least at the time of resonance of the first radiation conductor, the capacitive conductor functions as a shortening capacitor, so that the electrical length of the radiation conductor is shortened, and in this respect, it is easy to reduce the overall height of the antenna. Therefore, reduction in size and height can be promoted without difficulty.
[Brief description of the drawings]
FIG. 1 is a perspective view of a dual band antenna according to an embodiment of the present invention.
FIG. 2 is a rear view of the dual band antenna.
FIG. 3 is an explanatory view showing a conventional example.
[Explanation of symbols]
11 Ground Conductor Plate 12 Dielectric Substrate 13 First Radiating Conductor 14 Second Radiating Conductor 14a Strip-shaped Lower Pattern 14b Strip-shaped Upper Pattern 14c Capacitive Coupler 15 Small Dielectric Substrate (Second Dielectric Substrate)
16 first capacitive conductor 17 second capacitive conductor

Claims (5)

平坦な接地導体上に立設された誘電体基板と、該誘電体基板の表面に設けられたメアンダ形状の導体パターンからなる第1の放射導体と、該第1の放射導体から分岐する導体パターンとして前記誘電体基板の表面に設けられ不連続な容量結合部を有する第2の放射導体と、前記誘電体基板上に前記接地導体に対し略平行に配置されて少なくとも前記第1の放射導体の上端部が接続された容量性導体とを備え、前記第1の放射導体の下端部に高周波電力を供給する構成としたことを特徴とするデュアルバンドアンテナ。A dielectric substrate erected on a flat ground conductor, a first radiation conductor made of a meander-shaped conductor pattern provided on the surface of the dielectric substrate, and a conductor pattern branched from the first radiation conductor A second radiating conductor provided on the surface of the dielectric substrate and having a discontinuous capacitive coupling portion; and a second radiating conductor disposed on the dielectric substrate substantially in parallel with the ground conductor. A dual band antenna, comprising: a capacitive conductor having an upper end connected thereto; and supplying a high-frequency power to a lower end of the first radiation conductor. 請求項1の記載において、前記誘電体基板上に前記接地導体に対して略平行な配置で第2の誘電体基板を設置し、該第2の誘電体基板の表面に設けた導体層を前記容量性導体となしたことを特徴とするデュアルバンドアンテナ。2. The device according to claim 1, wherein a second dielectric substrate is provided on the dielectric substrate in a substantially parallel arrangement with respect to the ground conductor, and the conductor layer provided on a surface of the second dielectric substrate is provided. A dual-band antenna characterized as a capacitive conductor. 請求項2の記載において、前記第2の誘電体基板の表面に導体層からなる第2の容量性導体を設け、該第2の容量性導体に前記第2の放射導体の上端部を接続したことを特徴とするデュアルバンドアンテナ。3. The device according to claim 2, wherein a second capacitive conductor made of a conductive layer is provided on a surface of the second dielectric substrate, and an upper end of the second radiation conductor is connected to the second capacitive conductor. A dual-band antenna, characterized in that: 請求項1の記載において、前記誘電体基板上に設置した金属導体板を前記容量性導体となしたことを特徴とするデュアルバンドアンテナ。2. The dual band antenna according to claim 1, wherein a metal conductor plate provided on the dielectric substrate is used as the capacitive conductor. 請求項1〜4いずれかの記載において、前記第2の放射導体が前記誘電体基板の片面とその裏面に設けられ、これら両面の該第2の放射導体どうしが該誘電体基板を介して対向する部分を前記容量結合部となしたことを特徴とするデュアルバンドアンテナ。5. The device according to claim 1, wherein the second radiating conductor is provided on one surface of the dielectric substrate and a back surface thereof, and the second radiating conductors on both surfaces are opposed to each other via the dielectric substrate. A dual band antenna, wherein a portion to be formed is the capacitive coupling portion.
JP2003015002A 2003-01-23 2003-01-23 Dual band antenna Withdrawn JP2004228983A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003015002A JP2004228983A (en) 2003-01-23 2003-01-23 Dual band antenna
EP04000728A EP1441414A1 (en) 2003-01-23 2004-01-15 Dual band antenna with reduced size and height
US10/761,631 US6946997B2 (en) 2003-01-23 2004-01-20 Dual band antenna allowing easy reduction of size and height

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003015002A JP2004228983A (en) 2003-01-23 2003-01-23 Dual band antenna

Publications (1)

Publication Number Publication Date
JP2004228983A true JP2004228983A (en) 2004-08-12

Family

ID=32902882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003015002A Withdrawn JP2004228983A (en) 2003-01-23 2003-01-23 Dual band antenna

Country Status (1)

Country Link
JP (1) JP2004228983A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009124355A (en) * 2007-11-13 2009-06-04 Furukawa Electric Co Ltd:The Parallel two-wire antenna
US7667653B2 (en) 2007-05-07 2010-02-23 Mitsumi Electric Co., Ltd. Antenna unit comprising first and second antenna patterns
KR102109621B1 (en) * 2019-03-29 2020-05-12 (주)기산텔레콤 Three-Dimensional Broadcasting Antenna

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7667653B2 (en) 2007-05-07 2010-02-23 Mitsumi Electric Co., Ltd. Antenna unit comprising first and second antenna patterns
JP2009124355A (en) * 2007-11-13 2009-06-04 Furukawa Electric Co Ltd:The Parallel two-wire antenna
KR102109621B1 (en) * 2019-03-29 2020-05-12 (주)기산텔레콤 Three-Dimensional Broadcasting Antenna

Similar Documents

Publication Publication Date Title
US6946997B2 (en) Dual band antenna allowing easy reduction of size and height
JP2004200772A (en) Antenna device
JP2005079968A (en) Antenna system
US7834809B2 (en) Multi-antenna integration module
TWI434458B (en) Multi - frequency antenna module
US8947315B2 (en) Multiband antenna and mounting structure for multiband antenna
JP4973700B2 (en) Antenna and antenna device
JP2005079970A (en) Antenna system
JP2004228984A (en) Antenna assembly
JP2005323321A (en) Multi-band multi-layered chip antenna using double coupling feeding
JP2004312166A (en) Inverted-f metal plate antenna
WO2017107057A1 (en) Mobile terminal
TW201044695A (en) Multiband single-strip monopole antenna
JP5794300B2 (en) Antenna device and communication terminal device
JP4027237B2 (en) Dual band antenna
JP2004228983A (en) Dual band antenna
TW201228112A (en) Multi-frequency antenna
JP2004200775A (en) Dual band antenna
JP2004228982A (en) Dual band antenna
JP2005045407A (en) Antenna structure and communication device equipped with the same
KR101491278B1 (en) Antenna apparatus and feeding structure thereof
KR102008716B1 (en) Antenna apparatus and feeding structure thereof
JP2003133842A (en) Monopole antenna
JP2003142931A (en) Monopole antenna
JP3742331B2 (en) Monopole antenna

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051128

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20061215