JP2004228476A - Solid-state imaging device and optical apparatus having the device - Google Patents

Solid-state imaging device and optical apparatus having the device Download PDF

Info

Publication number
JP2004228476A
JP2004228476A JP2003017287A JP2003017287A JP2004228476A JP 2004228476 A JP2004228476 A JP 2004228476A JP 2003017287 A JP2003017287 A JP 2003017287A JP 2003017287 A JP2003017287 A JP 2003017287A JP 2004228476 A JP2004228476 A JP 2004228476A
Authority
JP
Japan
Prior art keywords
solid
state imaging
imaging device
light
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003017287A
Other languages
Japanese (ja)
Inventor
Nobuyasu Furuya
信康 古谷
Sadahito Katagiri
禎人 片桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2003017287A priority Critical patent/JP2004228476A/en
Publication of JP2004228476A publication Critical patent/JP2004228476A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a solid-state imaging device, in which the output from a photo detector is not subject to effects of the lowering of the peripheral light quantity of an image-sensing optical system while keeping the optical system as a thin type, in response to the image-sensing optical system which uses only open iris. <P>SOLUTION: In the solid-state imaging device having a plurality of the photodetectors, each photo detector has light-quantity control members, and the light-quantity control quantities are made mutually differ in the central section and peripheral section of the solid-state image sensing device in the light-quantity control members. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、CCD型イメージセンサ或いはCMOS型イメージセンサ等の固体撮像装置及びそれを備える光学機器に関するものである。
【0002】
【従来の技術】
従来より、ビデオカメラ、電子スチルカメラ、カメラ内蔵携帯端末等の光学機器において、CCD(Charged Coupled Device)型イメージセンサやCMOS(Complementary Metal−OxideSemiconductor)型イメージセンサ等の固体撮像装置が広く使用されている。これらの固体撮像装置は光検出効率を高めるために、複数の受光素子の光入射面側に受光素子の各々に対応して集光性のマイクロレンズが配設されているのが一般的である。このマイクロレンズにより、固体撮像装置の小型化及び多画素化に伴う受光素子面積の縮小に起因する検出感度の低下を防止している。
【0003】
図1は、従来のカラー固体撮像装置の構造を示す要部断面図である。同図において、半導体基板10面上に複数の受光素子12(12a、12b〜)と各受光素子に発生蓄積した電荷を転送するための複数の転送部13(13a、13b〜)を設けている。この転送部13及び受光素子12の上に遮光膜11を形成し、さらに各受光素子12の光入射側にゼラチン又はカゼイン等の赤色R、緑色G、青色Bに染色したカラーフィルタ14(14R、14G、14B・・・)を配設した後、各々のカラーフィルタの光入射側に複数のマイクロレンズ15(15a、15b〜)が設けられており、この上面にカバーガラス16が配置されている。
【0004】
一方、固体撮像装置の前方に配置される撮像光学系の射出瞳位置は、撮像光学系の小型化に伴い有限距離となり、この有限距離の射出瞳位置に対応して集光性のマイクロレンズの配列ピッチを受光素子の配列ピッチより像高が高くなるに従って順次小さく形成し、周辺部のシェーディングを補正するものが知られている(例えば、特許文献1参照)。
【0005】
このマイクロレンズの配列ピッチを受光素子の配列ピッチより小さく形成した撮像装置は、設定した射出瞳位置とほぼ合致する撮像光学系の場合、周辺での光量減少率を中心に対して3〜4%に押さえることができるようになっている。
【0006】
また、マイクロレンズの屈折力を中心部に比べて周辺部で強くしたものや、受光素子の配列周期を中心部に比べ周辺部で長くし、マイクロレンズは同一周期として周辺部のシェーディングを補正するものがある(例えば、特許文献2参照)。
【0007】
【特許文献1】
特許第2600250号公報
【0008】
【特許文献2】
特許第3170847号公報
【0009】
【発明が解決しようとする課題】
上述のように特許文献1及び2に記載の固体撮像装置は、撮像光学系の小型化に伴う射出瞳位置の有限距離化に対応し、その撮像光学系最終面からの光束の射出角度が像高の増加に伴って連続的に増加する場合のシェーディングの補正には効果的である。
【0010】
一方で、撮像光学系は極度に薄型化され、カメラ外観部の厚みにして10数mm程度の中に内蔵できるものや携帯端末の厚み方向に内蔵可能な光学系が実用化され、市販されるようになった。このような極度の薄型化のため、従来撮像光学系内に配置されていた入射光量を制限するための可変絞り等も廃止し、開放絞りのみでの撮影としているものが多い。
【0011】
この開放絞りのみを使用する撮像光学系に上述のような固体撮像装置を使用する場合、以下の問題がある。
【0012】
周知のように、通常の撮像光学系は均一の輝度平面に対して画面中心部と画面周辺部では到達光量が異なる。この周辺部の光量は、固体撮像素子を使用するための撮像光学系では像高の最も高い位置で画面中心に対し大凡40%〜60%程度である。
【0013】
図2は、一般的な撮像光学系の周辺光量比の例を示した図である。同図は縦軸を光量比、横軸を像高で表したもので、光軸上(即ち像高0の位置)の光量を100%としてある。同図に示すように、像高の増加に伴い光量はなだらかに減少する。なお、像高とは像面上での光軸からの距離を言い、受光部の半対角長に対する割合で表示されるものである。
【0014】
このような撮像光学系を、上述の固体撮像装置に使用すると、射出瞳位置に対するシェーディングの補正だけでは、常に周辺光量の低下した被写体画像が得られることになる。この周辺部の光量低下の問題に対しては、画像処理段階で各像高に対応して補正する方法があるが、ノイズも同時に増幅され特に暗部において画質が劣化する問題がある。
【0015】
本発明は上記問題に鑑み、開放絞りのみを使用する撮像光学系に対応し、光学系全長を薄型のまま、撮像光学系の周辺光量低下による影響を受けない固体撮像装置を得るとともに、この固体撮像装置を備えた光学機器を得ることを目的とするものである。
【0016】
【課題を解決するための手段】
上記の目的は、
1) 複数の受光素子を有する固体撮像装置において、光量規制部材を有し、該光量規制部材は該固体撮像装置の中央部と周辺部でその光量規制量が異なるものであることを特徴とする固体撮像装置、
とすることで達成され、受光素子出力が撮像光学系の周辺光量低下の影響を受けない固体撮像装置を得ることができる。
【0017】
2) 前記光量規制部材は前記複数の受光素子各々に対応した開口部であり、該開口部の面積は、前記固体撮像装置の周辺部が中央部より大きく形成されている1)の固体撮像装置、
3) 前記開口部を前記受光素子上の遮光膜に形成したことを特徴とする1)又は2)の固体撮像装置、
4) 前記光量規制部材を前記固体撮像装置のカラーフィルタとマイクロレンズの間に配置した1)又は2)の固体撮像装置、
5) 前記光量規制部材を前記固体撮像装置のカラーフィルタと前記受光素子の間に配置した1)又は2)固体撮像装置、
6) 前記光量規制部材はグラデーションフィルタであり、該グラデーションフィルタは前記固体撮像装置の中心部の透過率が周辺部の透過率より低い1)の固体撮像装置、
7) 前記グラデーションフィルタを、前記固体撮像装置の光入射面側に配置されるカバーガラスに形成した6)の固体撮像装置、
とすることで、上記同様の効果を奏する固体撮像装置を得ることができる。
【0018】
8) 被写体光を前記受光素子面に結像させる撮像光学系と、1)〜7)のいずれかの固体撮像装置を有する光学機器、
とすることで、上述の課題を解消した光学機器が得られる。
【0019】
即ち、本発明者は撮像光学系を薄型に保ったまま、撮像光学系の特性に対応して、撮像装置内の受光素子の位置に応じて到達光量を規制することにより、開放絞りのみを使用する撮像光学系の周辺光量低下による影響を解消できることを見出し、本発明に至ったものである。
【0020】
【発明の実施の形態】
以下、実施の形態により本発明を詳しく説明するが、本発明はこれに限定されるものではない。
【0021】
図3は、本発明を適用した固体撮像装置の第一の例の概略断面図である。以下の各図においては、図1と同機能の部位には同符号を配し、説明は省略する。同図で、受光素子群(有効画素部)の中心はOAであり、撮像光学系の光軸はこのOAと所定の誤差内に設定される。またA部は、この受光素子群(有効画素部)の中心付近、B部は中間付近(例えば半対角長の4〜6割付近)、C部は最周辺付近(例えば半対角長の8〜10割付近)を示しており、このそれぞれの位置に対応してマイクロレンズ15、カラーフィルタ14は対応する受光素子12に対し受光素子群の中心OAに向かう方向にずれて配設されている。
【0022】
一方、受光素子12上の遮光膜11は受光素子面上での透過部面積を異ならせて形成される。同図A部近傍の透過部面積をS11、B部近傍の透過部面積をS12、C部近傍の透過部面積をS13とすると、例えば図2で示すような撮像光学系の場合、
S11<S12<S13
となるよう設定される。これにより、受光素子出力は撮像光学系の周辺光量の低下を補正し、均一輝度分布の被写体に対して均一な受光素子出力が得られるようになり、画像処理段階で補正してノイズも増幅される問題を解消できる。なお上述の透過部面積は、撮像光学系の周辺光量比に対応して決められるものである。即ち像面上の任意の像高位置の光量と透過部面積の積が略一定となるように設定される。このため、特性によっては、S11=S12又は、S12=S13となる場合も本発明を逸脱するものではない。
【0023】
図4は、本発明を適用した固体撮像装置の第二の例の概略断面図である。同図は遮光膜11の透過部は同一面積として、カラーフィルタ14とマイクロレンズ15の間に、個々の受光素子に対応した絞り部材17を配置したものである。
【0024】
同図において、絞り部材17は遮光性を有するシートフィルム等で良く、受光素子面上での開口部面積を異ならせて形成される。同図A部近傍の開口部面積をS21、B部近傍の開口部面積をS22、C部近傍の開口部面積をS23とすると、例えば図2で示すような撮像光学系の場合、
S21<S22<S23
となるよう設定される。このようにしても上述と同様の効果が得られる。なおこの開口部面積は、撮像光学系の周辺光量比に対応して決められるものである。即ち像面上の任意の像高位置の光量と開口部面積の積が略一定となるように設定される。このため、特性によっては、S21=S22又は、S22=S23となる場合も本発明を逸脱するものではない。
【0025】
図5は、本発明を適用した固体撮像装置の第三の例の概略断面図である。同図は遮光膜11の透過部は同一面積として、カラーフィルタ14と受光素子12の間に、個々の受光素子に対応した絞り部材17を配置したものであり、同様に開口部面積を設定することにより上述の効果が得られる。
【0026】
図6は、上述の第一から第三の例の透過部及び開口部の正面形状の図である。同図において受光素子群(有効画素部)の中心A部付近の形状をA、中間のB部付近(例えば半対角長の4〜6割付近)の形状をB、最周辺C部付近(例えば半対角長の8〜10割付近)の形状をCに示してある。
【0027】
同図に示すように、受光素子群中心部付近では円形であり、周辺へゆくに伴い楕円形とするのが望ましい。
【0028】
図7は、本発明を適用した固体撮像装置の第四の例の概略断面図である。同図は、遮光膜11の透過部は同一面積として、カラーフィルタ14とマイクロレンズ15の間にグラデーションフィルタ18を配置したものである。このグラデーションフィルタ18は、所謂ニュートラルな分光特性のもので中心から周辺へゆくに伴い同心円状に、その透過率が変化する特性を有するものでシートフィルム等にグラデーションが形成される。このグラデーションフィルタ18の中心A部付近の透過率をTa、中間のB部付近の透過率をTb、最周辺C部付近の透過率をTcとすると、例えば図2で示すような撮像光学系の場合、
Ta<Tb<Tc
となるよう設定される。これにより、受光素子出力は撮像光学系の周辺光量の低下を補正し、均一輝度分布の被写体に対して均一な受光素子出力が得られるようになり、画像処理段階で補正してノイズも増幅される問題を解消できる。なおこの透過率は、撮像光学系の周辺光量比に対応して決められるものである。即ち像面上の任意の像高位置の光量と透過率の積が略一定となるように設定される。このため、特性によってはTa=Tb又は、Tb=Tcとなる場合も本発明を逸脱するものではない。また、カラーフィルタ14と受光素子12の間、或いはマイクロレンズ15とカバーガラス16の間に配置してもよいのは勿論である。
【0029】
図8は、本発明を適用した固体撮像装置の第五の例の概略断面図である。同図は、グラデーションフィルタ18の機能をカバーガラス16に形成したものである。これにより、他の撮像光学系を用いる場合には、このグラデーションフィルタ16の透過率変化を変更することで簡便に対応することも可能となる。
【0030】
なお、遮光膜の透過部面積、絞り部材の開口部面積、グラデーションフィルタの透過率の変化のさせ方として、連続的に変化させてもよいし、許容誤差範囲内で、階段状に変化させてもよいのは勿論である。
【0031】
以上、CCDを例に取り説明したが、本発明は、CMOS等にも適用可能なのは言うまでもない。
【0032】
図9は、本発明の固体撮像装置を搭載した光学機器の一例であるカメラの外観図である。図9(a)はカメラ前面図、図9(b)はカメラ背面図である。
【0033】
同図の前面図において、21は撮影光学系でありこの後方に本発明の固体撮像装置が配置される。更にメイン電源釦22、レリーズ釦23、ファインダ対物レンズ24が適宜配置されている。背面にはファインダ接眼レンズ25および表示ランプ26、LCD等の画像表示モニタ27、モード切替スイッチ28、その他各種の操作ボタン29が配置されている。
【0034】
これにより、開放絞りのみを使用する撮影光学系に対応した本発明の固体撮像装置を搭載することにより、薄型の光学系でも周辺光量の低下の影響の無い画像を得ることができ、薄型カメラの画像品質を向上させることが可能となる。なお、カメラのその他の構成要素は、周知のものであるため、説明を省略する。
【0035】
また、光学機器の例としてカメラで説明したが、本発明はカメラより更に薄型である携帯端末にも適用可能なのは、言うまでもない。
【0036】
【発明の効果】
以上説明したように、開放絞りのみを使用する撮像光学系に対応し、光学系全長を薄型に保ったまま、受光素子出力が撮像光学系の周辺光量低下による影響を受けない固体撮像装置を得ることができると共に、この固体撮像装置を備えた光学機器を得ることができるようになった。
【図面の簡単な説明】
【図1】従来のカラー固体撮像装置の構造を示す要部断面図である。
【図2】一般的な撮像光学系の周辺光量比の例を示した図である。
【図3】本発明を適用した固体撮像装置の第一の例の概略断面図である。
【図4】本発明を適用した固体撮像装置の第二の例の概略断面図である。
【図5】本発明を適用した固体撮像装置の第三の例の概略断面図である。
【図6】第一〜第三の例の透過部及び開口部の正面形状の図である。
【図7】本発明を適用した固体撮像装置の第四の例の概略断面図である。
【図8】本発明を適用した固体撮像装置の第五の例の概略断面図である。
【図9】本発明の固体撮像装置を搭載した光学機器の一例であるカメラの外観図である。
【符号の説明】
10 半導体基板
11 遮光膜
12 受光素子
13 転送部
14 カラーフィルタ
15 マイクロレンズ
16 カバーガラス
17 絞り部材
18 グラデーションフィルタ
21 撮影光学系
22 メイン電源釦
23 レリーズ釦
24 ファインダ対物レンズ
25 ファインダ接眼レンズ
26 表示ランプ
27 画像表示モニタ
28 モード切り替えスイッチ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a solid-state imaging device such as a CCD image sensor or a CMOS image sensor, and an optical apparatus including the same.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, solid-state imaging devices such as a CCD (Charged Coupled Device) image sensor and a CMOS (Complementary Metal-Oxide Semiconductor) image sensor have been widely used in optical devices such as video cameras, electronic still cameras, and mobile terminals with built-in cameras. I have. In these solid-state imaging devices, in order to increase the light detection efficiency, it is common that light-collecting microlenses are arranged on the light incident surface side of the plurality of light-receiving elements, corresponding to each of the light-receiving elements. . The microlenses prevent a decrease in detection sensitivity due to a reduction in the area of the light receiving element due to a reduction in the size of the solid-state imaging device and an increase in the number of pixels.
[0003]
FIG. 1 is a sectional view of a main part showing a structure of a conventional color solid-state imaging device. In FIG. 1, a plurality of light receiving elements 12 (12a, 12b-) and a plurality of transfer units 13 (13a, 13b-) for transferring electric charges generated and accumulated in each light receiving element are provided on the surface of a semiconductor substrate 10. . A light-shielding film 11 is formed on the transfer section 13 and the light-receiving elements 12, and a color filter 14 (14R, 14R, 14G, 14B,...), A plurality of microlenses 15 (15a, 15b,...) Are provided on the light incident side of each color filter, and a cover glass 16 is provided on the upper surface. .
[0004]
On the other hand, the exit pupil position of the imaging optical system arranged in front of the solid-state imaging device has a finite distance due to the miniaturization of the imaging optical system. There is known an arrangement in which the arrangement pitch is sequentially reduced as the image height becomes higher than the arrangement pitch of the light receiving elements, and the shading of the peripheral portion is corrected (for example, see Patent Document 1).
[0005]
In an image pickup apparatus in which the arrangement pitch of the microlenses is smaller than the arrangement pitch of the light receiving elements, in the case of an imaging optical system that almost matches the set exit pupil position, the light amount reduction rate in the periphery is 3 to 4% with respect to the center. Can be held down.
[0006]
Also, the refractive power of the microlens is made stronger at the periphery than at the center, or the arrangement period of the light receiving elements is made longer at the periphery than at the center, and the microlenses have the same period to correct shading at the periphery. (For example, see Patent Document 2).
[0007]
[Patent Document 1]
Japanese Patent No. 2600250
[Patent Document 2]
Japanese Patent No. 3170847
[Problems to be solved by the invention]
As described above, the solid-state imaging devices described in Patent Literatures 1 and 2 correspond to the finite distance of the exit pupil position due to the miniaturization of the imaging optical system, and the emission angle of the light beam from the final surface of the imaging optical system corresponds to the image. This is effective in correcting shading when the height continuously increases with an increase in height.
[0010]
On the other hand, the imaging optical system is extremely thin, and an optical system that can be built in a camera external part with a thickness of about 10 mm or more and an optical system that can be built in the thickness direction of a portable terminal have been put into practical use and marketed. It became so. In order to make such an extremely thin type, a variable aperture or the like for limiting the amount of incident light which has been conventionally arranged in an imaging optical system is also abolished, and in many cases, shooting is performed only with an open aperture.
[0011]
When the above-described solid-state imaging device is used in the imaging optical system using only the open aperture, the following problem occurs.
[0012]
As is well known, in a normal imaging optical system, the amount of light that reaches the central part of the screen and the peripheral part of the screen differ with respect to a uniform luminance plane. In the imaging optical system for using the solid-state imaging device, the amount of light in the peripheral portion is approximately 40% to 60% with respect to the center of the screen at the highest image height.
[0013]
FIG. 2 is a diagram illustrating an example of a peripheral light amount ratio of a general imaging optical system. In the figure, the vertical axis represents the light amount ratio and the horizontal axis represents the image height, and the light amount on the optical axis (that is, the position at the image height of 0) is set to 100%. As shown in the figure, the light amount gradually decreases as the image height increases. The image height refers to the distance from the optical axis on the image plane, and is displayed as a ratio to the half diagonal length of the light receiving unit.
[0014]
When such an imaging optical system is used in the above-described solid-state imaging device, a subject image with a reduced peripheral light amount is always obtained only by correcting shading for the exit pupil position. To solve the problem of the decrease in the light amount in the peripheral portion, there is a method of correcting the light amount corresponding to each image height at the image processing stage. However, there is a problem that the noise is also amplified at the same time and the image quality is deteriorated particularly in a dark portion.
[0015]
In view of the above problems, the present invention provides a solid-state imaging device that is compatible with an imaging optical system that uses only an open stop and that is not affected by a decrease in peripheral light amount of the imaging optical system while keeping the overall length of the optical system thin. It is an object of the present invention to obtain an optical device having an imaging device.
[0016]
[Means for Solving the Problems]
The purpose of the above is
1) In a solid-state imaging device having a plurality of light receiving elements, a light amount regulating member is provided, and the light amount regulating member is different in a light amount regulating amount between a central portion and a peripheral portion of the solid-state imaging device. Solid-state imaging device,
Thus, it is possible to obtain a solid-state imaging device in which the output of the light receiving element is not affected by the decrease in the peripheral light amount of the imaging optical system.
[0017]
2) The solid-state imaging device according to 1), wherein the light-amount regulating member is an opening corresponding to each of the plurality of light receiving elements, and the area of the opening is larger at the periphery of the solid-state imaging device than at the center. ,
3) The solid-state imaging device according to 1) or 2), wherein the opening is formed in a light-shielding film on the light-receiving element.
4) The solid-state imaging device according to 1) or 2), wherein the light amount regulating member is disposed between the color filter and the microlens of the solid-state imaging device.
5) The solid-state imaging device according to 1) or 2), wherein the light amount regulating member is disposed between the color filter of the solid-state imaging device and the light receiving element.
6) The solid-state imaging device according to 1), wherein the light amount regulating member is a gradation filter, and the gradation filter has a transmittance at a central portion of the solid-state imaging device lower than that at a peripheral portion.
7) The solid-state imaging device according to 6), wherein the gradation filter is formed on a cover glass disposed on a light incident surface side of the solid-state imaging device.
By doing so, it is possible to obtain a solid-state imaging device having the same effect as described above.
[0018]
8) an imaging optical system for forming an image of subject light on the light receiving element surface, and an optical apparatus having a solid-state imaging device according to any one of 1) to 7);
By doing so, an optical device that solves the above-described problem can be obtained.
[0019]
That is, the present inventor uses only the open aperture by keeping the imaging optical system thin while regulating the amount of light reaching according to the position of the light receiving element in the imaging device in accordance with the characteristics of the imaging optical system. The present inventors have found that the influence of a decrease in the peripheral light amount of the imaging optical system can be eliminated, and have arrived at the present invention.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with reference to embodiments, but the present invention is not limited thereto.
[0021]
FIG. 3 is a schematic sectional view of a first example of a solid-state imaging device to which the present invention is applied. In the following drawings, parts having the same functions as those in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted. In the figure, the center of the light receiving element group (effective pixel portion) is OA, and the optical axis of the imaging optical system is set within a predetermined error from OA. Part A is near the center of the light receiving element group (effective pixel part), part B is near the middle (for example, about 40 to 60% of the half diagonal length), and part C is near the outermost part (for example, about half diagonal length). The microlens 15 and the color filter 14 are disposed so as to be displaced from the corresponding light receiving element 12 in the direction toward the center OA of the light receiving element group with respect to the respective positions. I have.
[0022]
On the other hand, the light-shielding film 11 on the light-receiving element 12 is formed so as to have a different transmission area on the light-receiving element surface. Assuming that the area of the transmitting portion near the portion A is S11, the area of the transmitting portion near the portion B is S12, and the area of the transmitting portion near the portion C is S13, for example, in the case of the imaging optical system shown in FIG.
S11 <S12 <S13
Is set to be As a result, the light receiving element output corrects a decrease in the peripheral light amount of the imaging optical system, and a uniform light receiving element output can be obtained for a subject having a uniform luminance distribution. Problems can be solved. Note that the above-mentioned transmission area is determined according to the peripheral light amount ratio of the imaging optical system. That is, the product of the light amount at an arbitrary image height position on the image plane and the area of the transmission portion is set to be substantially constant. Therefore, depending on the characteristics, the case where S11 = S12 or S12 = S13 does not deviate from the present invention.
[0023]
FIG. 4 is a schematic sectional view of a second example of the solid-state imaging device to which the present invention is applied. In the figure, the light-transmitting portions of the light-shielding film 11 have the same area, and aperture members 17 corresponding to individual light-receiving elements are arranged between the color filter 14 and the microlens 15.
[0024]
In the drawing, the diaphragm member 17 may be a sheet film or the like having a light-shielding property, and is formed with different opening areas on the light receiving element surface. Assuming that the opening area near the part A is S21, the opening area near the part B is S22, and the opening area near the part C is S23, for example, in the case of the imaging optical system shown in FIG.
S21 <S22 <S23
Is set to be Even in this case, the same effect as described above can be obtained. The area of the opening is determined according to the peripheral light amount ratio of the imaging optical system. That is, the product of the light amount at an arbitrary image height position on the image plane and the area of the opening is set to be substantially constant. Therefore, depending on the characteristics, the case where S21 = S22 or S22 = S23 does not deviate from the present invention.
[0025]
FIG. 5 is a schematic sectional view of a third example of the solid-state imaging device to which the present invention is applied. In the figure, the apertures 17 corresponding to the individual light receiving elements are arranged between the color filter 14 and the light receiving element 12 with the transmission area of the light shielding film 11 having the same area, and the opening area is set in the same manner. Thereby, the above-described effects can be obtained.
[0026]
FIG. 6 is a front view of the transmission portion and the opening of the above-described first to third examples. In the figure, the shape near the center A of the light receiving element group (effective pixel portion) is A, the shape near the middle B (for example, around 40 to 60% of the half diagonal length) is B, and the shape near the outermost C portion ( For example, the shape of a half-diagonal length of about 80 to 100%) is shown in C.
[0027]
As shown in the figure, it is desirable that the shape is circular near the center of the light receiving element group and is elliptical as it goes to the periphery.
[0028]
FIG. 7 is a schematic cross-sectional view of a fourth example of the solid-state imaging device to which the present invention is applied. In the figure, a gradation filter 18 is arranged between the color filter 14 and the microlens 15 with the transmission area of the light shielding film 11 having the same area. The gradation filter 18 has so-called neutral spectral characteristics, and has a characteristic that its transmittance changes concentrically as it goes from the center to the periphery, and gradation is formed on a sheet film or the like. Assuming that the transmittance near the center A of the gradation filter 18 is Ta, the transmittance near the middle B portion is Tb, and the transmittance near the outermost C portion is Tc, for example, an imaging optical system as shown in FIG. If
Ta <Tb <Tc
Is set to be As a result, the light receiving element output corrects a decrease in the peripheral light amount of the imaging optical system, and a uniform light receiving element output can be obtained for a subject having a uniform luminance distribution. Problems can be solved. The transmittance is determined according to the peripheral light amount ratio of the imaging optical system. That is, the product of the light amount and the transmittance at an arbitrary image height position on the image plane is set to be substantially constant. For this reason, depending on the characteristics, the case where Ta = Tb or Tb = Tc does not depart from the present invention. Further, it is needless to say that it may be disposed between the color filter 14 and the light receiving element 12 or between the microlens 15 and the cover glass 16.
[0029]
FIG. 8 is a schematic sectional view of a fifth example of the solid-state imaging device to which the present invention is applied. In the figure, the function of the gradation filter 18 is formed on the cover glass 16. Accordingly, when another imaging optical system is used, it is possible to easily cope with the change of the transmittance of the gradation filter 16.
[0030]
The transmission area of the light-shielding film, the opening area of the aperture member, and the transmittance of the gradation filter may be changed continuously or stepwise within an allowable error range. Of course, it is good.
[0031]
As described above, the CCD has been described as an example, but it is needless to say that the present invention can be applied to a CMOS or the like.
[0032]
FIG. 9 is an external view of a camera which is an example of an optical device equipped with the solid-state imaging device of the present invention. FIG. 9A is a front view of the camera, and FIG. 9B is a rear view of the camera.
[0033]
In the front view of the figure, reference numeral 21 denotes a photographing optical system, and the solid-state imaging device of the present invention is disposed behind the photographing optical system. Further, a main power button 22, a release button 23, and a finder objective lens 24 are appropriately arranged. A finder eyepiece 25, a display lamp 26, an image display monitor 27 such as an LCD, a mode switch 28, and various other operation buttons 29 are arranged on the back.
[0034]
Thus, by mounting the solid-state imaging device of the present invention corresponding to the imaging optical system using only the open aperture, it is possible to obtain an image that is not affected by a decrease in the amount of peripheral light even with a thin optical system. Image quality can be improved. The other components of the camera are well-known and will not be described.
[0035]
In addition, although a camera has been described as an example of the optical apparatus, it is needless to say that the present invention can be applied to a portable terminal that is thinner than a camera.
[0036]
【The invention's effect】
As described above, it is possible to obtain a solid-state imaging device that is compatible with an imaging optical system using only an open aperture and whose light-receiving element output is not affected by a decrease in peripheral light amount of the imaging optical system while keeping the overall length of the optical system thin. And an optical apparatus equipped with the solid-state imaging device can be obtained.
[Brief description of the drawings]
FIG. 1 is a sectional view of a main part showing a structure of a conventional color solid-state imaging device.
FIG. 2 is a diagram illustrating an example of a peripheral light amount ratio of a general imaging optical system.
FIG. 3 is a schematic cross-sectional view of a first example of a solid-state imaging device to which the present invention has been applied.
FIG. 4 is a schematic sectional view of a second example of the solid-state imaging device to which the present invention is applied.
FIG. 5 is a schematic sectional view of a third example of the solid-state imaging device to which the present invention is applied.
FIG. 6 is a front view of a transmission part and an opening of the first to third examples.
FIG. 7 is a schematic sectional view of a fourth example of the solid-state imaging device to which the present invention is applied.
FIG. 8 is a schematic sectional view of a fifth example of the solid-state imaging device to which the present invention is applied.
FIG. 9 is an external view of a camera which is an example of an optical apparatus equipped with the solid-state imaging device of the present invention.
[Explanation of symbols]
Reference Signs List 10 semiconductor substrate 11 light shielding film 12 light receiving element 13 transfer section 14 color filter 15 micro lens 16 cover glass 17 aperture member 18 gradation filter 21 shooting optical system 22 main power button 23 release button 24 viewfinder objective lens 25 viewfinder eyepiece lens 26 display lamp 27 Image display monitor 28 Mode switch

Claims (8)

複数の受光素子を有する固体撮像装置において、
光量規制部材を有し、該光量規制部材は該固体撮像装置の中央部と周辺部でその光量規制量が異なるものであることを特徴とする固体撮像装置。
In a solid-state imaging device having a plurality of light receiving elements,
A solid-state imaging device having a light-amount regulating member, wherein the light-amount regulating member is different in a light-amount regulating amount between a central portion and a peripheral portion of the solid-state imaging device.
前記光量規制部材は前記複数の受光素子各々に対応した開口部であり、該開口部の面積は、前記固体撮像装置の周辺部が中央部より大きく形成されていることを特徴とする請求項1に記載の固体撮像装置。2. The light amount regulating member is an opening corresponding to each of the plurality of light receiving elements, and an area of the opening is formed so that a peripheral part of the solid-state imaging device is larger than a central part. 3. The solid-state imaging device according to item 1. 前記開口部を前記受光素子上の遮光膜に形成したことを特徴とする請求項1又は2に記載の固体撮像装置。The solid-state imaging device according to claim 1, wherein the opening is formed in a light-shielding film on the light receiving element. 前記光量規制部材を前記固体撮像装置のカラーフィルタとマイクロレンズの間に配置したことを特徴とする請求項1又は2に記載の固体撮像装置。The solid-state imaging device according to claim 1, wherein the light amount regulating member is disposed between a color filter and a micro lens of the solid-state imaging device. 前記光量規制部材を前記固体撮像装置のカラーフィルタと前記受光素子の間に配置したことを特徴とする請求項1又は2に記載の固体撮像装置。The solid-state imaging device according to claim 1, wherein the light amount regulating member is disposed between a color filter of the solid-state imaging device and the light receiving element. 前記光量規制部材はグラデーションフィルタであり、該グラデーションフィルタは前記固体撮像装置の中心部の透過率が周辺部の透過率より低いことを特徴とする請求項1に記載の固体撮像装置。2. The solid-state imaging device according to claim 1, wherein the light amount regulating member is a gradation filter, and the gradation filter has a transmittance at a central portion of the solid-state imaging device lower than a transmittance at a peripheral portion. 前記グラデーションフィルタを、前記固体撮像装置の光入射面側に配置されるカバーガラスに形成したことを特徴とする請求項6に記載の固体撮像装置。The solid-state imaging device according to claim 6, wherein the gradation filter is formed on a cover glass disposed on a light incident surface side of the solid-state imaging device. 被写体光を前記受光素子面に結像させる撮像光学系と、請求項1〜7のいずれか1項に記載の固体撮像装置を有することを特徴とする光学機器。An optical apparatus comprising: an imaging optical system that forms an image of subject light on the light receiving element surface; and the solid-state imaging device according to claim 1.
JP2003017287A 2003-01-27 2003-01-27 Solid-state imaging device and optical apparatus having the device Pending JP2004228476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003017287A JP2004228476A (en) 2003-01-27 2003-01-27 Solid-state imaging device and optical apparatus having the device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003017287A JP2004228476A (en) 2003-01-27 2003-01-27 Solid-state imaging device and optical apparatus having the device

Publications (1)

Publication Number Publication Date
JP2004228476A true JP2004228476A (en) 2004-08-12

Family

ID=32904475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003017287A Pending JP2004228476A (en) 2003-01-27 2003-01-27 Solid-state imaging device and optical apparatus having the device

Country Status (1)

Country Link
JP (1) JP2004228476A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010212649A (en) * 2009-02-13 2010-09-24 Nikon Corp Image sensor
US7986104B2 (en) 2006-04-12 2011-07-26 Sanken Electric Co., Ltd. Discharge lamp lighting apparatus
JP2012010095A (en) * 2010-06-24 2012-01-12 Panasonic Corp Imaging device, and image processing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7986104B2 (en) 2006-04-12 2011-07-26 Sanken Electric Co., Ltd. Discharge lamp lighting apparatus
JP2010212649A (en) * 2009-02-13 2010-09-24 Nikon Corp Image sensor
JP2012010095A (en) * 2010-06-24 2012-01-12 Panasonic Corp Imaging device, and image processing method

Similar Documents

Publication Publication Date Title
KR102523203B1 (en) Solid state image sensor, method of manufacturing the same, and electronic device
US7783185B2 (en) Image sensor, imaging device and imaging method
EP1975695B1 (en) Focus detection device, focusing state detection method and imaging apparatus
US9568713B2 (en) Methods and apparatus for using multiple optical chains in parallel to support separate color-capture
EP2083447B1 (en) Image pickup apparatus
US7112779B2 (en) Optical apparatus and beam splitter
US8049801B2 (en) Image sensor and imaging apparatus
KR101188575B1 (en) Imaging apparatus and arranging method for the same
KR20170024599A (en) Backside illumination image sensor, manufacturing method thereof and image-capturing device
WO2015045829A1 (en) Imaging device and imaging method
JP5133533B2 (en) Imaging device
US10566358B2 (en) Image sensor and image capturing apparatus
US9357121B2 (en) Image capturing apparatus and control method thereof
JP2002131623A (en) Imaging apparatus and system
CN110636277A (en) Detection apparatus, detection method, and image pickup apparatus
WO2013027507A1 (en) Imaging device
EP3649772B1 (en) Imaging apparatus with second imaging element used for correcting vignetting in images captured by first imaging element
KR101139661B1 (en) Imaging apparatus and imaging method
JP2004228645A (en) Solid-state imaging apparatus and optical apparatus using the same
JP2004228476A (en) Solid-state imaging device and optical apparatus having the device
JP2014098768A (en) Imaging device and exposure control method
JP2019219577A (en) Detection device and detection method
JP2002171447A (en) Compound eye imaging system, imaging device and electronic equipment
JP7378935B2 (en) Image processing device
JP2004191630A (en) Imaging apparatus