JP2004228416A - Solenoid coil and actuator - Google Patents

Solenoid coil and actuator Download PDF

Info

Publication number
JP2004228416A
JP2004228416A JP2003016025A JP2003016025A JP2004228416A JP 2004228416 A JP2004228416 A JP 2004228416A JP 2003016025 A JP2003016025 A JP 2003016025A JP 2003016025 A JP2003016025 A JP 2003016025A JP 2004228416 A JP2004228416 A JP 2004228416A
Authority
JP
Japan
Prior art keywords
coil
cylindrical
moving body
solenoid coil
solenoid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003016025A
Other languages
Japanese (ja)
Inventor
Seizo Hataya
幡谷精三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003016025A priority Critical patent/JP2004228416A/en
Publication of JP2004228416A publication Critical patent/JP2004228416A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a piston which secures a long stroke and perform a reciprocative motion having a continuous linear operation, by so forming a solenoid coil out of a wiring board having a laminated film as its base as to obtain a small-sized thinned actuator. <P>SOLUTION: A solenoid coil is formed on a flexible printed wiring board as a fine wiring pattern to become a coil. The whole of the printed wiring board is so insulated and so covered with a thermally conductive resin layer as to wind it around a bobbin and as to radiate its heat to the external by storing it in a metal case having a heat radiating effect. Consequently, such a small-sized thin solenoid coil as to be able to deal also with a coil having many turns and a coil having wide width is obtained, and it can be utilized for a solenoid, an electromagnetic valve, a solenoid having a long stroke, a piston capable of a reciprocative motion, and the like. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明はフレシキブル積層フィルムにコイルを形成し、ソレノイド、電磁弁、リニアーアクチュェーターなどに使用する為のためのソレノイドコイルおよびアクチュェーターに関するものである。
【0002】
【従来の技術】
従来のソレノイドコイルには、ソレノイドコイルおよび電磁弁(特許文献1)特開平11−340031号公報を施したものがある。
又アクチュェーターには、直動ソレノイド(特許文献2)特開2001ー326119号公報を施したものがある。
【0003】
従来技術としてソレノイドコイルは電磁力を発生する手段としてボビンの外周面に所定の撒線数で巻かれて磁力を発生するコイルが一般的に使用されている事が知られているが小型化するためにプリント基板の表面にコイルパターンを印刷、積層してソレノイドコイルとして(特許文献1)に施したものがある。
【0004】
図4による絶縁性基板の表面に渦巻き状のコイルパターンを形成し、極めて細い線形のコイルを形成し、積層してコイルを接続することによりソレノイドコイルとする。これにより高密度化を実現できるが、細線で高密度の巻き線構造では発熱量が増大し、温度の上昇を引き起こす問題をコイルに用いた細線パターンに比べて著しく幅の広いパターンをコイルの引出線を外部の太い電線に熱的に結合し、放熱(5)を行なう。
【0005】
ソレノイドにおいて(特許文献2)を施したものがある軟磁性体からなる円筒状ケースの中央に設けたコイルの内側に、複数個の磁性体ユニットを介在させ、隣接する磁性体ユニットを離間距離制限型非磁性係合体で遊動的に結合し、磁性体ユニット同士の隙間は所定距離以上にならないように配列し、ストロークは隙間の合計となり隣接する磁性体ユニットを順次吸引してストロークを長くする。吸引力は相対向する磁極が同極となるよう磁性体ユニット同士の隙間は所定距離にならないように配列することによりストロークを長くする。
【0006】
【発明が課題を解決しようとする課題】
解決しようとする問題点はソレノイドコイルをより小型化、薄型化するためには図4(5)の放熱の為にコイル外に放熱部を設けることにより制約を受けコイルの巻き数が増えた場合はより大きい形状になると同時に放熱効果はソレノイドコイルの外周部に関しては効果が大になりコイル内周部は小さくなる事が予測される。
【0007】
ソレノイドコイルユニットを積層してソレノイドコイルとして形成した場合ストロークを長くする手段を得る為には複数のソレノイドコイルユニットを積層する必要が生じ、小型のソレノイドや電磁弁に1枚当り0.54mmの厚みのソレノイドコイルユニットを使用した場合でも多数のソレノイドコイルユニットが必要であるがソレノイドの可動芯やソレノイドアクチュェーターとしてストロークを長くする場合にソレノイドコイルユニットは比例してより多く使用することになり経済的、生産面において困難になる。
【0008】
ソレノイドに電流を流すと磁束が発生し,可動鉄心に流れ,可動鉄心を強く固定鉄心側にひきつける動作であるが、ストロークを少しでも長くすることはコイルの巻き数を多くしたり電流量を多くしたり複数の磁石を用いたりしなければならない。
又ソレノイドをピストンとして往復運動させる為に難磁性材料からなる円筒形コイル内で移動する可動体は電源からダイオードを介して供給電圧の半サイクル中に電流をコイルに流し他の半サイクル中には電流を流さないようにし、機械的復帰ばねを使用し、原点に復帰する方法で往復運動を得るが機械的復帰ばねの圧力による可動体の推力を減衰させるなどの問題が生じ結果としてコイルの巻き数が大きくなり電力消費も多くなり形状の小型化は困難になる。
【0009】
【課題を解決するための手段】
長方形の絶縁積層フィルム上の表面に固着された導電層は絶縁積層フィルムの幅方向に対し直角に所定の間隔を置いて微細な直線を複数設け、複数直線の上端と離間した下端に絶縁積層フィルムの幅方向に対し平行直線を交差した配線パターンを備えるプリント配線板であり、上端と離間した下端の平行直線は引き出し線を備え配線パターン層の上に絶縁、熱伝導層を備え、プリント配線板を熱伝導性の円筒形状のボビンに巻き取りコイルを形成し、コイル部を軟磁性体の熱伝導性金属で覆い放熱効果を備えたことを特徴とするソレノイドコイル。
【0010】
請求項1記載のプリント配線板に配置された配線パターンを裏面も同様に配置し、絶縁、熱伝導層、引き出し線を備え、プリント配線板を熱伝導性の円筒形状のボビンに巻き取りコイルを形成し、コイル部を熱伝導性の軟磁性体の熱伝導性金属で覆い放熱効果を備えたことを特徴とするソレノイドコイル。
【0011】
軟磁性体からなる円筒状ケースの同心円上に請求項1記載のソレノイドコイルと軟磁性体からなる円柱形移動体を配置し、移動体とソレノイドコイル間は僅かな隙間を設け、ソレノイドコイルで発生せしめた磁力によって円柱形移動体は直線運動をする駆動軸を設けたことを特徴とするアクチュェーター。
【0012】
軟磁性体からなる円筒状ケースの同心円上に請求項1記載のソレノイドコイルと非磁性の円柱形移動体を配置し、円筒状内端は円柱形移動体を支持する軸受けを設け、移動体にラジアル方向に単極着磁した希土類ラジアル異方性磁石のリング状永久磁石が固定され、リング状永久磁石とソレノイドコイル間は僅かな隙間を設け、円柱形移動体は直線運動をする駆動軸を設けたことを特徴とするアクチュェーター。
【0013】
軟磁性体からなる円筒状ケースの同心円上に請求項3記載のソレノイドコイルと非磁性の円柱形移動体を配置し、円筒状内両端には円柱形移動体を支持する軸受けを設け、円柱形移動体の中間にラジアル方向に単極着磁した希土類ラジアル異方性磁石のリング状永久磁石が固定され、リング状永久磁石とソレノイドコイル間は僅かな隙間を設け請求項2記載の引き出し線は表右引き出し線に+極性と表左引き出し線に−極性とし、裏面の右引き出し線に直流電圧の−極性と左引き出し線に+極性として通電時間を表裏面配線パターンを交互に通電せしめることにより円柱形移動体をS極、N極間を移動せしめ、直線の往復運動を連続して行なうことを備えたソレノイドアクチュェーター。
【0014】
【発明の実施の形態】
以下、本発明の実施形態を実施例にもとづき図面を参照して説明する。
従来、一般的なソレノイドコイルは細い線径の銅線をコイルとして直接電流を流すと磁束が発生する。通常1本の銅線をコイルとして構成し、必要とされる磁束強度を確保している状態であるが同じ長さの銅線を2本にしてコイルにした場合は1本の銅線より磁束強度は増加する。但し電流値も比例して増加する。本発明ではこの原理を利用してコイルに相当する部分を銅薄膜で微細線を複数設けて磁束強度を確保することによりコイル巻き数の削減が可能となり同時に発生する熱の放熱についても考慮する。
図1は上方から見た断面図であり、絶縁積層フィルム(1)上に配線パターンの導電層(2)、熱伝導性樹脂絶縁層(3)から構成されるプリント配線板は、積層フィルムおよびその積層フィルムを用いたプリント基板(特許文献3)特開2001−301088号公報を施したものがあり環状ポリオレィン系樹脂からなる積層絶縁フィルムをベースとし、導電体として金属薄膜の配線パターンをプリント配線基板製造技術により構成し、引き出し線(5a)(5b)を設ける。
【0015】
図2はプリント配線板を側面から見た断面図及び拡大図で絶縁積層フィルム(1)の表面に配線パターンの導電層(2)は絶縁性と発熱による局部的な発熱や配線パターン全体からの発熱などによる焼損、切断を防ぐ技術が熱伝導性樹脂絶縁材(特許文献4)特開平9−22618号公報を施したなどの層図2(3)をなし、配線パターンと積層絶縁フィルムとの高低差の溝を埋めコイル全体として温度分布を均一にし、コイル全体温度として外部金属ケース、ボビンと密着させコイル外部に放熱する構造をなす。
【0016】
プリント配線板の配線パターンは図1(2)銅などの金属の薄膜導電体からなる複数の微細線をプリント配線板の幅方向に対し直列に並べる。コイル全体の長さと直線の本数は吸引力によって決定され直列に配列された微細線の両端は電源を供給する共通の直線で電気的に接続されている。
直列に配列される微細線の線幅は0.1〜100μmの範囲にすることが可能であるが太くすると電流量が増大するので50μm〜100μmが好ましく導電体としての配線パターン図2(2)の厚みは5μm程度とし、配線間隔は100μm以上とするのが望ましい。直列に複数本の導線でコイルを形成することになるので同じ長さの導線でコイル形成するより磁界強度は大きくプリント配線板の長さ方向における導線の長さも短くすることができるので高密度の配線間隔は必要がないと共に配線パターンからの発熱を熱伝導性樹脂絶縁材に放熱する効果も向上する。熱伝導性樹脂絶縁材図2(3)の厚みは30μm以内とし、プリント配線板全体の厚みとして70μm以下でプリント配線板を形成することが可能でありコイルとしてボビンに巻き取ることが出来て全体の厚みは薄くすることが出来る。
【0017】
図3はプリント配線板(6)を熱伝導性の金属からなる中空のボビン(7)に巻き取りコイル部を軟磁性で熱伝導性のよい金属ケース(8)に収納する。この時にコイル部と金属ケースは密着させコイル部で発生した熱を外部に放出する効果を得る。
【0018】
図5は請求項1、請求項2、請求項3によるソレノイドコイルの応用によるプッシュ式のソレノイドで筒状体はバックヨークとして磁気回路を構成し、同心円上にコイル(9)と円柱形移動体(10a)を設け下端には固定鉄芯(11)を設けコイルに電流が流されると磁性体の円柱形移動体(10a)は移動する。ソレノイドコイルの厚みが薄くなり従来のソレノイドと比較した場合にコイル部の厚さが縮小でき、筐体組み込み時の省スペース化が可能になり電磁弁やプル方式のソレノイドにおいても同様である。
【0019】
図6は請求項1、請求項2、請求項4によるプッシュ式のソレノイドで円筒状体はバックヨークとして磁気回路を構成し、筒状体内の同心円上にコイル(9)と非磁性の円柱形移動体(10b)を設け非磁性の円柱形移動体にラジアル方向に単極着磁した磁石で内周および外周は同極の希土類ラジアル異方性磁石からなるリング状永久磁石(12)を固定する。ここでいう永久磁石とはラジアル配向磁石の製造方法およびラジアル配向磁石(特許文献5)特開平6−267774号公報を施したものがある
リング状永久磁石(12)とコイル(9)間は僅かな隙間(13)を設け、コイル(9)に電流を流されると永久磁石(12)から発生する磁束はコイルと鎖交し、フレミング左手の法則に基づいてコイルに推力が発生し、コイルは固定されている為に反力として永久磁石に推力が発生し、結果として非磁性の円柱形移動体(10b)はコイル中心部より一番遠い位置に移動することになる。従来のソレノイドは可動芯のストロークは僅かであるが本発明によるとストロークを長くする場合はコイルの長さを円柱形の移動体(10b)に設けられた永久磁石(12)の位置とソレノイドコイルの中間点の位置までの移動が可能であるがコイルの長さを長くすることにより長さに比例したストロークを得ることが可能な構造であるが移動体の重さや磁力の強度に考慮する必要がある。電磁弁やプル方式のソレノイドにおいても同様の効果が得られる。
【0020】
図7は前項における非磁性の円柱形移動体(10c)を改良して中間点付近より切断し、雄雌のネジを切りラジアル方向に単極着磁した磁石で内周および外周は同極の希土類ラジアル異方性磁石からなるリング状永久磁石(12)を挿入して埋め込み固定した円柱形移動体(10c)とすることにより形状をより細くすることが可能になる。
【0021】
図8は請求項1、請求項5によるプリント配線板の断面図であり、表裏両面に配線パターンが施されており表面導電層(2)と裏面導電層(19)に供給する電源は表面(5a)(5b)と裏面(17a)(17b)の引き出し線にDC電源の極性として表面(5a)に+(5b)に−を裏面(17a)に−(17b)に+として一定時間毎に交互に切り替えて行なうことにより往復運動が可能になる。図9は円柱形移動体(10d)の往復運動の断面図であり請求項5による軟磁性体からなる円筒状でバックヨークとして磁気回路を構成する同心円上にソレノイドコイル(9)と円柱形移動体(10d)として非磁性のシリンダーを配置し、円筒状内両端にはシリンダーを保持する軸受け(15)を設けシリンダー中間点付近より切断し、雄雌のネジを切りラジアル方向に単極着磁した希土類ラジアル異方性磁石でリング状永久磁石(12)を挿入して固定され、リング状永久磁石とソレノイドコイル間は僅かな隙間(13)を設けソレノイドコイルに表面と裏面に極性が反対になる電圧を時間単位で切り替えて交互に供給することにより、シリンダーは往復移動を繰り返すソレノイドアクチュェーターを構成することが出来た。
【0022】
図10は円柱形移動体(10d)を前項シリンダーとしての往復運動動作による機能と異なる片方向だけのシリンダー動作を必要とする場合は片側シリンダー面にスプリング(18)を挿入してシリンダーの推力、加圧強度を高めることも可能になった。
【0023】
【発明の効果】
本発明はソレノイドコイルとアクチュェーターによれば、次のような効果を奉する。フィルム上に微細な配線パターンと複数の微細線を備えたコイルを形成したことによりコイル部全体の厚みは薄く又、軽量化することができコイルの線径に相当する配線パターンの幅、厚み、長さの構成を1枚のプリント配線板でコイル化することができた。
【0024】
コイル幅を長くして、可動体に永久磁石を固定する方法により直線動作のストロークを長くする事も容易に行なえるようになった
【0025】
コイル内部の発熱を外部に放熱する手段として熱伝導樹脂層を設けコイル外部に放熱することでより小型化、薄型化、軽量化が可能となった。
【0026】
小型のピストンの往復運動は機械的復帰ばねが不要になり推進力が増す効果が得られる。
【0027】
回転運動から直線運動への変換が不要になり低消費電力のリニアーモーターとして小型化された駆動源として装置などに組み込みが可能になった。
【0028】
ピストンのストロークの往復運動は時間制御が可能となりストローク距離を長くすることが可能である。
【0029】
片方向だけのシリンダーをピストンとするとスプリングの復元力により推力を強めることもできる。
【0030】
【図面の簡単な説明】
【図1】コイル上面から示す断面図
【図2】コイル側面から示す断面図
【図3】コイル組み立て断面図
【図4】コイルユニットを上面から示す図
【図5】本発明の実施方法を示した縦断面図(実施例1)
【図6】本発明の実施方法を示した縦断面図(実施例2)
【図7】本発明の実施方法を示した縦断面図(実施例3)
【図8】コイル両面印刷を側面から示す断面図
【図9】本発明の実施方法を示した縦断面図(実施例4)
【図10】本発明の実施方法を示した縦断面図(実施例5)
【符号の説明】
1 絶縁積層フィルム
2 導電層
3 熱伝導性樹脂絶縁層
5a、5b 引き出し線
5 熱伝導体
6 プリント配線板
7 ボビン
8 金属ケース
9 コイル
10a、10b、10c、10d円柱形可動体
11 固定鉄芯
12 永久磁石
13 隙間
14 軸受け部
15 軸受け
16 裏面導電層
17a、17b 引き出し線
18 スプリング
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a solenoid coil and an actuator for forming a coil in a flexible laminated film and using the coil in a solenoid, a solenoid valve, a linear actuator and the like.
[0002]
[Prior art]
2. Description of the Related Art As a conventional solenoid coil, there is a solenoid coil and a solenoid valve (Patent Literature 1) disclosed in JP-A-11-340031.
Some actuators are provided with a direct acting solenoid (Patent Document 2) Japanese Patent Application Laid-Open No. 2001-326119.
[0003]
As a prior art, it is known that a solenoid coil is generally used as a means for generating an electromagnetic force, and a coil which generates a magnetic force by being wound around an outer peripheral surface of a bobbin with a predetermined number of wires is used. For this purpose, a coil pattern is printed and laminated on the surface of a printed circuit board and applied to a solenoid coil (Patent Document 1).
[0004]
A spiral coil pattern is formed on the surface of the insulating substrate according to FIG. 4, an extremely thin linear coil is formed, and the coils are laminated and connected to form a solenoid coil. This makes it possible to achieve higher densities, but the heat generation increases in the case of a thin-wire, high-density winding structure. The wire is thermally coupled to a thick external wire to release heat (5).
[0005]
A solenoid provided with (Patent Literature 2) has a plurality of magnetic units interposed inside a coil provided at the center of a cylindrical case made of a soft magnetic material to limit a distance between adjacent magnetic units. The non-magnetic engaging members are loosely connected to each other, and the magnetic units are arranged so that the gap between them does not exceed a predetermined distance. The stroke becomes the total of the gaps, and the adjacent magnetic units are sequentially sucked to lengthen the stroke. The attractive force increases the stroke by arranging the magnetic units so that the magnetic poles facing each other have the same polarity and the gap between the magnetic units does not become a predetermined distance.
[0006]
[Problems to be solved by the invention]
The problem to be solved is that, in order to make the solenoid coil smaller and thinner, a heat radiation portion is provided outside the coil for heat radiation as shown in FIG. It is expected that the heat dissipation effect will be greater at the outer peripheral portion of the solenoid coil and the inner peripheral portion of the coil will be smaller at the same time.
[0007]
When a solenoid coil unit is laminated to form a solenoid coil, it is necessary to laminate a plurality of solenoid coil units in order to obtain a means for increasing the stroke, and a small solenoid or solenoid valve has a thickness of 0.54 mm per sheet. Although many solenoid coil units are required when using a solenoid coil unit of this type, if the stroke is lengthened as a movable core of a solenoid or a solenoid actuator, the solenoid coil unit will be used in proportion to the number of units. It becomes difficult in economic and production aspects.
[0008]
When an electric current is applied to the solenoid, magnetic flux is generated and flows to the movable iron core, and the movable iron core is strongly attracted to the fixed iron core. However, increasing the stroke even slightly increases the number of coil turns or the amount of current. Or use multiple magnets.
In addition, a movable body that moves in a cylindrical coil made of a hard magnetic material to make the solenoid reciprocate as a piston makes a current flow through the coil during a half cycle of a supply voltage from a power supply via a diode, and during another half cycle. Use a mechanical return spring to prevent the current from flowing and obtain a reciprocating motion by returning to the origin.However, the thrust of the movable body due to the pressure of the mechanical return spring is attenuated. The number increases, the power consumption increases, and miniaturization of the shape becomes difficult.
[0009]
[Means for Solving the Problems]
The conductive layer fixed to the surface of the rectangular insulating laminated film is provided with a plurality of fine straight lines at predetermined intervals perpendicular to the width direction of the insulating laminated film, and the insulating laminated film is provided at the lower end separated from the upper end of the plurality of straight lines. A printed wiring board having a wiring pattern intersecting parallel straight lines with respect to a width direction of the printed wiring board, wherein a parallel straight line at a lower end separated from an upper end is provided with a lead wire, and is provided with an insulating and heat conductive layer on a wiring pattern layer, A coil wound around a heat-conductive cylindrical bobbin, and the coil portion is covered with a soft magnetic material of a heat-conductive metal to provide a heat radiation effect.
[0010]
The wiring pattern arranged on the printed wiring board according to claim 1 is similarly arranged on the back surface, provided with insulation, a heat conductive layer, and a lead wire. The printed wiring board is wound around a heat conductive cylindrical bobbin and a coil is wound. A solenoid coil formed and covered with a heat conductive metal of a heat conductive soft magnetic material and having a heat radiation effect.
[0011]
A cylindrical moving body made of a soft magnetic material and the solenoid coil according to claim 1 are arranged on concentric circles of a cylindrical case made of a soft magnetic material, and a slight gap is provided between the moving body and the solenoid coil to generate the solenoid coil. Actuator characterized in that the columnar moving body is provided with a drive shaft that makes a linear motion by the applied magnetic force.
[0012]
The solenoid coil according to claim 1 and a non-magnetic cylindrical moving body are arranged on concentric circles of a cylindrical case made of a soft magnetic material, and a cylindrical inner end is provided with a bearing for supporting the cylindrical moving body. A ring-shaped permanent magnet of a rare earth radial anisotropic magnet monopolarly magnetized in the radial direction is fixed, a small gap is provided between the ring-shaped permanent magnet and the solenoid coil, and the cylindrical moving body has a drive shaft that performs linear motion. An actuator characterized by having been provided.
[0013]
The solenoid coil according to claim 3 and a non-magnetic cylindrical moving body are arranged on concentric circles of a cylindrical case made of a soft magnetic material, and bearings for supporting the cylindrical moving body are provided at both inner ends of the cylindrical shape. A ring-shaped permanent magnet of a rare earth radial anisotropic magnet unipolarly magnetized in the radial direction is fixed in the middle of the moving body, and a slight gap is provided between the ring-shaped permanent magnet and the solenoid coil. By applying a positive polarity to the right lead and a negative polarity to the left lead, a negative polarity of the DC voltage to the right lead on the back, and a positive polarity to the left lead, the energizing time is alternately applied to the wiring patterns on the front and back. A solenoid actuator that moves a cylindrical moving body between an S pole and an N pole and continuously performs a linear reciprocating motion.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings based on examples.
2. Description of the Related Art Conventionally, a general solenoid coil generates a magnetic flux when a current is directly passed through a copper wire having a small diameter as a coil. Normally, one copper wire is configured as a coil and the required magnetic flux strength is secured. However, when two copper wires of the same length are used as a coil, the magnetic flux is reduced from one copper wire. Strength increases. However, the current value also increases in proportion. In the present invention, by utilizing this principle, a portion corresponding to the coil is provided with a plurality of fine wires made of a copper thin film to secure the magnetic flux intensity, thereby reducing the number of turns of the coil, and taking into account the heat radiation generated simultaneously.
FIG. 1 is a cross-sectional view seen from above. A printed wiring board composed of a conductive layer (2) of a wiring pattern and a heat conductive resin insulating layer (3) on an insulating laminated film (1) is composed of a laminated film and A printed circuit board using the laminated film (Patent Document 3) is disclosed in Japanese Patent Application Laid-Open No. 2001-301088. The laminated substrate is based on a laminated insulating film made of a cyclic polyolefin resin, and a wiring pattern of a metal thin film is printed as a conductor. It is constituted by a substrate manufacturing technique, and lead lines (5a) and (5b) are provided.
[0015]
FIG. 2 is a cross-sectional view and an enlarged view of the printed wiring board as viewed from the side, and the conductive layer (2) of the wiring pattern is formed on the surface of the insulating laminated film (1) by localization of heat due to insulation and heat generation. A technique for preventing burnout and cutting due to heat generation and the like is shown in FIG. 2 (3) in which a thermally conductive resin insulating material (Patent Document 4) Japanese Patent Application Laid-Open No. 9-22618 is applied. The temperature difference is made uniform by filling the grooves of the height difference, and the entire coil is brought into close contact with the outer metal case and bobbin to radiate heat to the outside of the coil.
[0016]
In the wiring pattern of the printed wiring board, a plurality of fine wires made of a thin film conductor of a metal such as copper are arranged in series in the width direction of the printed wiring board. The length of the entire coil and the number of straight lines are determined by the attractive force, and both ends of the fine wires arranged in series are electrically connected by a common straight line for supplying power.
The line width of the fine lines arranged in series can be in the range of 0.1 to 100 μm. However, when the width is large, the amount of current increases, so that it is preferably 50 μm to 100 μm. Wiring pattern diagram 2 (2) as a conductor Is preferably about 5 μm, and the wiring interval is preferably 100 μm or more. Since a coil is formed with a plurality of conductors in series, the magnetic field strength is larger than when a coil is formed with conductors of the same length, and the length of the conductor in the length direction of the printed wiring board can be shortened, so that high density The spacing between the wirings is not required, and the effect of radiating the heat generated from the wiring pattern to the thermally conductive resin insulating material is also improved. Thermal conductive resin insulation material The thickness of FIG. 2 (3) is within 30 μm, and the printed wiring board can be formed with a thickness of 70 μm or less as the entire printed wiring board, and can be wound on a bobbin as a coil. Can be made thinner.
[0017]
In FIG. 3, the printed wiring board (6) is wound around a hollow bobbin (7) made of a metal having thermal conductivity, and the coil portion is housed in a metal case (8) which is soft and has good thermal conductivity. At this time, the coil portion and the metal case are brought into close contact with each other, and an effect of releasing heat generated in the coil portion to the outside is obtained.
[0018]
FIG. 5 shows a push-type solenoid using the solenoid coil according to the first, second, and third aspects, wherein the cylindrical body forms a magnetic circuit as a back yoke, and the coil (9) and the cylindrical moving body are concentrically arranged. (10a) is provided, and a fixed iron core (11) is provided at the lower end, and when a current flows through the coil, the magnetic cylindrical moving body (10a) moves. The thickness of the solenoid coil is reduced, and the thickness of the coil portion can be reduced as compared with the conventional solenoid, and the space can be saved when the housing is incorporated. The same applies to a solenoid valve or a pull type solenoid.
[0019]
FIG. 6 shows a push-type solenoid according to claims 1, 2 and 4, wherein the cylindrical body constitutes a magnetic circuit as a back yoke, and the coil (9) and the non-magnetic cylindrical form are arranged on concentric circles in the cylindrical body. A moving body (10b) is provided, and a ring-shaped permanent magnet (12) made of a rare earth radial anisotropic magnet having the same polarity on the inner and outer circumferences is fixed to a non-magnetic cylindrical moving body with a single-pole magnetized radially. I do. The permanent magnet referred to here is a method for manufacturing a radially oriented magnet and a radially oriented magnet (Patent Document 5) JP-A-6-267774. There is a slight gap between the ring-shaped permanent magnet (12) and the coil (9). When a current is applied to the coil (9), a magnetic flux generated from the permanent magnet (12) interlinks with the coil, and a thrust is generated in the coil based on Fleming's left hand rule. Since the permanent magnet is fixed, a thrust is generated in the permanent magnet as a reaction force. As a result, the non-magnetic cylindrical moving body (10b) moves to a position farthest from the center of the coil. In the conventional solenoid, the stroke of the movable core is small, but according to the present invention, when the stroke is lengthened, the length of the coil is changed to the position of the permanent magnet (12) provided on the cylindrical moving body (10b) and the solenoid coil. Although it is possible to move to the position of the middle point of the coil, it is possible to obtain a stroke proportional to the length by increasing the length of the coil, but it is necessary to consider the weight of the moving body and the strength of the magnetic force There is. Similar effects can be obtained with a solenoid valve or a pull type solenoid.
[0020]
FIG. 7 shows a magnet in which the non-magnetic cylindrical moving body (10c) in the preceding paragraph is modified and cut from the vicinity of the intermediate point, and male and female screws are cut and radially unipolarly magnetized. By inserting the ring-shaped permanent magnet (12) made of a rare-earth radial anisotropic magnet into the cylindrical moving body (10c) embedded and fixed, the shape can be made thinner.
[0021]
FIG. 8 is a cross-sectional view of a printed wiring board according to claims 1 and 5, wherein a wiring pattern is provided on both front and back surfaces, and power supplied to the front surface conductive layer (2) and the back surface conductive layer (19) is a front surface ( 5a) (5b) and + (5b) on the front side (5a) and-on (17b) on the back side (17a) as the polarity of the DC power source at regular intervals. Reciprocating movement becomes possible by performing alternate switching. FIG. 9 is a cross-sectional view of the reciprocating motion of the cylindrical moving body (10d). The solenoid coil (9) and the cylindrical moving on a concentric circle forming a magnetic circuit as a back yoke made of a soft magnetic material according to claim 5. A non-magnetic cylinder is arranged as a body (10d), bearings (15) for holding the cylinder are provided at both ends inside the cylinder, and the cylinder is cut from the vicinity of the cylinder middle point, male and female screws are cut, and unipolar magnetization is performed in the radial direction. A ring-shaped permanent magnet (12) is inserted and fixed with the rare-earth radial anisotropic magnet, and a slight gap (13) is provided between the ring-shaped permanent magnet and the solenoid coil so that the polarity of the front and back sides of the solenoid coil are opposite. The cylinder was able to constitute a solenoid actuator that repeats reciprocating movement by alternately supplying different voltages at different time intervals.
[0022]
FIG. 10 shows that when the cylindrical moving body (10d) requires a cylinder operation in only one direction, which is different from the function by the reciprocating motion as the cylinder described in the preceding paragraph, a spring (18) is inserted into the cylinder surface on one side, and the thrust of the cylinder is increased. It has also become possible to increase the pressing strength.
[0023]
【The invention's effect】
The present invention has the following advantages according to the solenoid coil and the actuator. By forming a coil with a fine wiring pattern and a plurality of fine wires on the film, the thickness of the entire coil portion is thin and the weight can be reduced, and the width and thickness of the wiring pattern corresponding to the coil diameter can be reduced. The length configuration could be coiled with one printed wiring board.
[0024]
By increasing the coil width and fixing the permanent magnet to the movable body, the stroke of the linear operation can be easily increased. [0025]
As a means for radiating heat generated inside the coil to the outside, a heat conductive resin layer is provided and radiated to the outside of the coil, thereby making it possible to make the coil smaller, thinner, and lighter.
[0026]
The reciprocating motion of the small piston eliminates the need for a mechanical return spring, and has the effect of increasing propulsion.
[0027]
This eliminates the need for conversion from rotary motion to linear motion, making it possible to incorporate it into devices as a miniaturized drive source as a low-power linear motor.
[0028]
The reciprocating motion of the piston stroke can be time-controlled, and the stroke distance can be increased.
[0029]
If the cylinder is a piston in only one direction, the thrust can be increased by the restoring force of the spring.
[0030]
[Brief description of the drawings]
1 is a cross-sectional view from the top of the coil; FIG. 2 is a cross-sectional view from the side of the coil; FIG. 3 is a cross-sectional view of the coil assembly; FIG. 4 is a view from the top of the coil unit. Vertical sectional view (Example 1)
FIG. 6 is a longitudinal sectional view showing an embodiment of the present invention (Example 2).
FIG. 7 is a longitudinal sectional view showing an embodiment of the present invention (Example 3).
FIG. 8 is a cross-sectional view showing the double-sided coil printing from the side.
FIG. 10 is a longitudinal sectional view showing an embodiment of the present invention (Embodiment 5).
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Insulating laminated film 2 Conductive layer 3 Thermal conductive resin insulating layer 5a, 5b Lead wire 5 Thermal conductor 6 Printed wiring board 7 Bobbin 8 Metal case 9 Coil 10a, 10b, 10c, 10d Columnar movable body 11 Fixed iron core 12 Permanent magnet 13 Gap 14 Bearing part 15 Bearing 16 Backside conductive layers 17a, 17b Lead wire 18 Spring

Claims (5)

長方形の絶縁積層フィルム上の表面に固着された導電層は絶縁積層フィルムの幅方向に対し直角に所定の間隔を置いて微細な直線を複数設け、複数直線の上端と離間した下端に絶縁積層フィルムの幅方向に対し平行直線を交差した配線パターンを備えるプリント配線板であり、上端と離間した下端の平行直線は引き出し線を備え配線パターン層の上に絶縁、熱伝導層を備え、プリント配線板を熱伝導性の円筒形状のボビンに巻き取りコイルを形成し、コイル部を軟磁性体の熱伝導性金属で覆い放熱効果を備えたことを特徴とするソレノイドコイル。The conductive layer fixed on the surface of the rectangular insulating laminated film is provided with a plurality of fine straight lines at predetermined intervals perpendicular to the width direction of the insulating laminated film, and the insulating laminated film is provided at the lower end separated from the upper end of the plurality of straight lines. A printed wiring board having a wiring pattern intersecting parallel straight lines with respect to a width direction of the printed wiring board. A coil wound around a heat-conductive cylindrical bobbin, and the coil portion is covered with a soft magnetic heat-conductive metal to provide a heat radiation effect. 請求項1記載のプリント配線板に配置された配線パターンを裏面も同様に配置し、絶縁、熱伝導層、引き出し線を備え、プリント配線板を熱伝導性の円筒形状のボビンに巻き取りコイルを形成し、コイル部を熱伝導性の軟磁性体の熱伝導性金属で覆い放熱効果を備えたことを特徴とするソレノイドコイル。The wiring pattern arranged on the printed wiring board according to claim 1 is similarly arranged on the back surface, provided with insulation, a heat conductive layer, and a lead wire. The printed wiring board is wound around a heat conductive cylindrical bobbin and a coil is wound. A solenoid coil formed and covered with a heat conductive metal of a heat conductive soft magnetic material and having a heat radiation effect. 軟磁性体からなる円筒状ケースの同心円上に請求項1記載のソレノイドコイルと軟磁性体からなる円柱形移動体を配置し、移動体とソレノイドコイル間は僅かな隙間を設け、ソレノイドコイルで発生せしめた磁力によって円柱形移動体は直線運動をする駆動軸を設けたことを特徴とするアクチュェーター。A cylindrical moving body made of a soft magnetic material and the solenoid coil according to claim 1 are arranged on a concentric circle of a cylindrical case made of a soft magnetic material, and a slight gap is provided between the moving body and the solenoid coil to generate the solenoid coil. Actuator characterized in that the cylindrical moving body is provided with a drive shaft that makes a linear motion by the applied magnetic force. 軟磁性体からなる円筒状ケースの同心円上に請求項1記載のソレノイドコイルと非磁性の円柱形移動体を配置し、円筒状内端は円柱形移動体を支持する軸受けを設け、移動体にラジアル方向に単極着磁した希土類ラジアル異方性磁石のリング状永久磁石が固定され、リング状永久磁石とソレノイドコイル間は僅かな隙間を設け、円柱形移動体は直線運動をする駆動軸を設けたことを特徴とするアクチュェーター。The solenoid coil according to claim 1 and a non-magnetic cylindrical moving body are arranged on concentric circles of a cylindrical case made of a soft magnetic material, and a cylindrical inner end is provided with a bearing for supporting the cylindrical moving body. A ring-shaped permanent magnet of a rare earth radial anisotropic magnet unipolarly magnetized in the radial direction is fixed, a slight gap is provided between the ring-shaped permanent magnet and the solenoid coil, and the cylindrical moving body has a drive shaft that performs linear motion. An actuator characterized by having been provided. 軟磁性体からなる円筒状ケースの同心円上に請求項3記載のソレノイドコイルと非磁性の円柱形移動体を配置し、円筒状内両端には円柱形移動体を支持する軸受けを設け、円柱形移動体の中間にラジアル方向に単極着磁した希土類ラジアル異方性磁石のリング状永久磁石が固定され、リング状永久磁石とソレノイドコイル間は僅かな隙間を設け請求項2記載の引き出し線は表右引き出し線に+極性と表左引き出し線に−極性とし、裏面の右引き出し線に直流電圧の−極性と左引き出し線に+極性として通電時間を表裏面配線パターンを交互に通電せしめることにより円柱形移動体をS極、N極間を移動せしめ、直線の往復運動を連続して行なうことを備えたことを特徴とするアクチュェーター。The solenoid coil according to claim 3 and a non-magnetic cylindrical moving body are arranged on concentric circles of a cylindrical case made of a soft magnetic material, and bearings for supporting the cylindrical moving body are provided at both ends of the cylindrical shape. A ring-shaped permanent magnet of a rare earth radial anisotropic magnet unipolarly magnetized in the radial direction is fixed in the middle of the moving body, and a slight gap is provided between the ring-shaped permanent magnet and the solenoid coil. By applying a positive polarity to the front right lead line and a negative polarity to the front left lead line, a negative polarity of the DC voltage to the right lead line on the back side, and a positive polarity to the left lead line, the energizing time is alternately applied to the front and rear wiring patterns. An actuator, comprising: moving a cylindrical moving body between an S pole and an N pole; and performing continuous linear reciprocating motion.
JP2003016025A 2003-01-24 2003-01-24 Solenoid coil and actuator Pending JP2004228416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003016025A JP2004228416A (en) 2003-01-24 2003-01-24 Solenoid coil and actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003016025A JP2004228416A (en) 2003-01-24 2003-01-24 Solenoid coil and actuator

Publications (1)

Publication Number Publication Date
JP2004228416A true JP2004228416A (en) 2004-08-12

Family

ID=32903608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003016025A Pending JP2004228416A (en) 2003-01-24 2003-01-24 Solenoid coil and actuator

Country Status (1)

Country Link
JP (1) JP2004228416A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT202200007403A1 (en) * 2022-04-13 2023-10-13 Lmp Srl Coil for an electromagnetic actuator, method for manufacturing such a coil, and electromagnetic actuator comprising such a coil
WO2024009375A1 (en) * 2022-07-05 2024-01-11 三菱電機株式会社 Coil substrate for actuators, and actuator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT202200007403A1 (en) * 2022-04-13 2023-10-13 Lmp Srl Coil for an electromagnetic actuator, method for manufacturing such a coil, and electromagnetic actuator comprising such a coil
EP4261854A1 (en) * 2022-04-13 2023-10-18 LMP srl Coil for an electromagnetic actuator, method for manufacturing such a coil, and electromagnetic actuator comprising such a coil
WO2024009375A1 (en) * 2022-07-05 2024-01-11 三菱電機株式会社 Coil substrate for actuators, and actuator

Similar Documents

Publication Publication Date Title
CA2922566C (en) Printed-circuit board motor
US8110950B2 (en) Coreless linear motor having a non-magnetic reinforcing member
JP6062869B2 (en) Induction generator and manufacturing method thereof
JP2004088992A (en) Production of voice-coil type linear actuators, arrangement using the actuators, and the actuators
WO2006127500A3 (en) Multiple magnet moving coil reciprocating generator
JP2006074975A (en) Linear motor and linear movement stage arrangement
US7573170B2 (en) Motor modules for linear and rotary motors
JPH11299216A (en) Linear motor without slot and its manufacture
JP5265615B2 (en) Permanent magnet embedded rotor
JP2011239650A5 (en)
JP2010141978A (en) Thrust generation mechanism
KR20160098377A (en) Electromagnetic motor
JP2005065488A (en) Electric motor, lift having movable cage by the electric motor, and lift having electric motor for moving cage and guide element for the cage
JP2013126337A (en) Power generation device
CN115765376A (en) Linear motor and driving and controlling method thereof
CN117335633A (en) Method stress electromagnetic actuator with embedded compliant mechanism
JP2004228416A (en) Solenoid coil and actuator
JP5589507B2 (en) Mover and stator of linear drive unit
JP2013034385A (en) Thrust generation mechanism
JP4293602B2 (en) Electric machine
JP2008187824A (en) Linear actuator
JP2020191777A (en) Transducer and actuator and energy harvester using the same
JP2004208427A (en) Linear actuator
JPH0517863B2 (en)
JP5874246B2 (en) Linear drive mover