JP2004226260A - Membrane evaluation method and apparatus - Google Patents

Membrane evaluation method and apparatus Download PDF

Info

Publication number
JP2004226260A
JP2004226260A JP2003014944A JP2003014944A JP2004226260A JP 2004226260 A JP2004226260 A JP 2004226260A JP 2003014944 A JP2003014944 A JP 2003014944A JP 2003014944 A JP2003014944 A JP 2003014944A JP 2004226260 A JP2004226260 A JP 2004226260A
Authority
JP
Japan
Prior art keywords
film
raman
interface
scattered light
flat substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003014944A
Other languages
Japanese (ja)
Inventor
Takashi Nishimura
節志 西村
Atsuo Nakatani
敦夫 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2003014944A priority Critical patent/JP2004226260A/en
Publication of JP2004226260A publication Critical patent/JP2004226260A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for evaluating a membrane, based on Raman scattering light without being affected by irregularities even if the irregularities on the surface of the membrane are large. <P>SOLUTION: Excitation light e is emitted from an excitation light emission section 1, and is condensed near an interface B with a glass substrate P in a polycrystalline silicon thin film M formed on the glass substrate P through the glass substrate P. Then, the Raman scattering light near the interface B with the glass substrate P in the polycrystalline thin film M is passed through the glass substrate P, and is received by a scattering light reception evaluation section 3, thus obtaining at least one of Raman intensity, amount of Raman peak shift, Raman peak line width, and electron mobility, based on the Raman scattering light s. Since a focus f is set to the thin film M near the interface B that is a smooth surface as a eutectic point, the thin film M can be evaluated, based on the Raman scattering light s, without being affected by the irregularities at all even if the irregularities on the surface of the thin film M are large. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、膜評価方法および装置に関し、さらに詳しくは、膜表面が平滑面でない場合でもラマン散乱光を基に膜を好適に評価することが出来る膜評価方法および装置に関する。
【0002】
【従来の技術】
液晶表示器や有機EL(ElectroLuminescence)表示器などで用いられるTFT(Thin Film Transistor)は、ガラス基板上に非晶質のシリコン薄膜を成膜した後、レーザアニールにより結晶化させて、多結晶性シリコン薄膜を形成して製造されている。そして、この多結晶性シリコン薄膜の評価は、多結晶性シリコン薄膜に励起光を照射し、多結晶性シリコン薄膜からのラマン散乱光を受光し、そのラマン散乱光を基にして行っている(例えば、特許文献1,特許文献2参照。)。
他方、レーザアニールによる結晶化の際、結晶粒同士が互いにぶつかり盛り上がることで、多結晶性シリコン薄膜の表面が凹凸になることが指摘されている(例えば、特許文献3参照。)。
【0003】
【特許文献1】
特開2000−174286号公報([0039],図7)
【特許文献2】
特開2002−176009号公報([0026]〜[0030])
【特許文献3】
特開2002−353135号公報([0011],図3)
【0004】
【発明が解決しようとする課題】
従来の多結晶性シリコン薄膜の評価方法では、多結晶性シリコン薄膜表面の凹凸が小さい場合には問題がないが、多結晶性シリコン薄膜表面の凹凸が大きい場合には、その凹凸の影響による雑音成分に多結晶性シリコン薄膜による信号成分が埋もれてしまい、多結晶性シリコン薄膜を評価しにくくなる問題点があった。そこで、本発明の目的は、膜表面が平滑面でない場合でもラマン散乱光を基に膜を好適に評価することが出来る膜評価方法および装置を提供することにある。
【0005】
【課題を解決するための手段】
第1の観点では、本発明は、平面基板上に形成された膜の前記平面基板との界面付近に前記平面基板を通して励起光を集光し、前記膜の前記平面基板との界面付近でのラマン散乱光を前記平面基板を通して集光し、前記ラマン散乱光を基にして膜を評価することを特徴とする膜評価方法を提供する。
上記第1の観点による膜評価方法では、平滑面である平面基板と膜の界面付近の膜に焦点を合わせるため、膜表面の凹凸が大きい場合でも、その凹凸の影響を受けず、ラマン散乱光を基に膜を好適に評価することが出来る。
なお、平面基板を通して励起光を集光し、平面基板を通してラマン散乱光を集光するため、膜表面の凹凸の影響を全く受けない。また、レーザアニール装置と反対側に膜評価装置を配置でき、干渉を回避できる。
【0006】
第2の観点では、本発明は、平面基板上に形成された膜の前記平面基板との界面付近に前記膜を通して励起光を集光し、前記膜の前記平面基板との界面付近でのラマン散乱光を前記膜を通して集光し、前記ラマン散乱光を基にして膜を評価することを特徴とする膜評価方法を提供する。
上記第2の観点による膜評価方法では、平滑面である平面基板と膜の界面付近の膜に焦点を合わせるため、膜表面の凹凸が大きい場合でも、その凹凸の影響を受けず、ラマン散乱光を基に膜を好適に評価することが出来る。
なお、膜を通して励起光を集光し、膜を通してラマン散乱光を集光するため、平面基板が非透光性であってもよい。また、レーザアニール装置と膜評価装置とを同じ側に配置でき、占有空間をコンパクト化できる。
【0007】
第3の観点では、本発明は、平面基板上に形成された膜の前記平面基板との界面付近に前記平面基板を通して励起光を集光し、前記膜の前記平面基板との界面付近でのラマン散乱光を前記膜を通して集光し、前記ラマン散乱光を基にして膜を評価することを特徴とする膜評価方法を提供する。
上記第3の観点による膜評価方法では、平滑面である平面基板と膜の界面付近の膜に焦点を合わせるため、膜表面の凹凸が大きい場合でも、その凹凸の影響を受けず、ラマン散乱光を基に膜を好適に評価することが出来る。
なお、平面基板を通して励起光を集光し、膜を通してラマン散乱光を集光するため、励起光照射手段と散乱光受光手段とを反対側に配置でき、干渉を回避できる。
【0008】
第4の観点では、本発明は、平面基板上に形成された膜の前記平面基板との界面付近に前記膜を通して励起光を集光し、前記膜の前記平面基板との界面付近でのラマン散乱光を前記平面基板を通して集光し、前記ラマン散乱光を基にして膜を評価することを特徴とする膜評価方法を提供する。
上記第4の観点による膜評価方法では、平滑面である平面基板と膜の界面付近の膜に焦点を合わせるため、膜表面の凹凸が大きい場合でも、その凹凸の影響を受けず、ラマン散乱光を基に膜を好適に評価することが出来る。
なお、膜を通して励起光を集光し、平面基板を通してラマン散乱光を集光するため、励起光照射手段と散乱光受光手段とを反対側に配置でき、干渉を回避できる。
【0009】
第5の観点では、本発明は、平面基板上に形成された膜の前記平面基板との界面付近でのラマン散乱光を基にして膜を評価することを特徴とする膜評価方法を提供する。
上記第5の観点による膜評価方法では、平滑面である平面基板と膜の界面付近の膜でのラマン散乱光を受光するため、膜表面の凹凸が大きい場合でも、その凹凸の影響を受けず、ラマン散乱光を基に膜を好適に評価することが出来る。
【0010】
第6の観点では、本発明は、平面基板上に形成された膜の前記平面基板との界面付近に前記平面基板を通して励起光を集光する励起光照射手段と、前記膜の前記平面基板との界面付近でのラマン散乱光を前記平面基板を通して集光する散乱光受光手段と、前記ラマン散乱光を基にしてラマン強度,ラマンピークシフト量,ラマンピーク線幅,電子移動度の少なくとも一つを求める評価手段とを具備したことを特徴とする膜評価装置を提供する。
上記第6の観点による膜評価装置では、前記第1の観点による膜評価方法を好適に実施することが出来る。
【0011】
第7の観点では、本発明は、平面基板上に形成された膜の前記平面基板との界面付近に前記膜を通して励起光を集光する励起光照射手段と、前記膜の前記平面基板との界面付近でのラマン散乱光を前記膜を通して集光する散乱光受光手段と、前記ラマン散乱光を基にしてラマン強度,ラマンピークシフト量,ラマンピーク線幅,電子移動度の少なくとも一つを求める評価手段とを具備したことを特徴とする膜評価装置を提供する。
上記第7の観点による膜評価装置では、前記第2の観点による膜評価方法を好適に実施することが出来る。
【0012】
第8の観点では、本発明は、平面基板上に形成された膜の前記平面基板との界面付近に前記平面基板を通して励起光を集光する励起光照射手段と、前記膜の前記平面基板との界面付近でのラマン散乱光を前記膜を通して集光する散乱光受光手段と、前記ラマン散乱光を基にしてラマン強度,ラマンピークシフト量,ラマンピーク線幅,電子移動度の少なくとも一つを求める評価手段とを具備したことを特徴とする膜評価装置を提供する。
上記第8の観点による膜評価装置では、前記第3の観点による膜評価方法を好適に実施することが出来る。
【0013】
第9の観点では、本発明は、平面基板上に形成された膜の前記平面基板との界面付近に前記膜を通して励起光を集光する励起光照射手段と、前記膜の前記平面基板との界面付近でのラマン散乱光を前記平面基板を通して集光する散乱光受光手段と、前記ラマン散乱光を基にしてラマン強度,ラマンピークシフト量,ラマンピーク線幅,電子移動度の少なくとも一つを求める評価手段とを具備したことを特徴とする膜評価装置を提供する。
上記第9の観点による膜評価装置では、前記第4の観点による膜評価方法を好適に実施することが出来る。
【0014】
【発明の実施の形態】
以下、図に示す実施の形態により本発明をさらに詳細に説明する。なお、これにより本発明が限定されるものではない。
【0015】
−第1の実施形態−
図1は、第1の実施形態に係る膜評価装置100を示す構成図である。
この膜評価装置100は、励起光eを出射する励起光発光部1と、ガラス基板P上に形成された多結晶性シリコン薄膜Mのガラス基板Pとの界面B付近にガラス基板Pを通して励起光eを集光すると共に多結晶性シリコン薄膜Mのガラス基板Pとの界面B付近でのラマン散乱光sをガラス基板Pを通して集光する光学系2と、散乱光sを受光し該ラマン散乱光sを基にしてラマン強度,ラマンピークシフト量,ラマンピーク線幅,電子移動度の少なくとも一つを求める散乱光受光評価部3とを具備して構成されている。
【0016】
多結晶性シリコン薄膜Mの表面(アニール用レーザ光A側の面)は、結晶化の際、結晶粒同士が互いにぶつかり盛り上がることで、凹凸になっている。
しかし、第1の実施形態に係る膜評価装置100では、平滑面である界面B付近の多結晶性シリコン薄膜Mに焦点fを設定し共焦点とするため、多結晶性シリコン薄膜Mの表面の凹凸が大きい場合でも、その凹凸の影響を全く受けない。従って、ラマン散乱光sを基に多結晶性シリコン薄膜Mを好適に評価することが出来る。
【0017】
−第2の実施形態−
図2は、第2の実施形態に係る膜評価装置200を示す構成図である。
この膜評価装置200は、励起光eを出射する励起光発光部1と、ガラス基板P上に形成された多結晶性シリコン薄膜Mのガラス基板Pとの界面B付近に多結晶性シリコン薄膜Mを通して励起光eを集光すると共に多結晶性シリコン薄膜Mのガラス基板Pとの界面B付近でのラマン散乱光sを多結晶性シリコン薄膜Mを通して集光する光学系2と、散乱光sを受光し該ラマン散乱光sを基にしてラマン強度,ラマンピークシフト量,ラマンピーク線幅,電子移動度の少なくとも一つを求める散乱光受光評価部3とを具備して構成されている。
【0018】
多結晶性シリコン薄膜Mの表面(アニール用レーザ光A側の面)は、結晶化の際、結晶粒同士が互いにぶつかり盛り上がることで、凹凸になっている。
しかし、第2の実施形態に係る膜評価装置200では、平滑面である界面B付近の多結晶性シリコン薄膜Mに焦点fを設定し共焦点とするため、多結晶性シリコン薄膜Mの表面の凹凸が大きい場合でも、その凹凸の影響を受けない。従って、ラマン散乱光sを基に多結晶性シリコン薄膜Mを好適に評価することが出来る。
【0019】
−第3の実施形態−
図3は、第3の実施形態に係る膜評価装置300を示す構成図である。
この膜評価装置300は、励起光eを出射する励起光発光部1と、ガラス基板P上に形成された多結晶性シリコン薄膜Mのガラス基板Pとの界面B付近にガラス基板Pを通して励起光eを集光する照射側光学系2eと、多結晶性シリコン薄膜Mのガラス基板Pとの界面B付近でのラマン散乱光sを多結晶性シリコン薄膜Mを通して集光する受光側光学系2sと、散乱光sを受光し該ラマン散乱光sを基にしてラマン強度,ラマンピークシフト量,ラマンピーク線幅,電子移動度の少なくとも一つを求める散乱光受光評価部3とを具備して構成されている。
【0020】
多結晶性シリコン薄膜Mの表面(アニール用レーザ光A側の面)は、結晶化の際、結晶粒同士が互いにぶつかり盛り上がることで、凹凸になっている。
しかし、第3の実施形態に係る膜評価装置300では、平滑面である界面B付近の多結晶性シリコン薄膜Mに焦点fを設定し共焦点とするため、多結晶性シリコン薄膜Mの表面の凹凸が大きい場合でも、その凹凸の影響を受けない。従って、ラマン散乱光sを基に多結晶性シリコン薄膜Mを好適に評価することが出来る。
【0021】
−第4の実施形態−
図4は、第4の実施形態に係る膜評価装置400を示す構成図である。
この膜評価装置400は、励起光eを出射する励起光発光部1と、ガラス基板P上に形成された多結晶性シリコン薄膜Mのガラス基板Pとの界面B付近に多結晶性シリコン薄膜Mを通して励起光eを集光する照射側光学系2eと、多結晶性シリコン薄膜Mのガラス基板Pとの界面B付近でのラマン散乱光sをガラス基板Pを通して集光する受光側光学系2sと、散乱光sを受光し該ラマン散乱光sを基にしてラマン強度,ラマンピークシフト量,ラマンピーク線幅,電子移動度の少なくとも一つを求める散乱光受光評価部3とを具備して構成されている。
【0022】
多結晶性シリコン薄膜Mの表面(アニール用レーザ光A側の面)は、結晶化の際、結晶粒同士が互いにぶつかり盛り上がることで、凹凸になっている。
しかし、第4の実施形態に係る膜評価装置400では、平滑面である界面B付近の多結晶性シリコン薄膜Mに焦点fを設定し共焦点とするため、多結晶性シリコン薄膜Mの表面の凹凸が大きい場合でも、その凹凸の影響を受けない。従って、ラマン散乱光sを基に多結晶性シリコン薄膜Mを好適に評価することが出来る。
【0023】
−他の実施形態−
(1)本発明は、多結晶性シリコン薄膜M以外の膜(例えば、ガリウム−ヒ素薄膜や有機材料膜)の評価にも適用できる。
(2)本発明は、ガラス基板P以外の基板(例えば、プラスチック基板)上に形成した膜の評価にも適用できる。また、第2の実施形態は、非透光性の基板(例えば、金属基板)上に形成した膜の評価にも適用できる。
(3)本発明は、基板上に形成した膜(例えば、シリカ膜,燐酸シリケートガラス膜)上に形成した膜の評価にも適用できる。但し、評価対象膜の直下の膜(基板側に隣接する膜)との界面を平滑面とみなしうる必要がある。
【0024】
【発明の効果】
本発明の膜評価方法および装置によれば、平滑面である平面基板と膜の界面付近の膜でのラマン散乱光を受光するため、膜表面の凹凸が大きい場合でも、その凹凸の影響を受けず、ラマン散乱光を基に膜を好適に評価することが出来る。
【図面の簡単な説明】
【図1】第1の実施形態に係る膜評価装置を示す構成図である。
【図2】第2の実施形態に係る膜評価装置を示す構成図である。
【図3】第3の実施形態に係る膜評価装置を示す構成図である。
【図4】第4の実施形態に係る膜評価装置を示す構成図である。
【符号の説明】
1 励起光発光部
2 光学系
2e 照射光学系
2s 受光光学系
3 散乱光受光評価部
100,200,300,400 膜評価装置
B 界面
M 多結晶性シリコン薄膜
P ガラス基板
e 励起光
s ラマン散乱光
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a film evaluation method and apparatus, and more particularly, to a film evaluation method and apparatus capable of suitably evaluating a film based on Raman scattered light even when the film surface is not smooth.
[0002]
[Prior art]
2. Description of the Related Art A thin film transistor (TFT) used in a liquid crystal display or an organic EL (Electro Luminescence) display is formed by forming an amorphous silicon thin film on a glass substrate and then crystallizing the film by laser annealing to obtain polycrystalline properties. It is manufactured by forming a silicon thin film. The evaluation of the polycrystalline silicon thin film is performed by irradiating the polycrystalline silicon thin film with excitation light, receiving Raman scattered light from the polycrystalline silicon thin film, and based on the Raman scattered light ( For example, see Patent Documents 1 and 2.
On the other hand, it has been pointed out that during crystallization by laser annealing, crystal grains bump against each other and bulge up, so that the surface of the polycrystalline silicon thin film becomes uneven (for example, see Patent Document 3).
[0003]
[Patent Document 1]
JP-A-2000-174286 ([0039], FIG. 7)
[Patent Document 2]
JP-A-2002-17609 ([0026] to [0030])
[Patent Document 3]
JP-A-2002-353135 ([0011], FIG. 3)
[0004]
[Problems to be solved by the invention]
In the conventional method for evaluating a polycrystalline silicon thin film, there is no problem when the surface of the polycrystalline silicon thin film has small irregularities, but when the surface of the polycrystalline silicon thin film has large irregularities, noise due to the influence of the irregularities is small. There is a problem that the signal component due to the polycrystalline silicon thin film is buried in the component, making it difficult to evaluate the polycrystalline silicon thin film. Therefore, an object of the present invention is to provide a film evaluation method and apparatus capable of suitably evaluating a film based on Raman scattered light even when the film surface is not a smooth surface.
[0005]
[Means for Solving the Problems]
In a first aspect, the present invention provides a method of condensing excitation light through the plane substrate near an interface of the film formed on the plane substrate with the plane substrate, and forming a film near the interface of the film with the plane substrate. A film evaluation method is provided, wherein Raman scattered light is collected through the flat substrate, and the film is evaluated based on the Raman scattered light.
In the film evaluation method according to the first aspect, since the film near the interface between the flat substrate and the film, which is a smooth surface, is focused, even if the film surface has large irregularities, it is not affected by the irregularities, and the Raman scattering light is not affected. The film can be suitably evaluated based on the above.
Since the excitation light is condensed through the plane substrate and the Raman scattered light is condensed through the plane substrate, there is no influence from the unevenness of the film surface. Further, a film evaluation device can be arranged on the side opposite to the laser annealing device, and interference can be avoided.
[0006]
In a second aspect, the present invention provides a method for concentrating excitation light through a film near an interface of a film formed on a flat substrate with the flat substrate, and Raman near the interface of the film with the flat substrate. A film evaluation method is provided, wherein scattered light is collected through the film, and the film is evaluated based on the Raman scattered light.
In the film evaluation method according to the second aspect, since the film near the interface between the flat substrate and the film, which is a smooth surface, is focused, even if the film surface has large irregularities, it is not affected by the irregularities, and the Raman scattering light is not affected. The film can be suitably evaluated based on the above.
Note that the planar substrate may be non-translucent to collect the excitation light through the film and the Raman scattered light through the film. In addition, the laser annealing device and the film evaluation device can be arranged on the same side, and the occupied space can be reduced.
[0007]
In a third aspect, the present invention provides a method for concentrating excitation light through the plane substrate near the interface of the film formed on the plane substrate with the plane substrate, and forming the film near the interface of the film with the plane substrate. A film evaluation method is provided, wherein Raman scattered light is collected through the film, and the film is evaluated based on the Raman scattered light.
In the film evaluation method according to the third aspect, since the film near the interface between the flat substrate and the film, which is a smooth surface, is focused, the Raman scattering light is not affected even if the film surface has large irregularities. The film can be suitably evaluated based on the above.
Since the excitation light is condensed through the flat substrate and the Raman scattered light is condensed through the film, the excitation light irradiating means and the scattered light receiving means can be arranged on opposite sides, and interference can be avoided.
[0008]
In a fourth aspect, the present invention provides a method for concentrating excitation light through the film near the interface of the film formed on the flat substrate with the flat substrate, and further increasing Raman near the interface of the film with the flat substrate. A film evaluation method is provided, wherein scattered light is collected through the planar substrate, and the film is evaluated based on the Raman scattered light.
In the film evaluation method according to the fourth aspect, since the film near the interface between the flat substrate and the film, which is a smooth surface, is focused, the Raman scattered light is not affected even if the film surface has large irregularities. The film can be suitably evaluated based on the above.
Since the excitation light is condensed through the film and the Raman scattered light is condensed through the flat substrate, the excitation light irradiating means and the scattered light receiving means can be arranged on opposite sides, and interference can be avoided.
[0009]
In a fifth aspect, the present invention provides a film evaluation method, comprising evaluating a film formed on a flat substrate based on Raman scattered light near an interface with the flat substrate. .
In the film evaluation method according to the fifth aspect, since Raman scattered light is received by the film near the interface between the flat substrate and the film, which is a smooth surface, even if the film surface has large irregularities, it is not affected by the irregularities. The film can be suitably evaluated based on the Raman scattered light.
[0010]
In a sixth aspect, the present invention provides an excitation light irradiation unit that collects excitation light through the plane substrate near an interface of the film formed on the plane substrate with the plane substrate; A scattered light receiving means for condensing Raman scattered light near the interface through the flat substrate; and at least one of Raman intensity, Raman peak shift amount, Raman peak line width, and electron mobility based on the Raman scattered light. And an evaluation means for obtaining the following.
In the film evaluation apparatus according to the sixth aspect, the film evaluation method according to the first aspect can be suitably implemented.
[0011]
In a seventh aspect, the present invention relates to a method of forming a film formed on a planar substrate, comprising: exciting light irradiating means for condensing excitation light through the film near an interface with the planar substrate; A scattered light receiving means for condensing Raman scattered light near the interface through the film; and obtaining at least one of Raman intensity, Raman peak shift amount, Raman peak line width, and electron mobility based on the Raman scattered light. The present invention provides a film evaluation apparatus comprising an evaluation unit.
In the film evaluation apparatus according to the seventh aspect, the film evaluation method according to the second aspect can be suitably implemented.
[0012]
In an eighth aspect, the present invention provides an excitation light irradiating means for condensing excitation light through the plane substrate near an interface of the film formed on the plane substrate with the plane substrate; A scattered light receiving means for condensing Raman scattered light in the vicinity of the interface through the film; and at least one of Raman intensity, Raman peak shift amount, Raman peak line width, and electron mobility based on the Raman scattered light. A film evaluation apparatus characterized by comprising an evaluation means required.
In the film evaluation apparatus according to the eighth aspect, the film evaluation method according to the third aspect can be suitably performed.
[0013]
In a ninth aspect, the present invention relates to a method of forming a film formed on a flat substrate, comprising: an excitation light irradiating unit configured to collect excitation light through the film near an interface between the film and the flat substrate; A scattered light receiving means for condensing Raman scattered light near the interface through the flat substrate; and at least one of Raman intensity, Raman peak shift amount, Raman peak line width, and electron mobility based on the Raman scattered light. A film evaluation apparatus characterized by comprising an evaluation means required.
In the film evaluation apparatus according to the ninth aspect, the film evaluation method according to the fourth aspect can be suitably performed.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in more detail with reference to the embodiments shown in the drawings. Note that the present invention is not limited by this.
[0015]
-1st Embodiment-
FIG. 1 is a configuration diagram illustrating a film evaluation apparatus 100 according to the first embodiment.
The film evaluation apparatus 100 includes an excitation light emitting unit 1 that emits excitation light e and an excitation light passing through the glass substrate P near an interface B between the glass substrate P and the polycrystalline silicon thin film M formed on the glass substrate P. e, an optical system 2 for condensing Raman scattered light s near the interface B of the polycrystalline silicon thin film M with the glass substrate P through the glass substrate P, and receiving the scattered light s to receive the Raman scattered light. and a scattered light reception evaluation unit 3 for obtaining at least one of Raman intensity, Raman peak shift amount, Raman peak line width, and electron mobility based on s.
[0016]
The surface of the polycrystalline silicon thin film M (the surface on the side of the laser beam A for annealing) has irregularities due to the fact that crystal grains collide with each other and bulge during crystallization.
However, in the film evaluation apparatus 100 according to the first embodiment, since the focal point f is set to the polycrystalline silicon thin film M near the interface B which is a smooth surface and the focal point is set to be confocal, the surface of the polycrystalline silicon thin film M Even if the irregularities are large, they are not affected by the irregularities at all. Therefore, the polycrystalline silicon thin film M can be suitably evaluated based on the Raman scattered light s.
[0017]
-2nd Embodiment-
FIG. 2 is a configuration diagram illustrating a film evaluation apparatus 200 according to the second embodiment.
The film evaluation apparatus 200 includes a polycrystalline silicon thin film M near the interface B between the excitation light emitting unit 1 that emits the excitation light e and the glass substrate P of the polycrystalline silicon thin film M formed on the glass substrate P. An optical system 2 for condensing the excitation light e through the interface and condensing Raman scattered light s near the interface B of the polycrystalline silicon thin film M with the glass substrate P through the polycrystalline silicon thin film M; And a scattered light reception evaluation unit 3 for obtaining at least one of Raman intensity, Raman peak shift amount, Raman peak line width, and electron mobility based on the received Raman scattered light s.
[0018]
The surface of the polycrystalline silicon thin film M (the surface on the side of the laser beam A for annealing) has irregularities due to the fact that crystal grains collide with each other and bulge during crystallization.
However, in the film evaluation apparatus 200 according to the second embodiment, since the focal point f is set to the polycrystalline silicon thin film M near the interface B, which is a smooth surface, and the confocal point is set, the surface of the polycrystalline silicon thin film M Even if the unevenness is large, it is not affected by the unevenness. Therefore, the polycrystalline silicon thin film M can be suitably evaluated based on the Raman scattered light s.
[0019]
-Third embodiment-
FIG. 3 is a configuration diagram illustrating a film evaluation device 300 according to the third embodiment.
The film evaluation apparatus 300 is configured to emit the excitation light through the glass substrate P near the interface B between the excitation light emitting unit 1 that emits the excitation light e and the glass substrate P of the polycrystalline silicon thin film M formed on the glass substrate P. a light-receiving side optical system 2e for condensing the Raman scattered light s near the interface B between the polycrystalline silicon thin film M and the glass substrate P through the polycrystalline silicon thin film M; A scattered light receiving evaluation unit 3 for receiving scattered light s and obtaining at least one of Raman intensity, Raman peak shift amount, Raman peak line width, and electron mobility based on the Raman scattered light s. Have been.
[0020]
The surface of the polycrystalline silicon thin film M (the surface on the side of the laser beam A for annealing) has irregularities due to the fact that crystal grains collide with each other and bulge during crystallization.
However, in the film evaluation apparatus 300 according to the third embodiment, the focal point f is set to the polycrystalline silicon thin film M near the interface B, which is a smooth surface, so that the focal point f is confocal. Even if the unevenness is large, it is not affected by the unevenness. Therefore, the polycrystalline silicon thin film M can be suitably evaluated based on the Raman scattered light s.
[0021]
-Fourth embodiment-
FIG. 4 is a configuration diagram illustrating a film evaluation device 400 according to the fourth embodiment.
The film evaluation apparatus 400 includes a polycrystalline silicon thin film M near an interface B between the excitation light emitting unit 1 for emitting the excitation light e and the glass substrate P of the polycrystalline silicon thin film M formed on the glass substrate P. An irradiation-side optical system 2e for condensing the excitation light e through the light-receiving side optical system 2s for condensing Raman scattered light s near the interface B between the polycrystalline silicon thin film M and the glass substrate P through the glass substrate P. A scattered light receiving evaluation unit 3 for receiving scattered light s and obtaining at least one of Raman intensity, Raman peak shift amount, Raman peak line width, and electron mobility based on the Raman scattered light s. Have been.
[0022]
The surface of the polycrystalline silicon thin film M (the surface on the side of the laser beam A for annealing) has irregularities due to the fact that crystal grains collide with each other and bulge during crystallization.
However, in the film evaluation apparatus 400 according to the fourth embodiment, since the focal point f is set to the polycrystalline silicon thin film M near the interface B which is a smooth surface and the focal point is set to be confocal, the surface of the polycrystalline silicon thin film M Even if the unevenness is large, it is not affected by the unevenness. Therefore, the polycrystalline silicon thin film M can be suitably evaluated based on the Raman scattered light s.
[0023]
-Other embodiments-
(1) The present invention can be applied to evaluation of a film other than the polycrystalline silicon thin film M (for example, a gallium-arsenic thin film or an organic material film).
(2) The present invention can be applied to evaluation of a film formed on a substrate other than the glass substrate P (for example, a plastic substrate). The second embodiment can also be applied to evaluation of a film formed on a non-translucent substrate (for example, a metal substrate).
(3) The present invention can be applied to evaluation of a film formed on a film (for example, a silica film, a phosphate silicate glass film) formed on a substrate. However, it is necessary that the interface with the film immediately below the film to be evaluated (the film adjacent to the substrate side) can be regarded as a smooth surface.
[0024]
【The invention's effect】
According to the film evaluation method and apparatus of the present invention, Raman scattered light in the film near the interface between the flat substrate and the film, which is a smooth surface, is received. Instead, the film can be suitably evaluated based on the Raman scattered light.
[Brief description of the drawings]
FIG. 1 is a configuration diagram illustrating a film evaluation apparatus according to a first embodiment.
FIG. 2 is a configuration diagram illustrating a film evaluation apparatus according to a second embodiment.
FIG. 3 is a configuration diagram illustrating a film evaluation apparatus according to a third embodiment.
FIG. 4 is a configuration diagram illustrating a film evaluation apparatus according to a fourth embodiment.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 excitation light emitting section 2 optical system 2 e irradiation optical system 2 s light receiving optical system 3 scattered light reception evaluation section 100, 200, 300, 400 film evaluation apparatus B interface M polycrystalline silicon thin film P glass substrate e excitation light s Raman scattering light

Claims (9)

平面基板上に形成された膜の前記平面基板との界面付近に前記平面基板を通して励起光を集光し、前記膜の前記平面基板との界面付近でのラマン散乱光を前記平面基板を通して集光し、前記ラマン散乱光を基にして膜を評価することを特徴とする膜評価方法。Excitation light is condensed through the flat substrate near the interface of the film formed on the flat substrate with the flat substrate, and Raman scattered light near the interface of the film with the flat substrate is collected through the flat substrate. And evaluating the film based on the Raman scattered light. 平面基板上に形成された膜の前記平面基板との界面付近に前記膜を通して励起光を集光し、前記膜の前記平面基板との界面付近でのラマン散乱光を前記膜を通して集光し、前記ラマン散乱光を基にして膜を評価することを特徴とする膜評価方法。Focusing the excitation light through the film near the interface of the film formed on the flat substrate and the flat substrate, condensing Raman scattered light near the interface of the film with the flat substrate through the film, A film evaluation method, wherein the film is evaluated based on the Raman scattered light. 平面基板上に形成された膜の前記平面基板との界面付近に前記平面基板を通して励起光を集光し、前記膜の前記平面基板との界面付近でのラマン散乱光を前記膜を通して集光し、前記ラマン散乱光を基にして膜を評価することを特徴とする膜評価方法。Excitation light is condensed through the flat substrate near the interface of the film formed on the flat substrate with the flat substrate, and Raman scattered light near the interface of the film with the flat substrate is collected through the film. And evaluating the film based on the Raman scattered light. 平面基板上に形成された膜の前記平面基板との界面付近に前記膜を通して励起光を集光し、前記膜の前記平面基板との界面付近でのラマン散乱光を前記平面基板を通して集光し、前記ラマン散乱光を基にして膜を評価することを特徴とする膜評価方法。The excitation light is condensed through the film near the interface of the film formed on the flat substrate with the flat substrate, and the Raman scattered light near the interface of the film with the flat substrate is collected through the flat substrate. And evaluating the film based on the Raman scattered light. 平面基板上に形成された膜の前記平面基板との界面付近でのラマン散乱光を基にして膜を評価することを特徴とする膜評価方法。A film evaluation method, comprising: evaluating a film based on Raman scattered light near an interface of the film formed on the flat substrate with the flat substrate. 平面基板上に形成された膜の前記平面基板との界面付近に前記平面基板を通して励起光を集光する励起光照射手段と、前記膜の前記平面基板との界面付近でのラマン散乱光を前記平面基板を通して集光する散乱光受光手段と、前記ラマン散乱光を基にしてラマン強度,ラマンピークシフト量,ラマンピーク線幅,電子移動度の少なくとも一つを求める評価手段とを具備したことを特徴とする膜評価装置。Excitation light irradiating means for condensing excitation light through the planar substrate near the interface of the film formed on the planar substrate with the planar substrate, and Raman scattering light near the interface of the film with the planar substrate. Scattered light receiving means for condensing light through a plane substrate, and evaluation means for obtaining at least one of Raman intensity, Raman peak shift amount, Raman peak line width, and electron mobility based on the Raman scattered light. Characteristic film evaluation device. 平面基板上に形成された膜の前記平面基板との界面付近に前記膜を通して励起光を集光する励起光照射手段と、前記膜の前記平面基板との界面付近でのラマン散乱光を前記膜を通して集光する散乱光受光手段と、前記ラマン散乱光を基にしてラマン強度,ラマンピークシフト量,ラマンピーク線幅,電子移動度の少なくとも一つを求める評価手段とを具備したことを特徴とする膜評価装置。Excitation light irradiating means for condensing excitation light through the film near the interface of the film formed on the flat substrate with the flat substrate; and Raman scattering light near the interface of the film with the flat substrate near the film. Scattered light receiving means for converging light through the laser, and evaluation means for obtaining at least one of Raman intensity, Raman peak shift amount, Raman peak line width, and electron mobility based on the Raman scattered light. Film evaluation device. 平面基板上に形成された膜の前記平面基板との界面付近に前記平面基板を通して励起光を集光する励起光照射手段と、前記膜の前記平面基板との界面付近でのラマン散乱光を前記膜を通して集光する散乱光受光手段と、前記ラマン散乱光を基にしてラマン強度,ラマンピークシフト量,ラマンピーク線幅,電子移動度の少なくとも一つを求める評価手段とを具備したことを特徴とする膜評価装置。Excitation light irradiating means for condensing excitation light through the planar substrate near the interface of the film formed on the planar substrate with the planar substrate, and Raman scattering light near the interface of the film with the planar substrate. A scattered light receiving means for converging light through the film; and an evaluation means for obtaining at least one of Raman intensity, Raman peak shift amount, Raman peak line width, and electron mobility based on the Raman scattered light. Film evaluation device. 平面基板上に形成された膜の前記平面基板との界面付近に前記膜を通して励起光を集光する励起光照射手段と、前記膜の前記平面基板との界面付近でのラマン散乱光を前記平面基板を通して集光する散乱光受光手段と、前記ラマン散乱光を基にしてラマン強度,ラマンピークシフト量,ラマンピーク線幅,電子移動度の少なくとも一つを求める評価手段とを具備したことを特徴とする膜評価装置。Excitation light irradiating means for condensing excitation light through the film near the interface of the film formed on the flat substrate with the flat substrate, and Raman scattering light near the interface of the film with the flat substrate near the flat substrate. A scattered light receiving means for condensing light through the substrate; and an evaluation means for obtaining at least one of Raman intensity, Raman peak shift amount, Raman peak line width, and electron mobility based on the Raman scattered light. Film evaluation device.
JP2003014944A 2003-01-23 2003-01-23 Membrane evaluation method and apparatus Withdrawn JP2004226260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003014944A JP2004226260A (en) 2003-01-23 2003-01-23 Membrane evaluation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003014944A JP2004226260A (en) 2003-01-23 2003-01-23 Membrane evaluation method and apparatus

Publications (1)

Publication Number Publication Date
JP2004226260A true JP2004226260A (en) 2004-08-12

Family

ID=32902834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003014944A Withdrawn JP2004226260A (en) 2003-01-23 2003-01-23 Membrane evaluation method and apparatus

Country Status (1)

Country Link
JP (1) JP2004226260A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103323444A (en) * 2013-05-27 2013-09-25 江苏大学 Method for discriminating disorder degree of polysilicon film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103323444A (en) * 2013-05-27 2013-09-25 江苏大学 Method for discriminating disorder degree of polysilicon film

Similar Documents

Publication Publication Date Title
JP2014501915A5 (en)
TWI357994B (en) Method and apparatus for repairing a liquid crysta
JP4741855B2 (en) Biopolymer analysis chip, analysis support apparatus, and biopolymer analysis method
KR102068741B1 (en) Method for inspecting polycrystal silicon layer
TW200501235A (en) Method of manufacturing an active matrix substrate and an image display device using the same
JP6378974B2 (en) Laser annealing apparatus and laser annealing method
CN104956466B (en) Ultra-short Fiber Laser for low temperature polycrystalline silicon crystallization
TW201110221A (en) Wafer processing method
JP2012220811A (en) Method for adjusting light source device, light source device, and projector
JP2008191123A (en) Crystallinity measuring instrument for thin film semiconductor, and method therefor
JP2009065146A (en) Method of forming semiconductor thin film, and inspection device for the semiconductor thin film
TWI472868B (en) Laser mask and sequential lateral solidification crystallization method using the same
JP2012221820A (en) Method of adjusting light source device, light source device, and projector
CN1537323A (en) Crystallization apparatus, crystallization method and phase shift mask
JP2010004012A (en) Method of forming semiconductor thin film and semiconductor thin film inspection apparatus
JP2017056469A (en) Laser processing method and laser processing device
JP2006278525A (en) Laser processing apparatus
JP2008122297A (en) Device and method for detecting fluorescence
JP2004226260A (en) Membrane evaluation method and apparatus
EP1403984A3 (en) Laser light source device and surface inspection apparatus employing the same
Wu et al. Single-photon emission in the near infrared from diamond colour centre
JP2006185933A (en) Laser annealing method and annealer
JP4880548B2 (en) Apparatus and method for evaluating crystallinity of silicon semiconductor thin film
JP2013118277A (en) Method for processing substrate with led pattern
ATE343145T1 (en) DEVICE FOR DETECTING INFORMATION CONTAINED IN A PHOSPHORUS LAYER

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050303

Free format text: JAPANESE INTERMEDIATE CODE: A621

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060404