JP2004226198A - Method and apparatus for measuring surface area, and plating method - Google Patents

Method and apparatus for measuring surface area, and plating method Download PDF

Info

Publication number
JP2004226198A
JP2004226198A JP2003013478A JP2003013478A JP2004226198A JP 2004226198 A JP2004226198 A JP 2004226198A JP 2003013478 A JP2003013478 A JP 2003013478A JP 2003013478 A JP2003013478 A JP 2003013478A JP 2004226198 A JP2004226198 A JP 2004226198A
Authority
JP
Japan
Prior art keywords
measured
surface area
electrode
electrodes
electrolyte solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003013478A
Other languages
Japanese (ja)
Other versions
JP3901641B2 (en
Inventor
Nobuhiko Onuki
信彦 大貫
Nobuyuki Tezuka
信幸 手塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECS KK
Original Assignee
TECS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECS KK filed Critical TECS KK
Priority to JP2003013478A priority Critical patent/JP3901641B2/en
Publication of JP2004226198A publication Critical patent/JP2004226198A/en
Application granted granted Critical
Publication of JP3901641B2 publication Critical patent/JP3901641B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of processing an object to be treated as a measuring object which is subjected to a surface treatment that uses electrochemical reactions mainly and measuring the surface area of the object to be measured precisely, and to provide a method of forming an even plated layer on the surface of the object to be treated when subjecting the object to be treated to a plating process by using the electrochemical reactions. <P>SOLUTION: The method of measuring the surface area, in which the object to be measured and electrodes are immersed in an electrolytic solution and impressed with voltage in the electrolytic solution, and the surface area of the object to be measured is measured based on energized states during the period, is characterised in that the electrodes are arranged at two or more positions around the object to be measured, and furthermore, the energization is carried out in such a condition that the flow of the electrolytic solution is suppressed between the electrodes and the object to be measured. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、主として電気化学反応を利用した表面処理の前工程において被測定物の表面積を測定する方法およびその装置、並びに電気化学反応を利用した被処理物のメッキ方法に関する。
【0002】
【従来の技術】
メッキ、アルマイト、電解研磨など電気化学反応を利用した表面処理は、被処理物の表面における電流密度(A/dm)を制御しながら行う必要があるが、直接これを測定することはできないため、該電流密度(A/dm)に被処理物の表面積(dm)を掛けた総電流(A)を測定することによって行っている。従って、このような表面処理において被処理物の表面積を正確に把握することは、表面処理の精度および品質を向上させる上で極めて重要な課題である。
【0003】
従来、被処理物(表面積測定においては、被測定物ともいう)の表面積を測定する方法としては、センサーやCCDカメラを用いて立体形状を計測してコンピューターで解析する方法や、或いはCAD図面のデータを利用してコンピューターで解析する方法などが提案されている。
しかしながら、斯かる方法ではセンサーやCCDカメラ、コンピューターといった高価な機器が多数必要となる上、さらに高度な測定技術や数学的知識などが要求されるため、メッキ処理等を行う作業現場には必ずしも適していない。
また、近年の多品種少量生産の要請によって同一形状の被処理物の処理数量が減る傾向にあるため、一個の被処理物について手間のかかる該測定方法では採算性が悪化することとなる。
【0004】
こうした事情から、形状の複雑な被処理物を処理する際には作業員が大雑把に表面積を推定し、メッキ処理の際に発生する気泡を目視により判断することによって電流の調整を行うことも多い。しかし、斯かる方法には高度な熟練を要する上、製品のメッキ層は極めてバラツキの大きなものとなる。
【0005】
このような問題を解決すべく、特許文献1に開示されているように、電解溶液中に浸漬した被処理物の表面積を電気化学的に測定する方法が提案されている。即ち、該方法は、面積が既知で互いに異なる面積を有する複数個の金属試験片を電解質溶液に浸漬し、所定の電解条件において一定の電圧を与え、その際の電流を測定することによって電流値と試験片面積との関係式を求めた後、面積未知の被測定物に対して同じ電解条件で同一の電圧を与えた際の電流値を前記関係式へあてはめることによって被測定物の面積を求めるものである。
【0006】
【特許文献1】
特開昭56−160608号公報
【0007】
【発明が解決しようとする課題】
しかしながら、該特許文献1のような圧延平銅版を被測定物とした場合には比較的正確な測定結果が得られやすいが、複雑な立体形状の被測定物については必ずしも正確な測定結果を得ることが出来ない。これは、被測定物と電極との距離が異なれば電解質溶液の抵抗値も異なることとなるため、表面の電流密度が一定とならないからである。
【0008】
尚、本発明者は、電極と被測定物との距離による影響を相殺すべく、図11(a)に示すような被測定物52の両側に電極51を配置する方法や、図11(b)に示すような被測定物52の周囲全体を電極51で囲むような方法についても検討した。しかしながら、いずれの場合にも被測定物の位置が中央からずれるに従って抵抗値が非直線的に大きく上昇することが確認された。
従って、複雑な立体形状の被処理物の場合には、被測定物の各部位と電極との距離が一定でないために表面積を正確に測定することはできない。即ち、斯かる装置を使用した場合であっても、基準として使用される試験平板と同程度の厚みの薄板、若しくは電極との距離に影響を与えないような厚みの薄板のみしか正確に測定することができないという問題がある。
【0009】
また、このような問題は、被測定物の表面において電流密度が均一にならないことが要因であるため、電気分解反応を利用したメッキ方法においても同様の現象が生じ、被処理物の表面に均一なメッキ層が形成されないという問題がある。
【0010】
そこで本発明は、このよう問題に鑑み、主として電気化学反応を利用した表面処理を行う被処理物を測定対象とし、その被測定物の表面積を正確に測定することを一の課題とする。
また、電気化学反応を利用して被処理物のメッキを行うに際し、被処理物の表面に均一なメッキ層を形成することを他の課題とする。
【0011】
【課題を解決するための手段】
本発明は、上記課題を解決すべくなされたものであり、電解質溶液に被測定物および電極を浸漬し、該電解質溶液中で被測定物と電極とに電圧を印加し、その際の通電状態から被測定物の表面積を測定する表面積測定方法において、被測定物の周囲2箇所以上に前記電極を配置し、さらに該電極と被測定物との間で電解質溶液の流通を抑制した状態で通電することを特徴とする表面積測定方法を提供する。
【0012】
好ましくは、前記電極を電解質溶液の液深方向に2つ以上配置するものとし、また、好ましくは、液深方向に配置された電極の電圧を別々に調整する。
さらに、好ましくは被測定物の下方に補助電極を配置し、前記電極と該補助電極の電圧を別々に調整する。
【0013】
また、好ましくは、被測定物の浸漬される領域内に於ける電流分布が±5%の範囲内となるように前記電解質溶液の流通を抑制する。尚、本発明における電流分布とは、被測定物が浸漬される領域内に平板電極を設置し、該平板電極と周囲に配置された電極との間に一定電圧を印加した際に流れる電流値であって、該領域内におけるバラツキを測定したものいう。また、±5%の範囲内とは、測定された電流値の最大値と最小値との差を、平板電極を水槽の中心に設置した場合に測定される電流値で除した場合のパーセントをいうものとする。
【0014】
また、本発明は、電解質溶液に浸漬された被測定物と電極とに電圧を印加することにより、その際の通電状態から被測定物の表面積を測定するために用いる表面積測定装置であって、電解質溶液を収容するための水槽と、該水槽内の周囲2箇所以上に配置された電極と、該電極と被測定物との間で電解質溶液の流通を抑制する流通抑制手段とが備えられていることを特徴とする表面積測定装置を提供する。
【0015】
好ましくは、前記電極は、水槽の液深方向に2つ以上配置され、それらは別々に電圧を調整し得るように構成されたものとする。また、好ましくは、水槽の底面に補助電極が備えられ、前記電極と該補助電極とは別々に電圧を調整し得るように構成されたものとする。
【0016】
また、好ましくは、被測定物の浸漬される領域内に於ける電流分布が±5%の範囲内となるように前記流通抑制手段が設けられる。
【0017】
さらに、本発明は、電解質溶液に被処理物および電極を浸漬し、電解質溶液中で被処理物と電極とに電圧を印加し、電解質溶液中の金属イオンを被処理物の表面に析出させるメッキ方法において、被処理物の周囲2箇所以上に電極を配置し、さらに該電極と被測定物との間で電解質溶液の流通を抑制した状態で行うことを特徴とするメッキ方法を提供する。
【0018】
好ましくは、前記電極を電解質溶液の液深方向に2つ以上配置するものとし、液深方向に配置された電極の電圧を別々に調整する。また、好ましくは、更に被処理物の下方に補助電極を配置し、前記電極と該補助電極の電圧を別々に調整する。
【0019】
【発明の実施の形態】
以下、本発明に係る表面積測定装置の一実施形態について図面を参照しつつ説明し、さらに該装置を用いた表面積測定方法の一態様について説明する。
【0020】
図1は、本発明に係る表面積測定装置の一実施形態を示した斜視図であり、図2は、該表面積測定装置の平面図、図3は図2のA−A線断面図である。
図1乃至図3に示す如く、該表面積測定装置1は、断面が正方形である水槽2と、水槽内の四隅においてそれぞれ上下2箇所に設けられた合計8個の電極3,3…と、同じく水槽の四隅において電極3を水槽中央部から遮蔽する4枚の邪魔板4,4…と、水槽2の底に載置された補助電極7とを備えている。さらに、被測定物(図示せず)を電解質溶液中で支持するためのラック5と、該ラック5を支持し且つ該ラック5を介して被測定物に通電するための給電棒6が備えられている。
そして、表面積の測定を行う際には、図1〜3に示す如く水槽2に所定の温度および濃度に設定された電解質溶液10が満たされることとなる。
【0021】
本実施形態では、流通抑制手段として邪魔板4が採用されている。具体的には、該邪魔板4は、被測定物に対して電極を直接対向させないように、電極3を被測定物から遮蔽するとともに、電解質溶液10を、電極側の領域(電極領域ともいう)20と、被測定物側の領域(被測定物領域ともいう)30とに区画し、さらにこれら2つの領域間の電解質溶液10の流通を抑制するように設けられている。
【0022】
本実施形態の邪魔板4は、図2に示す如く両端の縁部が屈折された略平板状のものであり、その両端の縁部と水槽2との間には、電解質溶液10の流通を抑制し得るような細長い流路11が形成されており、電極領域20と被測定物領域30とは、該流路11を介してのみ流通可能となっている。
【0023】
電極3の形状については特に限定されるものではないが、電気抵抗が過大とならない程度に面積の小さいものを使用することが好ましく、これによって電極と等距離において被測定物が平行移動する際に生じる、いわゆるワグナー長さ効果を低減できるものと考えられる。
【0024】
補助電極7は、電極3に対する被測定物の位置によって生じるワグナー長さ効果およびオームの法則による影響をさらに補正すべく設置されるものであり、形状については特に限定されるものではない。
【0025】
そして、電極3および補助電極7は、被測定物に対して所定の電圧が印加されるべく電源装置(図示せず)に接続されている。即ち、該電源装置と各電極又は補助電極との間にはそれぞれ可変抵抗器(図示せず)が介在され、電極3と補助電極7とに異なる電圧を印加し得るように、また、電極3についても上方に設置した電極3aと下方に設置した電極3bとに異なる電圧を印加し得るように構成されている。
【0026】
各電極に印加される電圧は、水槽の形状や大きさ、電極の大きさや配置、ラックの形状などの諸条件に応じて適宜調整されるべきものであるが、上方の電極3aに印加される電圧をV1、下方の電極3bに印加される電圧をV2、補助電極7に印加される電圧をV3とすると、V1:V2としては1:0.1〜1:1、V1:V3としては1:0〜1:1の範囲を好適な電圧比率として例示することができる。
【0027】
電源装置としては被測定物と電極とに所定の電圧を印加し得るものであれば特に限定されるものではない。
【0028】
また、電解質溶液10としても特に限定されるものではなく、例えば水酸化ナトリウム溶液、リン酸塩溶液等を使用し得る。該電解質溶液は、モニター電極(図示せず)と連動した水供給装置(図示せず)および電解液供給装置(図示せず)によって電解質濃度が一定に保たれ、さらに、温度計(図示せず)と連動したヒーター(図示せず)によって温度が一定に保たれる。
【0029】
斯かる表面積測定装置1によれば、邪魔板4によって電解質溶液10の流通が抑制されるため、水槽2内の電流分布が均一化されることとなる。
【0030】
次に、斯かる実施形態の表面積測定装置を用いた場合の表面積測定方法について説明する。
【0031】
まず、任意の被測定物を掛けたラック5を給電棒6に吊して電解質溶液10中に浸漬し、一定電圧を印加した状態で被測定物の高さ及び前後左右位置を変えた際の電流値を測定し、電流値の変動が微少となるように、上方の電極3a、下方の電極3bおよび補助電極7の電圧を調整しておく。
【0032】
次に、任意のラックを基準ラックとし、該基準ラックを給電棒6に吊して電解質溶液中に浸漬し、一定の電圧をかけて電流値を測定する。さらに、複数本の同一形状のラックを同様の手順で測定し、平均値を求めてこれを標準ラック電流値(Ls)とする。
表面積が既知である複数の基準測定物(例えば、0.5dm/枚×20枚)を1枚ずつ順に基準ラックに掛け、ラックが同じ水深となるように浸漬した状態で電流値を測定し、電流と表面積の関係式(Fs)を求める。
関係式(Fs)は、例えば、As=f(x)+C(但し、Asは表面積、xは電流値、Cは標準ラック単体の面積)のように表される。
【0033】
そして、実際に使用するラック(複数ある場合はそれら全て)について電流値(Lv)を測定する。尚、異常な電流値が検出されたラックは、不良ラックとして排除する。前記基準となるラックの電流値(Ls)と使用するラックの電流値(Lv)との比(Lv/Ls)を前記関係式(Fs)の定数項に乗じることにより、基準ラックについての関係式(Fv)が実際に使用する個々のラックの大小や形状差に応じて補正されることとなる。
【0034】
こうして、実際に使用する個々のラックに対して、基準となるラックの関係式(Fs)がそれぞれ補正されたこととなるため、該ラックに面積が未知の被測定物を吊るした状態で電流値(Lv)を測定することにより、前記関係式(Fs)に基づいて被測定物の表面積を正確に算出することができる。尚、ラックの材質等その他補正すべき要因がある場合についても、必要に応じて適宜設定又は補正を行うものとする。
【0035】
斯かる表面積測定装置および測定方法によれば、水槽内の電流分布の均一化が図られることとなり、被測定物の各部位における電流密度が略一定となって複雑な立体形状の被測定物についても正確に表面積を測定することが可能となる。
これは、邪魔板4によって電解質溶液の流通が抑制されることにより、電極と被測定物との距離が見かけ上遠距離にあるように作用したり、電極との距離に反比例して増大する抵抗成分が発生するためであると推測される。そして、斯かる作用に加えて電極3が水槽2内に略均一に配置されていることにより、電流分布の均一化が図られているものと推測される。
【0036】
また、水槽内の電流分布が均一化されるため、水槽内における被測定物の位置が変化した場合であっても表面積を正確に測定することができるという効果がある。
【0037】
尚、上記実施形態では、流通抑制手段として邪魔板4を使用した場合について説明したが、本発明はこれに限定されるものではない。
従って、他の流通抑制手段としては、例えば図4に示す如く、電極を収容し得るような筒体41と、該筒体41の両端に備えられた蓋体42とからなり、筒体41と蓋体42との隙間が所定幅の流路11を形成するように離間して構成されたものを使用することもできる。斯かる構成の流通抑制手段によれば、水槽内に大きな邪魔板を設置する必要がなく、しかも水槽内を広く使用することができるという利点がある。
【0038】
また、流通抑制手段の他の形態としては、幅をやや狭くすることに加えて電極領域と被測定物領域との間の流通距離が長くなるような形状の流路としてもよい。流通距離を長くすると電極と被測定物との距離が長くなってオームの法則による影響を緩和でき、しかも幅の狭い流路とすることによってその作用をより顕著に発揮させることができる。
【0039】
また、電極3の形状についても特に限定されるものではなく、流通抑制手段として図4に示したような筒体41と蓋体42とを使用する場合には、該筒体41の内部に収容しやすい筒状の電極31としてもよい。
【0040】
さらに、電極を設ける位置および数量は、水槽内をできるだけ均等となる位置に配置することが好ましい。上記実施形態では合計8個の電極を水槽内に均等に配置したが、電極の数をそれ未満としてもよく、又はそれ以上としてもよい。
また、水槽の形状についても特に限定されず、円筒形状やその他任意の多面体形状とすることができる。
【0041】
また、上記表面積測定方法の実施形態では、基準となるラックの電流値(Ls)と使用するラックの電流値(Lv)との比(Lv/Ls)を前記関係式(Fs)に乗じることにより、標準ラックについての関係式(Fs)を実際に使用する個々のラックに対して補正したが、使用する個々のラックに複数の基準測定物を順に掛けて電流値を測定し、直接的に電流と表面積の関係式(Fv)を求めてもよい。
【0042】
さらに、上記実施形態では、電圧を一定として電流値を測定することによって表面積を算出したが、本発明はこれに限定されるものではなく、電流を一定として電圧を測定することによって被測定物の表面積を算出してもよい。
【0043】
また、上記実施形態ではメッキ処理を行うべき被処理物を測定対象とする場合に好適であるが、本発明はこれらの電気化学的反応を利用した表面処理の対象となる被処理物を測定対象として限定するものではなく、表面積測定の困難なあらゆるものを測定対象とすることができる。
【0044】
本発明は、前記実施形態のように導電性の測定対象物について例えば電流値を測定することによって表面積を測定することができるが、このような導電性の測定対象物のみを測定対象として限定するものではない。即ち、本発明は、絶縁性の物質をも測定対象物とすることができ、具体的には、同様の方法によって電圧を印加した状態での静電容量を測定し、その静電容量を誘電率で除することにより、測定対象物の表面積を測定することができる。
【0045】
ここで、邪魔板を流通抑制手段として設置した場合に水槽内の電流分布が均一化されることを実証すべく、図5に示す如き試験装置を用いて水槽内の電流分布を測定した。
図5は、試験装置の概略を示した斜視図であり、該試験装置は、水槽2と、該水槽2の中央に配された平板電極(カソード)15と、該平板電極15を囲むような四角い枠型の電極(アノード)3と、該カソード15と該アノード3との間に配された四角い枠型の邪魔板4とから構成されている。邪魔板4の上端は液面よりも上に出ており、邪魔板4の下端は水槽2の底と所定の隙間を隔てて設置されており、この邪魔板4と水槽2との隙間が電解質溶液の流通を抑制するように構成されている。
【0046】
斯かる試験装置を用い、邪魔板4と水槽2との隙間が20mmである場合と1mmである場合と、邪魔板4を設置しない場合について、図6に示す如く、中心に配した平板電極(カソード)15を水槽2の一方向(図6において右方向)へ移動させた際の電流分布を測定した。
尚、電極間に印加する電圧は約6V、電解質溶液は0.5%の水酸化ナトリウム溶液とし、平板電極15は、面積が1dmと0.5dmの2種類を用いた。また、平板電極15の移動距離は、実際に移動させた距離を移動前の電極間の距離で除した相対値で表した。
電流分布の測定結果を図7に示す。
【0047】
図7に示す如く、邪魔板4を設置しない場合には、面積が1dm(図中▲1▼で示す)と0.5dm(図中▲2▼で示す)の何れの場合にも平板電極15を水槽2の一端へ向かって移動させるにつれて、電流値が大きく上昇していることがわかる。
これに対し、邪魔板4を設置すると、隙間が1mm又は20mmの何れの場合であっても平板電極15を移動させた際の電流値が略一定となっており、水槽内の電流分布が均一となっていることがわかる。
【0048】
このように、オームの法則に反して電流分布が一定となる理由については定かではないが、邪魔板等の流通抑制手段を設けたことによってイオンの通過にも何らかの抵抗が生じ、電極間距離が近づいてイオンの通過量が多くなった場合には大きな抵抗となり、電極間距離が遠くなってイオンの通過量が少なくなった場合には小さな抵抗となるように作用しているものと推測される。
【0049】
次に、図8に示す如き立体形状を有し且つ表面積の等しい試験片A〜Iを前記試験装置の中央にカソードとして設置し、個々の試験片について電流値を測定した。邪魔板4を設置しない場合の電流値の測定結果を図9に、水槽との隙間が20mmとなるように邪魔板4を設置した場合の電流値の測定結果を図10に示す。
【0050】
邪魔板を設置しない場合(図9のグラフ)には、電流値のバラツキ、即ち(最大値−最小値)/平均値は、約23%であるのに対し、邪魔板を設置した場合(図10のグラフ)には、電流値のバラツキは約16%にまで低減されていることがわかる。
【0051】
このように、例えば邪魔板のような流通抑制手段をカソードとアノードの間に設置することにより水槽内の電流分布が均一化され、その結果、被測定物の立体形状に起因する電流値の変動が大きく低減されることとなる。
従って、複雑な立体形状を有する被測定物の表面積を測定する場合、本発明の方法および装置は、従来の方法と比べて非常に高精度に表面積を測定することが可能となる。
【0052】
次に、本発明に係るメッキ方法の一実施形態について説明する。
本発明のメッキ方法に使用する装置は、前記表面積測定装置1と略同様にして構成されたものである。但し、電解質溶液として所定の金属イオンを含むメッキ浴を用い、被処理物をアノード、電極をカソードとする。電極として、メッキ金属と同一の金属を用いて行うことも可能である。
【0053】
メッキ方法の具体的手順は、予め表面積を測定した被処理物をメッキ浴中に浸漬し、所望の電流密度となるように電流値を調整し、所望の時間通電することによってメッキ層を析出させる。
被処理物の表面積測定には上述の表面積測定方法を好適に採用でき、表面積の計測を終えた被処理物をラック5に吊るしたまま洗浄槽に浸漬して洗浄した後に該ラック5に吊るしたままメッキ浴に浸漬すればよい。
【0054】
斯かるメッキ方法によれば、メッキ浴中の電流分布が均一化されることになって被処理物の表面における電流密度が略一定となるため、複雑な立体形状の被処理物であっても均一な厚みのメッキ層を形成できるという効果がある。
【0055】
【発明の効果】
以上のように、本発明に係る表面積測定方法および表面積測定装置によれば、被処理物の表面積を正確に測定することが可能となる。
また、本発明のメッキ方法によれば、被処理物の表面に均一なメッキ層を形成することができる。
【図面の簡単な説明】
【図1】本発明に係る表面積測定装置の一実施形態を示した斜視図。
【図2】本発明に係る表面積測定装置の一実施形態を示した平面図。
【図3】図2のA−A線断面図。
【図4】流通抑制手段と電極の他の実施形態を示した一部切り欠きの斜視図。
【図5】邪魔板の効果を確認するために用いた試験装置の斜視図。
【図6】図5のB−B線断面図。
【図7】電流分布の測定結果を示したグラフ。
【図8】被測定物として用いた試験片の形状を示した図。
【図9】邪魔板を設置しない場合の電流値の測定結果を示したグラフ。
【図10】邪魔板を設置した場合の測定結果を示したグラフ。
【図11】従来の測定方法の改良案として、本発明者らが検討した電極の配置例。
【符号の説明】
1 表面積測定装置
2 水槽
3 電極
4 邪魔板
5 ラック
7 補助電極
10 電解質溶液
15 平板電極
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for measuring a surface area of an object to be measured in a process preceding a surface treatment mainly using an electrochemical reaction, and a plating method for an object to be processed using an electrochemical reaction.
[0002]
[Prior art]
Surface treatment using an electrochemical reaction such as plating, alumite, or electrolytic polishing needs to be performed while controlling the current density (A / dm 2 ) on the surface of the object to be treated, but since this cannot be directly measured, The total current (A) is obtained by multiplying the current density (A / dm 2 ) by the surface area (dm 2 ) of the object. Therefore, accurately grasping the surface area of the object to be treated in such a surface treatment is a very important issue in improving the accuracy and quality of the surface treatment.
[0003]
Conventionally, as a method of measuring a surface area of an object to be processed (also referred to as an object to be measured in a surface area measurement), a method of measuring a three-dimensional shape using a sensor or a CCD camera and analyzing it by a computer, or a method of CAD drawing. A method of analyzing the data using a computer has been proposed.
However, such a method requires many expensive devices such as a sensor, a CCD camera, and a computer, and requires more advanced measurement techniques and mathematical knowledge. Therefore, the method is not necessarily suitable for a work site where plating is performed. Not.
In addition, since the quantity of processed objects having the same shape tends to be reduced due to recent demands for high-mix low-volume production, profitability is deteriorated in the measurement method that requires time for one processed object.
[0004]
Under such circumstances, when processing an object having a complicated shape, the worker often roughly estimates the surface area and adjusts the current by visually judging bubbles generated during the plating process. . However, such a method requires a high degree of skill, and the plating layer of the product is extremely uneven.
[0005]
In order to solve such a problem, a method of electrochemically measuring the surface area of a treatment object immersed in an electrolytic solution has been proposed as disclosed in Patent Document 1. That is, in the method, a plurality of metal test pieces having a known area and different areas from each other are immersed in an electrolyte solution, a constant voltage is applied under predetermined electrolysis conditions, and a current value is measured by measuring a current at that time. And after obtaining the relational expression between the test piece area and the area of the DUT by applying the current value when the same voltage is applied to the DUT having the unknown area under the same electrolytic conditions to the relational expression, Is what you want.
[0006]
[Patent Document 1]
JP-A-56-160608
[Problems to be solved by the invention]
However, when a rolled flat copper plate as described in Patent Document 1 is used as an object to be measured, a relatively accurate measurement result is easily obtained, but an accurate measurement result is always obtained for an object having a complicated three-dimensional shape. I can't do that. This is because if the distance between the object to be measured and the electrode is different, the resistance value of the electrolyte solution is also different, and the current density on the surface is not constant.
[0008]
In order to offset the influence of the distance between the electrode and the device under test, the present inventor has proposed a method of arranging the electrodes 51 on both sides of the device under test 52 as shown in FIG. The method of surrounding the whole object to be measured 52 with the electrode 51 as shown in FIG. However, in any case, it was confirmed that the resistance value greatly increased nonlinearly as the position of the object to be measured shifted from the center.
Therefore, in the case of an object to be processed having a complicated three-dimensional shape, the surface area cannot be measured accurately because the distance between each part of the object to be measured and the electrode is not constant. That is, even when such a device is used, only a thin plate having the same thickness as the test plate used as a reference or a thin plate having a thickness that does not affect the distance to the electrode is accurately measured. There is a problem that you can not.
[0009]
In addition, such a problem is caused by the fact that the current density is not uniform on the surface of the object to be measured. Therefore, the same phenomenon occurs in the plating method using the electrolysis reaction, and the same phenomenon occurs on the surface of the object to be measured. There is a problem that a plating layer is not formed.
[0010]
In view of such a problem, an object of the present invention is to set an object to be subjected to a surface treatment mainly using an electrochemical reaction as an object to be measured, and to accurately measure the surface area of the object to be measured.
Another object of the present invention is to form a uniform plating layer on the surface of an object when plating the object using an electrochemical reaction.
[0011]
[Means for Solving the Problems]
The present invention has been made in order to solve the above-mentioned problem, and immerses an object to be measured and an electrode in an electrolyte solution, applies a voltage to the object to be measured and the electrode in the electrolyte solution, and conducts electricity at that time. In the surface area measuring method for measuring the surface area of the object to be measured, the electrodes are arranged at two or more locations around the object to be measured, and the current is supplied while the flow of the electrolyte solution is suppressed between the electrode and the object to be measured. To provide a method for measuring a surface area.
[0012]
Preferably, two or more electrodes are arranged in the depth direction of the electrolyte solution, and preferably, the voltages of the electrodes arranged in the depth direction are separately adjusted.
Further, preferably, an auxiliary electrode is arranged below the object to be measured, and the voltages of the electrode and the auxiliary electrode are separately adjusted.
[0013]
Preferably, the flow of the electrolyte solution is suppressed so that the current distribution in the region where the object to be measured is immersed is within a range of ± 5%. Note that the current distribution in the present invention refers to the current value flowing when a flat electrode is placed in an area where an object to be measured is immersed and a constant voltage is applied between the flat electrode and an electrode arranged around the flat electrode. And is a measure of variation within the region. In addition, the range of ± 5% is a percentage obtained by dividing the difference between the maximum value and the minimum value of the measured current value by the current value measured when the plate electrode is installed at the center of the water tank. Shall be referred to.
[0014]
Further, the present invention is a surface area measuring device used to measure the surface area of the object to be measured from the state of electricity by applying a voltage to the object and the electrode immersed in the electrolyte solution, A water tank for accommodating the electrolyte solution, electrodes disposed at two or more surroundings in the water tank, and a flow suppressing means for suppressing flow of the electrolyte solution between the electrode and the object to be measured are provided. The present invention provides a surface area measuring device characterized in that:
[0015]
Preferably, two or more electrodes are arranged in the direction of the depth of the liquid in the water tank, and they are configured so that the voltage can be adjusted separately. Preferably, an auxiliary electrode is provided on the bottom surface of the water tank, and the electrode and the auxiliary electrode are configured so that the voltage can be adjusted separately.
[0016]
Preferably, the flow suppressing means is provided so that a current distribution in a region where the object to be measured is immersed is within a range of ± 5%.
[0017]
Further, the present invention provides a plating method in which a workpiece and an electrode are immersed in an electrolyte solution, a voltage is applied to the workpiece and the electrode in the electrolyte solution, and metal ions in the electrolyte solution are deposited on the surface of the workpiece. In a method, there is provided a plating method, wherein electrodes are arranged at two or more locations around an object to be processed, and the method is performed in a state where the flow of an electrolyte solution is suppressed between the electrode and the object to be measured.
[0018]
Preferably, two or more electrodes are arranged in the depth direction of the electrolyte solution, and the voltages of the electrodes arranged in the depth direction are separately adjusted. Preferably, an auxiliary electrode is further disposed below the object to be processed, and the voltages of the electrode and the auxiliary electrode are separately adjusted.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of a surface area measuring device according to the present invention will be described with reference to the drawings, and an embodiment of a surface area measuring method using the device will be described.
[0020]
FIG. 1 is a perspective view showing an embodiment of a surface area measuring device according to the present invention, FIG. 2 is a plan view of the surface area measuring device, and FIG. 3 is a sectional view taken along line AA of FIG.
As shown in FIGS. 1 to 3, the surface area measuring device 1 includes a water tank 2 having a square cross section, and a total of eight electrodes 3, 3. At the four corners of the aquarium, there are provided four baffles 4, 4,. Further, a rack 5 for supporting an object to be measured (not shown) in the electrolyte solution and a power supply rod 6 for supporting the rack 5 and supplying electricity to the object to be measured via the rack 5 are provided. ing.
When the surface area is measured, the water tank 2 is filled with the electrolyte solution 10 set to a predetermined temperature and concentration as shown in FIGS.
[0021]
In the present embodiment, the baffle plate 4 is employed as the flow suppressing means. Specifically, the baffle plate 4 shields the electrode 3 from the object to be measured so that the electrode is not directly opposed to the object to be measured, and also allows the electrolyte solution 10 to pass through the region on the electrode side (also referred to as an electrode region). ) 20 and a region (also referred to as a region to be measured) 30 on the side of the device to be measured, and further provided so as to suppress the flow of the electrolyte solution 10 between these two regions.
[0022]
As shown in FIG. 2, the baffle plate 4 of the present embodiment has a substantially flat plate shape in which both edges are bent, and the flow of the electrolyte solution 10 flows between the edges of both ends and the water tank 2. An elongated flow channel 11 that can be suppressed is formed, and the electrode region 20 and the DUT region 30 can be circulated only through the flow channel 11.
[0023]
The shape of the electrode 3 is not particularly limited, but it is preferable to use an electrode having a small area so that the electric resistance does not become excessively large. It is considered that the so-called Wagner length effect can be reduced.
[0024]
The auxiliary electrode 7 is provided to further correct the Wagner length effect and the effect of Ohm's law caused by the position of the object to be measured with respect to the electrode 3, and the shape is not particularly limited.
[0025]
The electrode 3 and the auxiliary electrode 7 are connected to a power supply (not shown) so that a predetermined voltage is applied to the device under test. That is, a variable resistor (not shown) is interposed between the power supply device and each electrode or the auxiliary electrode, so that different voltages can be applied to the electrode 3 and the auxiliary electrode 7. Is also configured so that different voltages can be applied to the electrode 3a provided above and the electrode 3b provided below.
[0026]
The voltage applied to each electrode should be appropriately adjusted according to various conditions such as the shape and size of the water tank, the size and arrangement of the electrodes, and the shape of the rack, but is applied to the upper electrode 3a. Assuming that the voltage is V1, the voltage applied to the lower electrode 3b is V2, and the voltage applied to the auxiliary electrode 7 is V3, V1: V2 is 1: 0.1 to 1: 1, and V1: V3 is 1 : 0 to 1: 1 can be exemplified as a suitable voltage ratio.
[0027]
The power supply device is not particularly limited as long as it can apply a predetermined voltage to the device under test and the electrodes.
[0028]
Also, the electrolyte solution 10 is not particularly limited, and for example, a sodium hydroxide solution, a phosphate solution, or the like may be used. The electrolyte concentration of the electrolyte solution is kept constant by a water supply device (not shown) and an electrolyte solution supply device (not shown) linked with a monitor electrode (not shown), and a thermometer (not shown) ) Is maintained at a constant temperature by a heater (not shown) in conjunction with).
[0029]
According to such a surface area measuring device 1, since the flow of the electrolyte solution 10 is suppressed by the baffle plate 4, the current distribution in the water tank 2 is made uniform.
[0030]
Next, a method for measuring the surface area when the surface area measuring apparatus according to the embodiment is used will be described.
[0031]
First, a rack 5 on which an object to be measured is hung is suspended on a power supply rod 6 and immersed in an electrolyte solution 10, and the height of the object to be measured and the front, rear, left, and right positions are changed while a constant voltage is applied. The current value is measured, and the voltages of the upper electrode 3a, the lower electrode 3b, and the auxiliary electrode 7 are adjusted so that the fluctuation of the current value is small.
[0032]
Next, an arbitrary rack is set as a reference rack, the reference rack is hung on the power supply rod 6, immersed in an electrolyte solution, and a constant voltage is applied to measure a current value. Further, a plurality of racks having the same shape are measured in the same procedure, an average value is obtained, and this is set as a standard rack current value (Ls).
A plurality of reference measurement objects having a known surface area (for example, 0.5 dm 2 / sheet × 20 sheets) are sequentially placed on a reference rack one by one, and a current value is measured in a state where the racks are immersed at the same water depth. , A relational expression (Fs) between the current and the surface area is obtained.
The relational expression (Fs) is expressed, for example, as As = f (x) + C (where As is the surface area, x is the current value, and C is the area of the standard rack alone).
[0033]
Then, the current value (Lv) is measured for the racks actually used (when there are a plurality of racks, all of them). Note that a rack in which an abnormal current value is detected is excluded as a defective rack. By multiplying the ratio (Lv / Ls) between the current value (Ls) of the reference rack and the current value (Lv) of the rack to be used by the constant term of the relational expression (Fs), a relational expression for the reference rack is obtained. (Fv) is corrected according to the size and shape difference of each rack actually used.
[0034]
In this way, since the relational expression (Fs) of the reference rack is corrected for each rack actually used, the current value is measured in a state where the DUT whose area is unknown is hung on the rack. By measuring (Lv), the surface area of the measured object can be accurately calculated based on the relational expression (Fs). It should be noted that if there are other factors to be corrected, such as the material of the rack, the settings or corrections shall be made as necessary.
[0035]
According to such a surface area measuring device and the measuring method, the current distribution in the water tank can be made uniform, and the current density in each part of the object is substantially constant, and the object having a complicated three-dimensional shape is measured. It is also possible to accurately measure the surface area.
This is because the flow of the electrolyte solution is suppressed by the baffle plate 4 so that the distance between the electrode and the device under test acts as an apparently long distance, or the resistance increases in inverse proportion to the distance from the electrode. It is presumed that components are generated. In addition, it is assumed that the uniform distribution of the current is achieved by arranging the electrodes 3 substantially uniformly in the water tank 2 in addition to the above-described operation.
[0036]
Further, since the current distribution in the water tank is made uniform, there is an effect that the surface area can be measured accurately even when the position of the object to be measured in the water tank changes.
[0037]
In the above embodiment, the case where the baffle plate 4 is used as the flow suppressing means has been described, but the present invention is not limited to this.
Therefore, as another flow suppressing means, for example, as shown in FIG. 4, a cylindrical body 41 capable of accommodating an electrode and lids 42 provided at both ends of the cylindrical body 41 are provided. It is also possible to use one that is configured so as to be separated from the lid 42 so as to form the flow path 11 having a predetermined width. According to the flow suppressing means having such a configuration, there is an advantage that it is not necessary to install a large baffle plate in the water tank, and the inside of the water tank can be widely used.
[0038]
Further, as another form of the flow suppressing means, a flow path having a shape in which the flow distance between the electrode region and the measured object region is increased in addition to slightly reducing the width may be used. When the flow distance is increased, the distance between the electrode and the object to be measured is increased, so that the influence of the Ohm's law can be reduced. In addition, the effect can be more remarkably exhibited by using a narrow flow path.
[0039]
Also, the shape of the electrode 3 is not particularly limited, and when the cylinder 41 and the lid 42 as shown in FIG. It is good also as cylindrical electrode 31 which is easy to do.
[0040]
Further, it is preferable that the position and the number of the electrodes to be provided are arranged at positions as uniform as possible in the water tank. In the above embodiment, a total of eight electrodes are evenly arranged in the water tank, but the number of electrodes may be smaller or more.
Also, the shape of the water tank is not particularly limited, and may be a cylindrical shape or any other polyhedral shape.
[0041]
In the embodiment of the surface area measuring method, the ratio (Lv / Ls) between the reference rack current value (Ls) and the rack current value (Lv) to be used is multiplied by the relational expression (Fs). , The relational expression (Fs) for the standard rack was corrected for each rack actually used, but the current value was measured by sequentially multiplying each rack used by a plurality of reference measurement objects, and directly measuring the current value. And a relational expression (Fv) between the surface area and the surface area may be obtained.
[0042]
Furthermore, in the above embodiment, the surface area was calculated by measuring the current value while keeping the voltage constant.However, the present invention is not limited to this, and by measuring the voltage while keeping the current constant, the object to be measured can be measured. The surface area may be calculated.
[0043]
Further, the above embodiment is suitable for a case where an object to be subjected to a plating process is to be measured, but the present invention is directed to a case where the object to be subjected to a surface treatment utilizing these electrochemical reactions is to be measured. The present invention is not limited to this, and any object for which surface area measurement is difficult can be used as a measurement target.
[0044]
The present invention can measure the surface area by measuring, for example, a current value of a conductive measurement target as in the above embodiment, but limits only such a conductive measurement target as a measurement target. Not something. That is, according to the present invention, an insulating substance can be used as a measurement target. Specifically, the capacitance is measured in a state where a voltage is applied by the same method, and the capacitance is measured as a dielectric. By dividing by the ratio, the surface area of the measurement object can be measured.
[0045]
Here, the current distribution in the water tank was measured using a test device as shown in FIG. 5 in order to verify that the current distribution in the water tank was made uniform when the baffle plate was installed as a flow suppressing means.
FIG. 5 is a perspective view schematically showing a test apparatus. The test apparatus includes a water tank 2, a plate electrode (cathode) 15 arranged at the center of the water tank 2, and a structure surrounding the plate electrode 15. It comprises a square frame type electrode (anode) 3 and a square frame type baffle plate 4 disposed between the cathode 15 and the anode 3. The upper end of the baffle plate 4 is above the liquid level, and the lower end of the baffle plate 4 is installed at a predetermined gap from the bottom of the water tank 2. The gap between the baffle plate 4 and the water tank 2 is It is configured to suppress the flow of the solution.
[0046]
As shown in FIG. 6, the center of the plate electrode (FIG. 6) was measured using such a test apparatus, when the gap between the baffle plate 4 and the water tank 2 was 20 mm and 1 mm, and when the baffle plate 4 was not installed. The current distribution when the cathode 15 was moved in one direction (rightward in FIG. 6) of the water tank 2 was measured.
The voltage applied between the electrodes of about 6V, the electrolyte solution was a 0.5% sodium hydroxide solution, the plate electrode 15, area using two kinds of 1 dm 2 and 0.5 dm 2. The moving distance of the plate electrode 15 was represented by a relative value obtained by dividing the distance actually moved by the distance between the electrodes before the movement.
FIG. 7 shows the measurement results of the current distribution.
[0047]
As shown in FIG. 7, when the baffle plate 4 is not installed, the flat plate is used in both cases where the area is 1 dm 2 (indicated by (1) in the figure) and 0.5 dm 2 (indicated by ( 2 ) in the figure). It can be seen that the current value increases significantly as the electrode 15 is moved toward one end of the water tank 2.
On the other hand, when the baffle plate 4 is installed, the current value when the plate electrode 15 is moved is substantially constant regardless of whether the gap is 1 mm or 20 mm, and the current distribution in the water tank is uniform. It turns out that it becomes.
[0048]
As described above, it is not clear why the current distribution is constant contrary to Ohm's law, but the provision of a flow suppression means such as a baffle plate causes some resistance to the passage of ions, and the distance between the electrodes is reduced. It is presumed that when the passing amount of ions increases, the resistance becomes large when approaching, and when the passing amount of ions decreases due to the distance between the electrodes, the resistance becomes small. .
[0049]
Next, test pieces A to I having a three-dimensional shape and having the same surface area as shown in FIG. 8 were installed as cathodes in the center of the test apparatus, and the current values of the individual test pieces were measured. FIG. 9 shows the measurement result of the current value when the baffle plate 4 is not installed, and FIG. 10 shows the measurement result of the current value when the baffle plate 4 is installed so that the gap with the water tank is 20 mm.
[0050]
When no baffle is installed (graph in FIG. 9), the variation of the current value, that is, (maximum value−minimum value) / average value is about 23%, whereas when the baffle is installed (FIG. 9). Graph 10) shows that the variation of the current value is reduced to about 16%.
[0051]
In this way, by disposing a flow suppression means such as a baffle plate between the cathode and the anode, the current distribution in the water tank is made uniform, and as a result, the fluctuation of the current value due to the three-dimensional shape of the measured object is achieved. Is greatly reduced.
Therefore, when measuring the surface area of an object to be measured having a complex three-dimensional shape, the method and apparatus of the present invention can measure the surface area with extremely high precision as compared with the conventional method.
[0052]
Next, an embodiment of a plating method according to the present invention will be described.
The apparatus used in the plating method of the present invention is configured in substantially the same manner as the surface area measuring apparatus 1. However, a plating bath containing a predetermined metal ion is used as an electrolyte solution, the object to be treated is an anode, and the electrode is a cathode. It is also possible to use the same metal as the plating metal as the electrode.
[0053]
The specific procedure of the plating method is to immerse a workpiece whose surface area is measured in advance in a plating bath, adjust a current value so as to have a desired current density, and deposit a plating layer by energizing for a desired time. .
The surface area measurement method described above can be suitably employed for measuring the surface area of the object to be processed. The object to be processed whose surface area has been measured is immersed in a cleaning tank while being suspended on the rack 5, washed, and then suspended on the rack 5. What is necessary is just to immerse it in a plating bath as it is.
[0054]
According to such a plating method, the current distribution in the plating bath is made uniform and the current density on the surface of the object to be treated is substantially constant, so that the object to be treated has a complicated three-dimensional shape. There is an effect that a plating layer having a uniform thickness can be formed.
[0055]
【The invention's effect】
As described above, according to the surface area measuring method and the surface area measuring apparatus according to the present invention, it is possible to accurately measure the surface area of the object to be processed.
Further, according to the plating method of the present invention, a uniform plating layer can be formed on the surface of the workpiece.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an embodiment of a surface area measuring device according to the present invention.
FIG. 2 is a plan view showing an embodiment of a surface area measuring device according to the present invention.
FIG. 3 is a sectional view taken along line AA of FIG. 2;
FIG. 4 is a partially cutaway perspective view showing another embodiment of the flow suppressing means and the electrode.
FIG. 5 is a perspective view of a test apparatus used for confirming the effect of the baffle plate.
FIG. 6 is a sectional view taken along line BB of FIG. 5;
FIG. 7 is a graph showing a measurement result of a current distribution.
FIG. 8 is a diagram showing a shape of a test piece used as an object to be measured.
FIG. 9 is a graph showing a measurement result of a current value when no baffle plate is installed.
FIG. 10 is a graph showing measurement results when a baffle plate is installed.
FIG. 11 shows an example of electrode arrangement studied by the present inventors as an improvement of the conventional measurement method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Surface area measuring device 2 Water tank 3 Electrode 4 Baffle plate 5 Rack 7 Auxiliary electrode 10 Electrolyte solution 15 Plate electrode

Claims (14)

電解質溶液に被測定物および電極を浸漬し、該電解質溶液中で被測定物と電極とに電圧を印加し、その際の通電状態から被測定物の表面積を測定する表面積測定方法において、被測定物の周囲2箇所以上に前記電極を配置し、さらに該電極と被測定物との間で電解質溶液の流通を抑制した状態で電圧を印加することを特徴とする表面積測定方法。In a surface area measurement method of immersing an object to be measured and an electrode in an electrolyte solution, applying a voltage to the object to be measured and the electrode in the electrolyte solution, and measuring a surface area of the object to be measured from an energized state at that time, A method for measuring a surface area, comprising: arranging the electrodes at two or more locations around an object, and applying a voltage while suppressing the flow of the electrolyte solution between the electrodes and the object to be measured. 前記電極を液深方向に2つ以上配置することを特徴とする請求項1記載の表面積測定方法。The surface area measuring method according to claim 1, wherein two or more electrodes are arranged in a liquid depth direction. 前記液深方向に配置された電極の電圧を別々に調整することを特徴とする請求項2記載の表面積測定方法。The surface area measuring method according to claim 2, wherein the voltages of the electrodes arranged in the liquid depth direction are separately adjusted. 更に被測定物の下方に補助電極を配置し、前記電極と該補助電極の電圧を別々に調整することを特徴とする請求項1〜3の何れかに記載の表面積測定方法。4. The surface area measuring method according to claim 1, further comprising: arranging an auxiliary electrode below the object to be measured, and separately adjusting voltages of the electrode and the auxiliary electrode. 被測定物の浸漬される領域内に於ける電流分布が±5%の範囲内となるように前記電解質溶液の流通を抑制することを特徴とする請求項1〜4の何れかに記載の表面積測定方法。The surface area according to any one of claims 1 to 4, wherein the flow of the electrolyte solution is suppressed so that a current distribution in a region where the object to be measured is immersed is within a range of ± 5%. Measuring method. 電解質溶液に浸漬された被測定物と電極とに電圧を印加することにより、その際の通電状態から被測定物の表面積を測定するために用いる表面積測定装置であって、電解質溶液を収容するための水槽と、該水槽内の周囲2箇所以上に配置された電極と、該電極と被測定物との間で電解質溶液の流通を抑制する流通抑制手段が備えられていることを特徴とする表面積測定装置。A surface area measuring device used to measure the surface area of the object to be measured from a current-carrying state by applying a voltage to the object and the electrode immersed in the electrolyte solution, and to accommodate the electrolyte solution. A water tank, electrodes disposed at two or more locations around the water tank, and a flow suppression means for suppressing flow of the electrolyte solution between the electrode and the object to be measured. measuring device. 前記電極が、水槽の液深方向に2つ以上配置されていることを特徴とする請求項6記載の表面積測定装置。7. The surface area measuring device according to claim 6, wherein two or more electrodes are arranged in a liquid depth direction of the water tank. 前記液深方向に配置された電極が、別々に電圧を調整し得るように構成されていることを特徴とする請求項7記載の表面積測定装置。8. The surface area measuring device according to claim 7, wherein the electrodes arranged in the liquid depth direction are configured to be able to adjust a voltage separately. 水槽の底面に補助電極が備えられ、前記電極と該補助電極とが別々に電圧を調整し得るように構成されていることを特徴とする請求項6〜8の何れかに記載の表面積測定装置。The surface area measuring device according to any one of claims 6 to 8, wherein an auxiliary electrode is provided on a bottom surface of the water tank, and the electrode and the auxiliary electrode are configured to separately adjust a voltage. . 被測定物の浸漬される領域内に於ける電流分布が±5%の範囲内となるように前記流通抑制手段が設けられたことを特徴とする請求項6〜9の何れかに記載の表面積測定装置。The surface area according to any one of claims 6 to 9, wherein the flow suppressing means is provided so that a current distribution in an area where the object to be measured is immersed is within a range of ± 5%. measuring device. 電解質溶液に被処理物および電極を浸漬し、該電解質溶液中で被処理物と電極とに電圧を印加し、電解質溶液中の金属イオンを被処理物の表面に析出させるメッキ方法において、被処理物の周囲2箇所以上に電極を配置し、さらに該電極と被測定物との間で電解質溶液の流通を抑制した状態で行うことを特徴とするメッキ方法。In a plating method in which a workpiece and an electrode are immersed in an electrolyte solution, a voltage is applied to the workpiece and the electrode in the electrolyte solution, and metal ions in the electrolyte solution are precipitated on the surface of the workpiece. An electroplating method comprising: arranging electrodes at two or more locations around an object; and performing the plating while suppressing the flow of the electrolyte solution between the electrodes and the object to be measured. 前記電極を液深方向に2つ以上配置することを特徴とする請求項11記載のメッキ方法。The plating method according to claim 11, wherein two or more electrodes are arranged in a liquid depth direction. 前記液深方向に配置された電極の電圧を別々に調整することを特徴とする請求項12記載のメッキ方法。13. The plating method according to claim 12, wherein the voltages of the electrodes arranged in the liquid depth direction are separately adjusted. 更に被処理物の下方に補助電極を配置し、前記電極と該補助電極との電圧を別々に調整することを特徴とする請求項11〜13の何れかに記載のメッキ方法。14. The plating method according to claim 11, wherein an auxiliary electrode is disposed below the object to be processed, and voltages of the electrode and the auxiliary electrode are separately adjusted.
JP2003013478A 2003-01-22 2003-01-22 Surface area measuring method, surface area measuring apparatus, and plating method Expired - Fee Related JP3901641B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003013478A JP3901641B2 (en) 2003-01-22 2003-01-22 Surface area measuring method, surface area measuring apparatus, and plating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003013478A JP3901641B2 (en) 2003-01-22 2003-01-22 Surface area measuring method, surface area measuring apparatus, and plating method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006251174A Division JP2007077504A (en) 2006-09-15 2006-09-15 Surface area measuring method, surface area measuring device, and plating method

Publications (2)

Publication Number Publication Date
JP2004226198A true JP2004226198A (en) 2004-08-12
JP3901641B2 JP3901641B2 (en) 2007-04-04

Family

ID=32901794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003013478A Expired - Fee Related JP3901641B2 (en) 2003-01-22 2003-01-22 Surface area measuring method, surface area measuring apparatus, and plating method

Country Status (1)

Country Link
JP (1) JP3901641B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2570338C1 (en) * 2014-09-22 2015-12-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ижевский государственный технический университет имени М.Т. Калашникова" Reference electrode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2570338C1 (en) * 2014-09-22 2015-12-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ижевский государственный технический университет имени М.Т. Калашникова" Reference electrode

Also Published As

Publication number Publication date
JP3901641B2 (en) 2007-04-04

Similar Documents

Publication Publication Date Title
US8623194B2 (en) Multi-anode system for uniform plating of alloys
Tan et al. Understanding and improving the uniformity of electrodeposition
US7837851B2 (en) In-situ profile measurement in an electroplating process
JPH05132799A (en) Electroplating method and apparatus therefor
TWI753215B (en) Plating analysis method, plating analysis system, and computer program for plating analysis
EP2641999A1 (en) Electrolytic copper foil
US20110210005A1 (en) Device suitable for the electrochemical processing of an object and a method therefor
KR101074314B1 (en) Device and method for electrolytically treating an at least superficially electrically conducting work piece
JP2004520954A (en) Electrolytic machining method using optimal machining pulse width
US11945170B2 (en) Systems for updating target maps including consideration of linear position change in electrochemical-additive manufacturing systems
JP5114271B2 (en) Around plating evaluation apparatus and evaluation method
JP2004226198A (en) Method and apparatus for measuring surface area, and plating method
CN103215618A (en) Method for adjusting shape of open pore of electroformed anode baffle plate
JP2007077504A (en) Surface area measuring method, surface area measuring device, and plating method
WO2008010090A2 (en) A device suitable for electrochemically processing an object as well as a method for manufacturing such a device, a method for electrochemically processing an object, using such a device, as well as an object formed by using such a method
JP3661657B2 (en) Electroplating method and electroplating apparatus
WO2019175990A1 (en) Plating device and plating system
JP2012527525A (en) Method and apparatus for controlling electrochemical surface treatment
KR20120079414A (en) Method of plating for pcb
JP5764650B2 (en) Apparatus and method for controlling the efficiency of a metal electrodeposition bath
JP6893849B2 (en) Plating equipment for printed wiring boards and metal jigs
Hansal et al. Comparison of simulated pulse plating processes to practical experiments
JP2003535974A (en) Programmable anode device and related method
JPS62297499A (en) Method for evaluating uniformity in thickness of plated film during electroplating
JP2013524011A5 (en)

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060915

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061226

R150 Certificate of patent or registration of utility model

Ref document number: 3901641

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140112

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees