JP2004226135A - Method for evaluating corrosion rate of reinforcing bar - Google Patents

Method for evaluating corrosion rate of reinforcing bar Download PDF

Info

Publication number
JP2004226135A
JP2004226135A JP2003011803A JP2003011803A JP2004226135A JP 2004226135 A JP2004226135 A JP 2004226135A JP 2003011803 A JP2003011803 A JP 2003011803A JP 2003011803 A JP2003011803 A JP 2003011803A JP 2004226135 A JP2004226135 A JP 2004226135A
Authority
JP
Japan
Prior art keywords
potential
resistance
polarization resistance
reinforcing bar
environmental
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003011803A
Other languages
Japanese (ja)
Inventor
Hidenori Hamada
秀則 濱田
Toru Yamaji
徹 山路
Toshifumi Hirasaki
敏史 平崎
Kenichi Komure
建一 小牟禮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sho Bond Corp
National Institute of Maritime Port and Aviation Technology
Original Assignee
Sho Bond Corp
National Institute of Maritime Port and Aviation Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sho Bond Corp, National Institute of Maritime Port and Aviation Technology filed Critical Sho Bond Corp
Priority to JP2003011803A priority Critical patent/JP2004226135A/en
Publication of JP2004226135A publication Critical patent/JP2004226135A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that polarization resistance acquired by the linear polarization resistance method has often contained environmental resistance in its resistance value. <P>SOLUTION: A potential sweep is performed at a potential of approximately ±10 mV with respect to the natural potential of a reinforcing bar at a speed, which indicates an environmental resistance (at which the potential is swept very fast), and a potential sweep is performed at a speed, which indicates the sum of the polarization resistance and the environmental resistance (at which the potential is swept very slowly). On the basis of the difference between the acquired sum of the polarization resistance and the environmental resistance and the acquired environmental resistance, the polarization resistance is determined to compute a corrosion current density. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、直線分極抵抗法を用いたコンクリート中の鉄筋の腐食速度の評価方法に関する。
【0002】
【従来の技術】
コンクリート構造物の劣化問題が広く認識されるようになり、維持管理に対する関心も高まっている。一方、公共事業費の縮減が叫ばれる中、より効果的・経済的に維持管理を行う手段として、いわゆるLCM(ライフサイクルマネージメント)の考え方の確立が求められている。LCMを考慮する場合、構造物の将来的な劣化を予測し、それに応じた対策方法を選択する必要があるが、現段階で実際に劣化予測を行う手法は十分に確立されているとは言い難い。
【0003】
劣化予測を行う際に最も重要な点として劣化速度の評価があり、特に塩害や中性化など、鉄筋腐食が問題となる劣化に対しては、鉄筋の腐食速度の評価が不可欠である。
【0004】
鉄筋の腐食は電気化学的に進行するという事実から、その電気化学反応によって生じる腐食電流密度が鉄筋の腐食速度と直接的な関係を持つ。
【0005】
腐食電流は鉄筋及び周辺のコンクリート内で収支するため、外部から腐食電流密度を直接計測することは非常に困難である。そこで、鉄筋を分極した時の電位・電流関係から腐食電流密度を推定する手法や、鉄筋を分極したときの分極抵抗から腐食電流密度を推定する方法が一般的である。
【0006】
現在、コンクリート中にある鉄筋の腐食速度推定法として、分極曲線ターフェル外挿法、交流インピーダンス法、直線分極抵抗法が広く用いられているが、それぞれ一長一短があり、現時点で確実といえるものはない。したがって、より正確な鉄筋腐食速度評価法の確立が求められている。
【0007】
本発明は、比較的簡易な計測である直線分極抵抗法によって環境抵抗、分極抵抗を個別に評価し、腐食速度を評価し得る測定方法である。
【0008】
直線分極抵抗法は、鉄筋の自然電位から±10mVの範囲において、電位を掃引させたときに直線状に得られる電位・電流関係の傾きを分極抵抗とする方法であり、計測の簡易さと得られる値の取り扱いが簡易である利点がある。
【0009】
【発明が解決しようとする課題】
しかしながら、得られる抵抗値に、分極抵抗以外のコンクリート抵抗、溶液抵抗などの環境抵抗を含み、これを分離できない課題がある。また、電位の掃引速度によって得られる抵抗値が大きく変化し、直線状の電位・電流関係が得られない場合もある。これらは、いずれもコンクリート中の鉄筋の特殊性によるものである。
【0010】
【課題を解決するための手段】
本発明は、これらの課題を、直線分極抵抗法において、電位掃引速度の違いによって変化する抵抗値の違いを利用し、分極抵抗、環境抵抗を分離評価することで解決しようとするものである。
【0011】
直線分極抵抗法では、鉄筋と参照電極から得られる鉄筋の自然電位に対し、±10mV程度の範囲で電位を掃引し、そのときに得られる鉄筋と参照電極間の電位差変化、および鉄筋と対極間に流れる電流変化の関係から、鉄筋の腐食速度と密接な関係がある分極抵抗を得るものである。
【0012】
本発明では、直線分極抵抗法において、環境抵抗が得られる非常に速い速度での電位掃引、および環境抵抗と分極抵抗の和が得られる非常に遅い速度での電位掃引を行い、得られた環境抵抗、および環境抵抗と分極抵抗の和との差から分極抵抗を求めて鉄筋の腐食速度を評価する方法を提供するものである。
【0013】
【実施の形態】
まず、上述の直線分極抵抗法による問題点を検証するため、値が既知である市販の抵抗、コンデンサを用いて、表1の実験要因で図1の回路を組み、直線分極抵抗法による計測を行った。図1は鉄筋コンクリートを模擬的に表した、最も単純な等価回路モデルであり、Rはコンクリート抵抗、Rは分極抵抗、Cは鉄筋表面の電気二重層によるコンデンサ成分を意味する。
【0014】

Figure 2004226135
Figure 2004226135
【0015】
計測に際して、電位変化は、〔自然電位〕→〔−10mV〕→〔+10mV〕→〔自然電位〕とした。なお、本測定システムは図1に示したように、作用極(W.E.)をR、C側に、参照電極(R.E.)と対極(C.E.)をR側に接続することで、回路の自然電位を0としている。
【0016】
得られた電位・電流関係の一例を図2に示す。同図はR=1kΩ、R=2kΩ、C=4700μFの場合の結果である。図2より、電位掃引速度が0.1mV/sのときの電位・電流関係は直線状であり、1mV/sのとき、膨らんだ形状となる。さらに掃引速度を10mV/sとしたとき、0.1mV/sのときよりも傾きの小さい、直線状となる。このことより、電位掃引速度によって電位・電流関係が直線状にならない場合があること、ならびに電位掃引速度によって得られる抵抗値が変化することが再現できた。
【0017】
つぎに、電位・電流関係において、要因を様々に変化させた時の、最も直線領域が得られやすい〔−10mV〕→〔+10mV〕の範囲における直線領域の傾きと電位掃引速度との関係を調べた。その一例を図3に示す。同図より、得られる抵抗値は電位掃引速度が遅い時にはR+Rとなり、掃引速度を速くするほどRに近づく結果となった。さらに、同図より、Rが大きいほど、またCが大きいほどRが得られやすいことが判る。このことから直線分極抵抗法によってR、Rを分離評価できることが明かとなった。
【0018】
また、直線分極抵抗法によって得られる抵抗値を理論的に解析した結果、直線分極抵抗法で得られる抵抗値は以下の式(1)で表されることを明らかにした。
Figure 2004226135
これにより、非常に速く電位を掃引し、計測時間tが0に近い時はRsが得られ(式(2))、非常にゆっくりと電位を掃引し、計測時間tが充分大きい時はRpが得られる(式(3))ことを証明した。
Figure 2004226135
Figure 2004226135
【0019】
以下、図4に示す鉄筋2が埋設されているモルタル試験体1について、分極抵抗を算出して腐食電流密度まで計算した実施例を説明する。ここでモルタル試験体1はφ50×96mm、鉄筋はφ9mmである。
【0020】
計測方法は、図5に示すように、鉄筋2を計測器3の作用極と接続し、コンクリート表面に参照電極4および対極5を設置し、これらを計測器3に接続する。計測器3は3電極方式のポテンシオスタットを用いた。
【0021】
これらについて、直線分極抵抗法で計測を行った。
【0022】
非常に速い電位掃引速度(環境抵抗を示す速度)として50mV/s、非常に遅い電位掃引速度(分極抵抗と環境抵抗の和を示す速度)として0.05mV/sを選択した。電位の変化は、〔自然電位〕→〔−10mV〕→〔+10mV〕→〔自然電位〕とした。
【0023】
まずはじめに、鉄筋の自然電位を測定した。その結果は−0.824Vであった。
【0024】
つぎに非常に速い電位掃引速度50mV/sで、自然電位(−0.824V)→−10mV(−0.834mV)→+10mV(0.814mV)→自然電位の範囲で計測を行った(図6の50mV/sの図)。
【0025】
理論式の検証から、時間が0に近い時、得られる抵抗は環境抵抗Rとなることがわかっているため、図6の▲1▼部分の傾き(△E/△I)を環境抵抗Rとした。そのときの結果は、R=278Ω・・・(4)である。
【0026】
それから非常に遅い電位掃引速度0.05mV/sで、自然電位(−0.824V)→−10mV(−0.834mV)→+10mV(0.814mV)→自然電位の範囲で計測を行った(図6の0.05mV/sの図)。
【0027】
理論式の検証から、時間が0が非常に大きい時、得られる抵抗は環境抵抗R+分極抵抗Rとなることがわかっているため、図6の▲2▼部分の傾きをR+Rとした。そのときの結果は、R+R=8872Ω・・・(5)である。
【0028】
(5)−(4)より、
(R+R)−R=R=8872Ω−278Ω=8594Ω・・・(6)
であり、(6)式より分極抵抗Rは8594Ωとなる。
【0029】
ここで、鉄筋の表面積Aは、28.113cmであったので、単位面積あたりの分極抵抗は、R’=8594×28.113=241603Ω・cm・・・(3)
となる(抵抗は面積に反比例するため、単位面積あたりの抵抗値は、得られた抵抗と面積の積となる)。
【0030】
腐食電流密度Icorrは、一般的に以下の式で表される。
Icorr=K/R’・・・(4)(ここでKは定数0.026V)
【0031】
(4)式に(3)を代入すると、
Icorr=0.026V/241603Ωcm=1.07×10 A/cm=0.107μA
が得られ、これが鉄筋の腐食速度と密接な関係がある腐食電流密度になる。
【0032】
なお、本手法を実構造物に適用する場合、図7に示すように、構造物の一部で鉄筋を露出させて作用極を接続し、コンクリート表面から参照電極4と対極5を押し当てる形となり、計測の方法は前述のように、まず鉄筋の自然電位を測定した後、自然電位から±10mV程度の範囲で非常に速く、次いで非常に遅く電位を掃引することで、環境抵抗、および環境抵抗と分極抵抗の和を測定し、分極抵抗を算出する。
【0033】
【発明の効果】
本発明は、上述のようにしてなるので、つぎの効果を有する。
【0034】
すなわち、非常に速く電位を掃引したとき、電位・電流関係は直線状となり、このときの電位・電流の傾きが環境抵抗を示し、非常にゆっくりと電位を掃引したとき、電位・電流関係は曲線状となり、このときの電位・電流関係の直線部分の傾きは、分極抵抗と環境抵抗の和を示すので、この2回の計測値の差から容易に分極抵抗を単独で得ることができる。
【0035】
したがって、既述したような、直接分極抵抗の利点を維持しつつ、その欠点を排除して、分極抵抗を求めることができ、腐食電流密度が算出でき、これをもとに鉄筋の腐食速度を評価することができる。
【図面の簡単な説明】
【図1】鉄筋コンクリートを模擬的に表した等価回路図である。
【図2】電位掃引速度の変化に伴う電位・電流関係の変化を示す図で、(A)は電位掃引速度が0.1mV/s、(B)は電位掃引速度が1mV/s、(C)は電位掃引速度が10mV/sのときの図である。
【図3】抵抗値と電位掃引速度の関係図で、(A)はC=1000μF、(B)はC=4700μF、(C)はC=9400μFのときの図である。
【図4】実施例に使用したモルタル試験体を示す斜視図である。
【図5】実施例の計測方法の概略図である。
【図6】実施例において、速度の変化に伴う電位・電流関係の変化を示す図である。
【図7】実構造物に本発明を適用した概略図である。
【符号の説明】
1 モルタル試験体
2 鉄筋
3 計測器
4 参照電極
5 対極[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for evaluating the corrosion rate of reinforcing steel in concrete using the linear polarization resistance method.
[0002]
[Prior art]
The problem of deterioration of concrete structures has been widely recognized, and interest in maintenance has been increasing. On the other hand, as reductions in public works expenses are called for, there is a need to establish a concept of so-called LCM (life cycle management) as a means for more effective and economical maintenance. When considering LCM, it is necessary to predict the future deterioration of a structure and select a countermeasure method according to it. However, it is said that the method of actually performing deterioration prediction at this stage is not well established. hard.
[0003]
The most important point when performing deterioration prediction is the evaluation of the deterioration rate. In particular, evaluation of the corrosion rate of the reinforcing steel is indispensable for the deterioration in which the corrosion of the reinforcing steel is a problem such as salt damage and neutralization.
[0004]
Due to the fact that rebar corrosion progresses electrochemically, the corrosion current density generated by the electrochemical reaction is directly related to the rebar corrosion rate.
[0005]
It is very difficult to directly measure the corrosion current density from the outside because the corrosion current balances in the reinforcing steel and surrounding concrete. Therefore, a method of estimating the corrosion current density from the potential-current relationship when the rebar is polarized, and a method of estimating the corrosion current density from the polarization resistance when the rebar is polarized are generally used.
[0006]
At present, polarization curve Tafel extrapolation, AC impedance method, and linear polarization resistance method are widely used as methods for estimating the corrosion rate of reinforcing steel in concrete, but each has advantages and disadvantages, and there is no reliable method at this time. . Therefore, establishment of a more accurate method of evaluating the corrosion rate of reinforcing steel is required.
[0007]
The present invention is a measurement method capable of individually evaluating environmental resistance and polarization resistance by a linear polarization resistance method which is a relatively simple measurement, and evaluating a corrosion rate.
[0008]
The linear polarization resistance method is a method in which the gradient of the potential-current relationship obtained linearly when the potential is swept within the range of ± 10 mV from the spontaneous potential of the reinforcing bar is used as the polarization resistance, and simplicity of measurement can be obtained. There is an advantage that handling of values is simple.
[0009]
[Problems to be solved by the invention]
However, the obtained resistance value includes environmental resistance such as concrete resistance and solution resistance other than polarization resistance, and there is a problem that these resistances cannot be separated. In addition, the resistance value obtained by the potential sweep speed changes greatly, and a linear potential-current relationship may not be obtained. These are all due to the specificity of the reinforcing steel in concrete.
[0010]
[Means for Solving the Problems]
The present invention intends to solve these problems by separating and evaluating polarization resistance and environmental resistance in a linear polarization resistance method by utilizing a difference in resistance value that changes according to a difference in potential sweep speed.
[0011]
In the linear polarization resistance method, the potential is swept within a range of about ± 10 mV with respect to the spontaneous potential of the reinforcing bar obtained from the reinforcing bar and the reference electrode, and the potential difference between the reinforcing bar and the reference electrode obtained at that time is changed. A polarization resistance closely related to the corrosion rate of the reinforcing bar is obtained from the relationship of the change in the current flowing through the steel.
[0012]
In the present invention, in the linear polarization resistance method, a potential sweep is performed at a very high speed at which environmental resistance is obtained, and a potential sweep is performed at a very low speed at which the sum of environmental resistance and polarization resistance is obtained. It is an object of the present invention to provide a method for evaluating a corrosion rate of a reinforcing bar by obtaining a polarization resistance from a resistance and a difference between an environmental resistance and a sum of a polarization resistance.
[0013]
Embodiment
First, in order to verify the problem with the linear polarization resistance method described above, the circuit shown in FIG. 1 was assembled using commercially available resistors and capacitors whose values are known, using the experimental factors shown in Table 1, and measurement was performed using the linear polarization resistance method. went. 1 showing the reinforced concrete simulatively, the simplest equivalent circuit model, R s is concrete resistance, R p is the polarization resistance, C p denotes a capacitor component by electric double layer rebar surface.
[0014]
Figure 2004226135
Figure 2004226135
[0015]
At the time of measurement, the potential change was [natural potential] → [−10 mV] → [+10 mV] → [natural potential]. In this measurement system, as shown in FIG. 1, the working electrode (WE) is R p , the reference electrode (RE) and the counter electrode (CE) are R s on the C p side. Side, the natural potential of the circuit is set to zero.
[0016]
FIG. 2 shows an example of the obtained potential-current relationship. The figure is the result of the case of R s = 1kΩ, R p = 2kΩ, C p = 4700μF. As shown in FIG. 2, the potential-current relationship is linear when the potential sweep speed is 0.1 mV / s, and expands when the potential sweep speed is 1 mV / s. Further, when the sweep speed is set to 10 mV / s, it becomes a straight line having a smaller inclination than when the sweep speed is set to 0.1 mV / s. From this, it was possible to reproduce that the potential-current relationship may not be linear depending on the potential sweep speed, and that the resistance obtained by the potential sweep speed changes.
[0017]
Next, the relationship between the gradient of the linear region and the potential sweep speed in the range of [−10 mV] → [+10 mV] where the linear region is most easily obtained when the factors are variously changed in the potential / current relationship is examined. Was. An example is shown in FIG. As shown in the figure, the obtained resistance value is R s + R p when the potential sweep speed is low, and the resistance value approaches R s as the sweep speed increases. Furthermore, from the figure, the more R p is large, also C p the larger R s It can be seen easily obtained. From this, it became clear that R s and R p can be separately evaluated by the linear polarization resistance method.
[0018]
Moreover, as a result of theoretically analyzing the resistance value obtained by the linear polarization resistance method, it was clarified that the resistance value obtained by the linear polarization resistance method was represented by the following equation (1).
Figure 2004226135
Thereby, the potential is swept very quickly, and Rs is obtained when the measurement time t is close to 0 (Equation (2)), and the potential is swept very slowly, and when the measurement time t is sufficiently large, Rp is obtained. It was proved that (formula (3)) was obtained.
Figure 2004226135
Figure 2004226135
[0019]
Hereinafter, an example of calculating the polarization resistance and calculating the corrosion current density of the mortar specimen 1 in which the reinforcing bar 2 is embedded shown in FIG. 4 will be described. Here, the mortar specimen 1 is φ50 × 96 mm, and the rebar is φ9 mm.
[0020]
In the measuring method, as shown in FIG. 5, the reinforcing bar 2 is connected to the working electrode of the measuring device 3, the reference electrode 4 and the counter electrode 5 are installed on the concrete surface, and these are connected to the measuring device 3. The measuring device 3 used a three-electrode type potentiostat.
[0021]
These were measured by the linear polarization resistance method.
[0022]
50 mV / s was selected as a very fast potential sweeping speed (speed indicating environmental resistance) and 0.05 mV / s as a very slow potential sweeping speed (speed indicating the sum of polarization resistance and environmental resistance). The change of the potential was [natural potential] → [−10 mV] → [+10 mV] → [natural potential].
[0023]
First, the spontaneous potential of the reinforcing bar was measured. The result was -0.824V.
[0024]
Next, at a very high potential sweep speed of 50 mV / s, measurement was performed in the range of natural potential (−0.824 V) → −10 mV (−0.834 mV) → + 10 mV (0.814 mV) → natural potential (FIG. 6). 50 mV / s diagram).
[0025]
When close to the verification of the theoretical equation, the time is 0, the resistance obtained is found to be environmental resistance R s, environmental resistance slope (△ E / △ I) of ▲ 1 ▼ portion of FIG 6 R s . The result at that time is R s = 278Ω (4).
[0026]
Then, at a very low potential sweep rate of 0.05 mV / s, measurement was performed in the range of natural potential (−0.824 V) → −10 mV (−0.834 mV) → + 10 mV (0.814 mV) → natural potential (FIG. 6, 0.05 mV / s).
[0027]
The verification of the theoretical formula, when time is very large 0, the resistance obtained is found to be environmental resistance R s + polarization resistance R p, the tilt of the ▲ 2 ▼ portion of FIG 6 R s + R p . The result at that time is R s + R p = 8872Ω (5).
[0028]
From (5)-(4),
(R s + R p) -R s = R p = 8872Ω-278Ω = 8594Ω ··· (6)
, And the becomes 8594Ω polarization resistance R p from equation (6).
[0029]
Here, the surface area A of the rebar, so was 28.113Cm 2, polarization resistance per unit area, R p '= 8594 × 28.113 = 241603Ω · cm 2 ··· (3)
(Since the resistance is inversely proportional to the area, the resistance value per unit area is the product of the obtained resistance and the area).
[0030]
The corrosion current density Icorr is generally represented by the following equation.
Icorr = K / R p ′ (4) (where K is a constant of 0.026 V)
[0031]
Substituting (3) into equation (4) gives
Icorr = 0.026V / 241603Ωcm 2 = 1.07 × 10 - 7 A / cm 2 = 0.107μA
Which results in a corrosion current density that is closely related to the corrosion rate of the rebar.
[0032]
When this method is applied to a real structure, as shown in FIG. 7, a part of the structure exposes a reinforcing bar, connects the working electrode, and presses the reference electrode 4 and the counter electrode 5 from the concrete surface. As described above, the measurement method is to first measure the spontaneous potential of the reinforcing bar, and then sweep the potential very quickly within a range of about ± 10 mV from the spontaneous potential, and then very slowly, thereby obtaining environmental resistance and environmental resistance. The sum of the resistance and the polarization resistance is measured, and the polarization resistance is calculated.
[0033]
【The invention's effect】
Since the present invention is configured as described above, it has the following effects.
[0034]
That is, when the potential is swept very quickly, the relationship between the potential and the current becomes linear, and the slope of the potential and current at this time indicates the environmental resistance. Since the slope of the linear portion of the potential-current relationship at this time indicates the sum of the polarization resistance and the environmental resistance, the polarization resistance can be easily obtained independently from the difference between the two measured values.
[0035]
Therefore, while maintaining the advantages of direct polarization resistance as described above, the disadvantages can be eliminated and the polarization resistance can be obtained, the corrosion current density can be calculated, and the corrosion rate of the reinforcing steel can be calculated based on this. Can be evaluated.
[Brief description of the drawings]
FIG. 1 is an equivalent circuit diagram schematically showing reinforced concrete.
FIGS. 2A and 2B are diagrams showing a change in a potential-current relationship with a change in a potential sweep speed. FIG. 2A shows a potential sweep speed of 0.1 mV / s, FIG. 2B shows a potential sweep speed of 1 mV / s, and FIG. () Is a diagram when the potential sweep speed is 10 mV / s.
[3] in relation diagram of the resistance value and the potential sweep rate, (A) is C p = 1000μF, (B) is C p = 4700μF, (C) is a diagram when the C p = 9400μF.
FIG. 4 is a perspective view showing a mortar specimen used in the examples.
FIG. 5 is a schematic diagram of a measurement method according to an embodiment.
FIG. 6 is a diagram showing a change in a potential-current relationship with a change in speed in the example.
FIG. 7 is a schematic diagram in which the present invention is applied to an actual structure.
[Explanation of symbols]
1 Mortar specimen 2 Reinforcing bar 3 Measuring instrument 4 Reference electrode 5 Counter electrode

Claims (1)

鉄筋の自然電位に対して、±10mV程度の電位のもとで環境抵抗が得られる非常に速い速度での電位掃引を行うとともに、分極抵抗と環境抵抗の和が得られる非常に遅い速度での電位掃引を行い、得られた環境抵抗、および分極抵抗と環境抵抗の和との差から分極抵抗を求めることを特徴とする鉄筋の腐食速度の評価方法。The potential sweep is performed at a very high speed at which the environmental resistance is obtained at a potential of about ± 10 mV with respect to the spontaneous potential of the reinforcing bar, and at the very low speed at which the sum of the polarization resistance and the environmental resistance is obtained. A method for evaluating the corrosion rate of a reinforcing bar, comprising performing a potential sweep, and obtaining a polarization resistance from the obtained environmental resistance and a difference between the polarization resistance and the sum of the environmental resistances.
JP2003011803A 2003-01-21 2003-01-21 Method for evaluating corrosion rate of reinforcing bar Pending JP2004226135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003011803A JP2004226135A (en) 2003-01-21 2003-01-21 Method for evaluating corrosion rate of reinforcing bar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003011803A JP2004226135A (en) 2003-01-21 2003-01-21 Method for evaluating corrosion rate of reinforcing bar

Publications (1)

Publication Number Publication Date
JP2004226135A true JP2004226135A (en) 2004-08-12

Family

ID=32900598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003011803A Pending JP2004226135A (en) 2003-01-21 2003-01-21 Method for evaluating corrosion rate of reinforcing bar

Country Status (1)

Country Link
JP (1) JP2004226135A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008291441A (en) * 2007-05-22 2008-12-04 Ihi Corp Maintenance management method for concrete structure
CN110095404A (en) * 2019-05-06 2019-08-06 上海电力学院 Corrosion of Stainless Steel state monitoring method and device in a kind of aqueous medium
CN116840138A (en) * 2023-09-01 2023-10-03 中铁十七局集团第二工程有限公司 Three-pipe communicating vessel type reinforcing steel bar anodic polarization test device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008291441A (en) * 2007-05-22 2008-12-04 Ihi Corp Maintenance management method for concrete structure
CN110095404A (en) * 2019-05-06 2019-08-06 上海电力学院 Corrosion of Stainless Steel state monitoring method and device in a kind of aqueous medium
CN116840138A (en) * 2023-09-01 2023-10-03 中铁十七局集团第二工程有限公司 Three-pipe communicating vessel type reinforcing steel bar anodic polarization test device
CN116840138B (en) * 2023-09-01 2023-12-12 中铁十七局集团第二工程有限公司 Three-pipe communicating vessel type reinforcing steel bar anodic polarization test device

Similar Documents

Publication Publication Date Title
Gonzalez et al. On-site determination of corrosion rate in reinforced concrete structures by use of galvanostatic pulses
Julio-Betancourt et al. Study of the Joule effect on rapid chloride permeability values and evaluation of related electrical properties of concretes
JP6712543B2 (en) Corrosion amount estimation device and method
Nygaard et al. Corrosion rate of steel in concrete: evaluation of confinement techniques for on-site corrosion rate measurements
Sagüés et al. Kelvin Probe electrode for contactless potential measurement on concrete–Properties and corrosion profiling application
JP2020051894A (en) Device of corrosiveness evaluation and method thereof
JP2013242163A (en) Corrosion progress prediction method and corrosion progress prediction apparatus
Yu et al. Wenner method of impedance measurement for health evaluation of reinforced concrete structures
WO2019225727A1 (en) Corrosion rate estimating device and method
JP2003107025A (en) Method for calculating corrosion rate of macrocell in concrete member
JPH05340907A (en) Diagnosing method of corrosion of reinforcing rod or the like in concrete
Ahmad et al. A simple arrangement and procedure for in-situ measurement of corrosion rate of rebar embedded in concrete
JP6338238B2 (en) Concrete body chloride concentration measuring system and concrete body chloride concentration measuring method
JP2004226135A (en) Method for evaluating corrosion rate of reinforcing bar
JP2007017405A (en) Method for evaluating reinforcement corrosion rate
JPH09329568A (en) Method and apparatus for diagnosis of corrosion probability or corrosion degree of reinforcing bar in concrete structure
JP3968297B2 (en) Reinforcement corrosion measurement method inside concrete
JP2010127851A (en) Apparatus and method for measuring earth resistivity for use in power distribution using three electrodes
Flis et al. Assessment of data from three electrochemical instruments for evaluation of reinforcement corrosion rates in concrete bridge components
JP2002296213A (en) Corrosion evaluation method and database
JP2020153782A (en) Corrosion detection device, corrosion detection method, and corrosion detection program
Reichling et al. Method to determine electrochemical potential gradients without reinforcement connection in concrete structures
JP2019100755A (en) Corrosion amount estimation device and method therefor
JP7141006B2 (en) Corrosivity predictor and method
Feliu et al. Nonexponential transients resulting from application of the interruption technique to assess corrosion rate of steel in concrete

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20040409

Free format text: JAPANESE INTERMEDIATE CODE: A821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060329

A02 Decision of refusal

Effective date: 20060628

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060728