JP2004226012A - Duct type air conditioner - Google Patents

Duct type air conditioner Download PDF

Info

Publication number
JP2004226012A
JP2004226012A JP2003015477A JP2003015477A JP2004226012A JP 2004226012 A JP2004226012 A JP 2004226012A JP 2003015477 A JP2003015477 A JP 2003015477A JP 2003015477 A JP2003015477 A JP 2003015477A JP 2004226012 A JP2004226012 A JP 2004226012A
Authority
JP
Japan
Prior art keywords
heat exchanger
indoor heat
duct
indoor
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003015477A
Other languages
Japanese (ja)
Inventor
Yasuto Kumashiro
靖人 熊城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2003015477A priority Critical patent/JP2004226012A/en
Publication of JP2004226012A publication Critical patent/JP2004226012A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a duct type air conditioner capable of concurrently applying comfortable air conditioning of even wind volume by one indoor unit to two different rooms with different air duct resistance of ducts by providing a ventilation passage comprising two systems of indoor heat exchangers with different capacities and blowers with different wind volumes in one indoor unit. <P>SOLUTION: Two systems of a first indoor heat exchanger 7a of a large capacity and a second indoor heat exchanger 7b of a small capacity are arranged, a first blower 9a of a large wind volume is arranged on the first indoor heat exchanger 7a, a second blower 9b of a small wind volume is arranged on the second indoor heat exchanger 7b, a suction duct 10a and a blowout duct 10c of large air duct resistance are connected to a suction opening and a blowout opening of a first ventilation passage 8a, a suction duct 10b and a blowout duct 10d with small air duct resistance are connected to a suction opening and a blowout opening of a second ventilation passage 8b, and more refrigerant than to the second indoor heat exchanger 7b is sent to the first indoor heat exchanger 7a during ordinary air conditioning operation. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ダクト式空気調和機に係わり、より詳しくは、1つの室内機に2系統の容量の異なる室内熱交換器と、風量の異なる送風機からなる通風路を設け、2つの異なる風路抵抗のダクトに対応する室内機の構成に関する。
【0002】
【従来の技術】
複数の部屋を有するビルディング等では、冷凍サイクルおよびファンの運転によって空調用空気(冷気または暖気)を得、それをダクトで複数の部屋に分配供給するタイプのダクト式空気調和機が使用される。
従来のこの種のダクト式空気調和機は、例えば図4に示すように、調温空気を形成するためのユニット1’と、このユニット1’に夫々つながれ複数の被空調域25,26,27へ前記調温空気を導びくダクト5’,6’,7’とを備え、ユニット1’内に複数のダクト5’,6’,7’へ個々につながる通風路8’,9’,10’ と、これら通風路8’,9’,10’ に夫々配置される熱交換器11’,12’,13’ と、夫々の通風路へ風を送り込む送風機50とを設け、夫々の熱交換器の冷媒制御弁14’,15’,16’ の弁開度を夫々の被空調域25,26,27の負荷に応じて制御する第1の制御器17’,18’,19’ と、ユニットの運転中は送風機の回転数を略一定に保つ第2の制御器33とを備えるようにしたものである(例えば、特許文献1。)。
【0003】
上記構成において、この被空調域25,26,27の負荷が変化しても、この被空調域へ導入される調温空気量を所定値に保ちつつこの調温空気の温度のみを変えるようにしたので、この被空調域での換気量を所定量確実に保って負荷に見合った空調することができる。
【0004】
調温空気を形成するためのユニットと被空調域との距離が、大幅に離れている部屋と近い部屋の2種類が存在する場合、ダクトの長さにより、ダクトの風路抵抗が異なり、送風機の吹出し口における必要な静圧が大幅に異なる。
しかしながら、上記従来例は、送風機50が共通のファンモータ54により動作さ、送風機の回転数を一定に保たれているため、同時に空調しようとする場合、ユニットからの距離が近い部屋にユニットから吹き出された風の多くが流れ込み、ユニットからの距離が大幅に離れている部屋においては十分な空調を行うための風量が確保できない。更に、吹出し口における静圧が低下することによって、熱交換器を通過する風量が大幅に増加した場合は、冷房運転においては蒸発能力の増加により圧力及び圧縮機の吐出温度が大幅に上昇したり、暖房運転においては凝縮能力の増加により、室外機側熱交換器が着霜し易くなるという恐れがある。
【0005】
【特許文献1】
特開平5−118580号公報(要約、第1図)
【0006】
【発明が解決しようとする課題】
本発明においては、前記問題点に鑑み、1つの室内機に2系統の容量の大小異なる室内熱交換器と、風量の大小異なる送風機からなる通風路を設けることにより、ダクトの風路抵抗が異なる2つの部屋へ、同時に1台の室内機で風量が均一で快適な空調を行うことができるダクト式空気調和機を提供することを目的としている。
【0007】
【課題を解決するための手段】
本発明は上記の課題を解決するためになされたもので、圧縮機と、四方弁と、室外熱交換器と、膨張弁を備えた室外機と、室内熱交換器を備えた室内機とからなり、これらを冷媒配管により順次配管接続して冷媒回路を構成し、前記室内機と夫々区画された複数の部屋とを、夫々吸込ダクトと吹出ダクトにより接続してなるダクト式空気調和機において、
前記室内熱交換器を容量が異なる大容量の第一室内熱交換器と、小容量の第二室内熱交換器の2系統で構成し、前記膨張弁と前記第一室内熱交換器および前記第二室内熱交換器とを、流量抵抗の異なる二股の第一分岐管を介して接続するとともに、前記第一室内熱交換器および前記第二室内熱交換器と前記四方弁とを、同じく流量抵抗の異なる二股の第二分岐管を介して接続し、前記第一分岐管と前記第一室内熱交換器間に第一開閉弁を、前記第一分岐管と前記第二室内熱交換器間に第二開閉弁を夫々設け、
前記室内機内を仕切壁を介設して2系統の第一通風路と第二通風路とに区画し、前記第一通風路の吸込口と吹出口に風路抵抗の大きい吸込ダクトと吹出ダクトを接続するとともに、前記第二通風路の吸込口と吹出口に風路抵抗の小さい吸込ダクトと吹出ダクトを接続する一方、前記第一通風路に室内空気を吸込み前記第一室内熱交換器に送る大風量の第一送風機を、前記第二通風路に前記第二室内熱交換器に送る小風量の第二送風機を夫々配置し、
通常の冷暖房運転時に、前記第一開閉弁および前記第二開閉弁を開とし、前記第一分岐管および前記第二分岐管の流量抵抗差により、前記第二室内熱交換器より前記第一室内熱交換器の方へ冷媒を多く流すようにしてなる構成となっている。
【0008】
また、前記第一室内熱交換器および前記第二室内熱交換器に、冷房運転時に結氷を検知する温度センサを夫々設け、前記いずれか一方の温度センサが結氷を検知したとき、結氷した方の前記開閉弁を閉じると共に、前記室外熱交換器を送風する室外側送風機の回転数を所定数下げてなる構成となっている。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態を添付図面を参照して詳細に説明する。
図1は、本発明のダクト式空気調和機の概略構成図、図2は、本発明におけるダクト式空気調和機の冷媒回路図である。図1と図2において、1は室外機、2は圧縮機、3は四方弁、4は室外熱交換器、5は膨張弁、6は室内機、7aは第一室内熱交換器、7bは第二室内熱交換器、9aは第一送風機、9bは第二送風機、8aは第一通風路、8bは第二通風路、10a は第一吸込ダクト、10b は第二吸込ダクト、10c は第一吹出ダクト、10d は第二吹出ダクト、11は第一開閉弁、12は第一分岐管、13は第二開閉弁、14は第二分岐管、15は室外側送風機である。
【0010】
まず本発明のダクト式空気調和機の冷媒回路について説明すると、室外機1に収納された圧縮機2と、四方弁3と、室外熱交換器4と、膨張弁5と、室内機6に収納された大容量の第一室内熱交換器7a及び小容量の第二室内熱交換器7bとからなり、これらを順次配管接続して冷媒回路を構成している。
【0011】
前記膨張弁5と前記第一室内熱交換器7aおよび前記第二室内熱交換器7bの冷房時入口側とを、流量抵抗の異なる二股の第一分岐管12を介して接続する。このとき、前記第一分岐管12の流量抵抗の小さい(内径の太い)方を第一開閉弁11を介して前記第一室内熱交換器7aに接続し、前記第一分岐管12の流量抵抗の大きい(内径の細い)方を第二開閉弁13を介して前記第二室内熱交換器7bに接続する。
【0012】
また、前記第一室内熱交換器7aおよび前記第二室内熱交換器7bの冷房時入口側と前記四方弁3とを、流量抵抗の異なる二股の第二分岐管14を介して接続する。このとき、前記第二分岐管14の流量抵抗の小さい(内径の太い)方を前記第一室内熱交換器7a側に、流量抵抗の大きい(内径の細い)方を前記第二室内熱交換器7b側に接続する。
【0013】
前記室内機6内は、前記第一室内熱交換器7aと前記第二室内熱交換器7bとの間に仕切壁1aを介設して2系統の第一通風路8aと第二通風路8bが区画されている。そして、前記第一通風路8aには、室内空気を吸込み前記第一室内熱交換器7aに送るファンモータ9a1 を備えた大風量の第一送風機9aが設けられ、前記第二通風路8bには、室内空気を吸込み前記第二室内熱交換器7bに送るファンモータ9b1 を備えた小風量の第二送風機9bが設けられている。
【0014】
前記第一通風路8aの吸込口8a1 と吹出口8a2 には、前記室内機6と被空調室(A室)との距離が長く、ダクトの風路抵抗の大きい(吹出口にかかる静圧が高い)方の吸込ダクト10a 及び吹出ダクト10c を接続し、前記第二通風路8bの吸込口8b1 と吹出口8b2 には、前記室内機6と被空調室(B室)との距離が短く、ダクトの風路抵抗の小さい(吹出口にかかる静圧が低い)方の吸込ダクト10b 及び吹出ダクト10d を夫々接続した構成となっている。
【0015】
上記構成において、図2に示すように、前記第一室内熱交換器7aおよび前記第二室内熱交換器7bを、通常の同時冷房運転または同時暖房運転する場合は、前記第一開閉弁11及び前記第二開閉弁13を開き、前記四方弁3を切り替えにより、冷房運転時に実線矢印に示すように冷媒を流し、暖房運転時には破線矢印に示すように冷媒を流し、前記第一分岐管12及び前記第二分岐管14の内径の太い方が接続された前記第一室内熱交換器7aの方へ冷媒量を多く流す構成となっている。
この結果、室内機6から距離が遠くダクトが長い部屋と、距離が近くダクトが短い部屋へ、同時に1台の室内機6で風量が均一で快適な空調を行うことができる。
【0016】
また、図3に示すように、前記第一室内熱交換器7aおよび前記第二室内熱交換器7bに、冷房運転時に結氷を検知する温度センサ16a,16b を夫々設け、前記いずれか一方の温度センサが結氷を検知したとき、結氷した方の前記第一開閉弁11または前記第二開閉弁13のいずれかを閉じると共に、前記室外熱交換器4を送風する室外側送風機15の回転数を所定数下げてなる構成とすることにより、室外熱交換器4の凝縮能力を下げることで、冷房運転中の室内熱交換器の方へ全ての冷媒が流れ込むことによる熱交換器の温度の低下を防ぐことが可能となる。
【0017】
以上説明したように、1つの室内機6に2系統の容量の大小異なる室内熱交換器7a,7b と、風量の大小異なる送風機9a,9b からなる通風路8a,8b を設け、通常の同時冷房運転または同時暖房運転する場合に、大容量の室内熱交換器7a側へ冷媒を多く流すことにより、ダクトの風路抵抗が異なる2つの部屋へ、同時に1台の室内機で風量が均一で快適な空調を行うことができるダクト式空気調和機となる。
【0018】
【発明の効果】
以上のように本発明によれば、1つの室内機に2系統の容量の大小異なる室内熱交換器と、風量の大小異なる送風機からなる通風路を設けることにより、ダクトの風路抵抗が異なる2つの部屋へ、同時に1台の室内機で風量が均一で快適な空調を行うことができるダクト式空気調和機となる。
【図面の簡単な説明】
【図1】本発明におけるダクト式空気調和機の概略構成図である。
【図2】本発明におけるダクト式空気調和機の冷媒回路図である。
【図3】本発明における他の実施例を示す冷媒回路図である。
【図4】従来例によるダクト式空気調和機の構成図である。
【符号の説明】
1 室外機
2 圧縮機
3 四方弁
4 室外熱交換器
5 膨張弁
6 室内機
7a 第一室内熱交換器
7b 第二室内熱交換器
8a 第一通風路
8b 第二通風路
9a 第一送風機
9b 第二送風機
10a 第一吸込ダクト
10b 第二吸込ダクト
10c 第一吹出ダクト
10d 第二吹出ダクト
11 第一開閉弁
12 第一分岐管
13 第二開閉弁
14 第二分岐管
15 室外側送風機
16a,16b 温度センサ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a duct type air conditioner, and more particularly, to a single indoor unit, which is provided with two indoor heat exchangers having different capacities and a ventilation path including blowers having different air volumes, and two different air path resistances. To a configuration of an indoor unit corresponding to the duct of (1).
[0002]
[Prior art]
In a building or the like having a plurality of rooms, a duct-type air conditioner of a type in which air for air-conditioning (cool air or warm air) is obtained by operating a refrigeration cycle and a fan, and the air is distributed to the plurality of rooms by ducts is used.
As shown in FIG. 4, for example, a conventional duct-type air conditioner of this type includes a unit 1 'for forming temperature-controlled air and a plurality of air-conditioned areas 25, 26, and 27 connected to the unit 1'. Ducts 5 ′, 6 ′, 7 ′ for guiding the temperature-controlled air to the air passages 8 ′, 9 ′, 10 that are individually connected to the plurality of ducts 5 ′, 6 ′, 7 ′ in the unit 1 ′. , And heat exchangers 11 ′, 12 ′, and 13 ′ disposed in the ventilation paths 8 ′, 9 ′, and 10 ′, respectively, and a blower 50 for sending air to the respective ventilation paths. First controllers 17 ', 18', 19 'for controlling the valve opening of the refrigerant control valves 14', 15 ', 16' of the heat exchanger in accordance with the loads on the respective air-conditioned areas 25, 26, 27; A second controller 33 that keeps the rotation speed of the blower substantially constant during operation of the unit is provided (for example, Patent Document 1).
[0003]
In the above configuration, even if the load of the air-conditioned areas 25, 26, and 27 changes, only the temperature of the temperature-controlled air is changed while the amount of the temperature-controlled air introduced into the air-conditioned areas is maintained at a predetermined value. Therefore, it is possible to reliably maintain a predetermined amount of ventilation in the air-conditioned area, and to perform air-conditioning appropriate for the load.
[0004]
When there are two types of rooms, a room where the unit for forming the conditioned air and the air-conditioned area are far apart and a room that is close to each other, the duct resistance differs depending on the length of the duct, and the blower The required static pressures at the outlets of the nozzles are significantly different.
However, in the above conventional example, since the blower 50 is operated by the common fan motor 54 and the rotation speed of the blower is kept constant, when air conditioning is to be performed at the same time, the air blows out from the unit to a room close to the unit. In a room where much of the blown wind flows and the distance from the unit is significantly large, it is not possible to secure a sufficient amount of air for performing air conditioning. Furthermore, if the air pressure passing through the heat exchanger is greatly increased due to a decrease in the static pressure at the outlet, the pressure and the discharge temperature of the compressor are significantly increased due to an increase in the evaporation capacity in the cooling operation. In the heating operation, the outdoor unit-side heat exchanger may be easily frosted due to an increase in the condensation capacity.
[0005]
[Patent Document 1]
JP-A-5-118580 (abstract, FIG. 1)
[0006]
[Problems to be solved by the invention]
In the present invention, in view of the above problems, the provision of a ventilation path including two indoor heat exchangers having different capacities and a blower having a different air volume in one indoor unit results in a difference in duct resistance of the duct. It is an object of the present invention to provide a duct type air conditioner capable of performing comfortable air conditioning with uniform air volume to one room at a time with one indoor unit.
[0007]
[Means for Solving the Problems]
The present invention has been made in order to solve the above problems, and includes a compressor, a four-way valve, an outdoor heat exchanger, an outdoor unit having an expansion valve, and an indoor unit having an indoor heat exchanger. In the duct type air conditioner, these are sequentially connected by a refrigerant pipe to form a refrigerant circuit, and the indoor unit and a plurality of compartments respectively partitioned are connected by a suction duct and an outlet duct, respectively.
The indoor heat exchanger is composed of two systems, a large-capacity first indoor heat exchanger having a different capacity, and a small-capacity second indoor heat exchanger, and the expansion valve, the first indoor heat exchanger, and the second indoor heat exchanger. The two indoor heat exchangers are connected via bifurcated first branch pipes having different flow resistances, and the first indoor heat exchanger and the second indoor heat exchanger and the four-way valve are similarly connected to the flow resistance. Connected via different bifurcated second branch pipes, a first on-off valve between the first branch pipe and the first indoor heat exchanger, between the first branch pipe and the second indoor heat exchanger Each provided with a second on-off valve,
The interior of the indoor unit is divided into two systems of a first ventilation path and a second ventilation path with a partition wall interposed therebetween, and a suction duct and a ventilation duct having a large air path resistance are provided at an inlet and an outlet of the first ventilation path. While connecting a suction duct and a blow duct having a small air path resistance to the suction port and the air outlet of the second ventilation path, suction the indoor air into the first ventilation path to the first indoor heat exchanger. The first blower of a large air volume to be sent, the second blower of a small air volume to be sent to the second indoor heat exchanger in the second ventilation path, respectively.
During a normal cooling / heating operation, the first on-off valve and the second on-off valve are opened, and the flow rate resistance difference between the first branch pipe and the second branch pipe causes the second indoor heat exchanger to output the first indoor heat exchanger. The configuration is such that a large amount of refrigerant flows toward the heat exchanger.
[0008]
Further, the first indoor heat exchanger and the second indoor heat exchanger are provided with respective temperature sensors for detecting ice formation during cooling operation, and when one of the temperature sensors detects ice formation, The on-off valve is closed and the number of rotations of the outdoor blower for blowing the outdoor heat exchanger is reduced by a predetermined number.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a schematic configuration diagram of a duct type air conditioner of the present invention, and FIG. 2 is a refrigerant circuit diagram of the duct type air conditioner of the present invention. 1 and 2, 1 is an outdoor unit, 2 is a compressor, 3 is a four-way valve, 4 is an outdoor heat exchanger, 5 is an expansion valve, 6 is an indoor unit, 7a is a first indoor heat exchanger, and 7b is A second indoor heat exchanger, 9a is a first blower, 9b is a second blower, 8a is a first ventilation path, 8b is a second ventilation path, 10a is a first suction duct, 10b is a second suction duct, 10c is a second ventilation duct. One outlet duct, 10d is a second outlet duct, 11 is a first on-off valve, 12 is a first branch pipe, 13 is a second on-off valve, 14 is a second branch pipe, and 15 is an outdoor blower.
[0010]
First, the refrigerant circuit of the duct type air conditioner of the present invention will be described. The compressor 2 housed in the outdoor unit 1, the four-way valve 3, the outdoor heat exchanger 4, the expansion valve 5, and the indoor unit 6 A large-capacity first indoor heat exchanger 7a and a small-capacity second indoor heat exchanger 7b are connected in series to form a refrigerant circuit.
[0011]
The expansion valve 5 is connected to the inlet side of the first indoor heat exchanger 7a and the second indoor heat exchanger 7b during cooling through a bifurcated first branch pipe 12 having a different flow resistance. At this time, the flow resistance of the first branch pipe 12 which is smaller (the inner diameter is larger) is connected to the first indoor heat exchanger 7a via the first on-off valve 11, and the flow resistance of the first branch pipe 12 is reduced. Is connected to the second indoor heat exchanger 7b via the second on-off valve 13.
[0012]
Further, the cooling-side inlet side of the first indoor heat exchanger 7a and the second indoor heat exchanger 7b and the four-way valve 3 are connected via a bifurcated second branch pipe 14 having a different flow resistance. At this time, the flow resistance of the second branch pipe 14 having a smaller flow rate (thicker inner diameter) is closer to the first indoor heat exchanger 7a, and the flow resistance of the second branch pipe 14 having a smaller flow rate (smaller inner diameter) is closer to the second indoor heat exchanger. 7b side.
[0013]
Inside the indoor unit 6, a partition wall 1a is interposed between the first indoor heat exchanger 7a and the second indoor heat exchanger 7b to provide two systems of a first ventilation passage 8a and a second ventilation passage 8b. Is partitioned. The first ventilation passage 8a is provided with a large-volume first blower 9a having a fan motor 9a1 for sucking room air and sending the air to the first indoor heat exchanger 7a. A small airflow second blower 9b having a fan motor 9b1 for sucking indoor air and sending it to the second indoor heat exchanger 7b is provided.
[0014]
The distance between the indoor unit 6 and the room to be air-conditioned (room A) is long, and the air passage resistance of the duct is large (the static pressure applied to the air outlet) is located at the inlet 8a1 and the air outlet 8a2 of the first air passage 8a. The higher (higher) intake duct 10a and the outlet duct 10c are connected, and the distance between the indoor unit 6 and the room to be air-conditioned (room B) is short at the inlet 8b1 and the outlet 8b2 of the second ventilation path 8b. The configuration is such that the suction duct 10b and the blowout duct 10d, each of which has smaller duct resistance (lower static pressure applied to the outlet), are connected to each other.
[0015]
In the said structure, as shown in FIG. 2, when the said 1st indoor heat exchanger 7a and the said 2nd indoor heat exchanger 7b perform normal simultaneous cooling operation or simultaneous heating operation, the said 1st on-off valve 11 and By opening the second on-off valve 13 and switching the four-way valve 3, a refrigerant flows as shown by a solid arrow during a cooling operation, and a refrigerant flows as shown by a dashed arrow during a heating operation, and the first branch pipe 12 and The larger amount of the refrigerant flows toward the first indoor heat exchanger 7a to which the larger inner diameter of the second branch pipe 14 is connected.
As a result, comfortable air conditioning can be performed with a single indoor unit 6 at the same time to a room where the distance is far from the indoor unit 6 and the duct is long and a room where the distance is short and the duct is short.
[0016]
As shown in FIG. 3, the first indoor heat exchanger 7a and the second indoor heat exchanger 7b are provided with temperature sensors 16a and 16b, respectively, for detecting icing during a cooling operation. When the sensor detects icing, either the first on-off valve 11 or the second on-off valve 13 of the icing is closed and the number of rotations of the outdoor blower 15 for blowing the outdoor heat exchanger 4 is determined. By reducing the number, the condensation capacity of the outdoor heat exchanger 4 is reduced, thereby preventing the temperature of the heat exchanger from lowering due to all the refrigerant flowing toward the indoor heat exchanger during the cooling operation. It becomes possible.
[0017]
As described above, one indoor unit 6 is provided with two systems of indoor heat exchangers 7a and 7b having different capacities and ventilation passages 8a and 8b composed of blowers 9a and 9b having different air volumes. During operation or simultaneous heating operation, a large amount of refrigerant flows to the large-capacity indoor heat exchanger 7a side, so that one indoor unit has a uniform and uniform air flow to two rooms with different duct path resistances at the same time. It becomes a duct type air conditioner that can perform various air conditioning.
[0018]
【The invention's effect】
As described above, according to the present invention, by providing a single indoor unit with a ventilation path including two systems of indoor heat exchangers having different capacities and blowers having different air volumes, the ducts have different air path resistances. It becomes a duct type air conditioner that can perform comfortable air-conditioning with uniform air volume by one indoor unit to one room at the same time.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a duct type air conditioner according to the present invention.
FIG. 2 is a refrigerant circuit diagram of the duct type air conditioner according to the present invention.
FIG. 3 is a refrigerant circuit diagram showing another embodiment of the present invention.
FIG. 4 is a configuration diagram of a conventional duct type air conditioner.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Outdoor unit 2 Compressor 3 Four-way valve 4 Outdoor heat exchanger 5 Expansion valve 6 Indoor unit 7a First indoor heat exchanger 7b Second indoor heat exchanger 8a First ventilation path 8b Second ventilation path 9a First blower 9b Two blowers 10a First suction duct 10b Second suction duct 10c First blow duct 10d Second blow duct 11 First open / close valve 12 First branch pipe 13 Second open / close valve 14 Second branch pipe 15 Outdoor blowers 16a, 16b Temperature Sensor

Claims (2)

圧縮機と、四方弁と、室外熱交換器と、膨張弁を備えた室外機と、室内熱交換器を備えた室内機とからなり、これらを冷媒配管により順次配管接続して冷媒回路を構成し、前記室内機と夫々区画された複数の部屋とを、夫々吸込ダクトと吹出ダクトにより接続してなるダクト式空気調和機において、
前記室内熱交換器を容量が異なる大容量の第一室内熱交換器と、小容量の第二室内熱交換器の2系統で構成し、前記膨張弁と前記第一室内熱交換器および前記第二室内熱交換器とを、流量抵抗の異なる二股の第一分岐管を介して接続するとともに、前記第一室内熱交換器および前記第二室内熱交換器と前記四方弁とを、同じく流量抵抗の異なる二股の第二分岐管を介して接続し、前記第一分岐管と前記第一室内熱交換器間に第一開閉弁を、前記第一分岐管と前記第二室内熱交換器間に第二開閉弁を夫々設け、
前記室内機内を仕切壁を介設して2系統の第一通風路と第二通風路とに区画し、前記第一通風路の吸込口と吹出口に風路抵抗の大きい吸込ダクトと吹出ダクトを接続するとともに、前記第二通風路の吸込口と吹出口に風路抵抗の小さい吸込ダクトと吹出ダクトを接続する一方、前記第一通風路に室内空気を吸込み前記第一室内熱交換器に送る大風量の第一送風機を、前記第二通風路に前記第二室内熱交換器に送る小風量の第二送風機を夫々配置し、
通常の冷暖房運転時に、前記第一開閉弁および前記第二開閉弁を開とし、前記第一分岐管および前記第二分岐管の流量抵抗差により、前記第二室内熱交換器より前記第一室内熱交換器の方へ冷媒を多く流すようにしてなることを特徴とするダクト式空気調和機。
It consists of a compressor, a four-way valve, an outdoor heat exchanger, an outdoor unit equipped with an expansion valve, and an indoor unit equipped with an indoor heat exchanger, and these are sequentially connected by refrigerant piping to form a refrigerant circuit. In the duct type air conditioner, the indoor unit and the plurality of rooms respectively partitioned are connected by a suction duct and an outlet duct, respectively.
The indoor heat exchanger is composed of two systems, a large-capacity first indoor heat exchanger having a different capacity, and a small-capacity second indoor heat exchanger, and the expansion valve, the first indoor heat exchanger, and the second indoor heat exchanger. The two indoor heat exchangers are connected via bifurcated first branch pipes having different flow resistances, and the first indoor heat exchanger and the second indoor heat exchanger and the four-way valve are similarly connected to the flow resistance. Connected via different bifurcated second branch pipes, a first on-off valve between the first branch pipe and the first indoor heat exchanger, between the first branch pipe and the second indoor heat exchanger Each provided with a second on-off valve,
The interior of the indoor unit is divided into two systems of a first ventilation path and a second ventilation path with a partition wall interposed therebetween, and a suction duct and a ventilation duct having a large air path resistance are provided at an inlet and an outlet of the first ventilation path. While connecting a suction duct and a blow duct having a small air path resistance to the suction port and the air outlet of the second ventilation path, suction the indoor air into the first ventilation path to the first indoor heat exchanger. The first blower of a large air volume to be sent, the second blower of a small air volume to be sent to the second indoor heat exchanger in the second ventilation path, respectively.
During a normal cooling / heating operation, the first on-off valve and the second on-off valve are opened, and the flow rate resistance difference between the first branch pipe and the second branch pipe causes the second indoor heat exchanger to output the first indoor heat exchanger. A duct type air conditioner characterized by allowing a large amount of refrigerant to flow toward a heat exchanger.
前記第一室内熱交換器および前記第二室内熱交換器に、冷房運転時に結氷を検知する温度センサを夫々設け、前記いずれか一方の温度センサが結氷を検知したとき、結氷した方の前記開閉弁を閉じると共に、前記室外熱交換器を送風する室外側送風機の回転数を所定数下げてなることを特徴とする請求項1記載のダクト式空気調和機。The first indoor heat exchanger and the second indoor heat exchanger are each provided with a temperature sensor that detects icing during cooling operation, and when one of the temperature sensors detects icing, the opening and closing of the icing is performed. 2. The duct-type air conditioner according to claim 1, wherein a valve is closed and a rotation number of an outdoor blower for blowing the outdoor heat exchanger is reduced by a predetermined number.
JP2003015477A 2003-01-24 2003-01-24 Duct type air conditioner Pending JP2004226012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003015477A JP2004226012A (en) 2003-01-24 2003-01-24 Duct type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003015477A JP2004226012A (en) 2003-01-24 2003-01-24 Duct type air conditioner

Publications (1)

Publication Number Publication Date
JP2004226012A true JP2004226012A (en) 2004-08-12

Family

ID=32903215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003015477A Pending JP2004226012A (en) 2003-01-24 2003-01-24 Duct type air conditioner

Country Status (1)

Country Link
JP (1) JP2004226012A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120132917A (en) * 2011-05-30 2012-12-10 한라공조주식회사 Rear air conditioner for vehicles
WO2015025342A1 (en) * 2013-08-22 2015-02-26 三菱電機株式会社 Indoor unit for air conditioner
US20170241653A1 (en) * 2016-02-22 2017-08-24 Tower Labs @MaRS Research Alliance Multi-zone air handler and method for using the same
WO2018176333A1 (en) * 2017-03-30 2018-10-04 广东美的制冷设备有限公司 Indoor unit of air conditioner, and control method thereof
CN114110785A (en) * 2021-11-23 2022-03-01 珠海格力电器股份有限公司 Heat exchange air port structure, control method thereof and air conditioner

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120132917A (en) * 2011-05-30 2012-12-10 한라공조주식회사 Rear air conditioner for vehicles
KR101692229B1 (en) 2011-05-30 2017-01-03 한온시스템 주식회사 Rear air conditioner for vehicles
WO2015025342A1 (en) * 2013-08-22 2015-02-26 三菱電機株式会社 Indoor unit for air conditioner
JP6038328B2 (en) * 2013-08-22 2016-12-07 三菱電機株式会社 Air conditioner indoor unit
US10473340B2 (en) 2013-08-22 2019-11-12 Mitsubishi Electric Corporation Indoor unit for air-conditioning apparatus
US20170241653A1 (en) * 2016-02-22 2017-08-24 Tower Labs @MaRS Research Alliance Multi-zone air handler and method for using the same
WO2018176333A1 (en) * 2017-03-30 2018-10-04 广东美的制冷设备有限公司 Indoor unit of air conditioner, and control method thereof
CN114110785A (en) * 2021-11-23 2022-03-01 珠海格力电器股份有限公司 Heat exchange air port structure, control method thereof and air conditioner

Similar Documents

Publication Publication Date Title
US20220214072A1 (en) Fan unit, fan unit system, and air treatment system
JP2009257709A (en) Air conditioner
US7624587B2 (en) Multi-stage operation type air conditioner
WO2011086979A1 (en) Air conditioner
JP4107333B2 (en) Ceiling-mounted air conditioner
JP2004226012A (en) Duct type air conditioner
JP2004360951A (en) Air conditioner
US6272880B1 (en) Air conditioner
JP7181477B2 (en) air conditioning system
WO2020213655A1 (en) Air conditioning system
JP4520960B2 (en) Ventilation system
JP6745895B2 (en) Air conditioning system
WO2017138110A1 (en) Air conditioning device
JPH03164647A (en) Air conditioner
JP7227502B2 (en) air conditioning ventilation system
JP3976561B2 (en) Air conditioner
WO2023148854A1 (en) Heat-exchange-type ventilation device
JP7189472B2 (en) air conditioning system
JPH0587417A (en) Dehumidifying device
US20240117978A1 (en) Ventilator
JP2003336888A (en) Air conditioner
KR20080065178A (en) Multi air conditioner using one indoor unit
JP2023005592A (en) Ventilation device
JPH06201154A (en) Air-conditioner
JPH04257636A (en) Air conditioner