JP2004224643A - Cubic tin-tantalum compound oxide and its manufacturing method - Google Patents

Cubic tin-tantalum compound oxide and its manufacturing method Download PDF

Info

Publication number
JP2004224643A
JP2004224643A JP2003014876A JP2003014876A JP2004224643A JP 2004224643 A JP2004224643 A JP 2004224643A JP 2003014876 A JP2003014876 A JP 2003014876A JP 2003014876 A JP2003014876 A JP 2003014876A JP 2004224643 A JP2004224643 A JP 2004224643A
Authority
JP
Japan
Prior art keywords
oxygen
pyrochlore
composite oxide
precursor
cubic tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003014876A
Other languages
Japanese (ja)
Other versions
JP4232464B2 (en
Inventor
Shinya Matsuo
伸也 松尾
Takahisa Komata
孝久 小俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2003014876A priority Critical patent/JP4232464B2/en
Publication of JP2004224643A publication Critical patent/JP2004224643A/en
Application granted granted Critical
Publication of JP4232464B2 publication Critical patent/JP4232464B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide novel compound which can be utilized as a photocatalyst and its manufacture method. <P>SOLUTION: The novel compound is expressed by chemical formula SnTaO<SB>4+x</SB>(where -0.25≤x≤0.5) and has a pyrochlore-related structure in which oxygen ion depletion viewed from a fluorite structure exists regularly and oxygen is filled in the oxygen depletion positions of the pyrochlore-type structure regularly arrayed with cations. The manufacture method comprises using the compound oxide Sn<SB>2</SB>Ta<SB>2</SB>O<SB>7</SB>of the pyrochlore-type structure as a precursor and subjecting the precursor to oxidation treatment for 2 to 120 hours at 250 to 700°C in gaseous oxygen or a mixed atmosphere composed of gaseous oxygen and inert gas. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、化学式SnTaO4+x(但し、−0.25≦x≦0.5)で表される新規化合物の立方晶系錫−タンタル複合酸化物に関するものである。
【0002】
【従来の技術】
【0003】
【非特許文献1】
S.O−Y−Matsuo,et al,J.Solid state chem.,138,47(1998)
【非特許文献2】
T.Omata, et al,J.Solid state chem.,147,573(1999)
【0004】
図5(a)に示されるパイロクロア型構造のCeZr7+yを、酸素雰囲気中において600℃で5時間酸化させると、図5(b)に示される準安定相のκ−CeZrOが出現することが非特許文献1に報告されている。
【0005】
また、κ−CeZrOは、パイロクロア型構造における陽イオンの規則配列を保ち、酸素の欠損部分に酸素が導入されたものであることが非特許文献2に示されている。そして、Ce3+→Ce4+のように陽イオンがより高い価数をとることができ、酸素が入ることのできるサイトがあれば他の系においても新規化合物を合成できる可能性が指摘されていた。
【0006】
そこで、本発明者らは上記非特許文献2に示された技術的手法に従い、産業上利用することが可能な新規化合物の発見を目指して鋭意努力した。
【0007】
その結果、ある特定の系について、その前駆体を酸素ガス中若しくは酸素ガスと不活性ガスの混合雰囲気中で酸化処理した場合に上記前駆体とは異なる新規な化合物が得られることを発見し、かつ、この化合物は産業上利用できる用途を有するものであった。
【0008】
具体的には、パイロクロア型構造の複合酸化物SnTaを前駆体とし、酸素ガス中若しくは酸素ガスと不活性ガスの混合雰囲気中で酸化処理した場合、蛍石型構造からみて酸素イオン欠損が規則的に存在しかつ陽イオンが規則配列したパイロクロア型構造の酸素欠損位置に酸素が充填されたパイロクロア関連構造を有する錫−タンタル複合酸化物が得られることを見出すに至った。
【0009】
【発明が解決しようとする課題】
そこで、本発明の課題とするところは、上記技術的手法に従い、産業上利用できるこの新規な化合物とその製造方法を提供することにある。
【0010】
【課題を解決するための手段】
すなわち、請求項1に係る発明は、
新規化合物としての立方晶系錫−タンタル複合酸化物を前提とし、
化学式SnTaO4+x(但し、−0.25≦x≦0.5)で表されると共に、蛍石型構造からみて酸素イオン欠損が規則的に存在しかつ陽イオンが規則配列したパイロクロア型構造の酸素欠損位置に酸素が充填されたパイロクロア関連構造を有していることを特徴とするである。
【0011】
また、請求項2に係る発明は、
請求項1記載の発明に係る立方晶系錫−タンタル複合酸化物を前提とし、
粉末のX線回折データ(ターゲットCuKα線,波長0.154056nm)並びに格子定数が、
【0012】
【表2】

Figure 2004224643
格子定数 a=1.0171±0.006nm
であることを特徴とする。
【0013】
次に、請求項3に係る発明は、
請求項1または2記載の立方晶系錫−タンタル複合酸化物の製造方法を前提とし、
パイロクロア型構造の複合酸化物SnTaを前駆体とし、この前駆体を酸素ガス中若しくは酸素ガスと不活性ガスの混合雰囲気中、250℃〜700℃で2〜120時間酸化処理することを特徴とする。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態について詳細に説明する。
【0015】
まず、本発明の新規化合物に係る立方晶系錫−タンタル複合酸化物は、上述したように化学式SnTaO4+x(但し、−0.25≦x≦0.5)で表されると共に、蛍石型構造からみて酸素イオン欠損が規則的に存在しかつ陽イオンが規則配列したパイロクロア型構造の酸素欠損位置に酸素が充填されたパイロクロア関連構造を有していることを特徴とするものである。
【0016】
そして、上記新規化合物の前駆体であるパイロクロア型構造の複合酸化物は、通常の固相法、すなわち原料となる各金属成分の酸化物または炭酸塩や硝酸塩等の塩類を目的組成比で混合し焼成することで合成される。但し、これ以外の湿式法あるいは気相法で合成しても当然のことながらよい。具体的には、パイロクロア型構造の上記複合酸化物SnTaは以下のように製造される。
【0017】
まず、SnO(3Nすなわち純度99.9%)とTaを原料とし、モル比で2:1に秤量し、めのう乳鉢、ボールミル等で混合し、100MPa程度の圧力で5〜20mmφ程度の円盤状に圧粉成形する。
【0018】
その後、この成形体をガラスアンプルに投入し、1×10−4Pa以下に真空引きして封入し、かつ、約900〜1000℃、5時間で焼成した後、室温まで冷却してパイロクロア型構造の複合酸化物が得られる。尚、焼成物中にはパイロクロア型構造の複合酸化物と共に微量のSn金属が含まれている場合があり、この金属Snを除去するため、硝酸で洗浄を行うことが好ましい。
【0019】
次に、前駆体であるパイロクロア型構造の複合酸化物をアルミナるつぼに投入し、シリカガラス管内に置くと共に加熱炉内に配置する。このとき、炉温度上昇中は酸化防止のため真空ポンプにより真空引きを行う。そして、炉温が250℃〜700℃に到達したとき、真空引きを止め、酸素ガス中若しくは酸素ガスと不活性ガスの混合雰囲気中、2〜120時間かけて酸化する。
【0020】
この処理により、蛍石型構造からみて酸素イオン欠損が規則的に存在しかつ陽イオンが規則配列したパイロクロア型構造の酸素欠損位置に酸素が充填されたパイロクロア関連構造を有することを特徴とする立方晶系錫−タンタル複合酸化物を得ることができる。
【0021】
尚、本発明に係る立方晶系錫−タンタル複合酸化物の粉末X線回折は、MACサイエンス社X線回折装置(グラファイトKβ線フィルターカバーを用いたCuKα線を使用)を用いて行われている。
【0022】
そして、上記パイロクロア型構造の複合酸化物を前駆体として合成された本発明に係る立方晶系錫−タンタル複合酸化物においては、挿入される酸素イオンは動きやすく活性で、かつ、挿入する酸素イオン量を変化させることによりエネルギーバンドギャップと欠陥準位を変化させて光吸収特性を制御することができるため、光触媒材料への適用が可能となる。
【0023】
【実施例】
次に、実施例を挙げて本発明をさらに詳細に説明する。但し、本発明はこの実施例に限定されるものではない。
【0024】
試料調製
(原料)
SnO粉末(高純度科学研究所株式会社製、純度99.9%):3.0489g、Ta粉末(高純度科学研究所株式会社製、純度99.9%、ig.−loss0.0258%):5.0020g
尚、上記「ig.−loss」は、水分、吸収物等によるロスを示している。
【0025】
(混合・圧粉成形処理)
1:秤量後の各粉末試料をジルコニア製乳鉢を用い、エタノールを加え1.5時間混合した。
【0026】
2:混合後の試料を乾燥後、ジルコニア製ポットに入れ、遊星回転ボールミルを用いて40分間粉砕した。
【0027】
3:その後、5〜20mmφ程度の円盤状に100MPa程度の圧力で圧粉成形した。
【0028】
(乾燥処理)
圧粉成形後の試料を恒温槽で120℃で30分以上乾燥させた。
【0029】
(焼成処理)
その後、上記成形体をガラスアンプルに入れ、1×10−4Pa以下に真空引きして封入し、かつ、約900〜1000℃で5時間焼成した後、室温まで冷却してパイロクロア型構造の複合酸化物が得られた。
【0030】
(洗浄処理)
次に、上記パイロクロア型構造の複合酸化物を水中に投入し、0.1N硝酸溶液を滴下しながら撹拌し、固液分離し、酸化物を乾燥した。
【0031】
(酸化処理)
次に、前駆体である上記パイロクロア型構造の複合酸化物をアルミナるつぼに投入し、かつ、これをシリカガラス管内に置くと共に加熱炉内に配置した。このとき、炉温度上昇中は酸化防止のため真空ポンプにより真空引きを行った。
【0032】
次に、炉温が400℃に到達したとき、真空引きを止め、酸素雰囲気中、5時間かけて酸化した。
【0033】
そして、この処理により、蛍石型構造からみて酸素イオン欠損が規則的に存在しかつ陽イオンが規則配列したパイロクロア型構造の酸素欠損位置に酸素が充填されたパイロクロア関連構造を有することを特徴とする立方晶系錫−タンタル複合酸化物を得ることができた。
【0034】
[結晶構造の確認]
次に、得られたこの錫−タンタル複合酸化物における結晶構造の確認は、MACサイエンス社X線回折装置(グラファイトKβ線フィルターカバーを用いたCuKα線を使用)を用いて行った。
【0035】
すなわち、硝酸洗浄後におけるパイロクロア型構造の複合酸化物(前駆体)のX線回折測定結果に係るグラフ図を図1(a)に、また、この前駆体を酸化して得られたパイロクロア関連構造の立方晶系錫−タンタル複合酸化物のX線回折測定結果に係るグラフ図を図1(b)に示す。
【0036】
一方、立方晶κ−CeZrO型構造(空間群P23)の結晶構造から計算で求めたX線回折強度パターンのグラフ図を図2(a)に、また、パイロクロア関連構造(空間群Fd3m)の結晶構造から計算で求めたX線回折強度パターンのグラフ図を図2(b)に示す。
【0037】
そして、図1(b)に示した実施例に係る立方晶系錫−タンタル複合酸化物のX線回折強度パターン(測定パターン)と、図2(a)および図2(b)に示されたX線回折強度パターン(計算値パターン)との比較から、実施例に係る立方晶系錫−タンタル複合酸化物の結晶構造は、図2(a)に示された立方晶κ−CeZrO型構造(空間群P23)の結晶構造とは異なり、図2(b)に示されたパイロクロア関連構造(空間群Fd3m)の結晶構造であることが確認された。
【0038】
[光触媒として用いた場合の評価]
次に、実施例に係る立方晶系錫−タンタル複合酸化物を光触媒として用いた場合の触媒活性評価を、メチレンブルー水溶液の光ブリーチング法で行った。
【0039】
これは、メチレンブルー染料溶液に上記立方晶系錫−タンタル複合酸化物を投入したサンプルと、メチレンブルー染料溶液に立方晶系錫−タンタル複合酸化物を投入しないサンプルを用意し、これ等サンプルに光を照射し、光触媒効果によるメチレンブルーの分解の程度を分光光度計で調べる方法である。
【0040】
(メチレンブルー水溶液の調製)
メチレンブルー(関東化学株式会社製、試薬特級)
超純水(比抵抗18.2MΩcm以上)
上記メチレンブルー7.48mgを精秤し、全量をメスフラスコを用いて1リットルの超純水に溶解し、2.0×10−5mol/リットル(mol・dm−3)の水溶液を作製した。
【0041】
(光照射)
A 実験装置 装置概略は図4に示す。
【0042】
光源:下方照射型500WのXeランプ
分光光度計:日立製作所製、U4000分光光度計
B 試料溶液
実施例に係る立方晶系錫−タンタル複合酸化物(試料)0.20gをメチレンブルー水溶液200cm中にマグネチックスターラーを用いて分散させた。
【0043】
次に、試料を分散させたメチレンブルー溶液を石英セルに採取し、透過スペクトルを測定した。
【0044】
次に、測定した試料を元に戻し、攪拌と光照射を繰り返し、時間経過ごとに透過スペクトルを測定し、その吸光度を求めた。結果を図3に示す。
【0045】
尚、図3の「吸光度」は、上記Xeランプ全光を照射したときの波長600〜664nmにあるメチレンブルーの最大吸収の値を示している。
【0046】
そして、図3のグラフ図から理解されるように、実施例に係る立方晶系錫−タンタル複合酸化物(試料)を投入した場合、実施例と同様に測定した無投入サンプルに較べてその吸光度が徐々に減少している。
【0047】
このことから、実施例に係る立方晶系錫−タンタル複合酸化物が光触媒性能を有していることが確認される。
【0048】
【発明の効果】
請求項1〜2記載の発明に係る立方晶系錫−タンタル複合酸化物によれば、
化学式SnTaO4+x(但し、−0.25≦x≦0.5)で表されると共に、蛍石型構造からみて酸素イオン欠損が規則的に存在しかつ陽イオンが規則配列したパイロクロア型構造の酸素欠損位置に酸素が充填されたパイロクロア関連構造を有しており、例えば、光触媒として産業上利用される新規化合物として提供できる効果を有している。
【0049】
また、請求項3記載の発明に係る立方晶系錫−タンタル複合酸化物の製造方法によれば、
パイロクロア型構造の複合酸化物SnTaを前駆体とし、この前駆体を酸素ガス中若しくは酸素ガスと不活性ガスの混合雰囲気中、250℃〜700℃で2〜120時間酸化処理しており、請求項1または2記載の立方晶系錫−タンタル複合酸化物を製造できる効果を有している。
【図面の簡単な説明】
【図1】図1(a)は硝酸洗浄後におけるパイロクロア型構造の複合酸化物(前駆体)のX線回折測定を示すグラフ図、図1(b)は上記前駆体を酸化して得られたパイロクロア関連構造の立方晶系錫−タンタル複合酸化物のX線回折測定結果を示すグラフ図。
【図2】図2(a)は立方晶κ−CeZrO型構造(空間群P23)の結晶構造から計算で求めたX線回折強度パターンのグラフ図、図2(b)はパイロクロア関連構造(空間群Fd3m)の結晶構造から計算で求めたX線回折強度パターンのグラフ図。
【図3】実施例に係る立方晶系錫−タンタル複合酸化物が投入されたメチレンブルー水溶液と無投入のメチレンブルー水溶液における照射時間と吸光度変化との関係をそれぞれ示すグラフ図。
【図4】触媒活性評価を行うための光照射実験装置における構成説明図。
【図5】図5(a)〜(b)はパイロクロア型構造のCeZr7+y、および、κ−CeZrOの結晶構造の単位格子の1/8をそれぞれ示す模式図。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a novel compound cubic tin-tantalum composite oxide represented by the chemical formula SnTaO 4 + x (provided that −0.25 ≦ x ≦ 0.5).
[0002]
[Prior art]
[0003]
[Non-patent document 1]
S. OY-Matsuo, et al. Solid state chem. , 138, 47 (1998)
[Non-patent document 2]
T. Omata, et al, J. Mol. Solid state chem. , 147, 573 (1999).
[0004]
When the pyrochlore-type structure Ce 2 Zr 2 O 7 + y shown in FIG. 5A is oxidized at 600 ° C. for 5 hours in an oxygen atmosphere, the metastable phase κ-CeZrO 4 shown in FIG. The appearance is reported in Non-Patent Document 1.
[0005]
Non-Patent Document 2 discloses that κ-CeZrO 4 is one in which a regular arrangement of cations in a pyrochlore structure is maintained and oxygen is introduced into an oxygen-deficient portion. It has been pointed out that there is a possibility that a new compound can be synthesized in another system as long as a cation can take a higher valence such as Ce 3+ → Ce 4+ and there is a site into which oxygen can enter. .
[0006]
Therefore, the present inventors have worked diligently to find a new compound that can be industrially used according to the technical method described in Non-Patent Document 2 described above.
[0007]
As a result, it has been discovered that, for a specific system, a novel compound different from the above precursor is obtained when the precursor is oxidized in oxygen gas or in a mixed atmosphere of oxygen gas and an inert gas, And this compound had a use which can be used industrially.
[0008]
Specifically, when a composite oxide Sn 2 Ta 2 O 7 having a pyrochlore structure is used as a precursor and oxidized in an oxygen gas or in a mixed atmosphere of an oxygen gas and an inert gas, the oxygen is reduced in view of the fluorite structure. It has been found that a tin-tantalum composite oxide having a pyrochlore-related structure in which oxygen is filled at an oxygen-deficient position of a pyrochlore type structure in which ion deficiencies are regularly present and cations are regularly arranged is obtained.
[0009]
[Problems to be solved by the invention]
Therefore, it is an object of the present invention to provide a novel compound which can be used industrially and a method for producing the same according to the above-mentioned technical methods.
[0010]
[Means for Solving the Problems]
That is, the invention according to claim 1 is
Assuming a cubic tin-tantalum composite oxide as a new compound,
Oxygen of a pyrochlore type structure represented by the chemical formula SnTaO 4 + x (where -0.25 ≦ x ≦ 0.5), in which oxygen ion deficiencies are regularly present and cations are regularly arranged in view of the fluorite type structure. It is characterized by having a pyrochlore-related structure in which oxygen is filled at the defect position.
[0011]
The invention according to claim 2 is
Based on the cubic tin-tantalum composite oxide according to the invention of claim 1,
The powder X-ray diffraction data (target CuKα ray, wavelength 0.154056 nm) and lattice constant
[0012]
[Table 2]
Figure 2004224643
Lattice constant a = 1.0171 ± 0.006 nm
It is characterized by being.
[0013]
Next, the invention according to claim 3 is
Assuming a method for producing a cubic tin-tantalum composite oxide according to claim 1 or 2,
A pyrochlore-type composite oxide Sn 2 Ta 2 O 7 is used as a precursor, and the precursor is oxidized at 250 ° C. to 700 ° C. for 2 to 120 hours in an oxygen gas or a mixed atmosphere of an oxygen gas and an inert gas. It is characterized by the following.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
[0015]
First, the cubic tin-tantalum composite oxide according to the novel compound of the present invention is represented by the chemical formula SnTaO 4 + x (−0.25 ≦ x ≦ 0.5) as described above, and has a fluorite type. In view of the structure, the structure has a pyrochlore-related structure in which oxygen ions are regularly present and oxygen is filled in oxygen-deficient positions of a pyrochlore type structure in which cations are regularly arranged.
[0016]
The composite oxide having a pyrochlore structure, which is a precursor of the above-mentioned novel compound, is prepared by mixing a usual solid-phase method, that is, an oxide of each metal component as a raw material or a salt such as a carbonate or a nitrate in a desired composition ratio. It is synthesized by firing. However, as a matter of course, it may be synthesized by other wet method or vapor phase method. Specifically, the composite oxide Sn 2 Ta 2 O 7 having a pyrochlore structure is produced as follows.
[0017]
First, SnO (3N, ie, 99.9% purity) and Ta 2 O 5 are used as raw materials, weighed at a molar ratio of 2: 1 and mixed with an agate mortar, a ball mill, or the like, and a pressure of about 100 MPa and a pressure of about 5 to 20 mmφ. Compacting into a disk.
[0018]
Thereafter, the molded body was put into a glass ampoule, evacuated and sealed to 1 × 10 −4 Pa or less, baked at about 900 to 1000 ° C. for 5 hours, and cooled to room temperature to obtain a pyrochlore structure. Is obtained. In some cases, the burned product contains a trace amount of Sn metal together with the composite oxide having a pyrochlore structure, and it is preferable to wash with nitric acid to remove the metal Sn.
[0019]
Next, a composite oxide having a pyrochlore structure, which is a precursor, is charged into an alumina crucible, placed in a silica glass tube, and placed in a heating furnace. At this time, a vacuum pump is used to prevent oxidation while the furnace temperature is rising. When the furnace temperature reaches 250 ° C. to 700 ° C., the evacuation is stopped, and oxidation is performed for 2 to 120 hours in an oxygen gas or a mixed atmosphere of an oxygen gas and an inert gas.
[0020]
According to this treatment, the chlorite-type structure has a pyrochlore-related structure in which oxygen deficiencies are regularly present and oxygen is filled at oxygen deficiency positions of a pyrochlore-type structure in which cations are regularly arranged. A crystalline tin-tantalum composite oxide can be obtained.
[0021]
The powder X-ray diffraction of the cubic tin-tantalum composite oxide according to the present invention is performed using an X-ray diffractometer manufactured by MAC Science (using CuKα rays using a graphite Kβ-ray filter cover). .
[0022]
In the cubic tin-tantalum composite oxide according to the present invention synthesized using the above-described pyrochlore-type composite oxide as a precursor, the inserted oxygen ion is easily movable and active, and the inserted oxygen ion By changing the amount, the light absorption characteristics can be controlled by changing the energy band gap and the defect level, so that application to a photocatalytic material becomes possible.
[0023]
【Example】
Next, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to this embodiment.
[0024]
Sample preparation (raw material)
SnO powder (high purity Research Institute Co., Ltd., purity 99.9%): 3.0489g, Ta 2 O 5 powder (high purity Research Institute Co., Ltd., purity 99.9%, ig.-loss0.0258 %): 5.0020 g
In addition, the above “ig.-loss” indicates a loss due to moisture, an absorbent, and the like.
[0025]
(Mixing / compacting)
1: Ethanol was added to each weighed powder sample using a zirconia mortar and mixed for 1.5 hours.
[0026]
2: After mixing, the sample was dried, placed in a zirconia pot, and ground using a planetary rotary ball mill for 40 minutes.
[0027]
3: Thereafter, compacting was performed at a pressure of about 100 MPa into a disk having a diameter of about 5 to 20 mmφ.
[0028]
(Drying)
The sample after compacting was dried in a thermostat at 120 ° C. for 30 minutes or more.
[0029]
(Firing)
Thereafter, the above-mentioned molded body is put into a glass ampoule, evacuated to 1 × 10 −4 Pa or less and sealed, and baked at about 900 to 1000 ° C. for 5 hours, and then cooled to room temperature to obtain a composite of a pyrochlore type structure. An oxide was obtained.
[0030]
(Washing process)
Next, the composite oxide having the pyrochlore structure was put into water, and stirred while dropping a 0.1 N nitric acid solution, solid-liquid separated, and the oxide was dried.
[0031]
(Oxidation treatment)
Next, the above-mentioned composite oxide having a pyrochlore structure as a precursor was charged into an alumina crucible, and this was placed in a silica glass tube and placed in a heating furnace. At this time, a vacuum pump was used to prevent oxidation while the furnace temperature was rising.
[0032]
Next, when the furnace temperature reached 400 ° C., the evacuation was stopped and oxidation was performed in an oxygen atmosphere for 5 hours.
[0033]
And, by this treatment, there is a pyrochlore-related structure in which oxygen is deficiently present as viewed from the fluorite structure and oxygen is filled in the oxygen vacancy position of the pyrochlore structure in which cations are regularly arranged. Thus, a cubic tin-tantalum composite oxide was obtained.
[0034]
[Confirmation of crystal structure]
Next, confirmation of the crystal structure of the obtained tin-tantalum composite oxide was performed using an X-ray diffractometer manufactured by MAC Science (using CuKα radiation using a graphite Kβ radiation filter cover).
[0035]
That is, FIG. 1A is a graph showing the results of X-ray diffraction measurement of a composite oxide (precursor) having a pyrochlore structure after washing with nitric acid, and a pyrochlore-related structure obtained by oxidizing the precursor. FIG. 1B is a graph showing the results of X-ray diffraction measurement of the cubic tin-tantalum composite oxide of FIG.
[0036]
On the other hand, FIG. 2A shows a graph of an X-ray diffraction intensity pattern calculated from the crystal structure of the cubic κ-CeZrO 4 type structure (space group P2 13 ), and the pyrochlore-related structure (space group Fd3m). FIG. 2B is a graph showing an X-ray diffraction intensity pattern calculated from the crystal structure of FIG.
[0037]
Then, the X-ray diffraction intensity pattern (measurement pattern) of the cubic tin-tantalum composite oxide according to the example shown in FIG. 1 (b) and FIGS. 2 (a) and 2 (b) are shown. From the comparison with the X-ray diffraction intensity pattern (calculated value pattern), the crystal structure of the cubic tin-tantalum composite oxide according to the example was found to be the cubic κ-CeZrO 4 type structure shown in FIG. It was confirmed that the crystal structure was different from the crystal structure of (space group P2 13 ), which was the pyrochlore-related structure (space group Fd3m) shown in FIG. 2B.
[0038]
[Evaluation when used as a photocatalyst]
Next, evaluation of catalytic activity when the cubic tin-tantalum composite oxide according to the example was used as a photocatalyst was performed by a photobleaching method of an aqueous methylene blue solution.
[0039]
This is done by preparing a sample in which the cubic tin-tantalum composite oxide is charged in the methylene blue dye solution and a sample in which the cubic tin-tantalum composite oxide is not charged in the methylene blue dye solution. It is a method of irradiating and examining the degree of decomposition of methylene blue by a photocatalytic effect with a spectrophotometer.
[0040]
(Preparation of methylene blue aqueous solution)
Methylene blue (Kanto Chemical Co., Ltd., special grade reagent)
Ultrapure water (specific resistance 18.2 MΩcm or more)
7.48 mg of the above methylene blue was precisely weighed, and the whole amount was dissolved in 1 liter of ultrapure water using a volumetric flask to prepare a 2.0 × 10 −5 mol / liter (mol · dm −3 ) aqueous solution.
[0041]
(Light irradiation)
A Experimental device The outline of the device is shown in FIG.
[0042]
Light source: Xe lamp spectrophotometer of 500W downward irradiation type: U4000 spectrophotometer B manufactured by Hitachi, Ltd. Sample solution 0.20 g of the cubic tin-tantalum composite oxide (sample) according to the example was placed in 200 cm 3 of an aqueous methylene blue solution. Dispersed using a magnetic stirrer.
[0043]
Next, the methylene blue solution in which the sample was dispersed was collected in a quartz cell, and the transmission spectrum was measured.
[0044]
Next, the measured sample was returned to its original state, and stirring and light irradiation were repeated, and a transmission spectrum was measured at each passage of time, and the absorbance thereof was determined. The results are shown in FIG.
[0045]
In addition, "absorbance" of FIG. 3 shows the value of the maximum absorption of methylene blue having a wavelength of 600 to 664 nm when the entire Xe lamp is irradiated.
[0046]
Then, as understood from the graph of FIG. 3, when the cubic tin-tantalum composite oxide (sample) according to the example was charged, the absorbance was higher than that of the non-charged sample measured in the same manner as in the example. Is gradually decreasing.
[0047]
This confirms that the cubic tin-tantalum composite oxide according to the example has photocatalytic performance.
[0048]
【The invention's effect】
According to the cubic tin-tantalum composite oxide according to the invention of claims 1 and 2,
Oxygen of a pyrochlore type structure represented by the chemical formula SnTaO 4 + x (where -0.25 ≦ x ≦ 0.5), in which oxygen ion deficiencies are regularly present and cations are regularly arranged in view of the fluorite type structure. It has a pyrochlore-related structure in which oxygen is filled at the defect position, and has an effect that it can be provided, for example, as a novel compound industrially used as a photocatalyst.
[0049]
Further, according to the method for producing a cubic tin-tantalum composite oxide according to the invention of claim 3,
A pyrochlore type composite oxide Sn 2 Ta 2 O 7 is used as a precursor, and this precursor is oxidized at 250 ° C. to 700 ° C. for 2 to 120 hours in an oxygen gas or a mixed atmosphere of an oxygen gas and an inert gas. Thus, the cubic tin-tantalum composite oxide according to claim 1 or 2 can be produced.
[Brief description of the drawings]
FIG. 1A is a graph showing an X-ray diffraction measurement of a composite oxide having a pyrochlore structure (precursor) after washing with nitric acid, and FIG. 1B is obtained by oxidizing the precursor. FIG. 4 is a graph showing the results of X-ray diffraction measurement of a cubic tin-tantalum composite oxide having a pyrochlore-related structure.
2 (a) is a graph showing an X-ray diffraction intensity pattern calculated from the crystal structure of a cubic κ-CeZrO 4 type structure (space group P2 13 ), and FIG. 2 (b) relates to pyrochlore. FIG. 9 is a graph of an X-ray diffraction intensity pattern calculated from the crystal structure of the structure (space group Fd3m).
FIG. 3 is a graph showing the relationship between the irradiation time and the change in absorbance of a methylene blue aqueous solution to which a cubic tin-tantalum composite oxide according to an example is charged and a methylene blue aqueous solution which is not charged.
FIG. 4 is a configuration explanatory view of a light irradiation experiment apparatus for performing catalyst activity evaluation.
5 (a) and 5 (b) are schematic diagrams showing Ce 2 Zr 2 O 7 + y having a pyrochlore structure and 8 of a unit cell of a crystal structure of κ-CeZrO 4 , respectively.

Claims (3)

化学式SnTaO4+x(但し、−0.25≦x≦0.5)で表されると共に、蛍石型構造からみて酸素イオン欠損が規則的に存在しかつ陽イオンが規則配列したパイロクロア型構造の酸素欠損位置に酸素が充填されたパイロクロア関連構造を有していることを特徴とする立方晶系錫−タンタル複合酸化物。Oxygen of a pyrochlore type structure represented by the chemical formula SnTaO 4 + x (where -0.25 ≦ x ≦ 0.5), in which oxygen ion deficiencies are regularly present and cations are regularly arranged in view of the fluorite type structure. A cubic tin-tantalum composite oxide having a pyrochlore-related structure in which oxygen is filled at a defect position. 粉末のX線回折データ(ターゲットCuKα線,波長0.154056nm)並びに格子定数が、
Figure 2004224643
格子定数 a=1.0171±0.006nm
であることを特徴とする請求項1記載の立方晶系錫−タンタル複合酸化物。
The powder X-ray diffraction data (target CuKα ray, wavelength 0.154056 nm) and lattice constant
Figure 2004224643
Lattice constant a = 1.0171 ± 0.006 nm
The cubic tin-tantalum composite oxide according to claim 1, wherein
請求項1または2記載の立方晶系錫−タンタル複合酸化物の製造方法において、 パイロクロア型構造の複合酸化物SnTaを前駆体とし、この前駆体を酸素ガス中若しくは酸素ガスと不活性ガスの混合雰囲気中、250℃〜700℃で2〜120時間酸化処理することを特徴とする立方晶系錫−タンタル複合酸化物の製造方法。The method for producing a cubic tin-tantalum composite oxide according to claim 1 or 2, wherein the composite oxide Sn 2 Ta 2 O 7 having a pyrochlore structure is used as a precursor, and the precursor is mixed with oxygen gas or oxygen gas. A method for producing a cubic tin-tantalum composite oxide, wherein the oxidation treatment is performed at 250 ° C. to 700 ° C. for 2 to 120 hours in a mixed atmosphere of an inert gas.
JP2003014876A 2003-01-23 2003-01-23 Cubic tin-tantalum composite oxide and method for producing the same Expired - Fee Related JP4232464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003014876A JP4232464B2 (en) 2003-01-23 2003-01-23 Cubic tin-tantalum composite oxide and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003014876A JP4232464B2 (en) 2003-01-23 2003-01-23 Cubic tin-tantalum composite oxide and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004224643A true JP2004224643A (en) 2004-08-12
JP4232464B2 JP4232464B2 (en) 2009-03-04

Family

ID=32902789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003014876A Expired - Fee Related JP4232464B2 (en) 2003-01-23 2003-01-23 Cubic tin-tantalum composite oxide and method for producing the same

Country Status (1)

Country Link
JP (1) JP4232464B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014091862A1 (en) * 2012-12-12 2014-06-19 トヨタ自動車株式会社 Composite oxide material and exhaust gas purification catalyst using same
CN107994120A (en) * 2017-11-22 2018-05-04 辽宁大学 Sn2Nb2O7Light anode material and Sn2Nb2O7Photoelectricity very thin films

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014091862A1 (en) * 2012-12-12 2014-06-19 トヨタ自動車株式会社 Composite oxide material and exhaust gas purification catalyst using same
JP2014114196A (en) * 2012-12-12 2014-06-26 Toyota Motor Corp Composite oxide material and exhaust gas purification catalyst using the same
CN104918891A (en) * 2012-12-12 2015-09-16 丰田自动车株式会社 Composite oxide material and exhaust gas purification catalyst using same
CN107994120A (en) * 2017-11-22 2018-05-04 辽宁大学 Sn2Nb2O7Light anode material and Sn2Nb2O7Photoelectricity very thin films
CN107994120B (en) * 2017-11-22 2024-05-07 辽宁大学 Sn2Nb2O7Photoanode material and Sn2Nb2O7Photoelectrode film

Also Published As

Publication number Publication date
JP4232464B2 (en) 2009-03-04

Similar Documents

Publication Publication Date Title
Li et al. Crystal phase-and morphology-controlled synthesis of MoO 3 materials
CN101559371B (en) Molybdenum-containing semi-conductor photocatalysis material responding to visible light, preparation method and application thereof
JP4075482B2 (en) Photocatalyst having catalytic activity even in the visible light region
Borja-Urby et al. Structural study, photoluminescence, and photocatalytic activity of semiconducting BaZrO3: Bi nanocrystals
Maegli et al. Structural and photocatalytic properties of perovskite-type (La, Ca) Ti (O, N) 3 prepared from A-site deficient precursors
CN104826637B (en) Preparation method of BiOBr/Bi2O3 heterojunction composite catalyst
Abe et al. Photocatalytic water splitting into H2 and O2 over R2Ti2O7 (R= Y, rare earth) with pyrochlore structure
JP7045662B2 (en) Photocatalyst manufacturing method and hydrogen generation method
Ayer et al. Quaternary cerium (iv) containing fluorides exhibiting Ce 3 F 16 sheets and Ce 6 F 30 frameworks
CN106268877A (en) A kind of BiOCl with visible light catalysis activity and preparation method thereof
JP2003260356A (en) Method for manufacturing h-type layer perovskite photocatalyst and h-type layer perovskite photocatalyst
Guo et al. Crystal and electronic structures, and photoluminescence and photocatalytic properties of α-EuZrS 3
JP5982189B2 (en) Photocatalyst for water splitting
JP6577188B2 (en) Method for the synthesis of layered oxide cathode compositions
Trujillano et al. Microwave hydrothermal synthesis of A2Sn2O7 (A= Eu or Y)
JP2014523070A5 (en)
CN109772293B (en) Antimony bismuth indium oxide photocatalytic material and preparation and application thereof
CN109012653B (en) Lithium bismuthate-bismuth oxide photocatalytic material and preparation method thereof
JP4232464B2 (en) Cubic tin-tantalum composite oxide and method for producing the same
JP4206822B2 (en) Photocatalyst comprising composite oxide and method for producing the same
JP4107815B2 (en) Phosphate photocatalysts containing metal ions in the d10 or d0 electronic state
CN111647167A (en) Novel metal organic framework material Zn-MOF, and synthesis method and application thereof
Kim et al. Li+ extraction reactions with spinel-type LiM0. 5Mn1. 5O4 (M= Ti, Fe) and their electronic structures
Tang et al. Photocatalytic splitting of water under visible-light irradiation over the NiOx-loaded Sm2InTaO7 with 4f-d10-d0 configuration
CN110227439B (en) Preparation method of bismuth compound heterojunction composite nano material rich in oxygen vacancies

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071101

A131 Notification of reasons for refusal

Effective date: 20080611

Free format text: JAPANESE INTERMEDIATE CODE: A131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080903

A521 Written amendment

Effective date: 20081022

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20081118

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20081201

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20121219

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20131219

LAPS Cancellation because of no payment of annual fees