JP2004223571A - Solder alloy for semiconductor packaging and method for manufacturing the same, and solder ball and electronic member - Google Patents

Solder alloy for semiconductor packaging and method for manufacturing the same, and solder ball and electronic member Download PDF

Info

Publication number
JP2004223571A
JP2004223571A JP2003014615A JP2003014615A JP2004223571A JP 2004223571 A JP2004223571 A JP 2004223571A JP 2003014615 A JP2003014615 A JP 2003014615A JP 2003014615 A JP2003014615 A JP 2003014615A JP 2004223571 A JP2004223571 A JP 2004223571A
Authority
JP
Japan
Prior art keywords
solder
mass
solder alloy
alloy
oxygen concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003014615A
Other languages
Japanese (ja)
Inventor
Shinichi Terajima
晋一 寺嶋
Masamoto Tanaka
将元 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003014615A priority Critical patent/JP2004223571A/en
Publication of JP2004223571A publication Critical patent/JP2004223571A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solder alloy for semiconductor packaging which prevents breakdown of a solder junction by thermal stress and simultaneously ensures sufficient joining strength by suppressing generation of a void and to provide a method for manufacturing the same, a solder ball and an electronic member. <P>SOLUTION: The solder alloy for semiconductor packaging is mainly composed of Sn, contains 55 to 70mass% Sn and 0.5 to 5.0mass% Ag, and the balance consisting of Pb and inevitable impurities. The oxygen concentration in the solder alloy is 0.5 to 12 ppm. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、特に、半導体実装用の半田合金、半田ボール及びそれらを有する電子部材に関する。
【0002】
【従来の技術】
プリント配線基板等は、電子部品を実装することで構成されている。電子部品の実装は、半田合金等を介してプリント配線基板等と電子部品との間を仮接合させた後、プリント配線基板全体を加熱して前記半田合金を溶融させて、しかる後に基板を常温まで冷却して半田合金を固体化することで、強固な半田接合部を確保する、いわゆるリフロー法と呼ばれる手法にて行うことが一般的である。
【0003】
前記半田合金の組成としては、一般に、Sn−Pb共晶組成(Sn:63質量%、Pb:残部)及びその周辺の組成が広く使用されており、昨今急増しているBGA(Ball Grid Array)用半田ボールにおいても、前記と同様な組成の半田ボールが主に使用されている。
【0004】
中でも、前記Sn−Pb共晶に、第3元素として少量のAgを添加した半田組成が、好んで使用されている。この理由は、電子機器に組み込まれたプリント基板や、BGAが用いられている集積回路素子基板は、当該装置スイッチの動作及び停止に伴い、加熱と冷却を繰り返す、いわゆる熱衝撃サイクル環境下にさらされていることから、前記基板を構成する各部材間(例えば、チップと基板間等)では、それらの熱膨張係数差に伴う熱応力が生じているのであるが、この熱応力による半田接合部の破壊を防ぐためには、Sn−Pb共晶への少量のAgの添加が効果的であることが、特許文献1、特許文献2、特許文献3等で開示されているからである。
【0005】
【特許文献1】
特開平1−127192号公報
【特許文献2】
特開平1−1237095号公報
【特許文献3】
特開2002−86294号公報
【0006】
【発明が解決しようとする課題】
近年の電子部品の小型化及び高性能化に伴い、電子部材に使用されている半田接合部の接合面積が縮小されている。そのため、半田接合部での接合強度の確保が、より一層重要視されてきている。
【0007】
しかしながら、従来のSn−Pb共晶に第3元素として少量のAgを添加した電子部材用半田合金を使用すると、半田合金内部にボイドと呼ばれる気泡が出現し、それに伴い、接合面積が低下することから、充分な接合強度が確保できないという問題が生じてきている。この現象は、接合部の直径が、例えば、従来の760μm近傍であった際は、ボイドの発生による接合面積の低下は誤差範囲であり、特に問題とはならなかったが、近年の500μm以下の直径では、ボイドの発生に伴う接合面積の低下は極めて深刻な問題となってきている。
【0008】
そこで、本発明では、半導体実装用のSnを主体とする半田合金、半田ボール及びそれらを有する電子部材において、熱応力による半田接合部の破壊を防ぐと同時に、さらにボイドの発生を抑制することで、充分な接合強度を同時に確保できる半田合金とその製造方法、半田ボール及びそれらを有する電子部材を提供する。
【0009】
【課題を解決するための手段】
上記課題を解決するための手段は、以下の通りである。
(1) Snを主体とする半田合金であって、Sn:55〜70質量%及びAg:0.5〜5.0質量%を含み、残部がPb及び不可避不純物から成り、さらに半田合金内の酸素濃度が0.5〜12質量ppmであることを特徴とする半導体実装用半田合金。
(2) Snを主体とする半田合金であって、Sn:55〜70質量%及びAg:0.5〜5.0質量%を含み、さらにNi、Mg、Fe、Alから成る元素群から選ばれた1種又は2種以上の元素を総計で0.0005〜0.05質量%含有し、残部がPb及び不可避不純物から成り、半田合金内の酸素濃度が0.5〜12質量ppmであることを特徴とする半導体実装用半田合金。
(3) さらに、Sb:0.1〜3.0質量%、Bi:0.1〜3.0質量%、Cu:0.01〜0.1質量%、P:0.0005〜0.005質量%の内の少なくとも1種を含有する上記(1)又は(2)のいずれかに記載の半導体実装用半田合金。
(4) さらに、Zn、In、Pt、Pdから成る群から選ばれた1種又は2種以上の元素を総計で0.01〜0.5質量%含有する上記(1)〜(3)のいずれかに記載の半導体実装用半田合金。
(5) 少なくとも、Sn:55〜70質量%、Ag:0.5〜5.0質量%、残部Pbを含有する半田合金の製造方法であって、半田合金成分の溶融混合時に、101.3Pa以下の雰囲気と10130Pa以下の非酸化雰囲気の一方又は両方とすることを特徴とする半導体実装用半田合金の製造方法。
(6) 上記(1)〜(4)のいずれかに記載の半田合金から成ることを特徴とする半田ボール。
(7) 半田接合部を有する電子部材であって、該半田接合部の一部又は全部に上記(1)〜(4)のいずれかに記載の半田合金又は上記(6)記載の半田ボールを用いて成ることを特徴とする電子部材。
【0010】
本発明によれば、半田接合内部におけるボイドの発生を抑制することで、充分な接合強度を確保できる。
【0011】
【発明の実施の形態】
各種半導体部材には、プリント配線基板等が好んで使用される。プリント配線基板等は、樹脂基板から主として成ることが多く、加熱すると樹脂が気化して、基板からガスが出ることになる。また、プリント配線基板等の上には、レジスト膜等の有機物が設置されることが多く、さらに、プリント配線基板等を洗浄する等の目的で、アセトン等のケトン類やエタノールやイソプロピルアルコール等のアルコール類が使用されることが多い。そして、プリント配線基板等に半田を接合させる際は、ペーストやフラックスと称される有機物を主体とする材料を介して、プリント配線基板等と半田とを接触させてから、半田を溶融して(リフロー工程)接合させる。このように各種半導体部材に半田付けを行う際は、種々の有機物が利用されている。
【0012】
本発明者らは鋭意検討した結果、前述のボイドは、プリント配線基板等をリフローする際に半田周辺部の有機物がガス化し、半田が固体化する際にそれらガスが半田内部に閉じ込められること(トラップ現象)で生じることを明らかとした。本発明者らはさらに検討を重ねた結果、ガスのトラップには、半田合金内部に含有される酸素濃度が大きく影響することを明らかにした。つまり、従来のSnを主体とする半導体実装用半田合金の内部には、一定量の酸素が含有されているのであるが、半田合金中の酸素濃度が0.5〜12質量ppmであれば、半田が固体化する際にガスが半田内部に閉じ込められる前記の現象を抑制でき、その結果、接合面積の低下を防ぎ、充分な接合強度を確保できることを見出した。より好ましくは、半田合金中の酸素濃度が0.5〜6質量ppmであれば、前記のトラップ現象を抑制する効果が高まるので良い。それに対して、半田合金中の酸素濃度が12質量ppmを超えると、リフローによって半田とペーストが反応する際に、半田内部でも酸素ガスが顕著に発生してしまうので好ましくない。一方、前記酸素濃度を安定して0.5質量ppm未満とするのは、添加元素の種類や量の最適化や製造条件の最適化を行う等の各種手法を駆使しても容易ではない。
【0013】
Snは、Pbと合金化した時、共晶点と呼ばれる組成(Sn:63質量%)で、融点が約183℃と最も低くなる。プリント配線基板等への電子部品の実装に適用するためには、極力低い融点が望ましいので、Sn:55〜70質量%とする必要がある。熱応力による半田接合部の破壊を防ぐためには、半田中のPb相の粗大化の抑制が有効であり、AgをSn−Pb半田合金に添加すると、半田凝固時にPbの粗大化を抑制する効果が得られるので良い。しかしながら、0.5質量%未満の添加では、前述の抑制効果は見られず、逆に、5.0質量%を超える添加では、融点が上昇してしまい、プリント配線基板等に電子部品を実装するには適さなくなる。従って、プリント配線基板等への電子部品の実装に適する組成とするためには、Ag:0.5〜5.0質量%とする必要がある。このように、Sn:55〜70質量%及びAg:0.5〜5.0質量%を含み、残部をPb及び不可避不純物とすると、プリント配線基板等への電子部品の実装に適した融点及び熱応力による半田接合部の破壊を防ぐ効果が同時に得られる。
【0014】
従って、Snを主体とする半田合金であって、Sn:55〜70質量%及びAg:0.5〜5.0質量%を含み、残部がPb及び不可避不純物から成り、さらに半田合金内の酸素濃度が0.5〜12質量ppmであれば、プリント配線基板等への電子部品の実装に適した融点、熱応力による半田接合部の破壊を防ぐ効果及び前記ボイドの抑制効果が同時に得られる。
【0015】
半田合金の組成としては、半田合金中の酸素濃度を0.5〜12質量ppmの範囲とできれば、どのような組成でも構わないが、本発明者らは鋭意検討した結果、Sn:55〜70質量%及びAg:0.5〜5.0質量%を含み、残部がPb及び不可避不純物から成り、さらにNi、Mg、Fe、Alから成る元素群から選ばれた1種又は2種以上の元素を総計で0.0005〜0.05質量%含有する半田合金であれば、半田合金中の酸素濃度を安定して0.5〜12質量ppmとできることを併せて見出した。この理由は、半田合金の凝固時に、前記の添加元素が脱酸作用をもたらすことで、半田合金内部の酸素濃度の低下が促進される効果が得られ、その結果、該半田合金中の酸素濃度をより一層低下せしめることができるためと考えられる。しかしながら、0.0005質量%未満の添加では、前述の効果は見られず、逆に、0.05質量%を超える添加では、これら添加元素が半田合金の表面に析出して、酸化物を形成することで、半田合金の脆性的な破壊を促進する恐れが高まるので好ましくない。
【0016】
より好ましくは、Snを主体とする半田合金であって、Sn:55〜70質量%及びAg:0.5〜5.0質量%を含み、さらにNi、Mg、Fe、Alから成る元素群から選ばれた1種又は2種以上の元素を総計で0.0005〜0.05質量%含有し、残部がPb及び不可避不純物から成り、さらに半田合金内の酸素濃度が0.5〜12質量ppmであれば、半田合金の凝固時に、前記の添加元素が脱酸作用をもたらすことで、半田合金内部の酸素濃度の低下が促進される効果が得られ、その結果、該半田合金中の酸素濃度をより一層低下せしめることで、ボイドの発生をほぼ確実に抑制できるので良い。
【0017】
さらに好ましくは、半田合金中に、さらにSb:0.1〜3.0質量%、Bi:0.1〜3.0質量%、Cu:0.01〜0.1質量%、P:0.0005〜0.005質量%の内の少なくとも1種を含有すれば、半田接合部が熱応力に抗する効果がさらに向上するので良い。この理由は、前記の添加元素がSnあるいはPb中に固溶することにより、転位の移動を妨げる効果が得られるためと予想される。しかしながら、0.1質量%未満のSbの添加、0.1質量%未満のBiの添加、0.01質量%未満のCuの添加あるいは0.0005質量%未満のPの添加では、前記効果は充分には得られず、逆に、3.0質量%を超えるSbの添加、3.0質量%を超えるBiの添加、0.1質量%を超えるCuの添加あるいは0.005質量%を超えるPの添加を行うと、半田合金が脆性的となるので好ましくない。
【0018】
最も好ましくは、半田合金中に、さらにZn、In、Pt、Pdから成る群から選ばれた1種又は2種以上の元素を総計で0.01〜0.5質量%含有すれば、半田接合部が熱応力に抗する効果がさらに向上するので良い。その理由は、それら元素がSn等と微細な金属間化合物を形成し、その金属間化合物が半田中に微細に分散することにより、Pbの粗大化を抑制するためと予想される。しかしながら、前記元素の濃度が0.01質量%未満であると充分な効果が得られず、逆に、0.5質量%を超えると該半田合金が脆性的となるので好ましくない。
【0019】
半田合金中の組成を同定する手法に特に制限は無いが、例えば、エネルギー分散型X線分析法(EDX)、電子プローブ分析法(EPMA)、オージェ電子分析法(AES)、二次イオン質量分析法(SIMS)、誘導結合プラズマ分析法(ICP)、グロー放電スペクトル質量分析法(GD−MASS)、蛍光X線分析法(FX)、等が実績も豊富で精度も高いので好ましい。
【0020】
前記半田合金を製造する方法は、所定の濃度に見合うように添加元素を調合した半田母合金を、るつぼや鋳型中で加熱して溶解することで均一化し、しかる後に、凝固させる手法が利用できる。ここで、半田を溶融する工程において、例えば、半田周辺の雰囲気を101.3Pa以下の雰囲気とする手法や、10130Pa以下の非酸化雰囲気とする手法を利用すれば、半田合金の組成にかかわらず、半田合金中の酸素濃度を安定して0.5〜12質量ppmとすることができる。半田周辺の雰囲気を13Pa以下の雰囲気あるいは1300Pa以下の非酸化雰囲気とするとより好ましい。前記半田を溶融する工程では、例えば、密閉することで内部を外気から遮蔽できる鋳型を利用するのが実績も豊富であるので良い。前記非酸化雰囲気としては、半田合金中の酸素濃度が前述の範囲とできれば、どのような雰囲気でも構わないが、例えば、窒素、アルゴンやネオンのような不活性ガス、あるいはCOや水素のように還元作用を有するガス等が利用できる。この理由は、これらの雰囲気を使用すれば、半田合金中の酸素が脱気されるためと予想される。半田合金中の酸素濃度の測定法に特に制限は無いが、例えば、不活性ガス融解赤外線吸収法等を用いるのが、実績も豊富でかつ精度も高いので好ましい。
【0021】
本発明の半田合金の形状としては、半田合金中の酸素濃度が0.5〜12質量ppmであれば、形状は特に問わないが、ボール状の半田合金を接合部へ転写して突起状としたり、スパッタ法、蒸着法あるいは析出法等で膜状としたり、もしくは印刷法でバルク状としたりするのが、実績も豊富であるので工業的には好ましい。中でも、本発明の半田合金をボール状としてから接合部へ転写することで突起状とすれば、接合部へ転写後の半田合金の高さをほぼ一定とすることができ、その結果、例えば、プリント配線基板と電子部品の接合というような半導体実装をより確実に行うことができるので良い。
【0022】
本発明の半田合金と半田ボールの一方又は両方から成る半田接合部を有する電子部材では、熱応力による半田接合部の破壊が防げる上に、前記ボイドの抑制効果が得られるために、充分な接合強度が確保できるので良い。
【0023】
【実施例】
表1、2に示す組成を有する直径300μmの半田ボールを製造した。半田を溶融する工程において、半田周辺の雰囲気を1300Pa以下の窒素雰囲気とする手法を用いた場合は○印を、13Pa以下の真空雰囲気とした場合は◎印を、それぞれ表1、2中に示した。一方、半田を溶融する工程において、半田周辺の雰囲気を通常の大気とした場合は、表1、2中に×印を示した。さらに、半田合金中の酸素濃度を不活性ガス融解赤外線吸収法にて測定し、その値を表1、2にあわせて示した。
【0024】
【表1】

Figure 2004223571
【0025】
【表2】
Figure 2004223571
【0026】
表1、2において、実施例1〜46が本発明例である。一方、比較例1及び2はNi、Mg、Fe、Alの含有量及び半田合金成分の溶融混合時の雰囲気が、いずれも本発明の範囲を外れる例である。
【0027】
基板として4cm角のガラスエポキシ樹脂基板を、チップとして1cm角のSi製チップを用意した。基板及びチップ上には、240個の電極(基板側:Cu/Ni/Au、チップ側:Al/Cr/Ni/Au)を形成させておいた。以下の評価を行うために、次に示すフリップチップ接続を行った。
【0028】
まず、チップ上の電極に、フラックスを介して半田ボールを配列した。その後、チップ全体をリフローすることで、チップ上の電極に半田バンプを得た。続いて、基板上の電極に、Snから成るペーストを塗布し、この基板と前記チップとを対面させてから、両者を接触させ、リフローした。その結果、チップ上の電極と基板上の電極とをバンプ状の半田合金を介して接合させる、いわゆるフリップチップ接続を得た。
【0029】
これら半田合金の熱応力に抗する効果及びボイドの抑制効果を評価するため、熱衝撃サイクル試験及び機械的な衝撃試験をそれぞれ実施した。併せて、半田接合部の断面研磨を行い、半田合金中金属間化合物の最大径を測定した。それらの評価結果を表3に示す。
【0030】
熱衝撃サイクル試験は、前記フリップチップ試験片に−40℃〜125℃の熱サイクルを繰り返し加える試験であり、1000サイクルまで半田接合部で破断が生じなかった試験片を合格とし、表3中に○印で示した。さらに、1500サイクルまで半田接合部で破断が生じなかった試験片を極めて良好として、表3中に◎印で示した。一方、1000サイクルに到達するまでに半田接合部で破断が生じた試験片は不合格とし、表3中に×印で示した。
【0031】
機械的な衝撃試験は、前記フリップチップ試験片を11cm角、厚さ2cmのAl板に取り付け、それを70cmの高さから落下させることを繰り返し、落下毎に各半田接合部の電気抵抗の変化を確認することで評価した。9回以上19回以下の落下回数で初期接続抵抗状態から抵抗が50%以上変化した試験片を合格として、表3中に○印で示した。さらに、20回以上の落下回数で初期接続抵抗状態から抵抗が50%以上変化した試験片を特に優秀な成績を収めたとして、表3中に◎印で示した。一方、8回以下の落下回数で初期接続抵抗状態から抵抗が50%以上変化した試験片を不良として、表3中に×印で示した。
【0032】
【表3】
Figure 2004223571
【0033】
実施例1〜6においては、半田を溶融する工程における半田周辺の雰囲気が適切であったため、Sn−Ag−Pb相に特に元素を添加しなくても、熱衝撃サイクル試験及び機械的な衝撃試験のいずれにおいても、良好な結果を示した。しかしながら、比較例1及び2では、半田を溶融する工程における半田周辺の雰囲気が、本発明の範囲を外れたため、機械的な衝撃試験に不合格であり、ボイドの抑制効果も得られなかった。
【0034】
また、実施例7〜19においては、さらにNi、Mg、Fe、Alが適切な濃度範囲で添加されていたため、熱衝撃サイクル試験で良好な結果を示し、機械的な衝撃試験では極めて良好な結果を示した。
【0035】
さらに、実施例20〜32においては、さらにSb、Bi、Cu、Pが適切な濃度範囲で添加されていたため、熱衝撃サイクル試験及び機械的な衝撃試験のいずれにおいても極めて良好な結果を示した。
【0036】
そして、実施例33〜46においては、さらにZn、In、Pt、Pdが適切な濃度範囲で添加されていたため、熱衝撃サイクル試験及び機械的な衝撃試験のいずれにおいても極めて良好な結果を示した。
【0037】
【発明の効果】
上記のように、本発明の半導体実装用半田合金、半田ボール及び電子部材を用いれば、熱応力による半田接合部の破壊を防ぐと同時に、さらにボイドの発生を抑制することで、充分な接合強度を同時に確保できる。また、本発明の製造方法を利用すれば、前記半田合金を比較的容易に製造できる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention particularly relates to a solder alloy and a solder ball for mounting a semiconductor and an electronic member having the same.
[0002]
[Prior art]
Printed wiring boards and the like are configured by mounting electronic components. Electronic components are mounted by temporarily joining a printed wiring board or the like to an electronic component via a solder alloy or the like, then heating the entire printed wiring board to melt the solder alloy, and then allowing the board to reach room temperature. It is common practice to use a so-called reflow method to secure a strong solder joint by cooling to a solid state and solidifying the solder alloy.
[0003]
As a composition of the solder alloy, generally, a Sn-Pb eutectic composition (Sn: 63% by mass, Pb: balance) and its peripheral composition are widely used, and BGA (Ball Grid Array), which has been rapidly increasing recently, is widely used. Also in the solder balls for use, solder balls having the same composition as described above are mainly used.
[0004]
Among them, a solder composition in which a small amount of Ag is added as a third element to the Sn-Pb eutectic is preferably used. The reason for this is that a printed circuit board incorporated in an electronic device or an integrated circuit element substrate using a BGA is exposed to a so-called thermal shock cycle environment in which heating and cooling are repeated with the operation and stop of the device switch. Therefore, a thermal stress is generated between the members constituting the substrate (for example, between the chip and the substrate) due to a difference in their thermal expansion coefficients. It is disclosed in Patent Document 1, Patent Document 2, Patent Document 3 and the like that it is effective to add a small amount of Ag to the Sn-Pb eutectic in order to prevent the destruction of Sn.
[0005]
[Patent Document 1]
JP-A-1-127192 [Patent Document 2]
Japanese Patent Application Laid-Open No. 1-127095 [Patent Document 3]
JP-A-2002-86294
[Problems to be solved by the invention]
With the recent miniaturization and high performance of electronic components, the joining area of solder joints used in electronic members has been reduced. For this reason, securing of the bonding strength at the solder bonding portion has become even more important.
[0007]
However, when using a solder alloy for electronic members in which a small amount of Ag is added as a third element to the conventional Sn-Pb eutectic, bubbles called voids appear inside the solder alloy, and the bonding area decreases accordingly. Therefore, the problem that sufficient bonding strength cannot be ensured has arisen. This phenomenon is, for example, when the diameter of the joint is around 760 μm in the past, the reduction of the joint area due to the generation of voids was within the error range, and did not cause any particular problem. With respect to the diameter, the reduction of the bonding area due to the generation of voids has become a very serious problem.
[0008]
Therefore, in the present invention, in a solder alloy and a solder ball mainly composed of Sn for semiconductor mounting and an electronic member having the same, it is possible to prevent breakage of a solder joint due to thermal stress and to further suppress generation of voids. The present invention provides a solder alloy, a method of manufacturing the same, a solder ball, and an electronic member having the same, which can simultaneously secure sufficient bonding strength.
[0009]
[Means for Solving the Problems]
Means for solving the above problems are as follows.
(1) A solder alloy mainly composed of Sn, which contains 55 to 70% by mass of Sn and 0.5 to 5.0% by mass of Ag, and the balance consists of Pb and unavoidable impurities. A solder alloy for semiconductor mounting, wherein the oxygen concentration is 0.5 to 12 mass ppm.
(2) A solder alloy mainly composed of Sn, containing 55 to 70% by mass of Sn and 0.5 to 5.0% by mass of Ag, and further selected from an element group consisting of Ni, Mg, Fe, and Al. 0.0005 to 0.05% by mass in total, and the balance is composed of Pb and unavoidable impurities, and the oxygen concentration in the solder alloy is 0.5 to 12% by mass. A solder alloy for semiconductor mounting, characterized in that:
(3) Further, Sb: 0.1 to 3.0% by mass, Bi: 0.1 to 3.0% by mass, Cu: 0.01 to 0.1% by mass, P: 0.0005 to 0.005. The solder alloy for semiconductor mounting according to any one of the above (1) or (2), which contains at least one kind by mass%.
(4) The above (1) to (3), further containing one to two or more elements selected from the group consisting of Zn, In, Pt, and Pd in a total amount of 0.01 to 0.5% by mass. The solder alloy according to any one of the above.
(5) A method for producing a solder alloy containing at least Sn: 55 to 70% by mass, Ag: 0.5 to 5.0% by mass, and the balance Pb. A method for producing a solder alloy for semiconductor mounting, characterized in that one or both of the following atmosphere and a non-oxidizing atmosphere of 10130 Pa or less are used.
(6) A solder ball comprising the solder alloy according to any one of (1) to (4).
(7) An electronic member having a solder joint, wherein the solder alloy according to any one of (1) to (4) or the solder ball according to (6) is applied to part or all of the solder joint. An electronic member characterized by being used.
[0010]
ADVANTAGE OF THE INVENTION According to this invention, sufficient joining strength can be ensured by suppressing generation | occurrence | production of a void inside a solder joint.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
A printed wiring board or the like is preferably used for various semiconductor members. A printed wiring board or the like is mainly composed of a resin substrate in many cases, and when heated, the resin is vaporized and gas is emitted from the substrate. In addition, an organic substance such as a resist film is often placed on a printed wiring board or the like, and further, for the purpose of cleaning the printed wiring board or the like, ketones such as acetone or ethanol or isopropyl alcohol. Alcohols are often used. When the solder is joined to the printed wiring board or the like, the printed wiring board or the like is brought into contact with the solder via a material mainly composed of an organic substance called paste or flux, and then the solder is melted ( Reflow process) Joining. As described above, when soldering to various semiconductor members, various organic substances are used.
[0012]
As a result of extensive studies by the present inventors, the above-mentioned voids are considered to be such that when reflowing a printed wiring board or the like, organic substances around the solder are gasified, and when the solder is solidified, these gases are trapped inside the solder ( Trap phenomenon). As a result of further studies, the present inventors have clarified that the concentration of oxygen contained in the solder alloy has a great effect on gas trapping. In other words, although a certain amount of oxygen is contained in the conventional solder alloy for semiconductor mounting mainly composed of Sn, if the oxygen concentration in the solder alloy is 0.5 to 12 mass ppm, It has been found that the above phenomenon that gas is trapped inside the solder when the solder is solidified can be suppressed, and as a result, a decrease in the bonding area can be prevented and sufficient bonding strength can be secured. More preferably, if the oxygen concentration in the solder alloy is 0.5 to 6 ppm by mass, the effect of suppressing the trapping phenomenon is enhanced. On the other hand, when the oxygen concentration in the solder alloy exceeds 12 ppm by mass, when the solder and the paste react by reflow, oxygen gas is significantly generated inside the solder, which is not preferable. On the other hand, stabilizing the oxygen concentration to less than 0.5 ppm by mass is not easy even if various methods such as optimizing the type and amount of the additive element and optimizing the production conditions are used.
[0013]
When Sn is alloyed with Pb, Sn has a composition called eutectic point (Sn: 63% by mass) and has the lowest melting point of about 183 ° C. In order to apply the present invention to mounting electronic components on a printed wiring board or the like, the melting point is desirably as low as possible. In order to prevent the destruction of the solder joint due to thermal stress, it is effective to suppress the coarsening of the Pb phase in the solder. When Ag is added to the Sn-Pb solder alloy, the effect of suppressing the coarsening of Pb during the solidification of the solder is effective. Is good. However, when the addition is less than 0.5% by mass, the above-described suppression effect is not seen. Conversely, when the addition exceeds 5.0% by mass, the melting point increases, and the electronic component is mounted on a printed wiring board or the like. It is no longer suitable for Therefore, in order to obtain a composition suitable for mounting electronic components on a printed wiring board or the like, it is necessary to make Ag: 0.5 to 5.0% by mass. As described above, when Sn: 55 to 70% by mass and Ag: 0.5 to 5.0% by mass, and the remainder is Pb and unavoidable impurities, the melting point and the melting point suitable for mounting electronic components on a printed wiring board and the like are obtained. The effect of preventing the destruction of the solder joint due to thermal stress can be obtained at the same time.
[0014]
Therefore, it is a solder alloy mainly composed of Sn, which contains 55 to 70% by mass of Sn and 0.5 to 5.0% by mass of Ag, and the balance is composed of Pb and unavoidable impurities. When the concentration is 0.5 to 12 ppm by mass, a melting point suitable for mounting an electronic component on a printed wiring board and the like, an effect of preventing a solder joint from being broken by thermal stress, and an effect of suppressing the void can be simultaneously obtained.
[0015]
The composition of the solder alloy may be any composition as long as the oxygen concentration in the solder alloy can be in the range of 0.5 to 12 ppm by mass. However, as a result of intensive studies by the present inventors, Sn: 55 to 70 % By mass and Ag: 0.5 to 5.0% by mass, with the balance being Pb and unavoidable impurities, and one or more elements selected from the group consisting of Ni, Mg, Fe, and Al It was also found that a solder alloy containing 0.0005 to 0.05% by mass in total can stably provide an oxygen concentration of 0.5 to 12 ppm by mass in the solder alloy. The reason for this is that, when the solder alloy is solidified, the above-mentioned additive element has a deoxidizing effect, whereby the effect of promoting a decrease in the oxygen concentration inside the solder alloy is obtained. As a result, the oxygen concentration in the solder alloy is reduced. Is considered to be able to be further reduced. However, if the addition is less than 0.0005% by mass, the above-mentioned effect is not obtained. Conversely, if the addition exceeds 0.05% by mass, these additional elements precipitate on the surface of the solder alloy to form oxides. By doing so, the risk of promoting brittle fracture of the solder alloy increases, which is not preferable.
[0016]
More preferably, it is a solder alloy mainly composed of Sn, which contains 55 to 70% by mass of Sn and 0.5 to 5.0% by mass of Ag, and further includes an element group composed of Ni, Mg, Fe, and Al. One or more selected elements are contained in a total of 0.0005 to 0.05% by mass, and the balance is composed of Pb and unavoidable impurities, and the oxygen concentration in the solder alloy is 0.5 to 12% by mass. Then, at the time of solidification of the solder alloy, the effect of deoxidizing the additive element is obtained, whereby the effect of promoting a decrease in the oxygen concentration inside the solder alloy is obtained. As a result, the oxygen concentration in the solder alloy is increased. Is further reduced, the generation of voids can be suppressed almost certainly.
[0017]
More preferably, in the solder alloy, Sb: 0.1 to 3.0% by mass, Bi: 0.1 to 3.0% by mass, Cu: 0.01 to 0.1% by mass, P: 0. When at least one of 0005 to 0.005% by mass is contained, the effect of the solder joint against thermal stress is further improved. The reason for this is presumed to be that the effect of preventing dislocation movement can be obtained by dissolving the additive element in Sn or Pb. However, with the addition of less than 0.1% by weight of Sb, less than 0.1% by weight of Bi, less than 0.01% by weight of Cu or less than 0.0005% by weight of P, the effect is reduced. Sufficiently not obtained, conversely, addition of Sb exceeding 3.0% by mass, addition of Bi exceeding 3.0% by mass, addition of Cu exceeding 0.1% by mass or exceeding 0.005% by mass The addition of P is not preferable because the solder alloy becomes brittle.
[0018]
Most preferably, if the solder alloy further contains one or more elements selected from the group consisting of Zn, In, Pt, and Pd in a total amount of 0.01 to 0.5% by mass, the solder bonding is performed. This is because the effect of the part against thermal stress is further improved. The reason is expected to be that these elements form a fine intermetallic compound with Sn or the like and the intermetallic compound is finely dispersed in the solder, thereby suppressing the coarsening of Pb. However, if the concentration of the element is less than 0.01% by mass, a sufficient effect cannot be obtained. Conversely, if the concentration exceeds 0.5% by mass, the solder alloy becomes brittle, which is not preferable.
[0019]
There is no particular limitation on the method for identifying the composition in the solder alloy. For example, energy dispersive X-ray analysis (EDX), electron probe analysis (EPMA), Auger electron analysis (AES), secondary ion mass spectrometry Method (SIMS), inductively coupled plasma analysis (ICP), glow discharge spectrum mass spectrometry (GD-MASS), X-ray fluorescence analysis (FX), etc. are preferred because of their proven track record and high accuracy.
[0020]
The method for producing the solder alloy, a solder mother alloy prepared by mixing the additive elements to meet the predetermined concentration, uniform by heating and melting in a crucible or a mold, after that, a method of solidifying can be used. . Here, in the step of melting the solder, for example, if a method of setting the atmosphere around the solder to an atmosphere of 101.3 Pa or less or a method of setting a non-oxidizing atmosphere of 10130 Pa or less is used, regardless of the composition of the solder alloy, The oxygen concentration in the solder alloy can be stably set to 0.5 to 12 mass ppm. More preferably, the atmosphere around the solder is an atmosphere of 13 Pa or less or a non-oxidizing atmosphere of 1300 Pa or less. In the step of melting the solder, for example, it is sufficient to use a mold capable of shielding the inside from outside air by sealing, since it has a good track record. As the non-oxidizing atmosphere, any atmosphere may be used as long as the oxygen concentration in the solder alloy can be in the above-described range. For example, nitrogen, an inert gas such as argon or neon, or CO or hydrogen such as A gas having a reducing action can be used. The reason for this is expected to be that if these atmospheres are used, oxygen in the solder alloy is degassed. There is no particular limitation on the method for measuring the oxygen concentration in the solder alloy. For example, it is preferable to use an inert gas melting infrared absorption method or the like because it has a good track record and high accuracy.
[0021]
The shape of the solder alloy of the present invention is not particularly limited as long as the oxygen concentration in the solder alloy is 0.5 to 12 ppm by mass. It is industrially preferable to use a sputtering method, a vapor deposition method, a deposition method, or the like to form a film, or a printing method to form a bulk, because of its proven track record. Above all, if the solder alloy of the present invention is formed into a protrusion by transferring the solder alloy to a joint portion from a ball shape, the height of the solder alloy after transfer to the joint portion can be made substantially constant, and as a result, for example, Semiconductor mounting such as bonding of a printed wiring board and an electronic component can be performed more reliably.
[0022]
In the electronic member having a solder joint made of one or both of the solder alloy and the solder ball of the present invention, the solder joint can be prevented from being broken by thermal stress, and the effect of suppressing the void can be obtained. Good because strength can be secured.
[0023]
【Example】
A 300 μm diameter solder ball having the composition shown in Tables 1 and 2 was produced. In the step of melting the solder, in the case of using a method of setting the atmosphere around the solder to a nitrogen atmosphere of 1300 Pa or less, a circle mark is shown in Tables 1 and 2. Was. On the other hand, in the process of melting the solder, when the atmosphere around the solder was the normal atmosphere, the crosses in Tables 1 and 2 are shown. Further, the oxygen concentration in the solder alloy was measured by an inert gas fusion infrared absorption method, and the values are shown in Tables 1 and 2.
[0024]
[Table 1]
Figure 2004223571
[0025]
[Table 2]
Figure 2004223571
[0026]
In Tables 1 and 2, Examples 1 to 46 are examples of the present invention. On the other hand, Comparative Examples 1 and 2 are examples in which the contents of Ni, Mg, Fe, and Al and the atmosphere during the melting and mixing of the solder alloy components are all outside the scope of the present invention.
[0027]
A 4 cm square glass epoxy resin substrate was prepared as a substrate, and a 1 cm square Si chip was prepared as a chip. 240 electrodes (substrate side: Cu / Ni / Au, chip side: Al / Cr / Ni / Au) were formed on the substrate and the chip. To perform the following evaluation, the following flip-chip connection was performed.
[0028]
First, solder balls were arranged on the electrodes on the chip via a flux. Thereafter, by reflowing the entire chip, solder bumps were obtained on the electrodes on the chip. Subsequently, a paste made of Sn was applied to the electrodes on the substrate, and the substrate and the chip were opposed to each other. As a result, a so-called flip-chip connection in which the electrode on the chip and the electrode on the substrate were joined via a bump-like solder alloy was obtained.
[0029]
In order to evaluate the effect of these solder alloys against thermal stress and the effect of suppressing voids, a thermal shock cycle test and a mechanical shock test were performed, respectively. In addition, the cross section of the solder joint was polished, and the maximum diameter of the intermetallic compound in the solder alloy was measured. Table 3 shows the evaluation results.
[0030]
The thermal shock cycle test is a test in which a heat cycle of −40 ° C. to 125 ° C. is repeatedly applied to the flip chip test piece. Indicated by ○. Further, the test pieces that did not break at the solder joints up to 1500 cycles were marked as extremely good in Table 3 as excellent. On the other hand, a test piece that broke at the solder joint before reaching 1000 cycles was rejected, and is indicated by a cross in Table 3.
[0031]
In the mechanical impact test, the flip chip test piece was repeatedly mounted on an 11 cm square, 2 cm thick Al plate and dropped from a height of 70 cm, and the electrical resistance of each solder joint changed every drop. Was evaluated. A test piece in which the resistance was changed by 50% or more from the initial connection resistance state in the number of times of drop of 9 or more and 19 or less was regarded as a pass, and is indicated by a circle in Table 3. Further, the test pieces whose resistance changed from the initial connection resistance state by 50% or more in the number of times of drop of 20 or more times were marked with ◎ in Table 3 because particularly excellent results were obtained. On the other hand, a test piece in which the resistance changed from the initial connection resistance state by 50% or more from the initial connection resistance state by the number of drops of 8 or less was indicated by a cross in Table 3 as defective.
[0032]
[Table 3]
Figure 2004223571
[0033]
In Examples 1 to 6, since the atmosphere around the solder in the step of melting the solder was appropriate, the thermal shock cycle test and the mechanical shock test were performed without adding any element to the Sn-Ag-Pb phase. In all cases, good results were shown. However, in Comparative Examples 1 and 2, since the atmosphere around the solder in the step of melting the solder was out of the range of the present invention, it failed the mechanical impact test, and the effect of suppressing voids was not obtained.
[0034]
Further, in Examples 7 to 19, since Ni, Mg, Fe, and Al were further added in an appropriate concentration range, good results were obtained in the thermal shock cycle test, and very good results were obtained in the mechanical shock test. showed that.
[0035]
Furthermore, in Examples 20 to 32, since Sb, Bi, Cu, and P were further added in an appropriate concentration range, extremely good results were shown in both the thermal shock cycle test and the mechanical impact test. .
[0036]
In Examples 33 to 46, Zn, In, Pt, and Pd were further added in an appropriate concentration range, so that extremely good results were shown in both the thermal shock cycle test and the mechanical shock test. .
[0037]
【The invention's effect】
As described above, the use of the semiconductor mounting solder alloy, solder ball, and electronic member of the present invention prevents solder joints from being broken due to thermal stress, and further suppresses the generation of voids, thereby providing sufficient bonding strength. Can be secured at the same time. Further, if the manufacturing method of the present invention is used, the solder alloy can be manufactured relatively easily.

Claims (7)

Snを主体とする半田合金であって、Sn:55〜70質量%及びAg:0.5〜5.0質量%を含み、残部がPb及び不可避不純物から成り、さらに半田合金内の酸素濃度が0.5〜12質量ppmであることを特徴とする半導体実装用半田合金。A solder alloy mainly composed of Sn, containing 55 to 70% by mass of Sn and 0.5 to 5.0% by mass of Ag, and the balance consisting of Pb and unavoidable impurities. A solder alloy for semiconductor mounting, wherein the content is 0.5 to 12 ppm by mass. Snを主体とする半田合金であって、Sn:55〜70質量%及びAg:0.5〜5.0質量%を含み、さらにNi、Mg、Fe、Alから成る元素群から選ばれた1種又は2種以上の元素を総計で0.0005〜0.05質量%含有し、残部がPb及び不可避不純物から成り、半田合金内の酸素濃度が0.5〜12質量ppmであることを特徴とする半導体実装用半田合金。A solder alloy mainly composed of Sn, containing 55 to 70% by mass of Sn and 0.5 to 5.0% by mass of Ag, and further selected from an element group consisting of Ni, Mg, Fe and Al. The composition contains a total of 0.0005 to 0.05% by mass of a species or two or more types of elements, the balance being Pb and unavoidable impurities, and an oxygen concentration in the solder alloy of 0.5 to 12 mass ppm. Solder alloy for semiconductor mounting. さらに、Sb:0.1〜3.0質量%、Bi:0.1〜3.0質量%、Cu:0.01〜0.1質量%、P:0.0005〜0.005質量%の内の少なくとも1種を含有する請求項1又は2に記載の半導体実装用半田合金。Further, Sb: 0.1 to 3.0% by mass, Bi: 0.1 to 3.0% by mass, Cu: 0.01 to 0.1% by mass, and P: 0.0005 to 0.005% by mass. The solder alloy for semiconductor mounting according to claim 1, comprising at least one of the following. さらに、Zn、In、Pt、Pdから成る群から選ばれた1種又は2種以上の元素を総計で0.01〜0.5質量%含有する請求項1〜3のいずれかに記載の半導体実装用半田合金。The semiconductor according to any one of claims 1 to 3, further comprising a total of 0.01 to 0.5 mass% of one or more elements selected from the group consisting of Zn, In, Pt, and Pd. Solder alloy for mounting. 少なくとも、Sn:55〜70質量%、Ag:0.5〜5.0質量%、残部Pb及び不可避的不純物を含有する半田合金の製造方法であって、半田合金成分の溶融混合時に、101.3Pa以下の雰囲気と10130Pa以下の非酸化雰囲気の一方又は両方とすることを特徴とする半導体実装用半田合金の製造方法。A method for producing a solder alloy containing at least Sn: 55 to 70% by mass, Ag: 0.5 to 5.0% by mass, the balance Pb and unavoidable impurities. A method for producing a solder alloy for semiconductor mounting, wherein one or both of an atmosphere of 3 Pa or less and a non-oxidizing atmosphere of 10130 Pa or less are used. 請求項1〜4のいずれかに記載の半田合金から成ることを特徴とする半田ボール。A solder ball comprising the solder alloy according to claim 1. 半田接合部を有する電子部材であって、該半田接合部の一部又は全部に請求項1〜4のいずれかに記載の半田合金又は請求項6記載の半田ボールを用いて成ることを特徴とする電子部材。An electronic member having a solder joint, wherein a part or all of the solder joint is formed using the solder alloy according to any one of claims 1 to 4 or the solder ball according to claim 6. Electronic components.
JP2003014615A 2003-01-23 2003-01-23 Solder alloy for semiconductor packaging and method for manufacturing the same, and solder ball and electronic member Withdrawn JP2004223571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003014615A JP2004223571A (en) 2003-01-23 2003-01-23 Solder alloy for semiconductor packaging and method for manufacturing the same, and solder ball and electronic member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003014615A JP2004223571A (en) 2003-01-23 2003-01-23 Solder alloy for semiconductor packaging and method for manufacturing the same, and solder ball and electronic member

Publications (1)

Publication Number Publication Date
JP2004223571A true JP2004223571A (en) 2004-08-12

Family

ID=32902607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003014615A Withdrawn JP2004223571A (en) 2003-01-23 2003-01-23 Solder alloy for semiconductor packaging and method for manufacturing the same, and solder ball and electronic member

Country Status (1)

Country Link
JP (1) JP2004223571A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020157167A3 (en) * 2019-01-30 2020-09-10 Metallo Belgium Improved tin production, which includes a composition comprising tin, lead, silver and antimony

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020157167A3 (en) * 2019-01-30 2020-09-10 Metallo Belgium Improved tin production, which includes a composition comprising tin, lead, silver and antimony
US11913091B2 (en) 2019-01-30 2024-02-27 Metallo Belgium Tin production, which includes a composition comprising tin, lead, silver and antimony

Similar Documents

Publication Publication Date Title
JP4391276B2 (en) Solder alloy for semiconductor mounting, manufacturing method thereof, solder ball, electronic member
EP1468777B1 (en) Lead free solder
JP4428448B2 (en) Lead-free solder alloy
JP4144415B2 (en) Lead-free solder
KR100867871B1 (en) Solder paste and electronic device
JP3761678B2 (en) Tin-containing lead-free solder alloy, cream solder thereof, and manufacturing method thereof
JP4968381B2 (en) Lead-free solder
US9773721B2 (en) Lead-free solder alloy, connecting member and a method for its manufacture, and electronic part
KR101345940B1 (en) Solder, soldering method, and semiconductor device
JP5403011B2 (en) Electronic components bonded by die bonding
KR20160006667A (en) Semiconductor device and method for manufacturing semiconductor device
JP6004253B2 (en) Solder alloy powder for paste, paste and solder bump using the same
EP1772225A1 (en) Lead-free solder alloy
EP3696850A2 (en) Method of soldering an electronic component to a substrate with the use of a solder paste comprising a lead-free solder alloy consisting of sn, bi and at least one of sb and mn
JP2010099736A (en) Connection terminal ball having excellent drop impact resistance characteristic, connection terminal, and electronic component
JP3991788B2 (en) Solder and mounted product using it
JP2003290974A (en) Joining structure of electronic circuit device and electronic parts used for the same
US9381595B2 (en) Pb-free solder and electronic component built-in module
JP6004254B2 (en) Solder alloy powder for paste, paste and solder bump using the same
JP2004223571A (en) Solder alloy for semiconductor packaging and method for manufacturing the same, and solder ball and electronic member
JP5630060B2 (en) Solder bonding method, semiconductor device and manufacturing method thereof
KR102198850B1 (en) Low melting solder alloy and solder ball manufactured by using the same
JP2004095907A (en) Solder joint structure and solder paste
JP7376842B1 (en) Solder alloys, solder balls, solder pastes and solder joints
KR100898896B1 (en) Soldering method, solder pellet for die bonding, method for manufacturing solder pellet for die bonding and electronic component

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060404