JP2004223385A - Humidifying material - Google Patents

Humidifying material Download PDF

Info

Publication number
JP2004223385A
JP2004223385A JP2003013094A JP2003013094A JP2004223385A JP 2004223385 A JP2004223385 A JP 2004223385A JP 2003013094 A JP2003013094 A JP 2003013094A JP 2003013094 A JP2003013094 A JP 2003013094A JP 2004223385 A JP2004223385 A JP 2004223385A
Authority
JP
Japan
Prior art keywords
peg
charcoal
water
moisture
humidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003013094A
Other languages
Japanese (ja)
Other versions
JP3981022B2 (en
Inventor
Norio Ando
則男 安藤
Masao Kobayashi
正男 小林
Masahiro Shishido
昌広 宍戸
Tetsuya Otake
哲也 大竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HYWOOD CO Ltd
R TEC KK
Original Assignee
HYWOOD CO Ltd
R TEC KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HYWOOD CO Ltd, R TEC KK filed Critical HYWOOD CO Ltd
Priority to JP2003013094A priority Critical patent/JP3981022B2/en
Publication of JP2004223385A publication Critical patent/JP2004223385A/en
Application granted granted Critical
Publication of JP3981022B2 publication Critical patent/JP3981022B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Building Environments (AREA)
  • Drying Of Gases (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a humidifying material which can be manufactured at a low cost, can be applied for a wide usage, optionally exhibits a moisture absorbing/releasing function in responsive to variation in a relative humidity in air and is excellent in a keeping property of a humidifying effect. <P>SOLUTION: This humidifying material is formed by using a charcoal at calcination temperature of approximately 700°C as a humidifying base material and carrying a polyethylene glycol (PEG) as a humidifying agent on its surface. HCC (Humidity Control Capacity) value at the temperature of approximately 25°C of the humidifying material is high as 15-30% and a moisture absorbing/releasing speed is extremely quick. The moisture absorption is carried out when the relative humidity in air exceeds 70-80% RH (relative humidity) and the moisture release function is carried out at the RH of not less than 70-80%. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
本発明は、廃木材炭化木炭などの有機物を炭化した材料など、微細な細孔構造を有する基材にPEG等を膜状に担持させ、湿度をコントロールする性能を向上させた調湿材料に関するものである。
【0002】
【従来技術】
空気中の湿気の状態によって吸湿や脱湿を行なう材料を調湿材(調湿材料)と呼んでいるが、これら調湿材の性能評価には調湿能力性能(Humidity Control Capacity、以後HCCと略記する。)が用いられている。これは環境湿度90%RHおよび55%RHにおける調湿材のそれぞれの平衡含水率の差をとったもので、この値が大きな素材ほど吸湿率が大きく、尚且つ脱湿率が大きく調湿能力に優れていると見なされている。
【0003】
従来、液体もしくは固体による除湿剤や乾燥剤によって空気中から水分を化学的にもしくは物理的に吸着する吸湿剤(材)として、珪酸カルシウム水和物、水酸化カルシウム (CaOH)、水酸化ナトリウム(NaOH)、生石灰、ソーダ石灰、シリカゲル、クレイ(モリクロナイト)、ゼオライトなどの薬剤もしくはケイ酸化合物や活性炭などが使用されている。しかし、これらの除湿剤や乾燥剤は空気中の水分に反応して吸湿特性を示すが、放湿性が少ないなど吸放湿能力(HCC)は、極めて低く調湿能力に優れているとはいえない。
【0004】
この他、空気中から水分を物理的に吸着する吸湿剤として、カルボキシメチルセルロース、ポリビニルアルコール、ポリアリルアミン、水溶性酢酸セルロース、その他水溶性天然高分子系ポリマー類がある。しかし、これらの材料の大半は合成されたバージン状態では優れた吸湿特性を示すが乾燥固化した状態で空気中の水分を取込んだりするものは少ない。仮に可逆(もとに戻す、あるいは取り除く。)性がよく、乾燥後も水分を吸湿することが可能なものでもポリマーの水分許容に達すると潮解、もしくは吸湿しなくなり、材料単独で優れたHCC値を有している材料は少ない。
【0005】
また、木材、木炭、活性炭、パーライト、石膏ボード、漆喰、木質繊維板、パルプ繊維、セメント、石膏、ゼオライト、珪素土等も多孔質構造による物理的吸放湿性を有しており優れた調湿材と言えるが、日常的な環境で木材や石膏ボード等が吸放湿によって平衡状態になるまでの吸放湿速度は、非常に遅く、木材の板材で50〜100時間、木材(厚物)や石膏・漆喰で1ケ月、モルタルやコンクリートは数年必要とするなど外気の変動にリアルタイムに追従する調湿性能は有していない。
【0006】
以上、これらの除湿剤や乾燥剤、及び多孔質材料は、湿気の吸着(吸湿)には優れた性能を示すものの一度吸着した湿気を放湿(脱湿)しない物が多く、吸湿飽和に達すると潮解したり調湿機能をまったく発揮しないなど湿気の調整作用に適していないことが本発明者らの実験によっても確かめられた。
【0007】
【発明が解決しようとする課題】
本発明は、空気中の相対湿度の変化に応じ任意に吸放湿作用を発揮し、調湿効果の持続性に優れ、かつ広範な用途に利用できる調湿材料を安価に提供することにある。
【0008】
【課題を解決するための手段】
そこで本発明者らは、上記の課題を解決するため種々の検討を重ねた結果、調湿用木炭の吸放湿特性向上のため、木炭表面に親水性高分子であるポリエチレングリコール(PEG)を担持させ、その調湿性能評価を行った。その結果、不担持の木炭に比べ調湿能力が2〜7倍向上することが確認できた。焼成温度が高い木炭ほどPEGの担持量が大きく、また調湿能力の向上も大きく、さらにPEG木炭の吸湿量はPEGおよび木炭単体による吸湿量の和から予測される値より大きくなることが明らかになった。これは相対湿度が高湿度の時は木炭表面のPEG膜に吸収された水分が木炭へ移動し貯蔵され、低湿度時には木炭に貯蔵された水分がPEG膜により吸収され大気中に放出されるという作用が働くためと考えられ、本発明はこれらの知見をもとに完成されたものである。
【0009】
すなわち本発明は、空気中の水分を物理的に取り込むPEG及び同類の吸湿剤を、木炭をはじめとする各種多孔質基材の表面に担持させ、担持した調湿膜と基材の吸脱湿機構により任意の環境湿度に対応して吸放湿作用を発現する調湿材を提供するものである。
【0010】
この発明の好ましい態様によれば、該吸湿剤が分子構造に−OH基や−COOH、−N<(−NH、−NHφ、−Nφ)、>CO、−O−等の基を持っている各種脂肪酸塩などの無機・有機両性を持たせた化合物や化学剤やそれらの混合液、及び、カルボキシメチルセルロース、ポリビニルアルコール水溶性酢酸セルロース、ポリエチレングリコール、及び水溶性天然高分子ポリマー、デンプン−ポリアクリロニトリル加水分解物、デンプン−ポリアクリル酸塩架橋物、カルボキシルメチルセルロース系、酢酸ビニル−アクリル酸メチル共重合体のケン化物、ポリアクリル酸ソーダ架橋物等から選ばれる吸着剤であり、該基材が木炭、活性炭、紙、繊維、羊毛、パーライト、及び、有機物を炭化した材料、また、石膏ボード、漆喰、木材、セメント、石膏、珪酸カルシウム水和物、シリカゲル、ゼオライト、クレイ(モリクロナイト)、その他ケイ酸化合物等の一種又は複数種から選ばれ、並びに基材が薄膜状、板状、繊維状、粒状、或いは粉末状の形態である調湿材が提供される。
【00011】
【発明の実施の形態】
本発明の調湿材は、PEG及び同類の空気中の水分吸着作用を有する吸湿剤と基材に微細孔を持つ多孔質材を使用することを特長としている。本明細書において調湿と言う用語は空気中の水分すなわち湿気の吸着(吸湿)及び湿気の放湿(脱湿)を制御することを意味しており、吸湿や脱湿を行なう材料を調湿材(調湿材料)、また、これらの調湿材の調湿能力性能(Humidity Control Capacity以後HCCと略記。) は、吸湿・脱湿による乾燥や加湿も含めて使用している。
【0012】
木炭の吸脱湿は細孔内で起こるために、細孔のサイズによりその特性が変化する。また細孔径の大きさは焼成温度および焼成時に供給するガスの種類などに影響を受けるので、調湿用木炭の製造には最適な焼成条件の設定が必要となる。しかし、木炭のHCC値は通常2〜3%でしかなく、調湿能力に優れているとはいえないことを本発明者らは実験によって確かめた。そこで焼成条件以外で木炭のHCC値を向上させる試みとして、木炭表面に親水性高分子のポリエチレングリコール(PEG)を担持させることにより吸放湿性能の向上を目指し、さらにその評価を行った。
【0013】
木炭は建築廃木材の粒状炭化材(焼成温度500℃、750℃、900℃、アールテック製)を、またPEGは三洋化成工業K.KのPEG1000およびPEG4000(数値は数平均分子量)を用いた。PEGはHO(CH2CH20)nCH2CH20Hの化学式で表され、分子鎖末端の−OH基により親水性を示す。低湿度時にはほとんど吸湿せず高湿度環境では急激に吸湿量が増加するという親水性高分子特有の吸湿特性を持つ。
【0014】
木炭は恒温乾燥器にて95℃で24時間乾燥を行った。またPEGの20wt%水溶液に乾燥木炭を24時間浸漬し、余分な水溶液をろ過したものを95℃で7時間乾燥し、PEG担持試料木炭とした。上記の処理を行った試料はデシケーター内に保管した。木炭のPEG担持処理結果について表1に示す。木炭の焼成温度が高くなるにつれPEGの担持量が多くなることが確認できた。900℃焼成木炭ではほぼ自重と同じ重さのPEGが担持される。
【0015】
【表1】

Figure 2004223385
【0016】
【木炭の調湿能力】
図1にHCC実験装置の概略を示す。湿度を調節したガスを吸湿装置下部から供給し、試料の重量変化をロードセルにより測定した。また装置内の温度、湿度をセンサーにより測定。以上の測定結果をコンピュータに記録した。装置へ供給するガスの湿度は、恒温水槽中のバブラーを用いて100%RHに調湿した空気をボンベの乾燥Nガスで希釈する方法により調節した。測定に用いる試料重量は約5gとした。実験装置内に試料をセットし90%RHに調湿した空気を通気し平衡含水率W1を求めた。その後供給空気の湿度を55%RHに切替え平衡含水率W2を求め、W1とW2の差をHCC値とした。
含水率の定義を数式1に示す。
【0017】
【数式1】
Figure 2004223385
【0018】
図2a,bに木炭の焼成温度と比表面積および細孔容積の関係を、表2に乾燥木炭の調湿能力の測定結果を示す。焼成温度の増加にともない木炭の比表面積、細孔容積の値は低下するが、W1並びにW2の値は共に増加が見られた。
【0019】
【表2】
Figure 2004223385
【0020】
焼成温度が高くなると木炭が収縮を起こし、細孔径が小さくなるために比表面積、細孔容積の減少を招いたものと思われる。しかし水の吸着量は焼成温度が高くなるに従い増加することから、水の分子径と木炭の細孔径の間で最適な吸着条件が存在するものと思われる。しかし一度細孔に吸着された水分は湿度が55%RHに低下したくらいでは脱着されない。脱着する2%程度の水分は細孔に取込まれた水分由来のものではなく、木炭表面にわずかに存在する親水性の部分に吸着しているものと推測される。そのために水分の吸着量が増えてもHCC値に大きな変化は現れない。乾燥のみを目的として木炭を用いるのならば吸着量さえ増えれば良いが、調湿用として使用する場合には吸脱着が繰返し継続することが求められるため、吸着性能と同じく脱着性能が重要となる。以上の結果から、焼成条件の制御だけでは木炭のHCC値の大幅な向上は困難であると考えられる。
【0021】
【PEG含浸木炭の調湿能力】
PEG1000、4000担持木炭ともに木炭焼成温度が高くなるほどHCC値が増加することが確認された。焼成温度が高いほどPEG担持量が増加するためPEGの吸湿特性の影響が大きくなり、そのことが90%RH雰囲気での吸湿量の増加に現れている。さらに木炭で見られた吸湿量の増加に伴う未脱着水分量の増加といった現象は起らず、このことがHCC値の向上につながっている。
【0022】
またPEG1000担持木炭の方がPEG4000担持木炭よりも大きなHCC値を示す。これは同程度の量が担持された場合、平均分子量がPEG1000の方が小さいことから−OH基の数が多くなり、単位面積あたりの水分の収着座の数が増加するためと考えられる。結果として未処理の木炭に比べPEG1000担持木炭は4?7倍、PEG4000担持木炭では2〜5倍のHCC値の向上が見られた。表3参照。
【0023】
【表3】
Figure 2004223385
【0024】
以上の結果をふまえ、PEG担持木炭の表面状態について検討を行った。まず比表面積をBET(島津フローソーブ2(注:ローマ数字の2である。)2300)により測定した結果0.966m/gという値が得られた。通常、木炭の比表面積は300〜400m/gであることからこれは非常に小さな値である。
【0025】
次に走査型電子顕微鏡(JEOL T−330)によりPEG担持木炭の表面観察を行った。結果を図−3a,bに示す。観察結果より木炭で見られる導管構造がPEG担持木炭ではPEGにより被覆されていることが確認された。低い比表面積の値は、木炭の骨格構造および細孔がPEG膜により覆われた結果である。したがってPEG担持木炭の吸放湿機構は主にPEG膜の吸放湿特性に依存しているものと推測される。
【0026】
【PEG担持木炭の吸脱湿機構】
まずPEG1000単体の吸湿曲線を図4に示す。PEG1000は低湿度時あまり吸湿しないが、相対湿度が80%RHを越えると指数関数的に含水率が増加する。PEG1000は通常、白色ロウ状の固体であるが高湿度時には潮解を起す。実験においても90%RH吸湿実験時に潮解を起しPEG水溶液となった。
【0027】
次に飽和湿度時のPEG担持木炭の吸湿特性を図5に示す。100%RH雰囲気下では木炭の細孔に水が凝縮するため、含水率が40%を越えても水分の吸着が止らない結果となった。しかしこの状態でも木炭表面での濡れは観察されない。このことからPEG担持木炭表面に形成されたPEG膜中の保持水分量はそれほど多くはなく、水分の大部分は木炭へ移動し貯蔵されていることが推察された。
【0028】
次にPEG膜担持担体としての木炭の効果を確認するために、PEG単独での平衡含水率と木炭単独での平衡含水率を用いて、PEG担持木炭のPEGおよび木炭それぞれが単体として機能した場合の含水率を算出した。比較した結果を図6に示す。 55%RH時にはPEG担持木炭は、PEG単体と木炭単体それぞれの含水率を加えて算出した値とほぼ同じ値を示す。そして90%RH時には、PEG担持木炭が単独のものの合計値よりも高い平衡含水率を示した。
これらのことから、高湿度時にはPEG膜から木炭へ水分の移動が起こりPEG担持担体として木炭がPEG担体としてばかりではなく、水分のリザーバとしても有効に働いていることが確認された。
【0029】
以上の結果をふまえて、PEG担持木炭の吸放湿のメカニズムは図7になる。PEG単独での水分の取込み(吸着・溶解)は(PEG+水)の示す蒸気圧と空気中の水蒸気圧が等しくなったところで平衡状態に達し水分の取込みは終了する。PEGを木炭に担持した場合はPEG膜の背面に木炭が存在することで、(PEG+水)の状態から水だけが細孔内に吸上げられる。このメカニズムは毛細管現象で水が吸上げられPEG膜の裏側から出てきて木炭細孔内で凝縮していることによる。これにより(PEG+水)の水濃度がある濃度以上にならないためにPEGの潮解現象は起らず、さらにPEG単独の時に比べ吸湿量が多くなる。そして脱湿時には木炭細孔内に凝縮した水分がPEG膜に取込まれ、さらに大気中に放出されることにより低い含水率を示すことになる。
【0030】
以上、発明者らの実験から、焼成温度約500℃、700℃、900℃の木炭の場合、杉や桧等の木炭が適しており空気に接触する有効面積の比率が大きいことが効果的である。これらの木炭は、比表面積300〜400m/g、平均細孔径1.5nm、細孔容積0.1cc/gであることが知見され、PEG1000を担持した本発明のPEG担持木炭と他の材料との比較実験を重ねた結果、90%RHと55%RHの湿度変化時における HCC値は、未処理炭や珪藻土、パーライトに水酸化ナトリウム処理した材料が1.0〜3.0%と低く一度吸着した湿気は吐き出さないという結果であった。これに対して本発明のPEG担持木炭(PEG1000)は、気温25℃のHCC値で15〜30.0%とHCC値が高く、吸放湿速度が極めて早いこと、かつ特定な湿度反応域を持ち70%RH以上になるとに優れた吸湿性能を発揮しそれ以下では放湿することが発見され、すぐれた調湿材料であることが確認された。
【0031】
本発明の調湿材の適用対象はPEGと木炭に限定されず、吸湿剤が分子構造に−OH基や−COOH、−N<(−NH、−NHφ、−Nφ)、>CO、−O−等の基を持っている等の他、脂肪酸塩、グリセリン脂肪酸、ソルビタン脂肪酸、ショ糖脂肪酸、及び、カルボキシメチルセルロース、ポリビニルアルコール、ポリアリルアミン、水溶性酢酸セルロース、及び天然高分子の水溶性ポリマー、デンプン−ポリアクリロニトリル加水分解物、デンプン−ポリアクリル酸塩架橋物、カルボキシルメチルセルロース系、酢酸ビニル−アクリル酸メチル共重合体のケン化物、ポリアクリル酸ソーダ架橋物等から選ばれる上記吸着剤の一種又は複数種であり、基材が紙、綿花繊維、化学繊維、羊毛、活性炭、パーライト、及び、有機物を炭化した各種材料、また、石膏ボード、漆喰、木質繊維板、木材、パルプ繊維、セメント、石膏、珪酸カルシウム水和物、生石灰、ソーダ石灰、シリカゲル、ゼオライト、珪素土、クレイ(モリクロナイト)、その他ケイ酸化合物等、及び鉱物性繊維材、硬質ポリウレタンフォーム等の一種又は複数種から選ばれ、並びに基材が薄膜状、板状、繊維状、粒状、或いは粉末状の形態である上記調湿材が適している。以下、本発明の範囲は下記の実施例に限定されることはない。
【0032】
【実施例】
例1:本発明の調湿材の製造
実験から杉や桧等の木炭の場合、比表面積300〜400m/g、平均細孔径1.5nm、細孔容積0.1cc/gであり焼成温度が高くなると木炭が収縮を起こし、細孔径が小さくなるために比表面積、細孔容積の減少を招くが水分の吸着量は焼成温度が高くなるに従い増加する。このことから、水の分子径と木炭の細孔径の間で最適な吸着条件が存在することが確かめられたが、一方で、一度細孔に吸着された水分は湿度が55%RHに低下したくらいでは脱着されず脱着する水分は2%程度であり細孔に取込まれた水分由来のものではなく、木炭表面にわずかに存在する親水性の部分に吸着しているものが離れたものと推測された。
そのために水分の吸着量が増えてもHCC値に大きな変化は現れず乾燥のみを目的として木炭を用いるのならば吸着量さえ増えれば良いが、調湿用として使用する場合には吸脱着が繰返し継続することが求められるため、吸着性能と同じく脱着性能が重要となる。
そこで調湿用木炭の吸放湿特性向上のため、粒状木炭表面に親水性高分子であるポリエチレングリコール(PEG)10〜20wt%希釈液を加圧缶体により含浸処理し、粒状木炭の表面にPEG膜を持ったPEG担持木炭を製造した。
【0032】
例2:本発明の調湿材の調湿性能評価
このPEG担持木炭の55%RH〜90%RH雰囲気での調湿性能(HCC)は、PEG1000の場合平均分子量がPEG4000より小さいことから−OH基の数が多くなり、単位面積あたりの水分の収着座の数が増加するためHCC値15%〜20%を記録し、未処理の木炭に比べPEG1000担持木炭は4〜7倍のHCC値を示す結果が得られた。その際の吸湿と放湿速度も吸湿速度は約8〜16時間で吸湿率22%上限に達し、放湿速度は約6時間で吸湿率5〜8%に下がること、さらに100%RH雰囲気での吸湿増加は30時間で吸湿率45%にまで達する結果を得た。
【0033】
例3:本発明の調湿材の吸放湿制御
また、PEG1000の場合、外気湿度による吸湿と放湿作用の切替えは、PEG1000の分子量特性として70%RH〜80%RHを境にして、それ以下では放湿、以上では吸湿に転じることが確かめられた。
PEG担持木炭の吸湿量はPEGおよび木炭単体による吸湿量の和から予測される値よりさらに大きくなることが明らかになった。これは環境湿度が高湿度の時は木炭表面のPEG膜に吸収された水分が木炭へ移動し貯蔵され、低湿度時には木炭に貯蔵された水分がPEG膜により吸収され大気中に放出されるという機構が働くことが確認された結果である。
【0034】
【発明の効果】
本発明の調湿材は、建物の取壊しにより多量に生じる建築廃木材など、従来産業廃棄物として焼却および埋立てにより処理されてきた原料から安価に製造可能であり、最終処分場の減少にともないリサイクル方法の確立が急務となっている廃木材や有機系廃棄物のリサイクル方法のひとつとして炭化した形で再利用するのが適している。木炭類の持つ吸放湿特性を利用し、これを調湿用資材として住宅等の床下などに敷設することで木造家屋床下の結露によるカビの発生や木材の腐朽を防ぐなど、調湿材として環境湿度の変化に応じて高い調湿効果を発揮する特長を有している。
【図面の簡単な説明】
【図1】HCC実験装置の概略図。
【図2a】木炭の焼成温度と比表面積の関係をあらわした説明図。
【図2b】木炭の焼成温度と細孔容積の関係をあらわした説明図。
【図3a】走査型電子顕微鏡で観察した未処理木炭の写真説明図
【図3b】走査型電子顕微鏡で観察したPEG4000担持木炭の写真説明図。
【図4】PEG1000の吸湿特性を表したグラフ。
【図5】PEG1000担持(750℃)木炭100%RH雰囲気下での吸湿特性グラフ。
【図6】PEG1000担持木炭とPEGのみ、炭のみの含水率の比較(750℃)図。
【図7】PEG担持木炭の吸脱湿機構図。[0001]
[Industrial applications]
The present invention relates to a humidity control material in which PEG or the like is supported in a film form on a substrate having a fine pore structure, such as a material obtained by carbonizing an organic substance such as waste wood carbonized charcoal, and the humidity control performance is improved. It is.
[0002]
[Prior art]
Materials that absorb or dehumidify depending on the humidity in the air are called humidity control materials (humidity control materials). To evaluate the performance of these humidity control materials, Humidity Control Capacity (hereinafter referred to as HCC) is used. Abbreviated.) Is used. This is the difference between the equilibrium moisture contents of the humidity control materials at an environmental humidity of 90% RH and 55% RH. The larger the value, the higher the moisture absorption rate, the larger the dehumidification rate, and the larger the dehumidification rate. Is considered excellent.
[0003]
Conventionally, calcium silicate hydrate, calcium hydroxide (CaOH), sodium hydroxide (as a hygroscopic agent (material) that chemically or physically adsorbs moisture from the air by a liquid or solid dehumidifier or desiccant. NaOH), quick lime, soda lime, silica gel, clay (molycuronite), zeolite and other chemicals, silicate compounds, activated carbon, and the like are used. However, these dehumidifiers and desiccants exhibit moisture absorption properties in response to moisture in the air, but have a very low moisture absorption / desorption capacity (HCC) such as low moisture release properties, and are excellent in humidity control ability. Absent.
[0004]
In addition, humectants that physically adsorb moisture from the air include carboxymethylcellulose, polyvinyl alcohol, polyallylamine, water-soluble cellulose acetate, and other water-soluble natural polymer polymers. However, most of these materials exhibit excellent moisture absorption properties in a synthesized virgin state, but few of them take in moisture in the air in a dried and solidified state. If the polymer has good reversibility (return or remove) and can absorb moisture even after drying, it will not deliquesce or absorb moisture when it reaches the water tolerance of the polymer. Are few.
[0005]
In addition, wood, charcoal, activated carbon, perlite, gypsum board, plaster, wood fiber board, pulp fiber, cement, gypsum, zeolite, silicon earth, etc. also have physical moisture absorption and release properties due to the porous structure, and have excellent humidity control. Although it can be said to be wood, the moisture absorption and desorption rate until the wood and the gypsum board become equilibrium by moisture absorption and desorption in a daily environment is very slow, 50 to 100 hours with wood board, wood (thick) Moisture and gypsum / plaster require one month, and mortar and concrete require several years.
[0006]
As described above, these dehumidifiers, desiccants, and porous materials exhibit excellent performance in adsorbing moisture (moisture absorption), but do not release (dehumidify) moisture once adsorbed, and reach moisture absorption saturation. Then, it was also confirmed by the experiments of the present inventors that they were not suitable for the action of adjusting humidity, such as deliquescent and not exhibiting any humidity control function.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to provide an inexpensive moisture-conditioning material which exhibits a moisture-absorbing / desorbing action arbitrarily in accordance with a change in relative humidity in the air, has excellent durability of a humidity-controlling effect, and can be used for a wide range of applications. .
[0008]
[Means for Solving the Problems]
Therefore, the present inventors have conducted various studies to solve the above-mentioned problems, and as a result, in order to improve the moisture absorption and desorption characteristics of the charcoal for humidity control, polyethylene glycol (PEG), which is a hydrophilic polymer, is provided on the charcoal surface. It was carried, and its humidity control performance was evaluated. As a result, it was confirmed that the humidity control ability was improved by 2 to 7 times as compared with unsupported charcoal. It is clear that the higher the firing temperature, the greater the amount of PEG supported and the greater the improvement in the humidity control ability of the charcoal, and that the amount of moisture absorbed by PEG charcoal is larger than the value predicted from the sum of the amount of moisture absorbed by PEG and charcoal alone. became. This means that when the relative humidity is high, the water absorbed by the PEG film on the charcoal surface moves to the charcoal and is stored, and when the relative humidity is low, the water stored in the charcoal is absorbed by the PEG film and released to the atmosphere. It is considered that the action works, and the present invention has been completed based on these findings.
[0009]
That is, the present invention provides PEG and similar moisture absorbents that physically take in moisture in the air on the surface of various porous substrates, such as charcoal, and carries the moisture control membrane and moisture absorption / desorption of the substrate. An object of the present invention is to provide a humidity control material that exhibits a moisture absorbing / releasing action in response to an arbitrary environmental humidity by a mechanism.
[0010]
According to a preferred embodiment of the invention, absorbing moisture agent molecular structure -OH group or -COOH, -N <(- NH 2 , -NHφ, -Nφ),> CO, have a group of -O-, etc. Compounds and chemical agents and their mixed solutions, such as various fatty acid salts, etc., and carboxymethylcellulose, polyvinyl alcohol water-soluble cellulose acetate, polyethylene glycol, and water-soluble natural high-molecular polymers, starch-poly Acrylonitrile hydrolyzate, starch-polyacrylate crosslinked product, carboxymethylcellulose, vinyl acetate-saponified vinyl acetate methyl acrylate copolymer, crosslinked sodium polyacrylate, etc. Charcoal, activated carbon, paper, fiber, wool, perlite, and carbonized materials of organic matter, gypsum board, plaster, wood, Selected from one or more of mentite, gypsum, calcium silicate hydrate, silica gel, zeolite, clay (molycuronite), and other silicate compounds, and the base material is thin film, plate, fiber, granule, or powder. A humidity control material is provided that is in the shape of a letter.
[00011]
BEST MODE FOR CARRYING OUT THE INVENTION
The humidity control material of the present invention is characterized by using a PEG and similar moisture absorbents having an action of adsorbing moisture in air and a porous material having fine pores in a substrate. In the present specification, the term “humidity control” means to control the absorption (absorption) of moisture in the air, that is, moisture, and the release (dehumidification) of moisture, and to control the material for moisture absorption or dehumidification. The materials (humidity control materials) and the humidity control performance (hereinafter abbreviated as HCC) of these humidity control materials are used including drying and humidification by moisture absorption / dehumidification.
[0012]
Since the moisture absorption and desorption of the charcoal occurs in the pores, the characteristics thereof change depending on the pore size. In addition, since the size of the pore diameter is affected by the firing temperature, the type of gas supplied at the time of firing, and the like, it is necessary to set optimal firing conditions for the production of charcoal for humidity control. However, the present inventors have confirmed through experiments that the HCC value of charcoal is usually only 2 to 3%, and it cannot be said that the humidity control ability is excellent. Therefore, as an attempt to improve the HCC value of charcoal under conditions other than the firing conditions, the aim was to improve the moisture absorption / release performance by supporting a hydrophilic polymer, polyethylene glycol (PEG), on the charcoal surface, and further evaluated the same.
[0013]
Charcoal is a granular carbonized material of construction waste wood (calcination temperature 500 ° C, 750 ° C, 900 ° C, manufactured by R-Tech), and PEG is Sanyo Chemical Industries K.K. K PEG1000 and PEG4000 (numerical values are number average molecular weight) were used. PEG is represented by a chemical formula of HO (CH2CH20) nCH2CH20H, and shows hydrophilicity due to an -OH group at a molecular chain terminal. It has a moisture absorption characteristic of a hydrophilic polymer, which hardly absorbs moisture at low humidity and rapidly increases in high humidity environment.
[0014]
The charcoal was dried at 95 ° C. for 24 hours in a thermostatic dryer. Dried charcoal was immersed in a 20 wt% aqueous solution of PEG for 24 hours, and the excess aqueous solution was filtered and dried at 95 ° C. for 7 hours to obtain a PEG-supported sample charcoal. The sample subjected to the above treatment was stored in a desiccator. Table 1 shows the results of the PEG loading treatment of charcoal. It was confirmed that the amount of PEG supported increased as the firing temperature of the charcoal increased. In baked charcoal at 900 ° C., PEG having almost the same weight as its own weight is supported.
[0015]
[Table 1]
Figure 2004223385
[0016]
[Charcoal humidity control ability]
FIG. 1 shows an outline of the HCC experimental apparatus. The gas whose humidity was adjusted was supplied from the lower part of the moisture absorbing device, and the weight change of the sample was measured by a load cell. The temperature and humidity inside the device are measured by sensors. The above measurement results were recorded on a computer. The humidity of the gas supplied to the apparatus was adjusted by a method in which air adjusted to 100% RH was diluted with dry N 2 gas in a cylinder using a bubbler in a thermostatic water bath. The sample weight used for the measurement was about 5 g. The sample was set in the experimental apparatus, and air humidified to 90% RH was passed therethrough to obtain an equilibrium water content W1. Thereafter, the humidity of the supply air was switched to 55% RH to determine the equilibrium water content W2, and the difference between W1 and W2 was taken as the HCC value.
Equation 1 shows the definition of the water content.
[0017]
[Formula 1]
Figure 2004223385
[0018]
2a and 2b show the relationship between the firing temperature of the charcoal, the specific surface area and the pore volume, and Table 2 shows the measurement results of the humidity control ability of the dried charcoal. As the firing temperature increased, the values of the specific surface area and the pore volume of the charcoal decreased, but the values of W1 and W2 both increased.
[0019]
[Table 2]
Figure 2004223385
[0020]
It is considered that when the firing temperature is increased, the charcoal shrinks, and the pore diameter is reduced, resulting in a decrease in specific surface area and pore volume. However, since the amount of adsorbed water increases as the calcination temperature increases, it is considered that there exists an optimal adsorption condition between the molecular diameter of water and the pore diameter of charcoal. However, moisture once adsorbed in the pores is not desorbed even when the humidity drops to 55% RH. It is presumed that about 2% of the water to be desorbed is not derived from the water taken into the pores, but is adsorbed on a slightly hydrophilic portion present on the charcoal surface. Therefore, even if the amount of adsorbed moisture increases, a large change does not appear in the HCC value. If only charcoal is used for the purpose of drying, the amount of adsorption only needs to be increased, but if it is used for humidity control, adsorption and desorption must be repeated repeatedly, so desorption performance is important as well as adsorption performance. . From the above results, it is considered that it is difficult to significantly improve the HCC value of charcoal only by controlling the firing conditions.
[0021]
[Moisture control ability of PEG impregnated charcoal]
It was confirmed that the HCC value increased as the charcoal firing temperature increased for both PEG1000 and 4000-supported charcoal. The higher the firing temperature, the greater the amount of PEG carried, the greater the effect of PEG's moisture absorption properties, which is manifested in an increase in the amount of moisture absorption in a 90% RH atmosphere. Further, a phenomenon such as an increase in the amount of undesorbed water due to an increase in the amount of moisture absorption observed in charcoal does not occur, which leads to an improvement in the HCC value.
[0022]
The charcoal supporting PEG1000 shows a larger HCC value than the charcoal supporting PEG4000. This is presumably because, when the same amount is supported, the average molecular weight of PEG1000 is smaller, so that the number of -OH groups increases, and the number of sorption sites of water per unit area increases. As a result, compared with untreated charcoal, the HCC value of PEG1000-supported charcoal was improved by 4 to 7 times, and that of PEG4000-supported charcoal was improved by 2 to 5 times. See Table 3.
[0023]
[Table 3]
Figure 2004223385
[0024]
Based on the above results, the surface condition of PEG-supporting charcoal was examined. First, the specific surface area was measured by BET (Shimadzu Flowsorb 2 (Note: Roman numeral 2) 2300), and as a result, a value of 0.966 m 2 / g was obtained. This is a very small value, since the specific surface area of charcoal is usually 300 to 400 m 2 / g.
[0025]
Next, the surface of the PEG-supporting charcoal was observed with a scanning electron microscope (JEOL T-330). The results are shown in FIGS. From the observation results, it was confirmed that the conduit structure observed in charcoal was covered with PEG in the charcoal supporting PEG. The low specific surface area values are the result of the charcoal skeletal structure and pores being covered by the PEG membrane. Therefore, it is assumed that the moisture absorption / release mechanism of the PEG-supporting charcoal mainly depends on the moisture absorption / release properties of the PEG membrane.
[0026]
[Moisture absorption and desorption mechanism of PEG-supporting charcoal]
First, FIG. 4 shows a moisture absorption curve of PEG1000 alone. PEG 1000 does not absorb much moisture at low humidity, but when the relative humidity exceeds 80% RH, the water content increases exponentially. PEG 1000 is usually a white waxy solid, but deliquesces at high humidity. In the experiment, deliquescence occurred during the 90% RH moisture absorption experiment, and the solution became an aqueous PEG solution.
[0027]
Next, the moisture absorption characteristics of PEG-supporting charcoal at the time of saturation humidity are shown in FIG. Under a 100% RH atmosphere, water condenses in the pores of the charcoal, so that even when the water content exceeds 40%, the adsorption of water does not stop. However, even in this state, no wetting on the charcoal surface is observed. This suggests that the amount of water retained in the PEG film formed on the surface of the PEG-supporting charcoal is not so large, and that most of the water is transferred to the charcoal and stored.
[0028]
Next, in order to confirm the effect of charcoal as a PEG membrane-supported carrier, using the equilibrium water content of PEG alone and the equilibrium water content of charcoal alone, PEG and charcoal of PEG-supported charcoal each functioned as a single substance. Was calculated. FIG. 6 shows the result of the comparison. At 55% RH, the charcoal carrying PEG exhibits almost the same value as the value calculated by adding the water content of each of PEG alone and charcoal alone. At 90% RH, the equilibrium water content was higher than the total value of the PEG-supporting charcoal alone.
From these facts, it was confirmed that at the time of high humidity, the movement of water from the PEG membrane to the charcoal occurred, and the charcoal worked effectively not only as a PEG carrier but also as a water reservoir as a PEG-supporting carrier.
[0029]
Based on the above results, the mechanism of moisture absorption and desorption of PEG-loaded charcoal is shown in FIG. Water uptake (adsorption / dissolution) by PEG alone reaches an equilibrium state when the vapor pressure indicated by (PEG + water) and the water vapor pressure in the air become equal, and the water uptake ends. When PEG is carried on charcoal, the presence of charcoal on the back of the PEG membrane allows only water to be sucked into the pores from the state of (PEG + water). This mechanism is based on the fact that water is sucked up by capillary action, comes out from the back side of the PEG membrane, and is condensed in the charcoal pores. As a result, since the water concentration of (PEG + water) does not exceed a certain concentration, the deliquescent phenomenon of PEG does not occur, and the amount of moisture absorption is larger than that of PEG alone. Then, at the time of dehumidification, the water condensed in the charcoal pores is taken into the PEG film and released into the atmosphere, thereby exhibiting a low water content.
[0030]
As described above, from experiments by the inventors, in the case of charcoal of about 500 ° C., 700 ° C., and 900 ° C., charcoal such as cedar and cypress is suitable, and it is effective that the ratio of the effective area in contact with air is large. is there. These charcoals were found to have a specific surface area of 300 to 400 m 2 / g, an average pore diameter of 1.5 nm, and a pore volume of 0.1 cc / g. As a result of repeated experiments, the HCC values at the time of humidity changes of 90% RH and 55% RH were as low as 1.0 to 3.0% for untreated coal, diatomaceous earth, and perlite treated with sodium hydroxide. The result was that the moisture once adsorbed did not exhale. On the other hand, the PEG-supporting charcoal (PEG1000) of the present invention has a high HCC value of 15 to 30.0% as an HCC value at an air temperature of 25 ° C., has an extremely fast moisture absorption / desorption rate, and has a specific humidity reaction zone. It was found that the material exhibited excellent hygroscopicity when the durability was 70% RH or more, and released moisture when it was less than 70% RH, and was confirmed to be an excellent humidity control material.
[0031]
Application of humidity material of the present invention is not limited to PEG and charcoal, -OH group or -COOH desiccant in the molecular structure, -N <(- NH 2, -NHφ, -Nφ),> CO, - In addition to having a group such as O-, a fatty acid salt, glycerin fatty acid, sorbitan fatty acid, sucrose fatty acid, and carboxymethyl cellulose, polyvinyl alcohol, polyallylamine, water-soluble cellulose acetate, and a water-soluble polymer of a natural polymer , Starch-polyacrylonitrile hydrolyzate, starch-polyacrylate cross-linked product, carboxymethylcellulose, saponified vinyl acetate-methyl acrylate copolymer, a kind of the above adsorbent selected from cross-linked sodium polyacrylate Or a plurality of types, the base material carbonized paper, cotton fiber, chemical fiber, wool, activated carbon, perlite, and organic matter Seed material, gypsum board, plaster, wood fiber board, wood, pulp fiber, cement, gypsum, calcium silicate hydrate, quicklime, soda lime, silica gel, zeolite, silicon earth, clay (molycuronite), other silicate compounds And the above-mentioned humidity control material in which the base material is in the form of a thin film, a plate, a fiber, a granule, or a powder is selected from one or more of a mineral fiber material, a rigid polyurethane foam, and the like. I have. Hereinafter, the scope of the present invention is not limited to the following Examples.
[0032]
【Example】
Example 1: From a production experiment of the humidity control material of the present invention, in the case of charcoal such as cedar and cypress, the specific surface area is 300 to 400 m 2 / g, the average pore diameter is 1.5 nm, the pore volume is 0.1 cc / g, and the firing temperature is When the temperature increases, the charcoal shrinks and the pore diameter decreases, resulting in a decrease in specific surface area and pore volume. However, the amount of adsorbed water increases as the firing temperature increases. From this, it was confirmed that there was an optimal adsorption condition between the molecular diameter of water and the pore diameter of charcoal, but on the other hand, the moisture once adsorbed in the pores decreased the humidity to 55% RH. The amount of water desorbed without being desorbed by about 2% is not derived from the water taken into the pores, but the one adsorbed on the slightly hydrophilic part on the charcoal surface and the one separated Guessed.
Therefore, even if the amount of adsorbed moisture increases, the HCC value does not change significantly. If charcoal is used only for drying, the amount of adsorption may be increased, but when used for humidity control, adsorption and desorption are repeated. Since it is required to continue, desorption performance is important as well as adsorption performance.
Therefore, in order to improve the moisture absorption and desorption characteristics of the charcoal for humidity control, the surface of the granular charcoal is impregnated with a hydrophilic polymer, polyethylene glycol (PEG), in a 10-20% by weight diluent, using a pressure can. PEG-loaded charcoal with PEG membrane was produced.
[0032]
Example 2 Evaluation of Humidity Control Performance of Humidity Control Material of the Present Invention The humidity control performance (HCC) of this PEG-supporting charcoal in an atmosphere of 55% RH to 90% RH is -OH because PEG1000 has an average molecular weight smaller than PEG4000. Since the number of groups increases and the number of sorption sites for water per unit area increases, an HCC value of 15% to 20% is recorded, and the HCC value of PEG1000-loaded charcoal is 4 to 7 times that of untreated charcoal. The results shown were obtained. At this time, the moisture absorption rate reaches the upper limit of 22% in about 8 to 16 hours, and the moisture absorption rate drops to 5 to 8% in about 6 hours. The result obtained was that the moisture absorption increased to 45% in 30 hours.
[0033]
Example 3: Control of moisture absorption and desorption of the humidity control material of the present invention. In the case of PEG1000, switching between moisture absorption and dehumidification according to the outside air humidity is performed at 70% RH to 80% RH as a molecular weight characteristic of PEG1000. Below, it was confirmed that it turned to moisture release, and above it turned to moisture absorption.
It was found that the amount of moisture absorption of PEG-supported charcoal was larger than the value predicted from the sum of the amount of moisture absorption by PEG and charcoal alone. This means that when the environmental humidity is high, the water absorbed by the PEG film on the charcoal surface moves to the charcoal and is stored, and when the humidity is low, the water stored in the charcoal is absorbed by the PEG film and released to the atmosphere. This is the result of confirming that the mechanism works.
[0034]
【The invention's effect】
The humidity control material of the present invention can be manufactured at a low cost from raw materials that have been conventionally treated by incineration and landfill as industrial wastes, such as construction waste wood generated in large quantities by demolishing buildings, and as the number of final disposal sites decreases, As one of the recycling methods of waste wood and organic waste for which the establishment of a recycling method is urgently needed, it is suitable to reuse it in a carbonized form. Utilizing the moisture absorption and desorption properties of charcoal, it is used as a humidity control material by laying it under the floor of a house or the like as a humidity control material to prevent mold generation and wood decay due to condensation under the wooden house floor. It has the feature of exhibiting a high humidity control effect in response to changes in environmental humidity.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of an HCC experimental device.
FIG. 2a is an explanatory view showing the relationship between the firing temperature of charcoal and the specific surface area.
FIG. 2b is an explanatory view showing the relationship between the firing temperature of the charcoal and the pore volume.
FIG. 3a is a photograph explanatory view of untreated charcoal observed by a scanning electron microscope. FIG. 3b is a photograph explanatory view of PEG4000-supporting charcoal observed by a scanning electron microscope.
FIG. 4 is a graph showing the moisture absorption properties of PEG1000.
FIG. 5 is a graph showing a moisture absorption characteristic under a 100% RH atmosphere carrying PEG1000 (750 ° C.) charcoal.
FIG. 6 is a comparison (750 ° C.) of the water content of PEG1000-loaded charcoal, PEG only, and charcoal only.
FIG. 7 is a diagram showing a moisture absorption / desorption mechanism of PEG-supporting charcoal.

Claims (4)

空気中の湿度が70%RH以上になると急激に吸湿作用を発揮するPEG膜(ポリエチレングリコール)を微細孔を有した多孔質な基材の表面に担持させ、PEG膜から水だけを毛細管現象で細孔内に吸上げ凝縮することによって水分のリザーバとして働き、これにより(PEG+水)の水濃度がある濃度以上にならないためにPEG膜に潮解現象を発生させず、さらにPEG単独、及び、基材単独に比較して高容量の吸湿率を発現し、一方、外気中の湿度が70%RH以下になると基材細孔内に凝縮した水分がPEG膜に取込まれ、さらに大気中に放出される脱湿作用を発現し基材単独に比べ水分放出率が助長され低含水率を示すことを特長としたPEGの分子構造の違いによるPEG膜の水分吸着特性と基材の細孔構造による水分凝縮作用の相乗効果により吸放湿調整自在とし、これを薄膜状、板状、繊維状、粒状、或いは粉末状とした調湿材料。When the humidity in the air becomes 70% RH or more, a PEG film (polyethylene glycol) exhibiting a hygroscopic action is carried on the surface of a porous substrate having fine pores, and only water is discharged from the PEG film by capillary action. By acting as a water reservoir by absorbing and condensing into the pores, the water concentration of (PEG + water) does not exceed a certain concentration, so that no deliquescence occurs in the PEG membrane, and PEG alone and The material exhibits a higher capacity of moisture absorption than that of the material alone. On the other hand, when the humidity in the outside air becomes 70% RH or less, the water condensed in the pores of the base material is taken into the PEG film and released to the atmosphere. Due to the difference in the molecular structure of PEG, the moisture absorption rate of the PEG film and the pore structure of the substrate are characterized by the fact that it exhibits a dehumidifying effect and promotes the release of water compared to the substrate alone and exhibits a low water content. Water condensation Synergy by a freely Moisture adjustment, which thin film, plate, fiber, granular or powder form and the humidity control material. 請求項1において、焼成温度約700℃木炭を基材として、その表面に、ポリエチレングリコール(PEG)を膜状に担持させることにより、高湿度時には空気中の水分がPEG膜を通して木炭へ移動し、PEG膜の担持担体である木炭がPEG担体としてばかりではなく水分の貯留もし、逆に、外気が低湿度時には木炭細孔内に凝縮した水分がPEG膜に取込まれ、さらに空気中に放出されることを特長とする湿度90%RH〜55%RHでHCC値15〜30%を、湿度100%RH雰囲気下では40%以上の吸湿率を持つ調湿コントロール自在とした調湿材料。According to claim 1, polyethylene glycol (PEG) is supported on the surface of charcoal as a base material at a calcination temperature of about 700 ° C. in a film form, so that at high humidity, moisture in the air moves to the charcoal through the PEG film, The charcoal, which is the carrier of the PEG membrane, not only serves as a PEG carrier, but also stores water.On the contrary, when the outside air is low in humidity, the water condensed in the pores of the charcoal is taken into the PEG membrane and released into the air. A humidity control material having an HCC value of 15 to 30% at a humidity of 90% RH to 55% RH and a moisture absorption rate of 40% or more under an atmosphere of 100% RH. 請求項1に係る基材を、湿気が水蒸気で通過しやすく吸湿固着しないで半自由水として移動しやすい、透湿抵抗値が小さく透湿比抵抗値が小さくなるように調製した紙、綿花繊維、化学繊維、羊毛、活性炭、パーライト、及び、有機物を炭化した各種材料、また、石膏ボード、漆喰、木質繊維板、木材、パルプ繊維、セメント、石膏、珪酸カルシウム水和物、生石灰、ソーダ石灰、シリカゲル、ゼオライト、珪素土、クレイ(モリクロナイト)、その他ケイ酸化合物等、及び鉱物性繊維、硬質ポリウレタンフォーム等の一種又は複数種からなる請求項1同様にPEG膜を担持させたことを特長とする調湿材料。Paper or cotton fiber prepared from the base material according to claim 1 so that moisture easily passes through water vapor and easily moves as semi-free water without being absorbed and fixed, and has a small moisture permeability resistance value and a small moisture permeability specific resistance value. , Chemical fiber, wool, activated carbon, perlite, and various materials carbonized with organic matter, gypsum board, plaster, wood fiber board, wood, pulp fiber, cement, gypsum, calcium silicate hydrate, quicklime, soda lime, 2. A PEG membrane is supported as in claim 1, comprising one or more of silica gel, zeolite, silicon earth, clay (molycuronite), other silicate compounds and the like, and mineral fiber, rigid polyurethane foam and the like. Humidity control materials. 請求項1、請求項2、請求項3に記載のPEG以外に、分子構造に−OH基や−COOH、−N<(−NH、−NHφ、−Nφ)、>CO、−O−等の基を持っている等の他、脂肪酸塩、グリセリン脂肪酸、ソルビタン脂肪酸、ショ糖脂肪酸、及び、カルボキシメチルセルロース系、ポリビニルアルコール、ポリアリルアミン、水溶性酢酸セルロース、及び天然高分子系ポリマー、デンプン−ポリアクリロニトリル加水分解物、デンプン−ポリアクリル酸塩架橋物、酢酸ビニル−アクリル酸メチル共重合体のケン化物、ポリアクリル酸ソーダ架橋物等の一種又は複数種を空気中の水分吸着剤、または膜として使用したことを特長とする調湿材料。Claim 1, claim 2, in addition to PEG according to claim 3, -OH group or -COOH, -N molecular structure <(- NH 2, -NHφ, -Nφ),> CO, -O- etc. Etc., as well as fatty acid salts, glycerin fatty acids, sorbitan fatty acids, sucrose fatty acids, and carboxymethylcellulose, polyvinyl alcohol, polyallylamine, water-soluble cellulose acetate, and natural polymer polymers, starch-poly Acrylonitrile hydrolyzate, starch-polyacrylate crosslinked product, vinyl acetate-methyl acrylate copolymer saponified product, one or more of sodium polyacrylate crosslinked product, etc., as a moisture adsorbent in air, or as a film Humidity control material characterized by its use.
JP2003013094A 2003-01-22 2003-01-22 Humidity control material Expired - Fee Related JP3981022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003013094A JP3981022B2 (en) 2003-01-22 2003-01-22 Humidity control material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003013094A JP3981022B2 (en) 2003-01-22 2003-01-22 Humidity control material

Publications (2)

Publication Number Publication Date
JP2004223385A true JP2004223385A (en) 2004-08-12
JP3981022B2 JP3981022B2 (en) 2007-09-26

Family

ID=32901515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003013094A Expired - Fee Related JP3981022B2 (en) 2003-01-22 2003-01-22 Humidity control material

Country Status (1)

Country Link
JP (1) JP3981022B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102966005A (en) * 2012-11-19 2013-03-13 浙江理工大学 Preparation method of high-efficiency compound humidity-controlling paperboard
CN103055665A (en) * 2012-07-31 2013-04-24 建德市宏兴钙业有限责任公司 Quick lime desiccant and production process thereof
WO2014188523A1 (en) * 2013-05-22 2014-11-27 富士通株式会社 Adsorbent for adsorption heat pump, production method for same, and adsorption heat pump
JP2015112563A (en) * 2013-12-13 2015-06-22 富士通株式会社 Adsorbent for adsorption type heat pump, and method of producing the same, and adsorption type heat pump
CN114130169A (en) * 2021-12-10 2022-03-04 安徽前江超细粉末科技有限公司 Method for improving safety of lime drying agent

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103055665A (en) * 2012-07-31 2013-04-24 建德市宏兴钙业有限责任公司 Quick lime desiccant and production process thereof
CN103055665B (en) * 2012-07-31 2014-10-01 建德市宏兴钙业有限责任公司 Quick lime desiccant and production process thereof
CN102966005A (en) * 2012-11-19 2013-03-13 浙江理工大学 Preparation method of high-efficiency compound humidity-controlling paperboard
WO2014188523A1 (en) * 2013-05-22 2014-11-27 富士通株式会社 Adsorbent for adsorption heat pump, production method for same, and adsorption heat pump
CN105228740A (en) * 2013-05-22 2016-01-06 富士通株式会社 Adsorption type heat pump adsorbent and manufacture method thereof and adsorption type heat pump
JPWO2014188523A1 (en) * 2013-05-22 2017-02-23 富士通株式会社 Adsorbent for adsorption heat pump, method for producing the same, and adsorption heat pump
US9975108B2 (en) 2013-05-22 2018-05-22 Fujitsu Limited Adsorbent for adsorption heat pumps, production method thereof, and adsorption heat pump
JP2015112563A (en) * 2013-12-13 2015-06-22 富士通株式会社 Adsorbent for adsorption type heat pump, and method of producing the same, and adsorption type heat pump
CN114130169A (en) * 2021-12-10 2022-03-04 安徽前江超细粉末科技有限公司 Method for improving safety of lime drying agent

Also Published As

Publication number Publication date
JP3981022B2 (en) 2007-09-26

Similar Documents

Publication Publication Date Title
Zhu et al. High water adsorption MOFs with optimized pore‐nanospaces for autonomous indoor humidity control and pollutants removal
US6908497B1 (en) Solid sorbents for removal of carbon dioxide from gas streams at low temperatures
RU2447936C1 (en) Carbon-based catalyst for flue gas desulphurisation and method of producing said catalyst and use thereof in removing mercury from flue gases
WO1998017388A1 (en) Regenerable solid amine sorbent
KR100963116B1 (en) Desiccant, dehumidifying element and manufacturing methods for them
JP3981022B2 (en) Humidity control material
JP2006061758A (en) Carbon dioxide remover
US20070012186A1 (en) System and method of dehumidifying and filtering air
WO2021193137A1 (en) Filter medium
JP6353614B2 (en) Chemical formaldehyde filter
Chen et al. Preparation of a laminated structured polyethyleneimine cryogel for carbon capture
JP5140278B2 (en) Desiccant material and air dehumidification method using the same
CN117980064A (en) Gas adsorbent, and gas adsorption sheet, filter medium and air filter using same
TW200810825A (en) Adsorptive filter material
JP3106112B2 (en) Manufacturing method of drying and deodorizing agent.
JP3674373B2 (en) Porous powder, production method thereof and use thereof
JP4308581B2 (en) Removal agent for volatile organic compounds
WO2024090205A1 (en) Gas adsorbent and gas adsorption sheet, filter material, and air filter using same
JPH02197739A (en) Humidity controller
JP3768498B2 (en) Underfloor humidity control material
JP3360111B2 (en) Moisture absorbing and releasing material with low hysteresis and durable water vapor
RU2780182C1 (en) Regenerated dehumidifier unit with povidone
JP2004291468A (en) Decorative sheet
JPS642915B2 (en)
US20240165584A1 (en) Regenerable rotor and method of manufacture

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070628

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees