JP2004223038A - Method and device for microwave plasma sterilization - Google Patents

Method and device for microwave plasma sterilization Download PDF

Info

Publication number
JP2004223038A
JP2004223038A JP2003015655A JP2003015655A JP2004223038A JP 2004223038 A JP2004223038 A JP 2004223038A JP 2003015655 A JP2003015655 A JP 2003015655A JP 2003015655 A JP2003015655 A JP 2003015655A JP 2004223038 A JP2004223038 A JP 2004223038A
Authority
JP
Japan
Prior art keywords
microwave
plasma
sterilized
microwave plasma
mounting table
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003015655A
Other languages
Japanese (ja)
Other versions
JP3813586B2 (en
Inventor
Masaaki Nagatsu
雅章 永津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2003015655A priority Critical patent/JP3813586B2/en
Publication of JP2004223038A publication Critical patent/JP2004223038A/en
Application granted granted Critical
Publication of JP3813586B2 publication Critical patent/JP3813586B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To actualize a low-cost method and device for plasma sterilization, safe and easy to handle, enabling low temperature treatment at 70°C or lower and high-speed and high-capacity treatment. <P>SOLUTION: Oxygen gas is introduced from a gas inlet 2 after a vacuum container 1 is exhausted to a predetermined pressure using a vacuum pump (not shown in figure) through a vacuum exhaust outlet 3. After providing a microwave of 2.45 GHz introduced through a waveguide 7 from a microwave generator (not shown in figure) to a slot antenna 10 for converting plasma of a surface wave plasma converter 6, the microwave is introduced into the vacuum container 1 with a microwave introducing device 5 disposed on its upper part through a silica board 11, which generates microwave discharge plasma. Using the generated oxygen plasma, the object to be sterilized disposed on a mounting table 15 is sterilized at a low temperature at 70°C or lower. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は滅菌方法および装置に関し、特に、医療用器具の消毒滅菌や食料包装容器、袋あるいは食料品に対するマイクロ波プラズマを用いた滅菌方法および装置に関する。
【0002】
【従来の技術】
従来、医療用器具の消毒滅菌や食料包装容器、袋あるいは食料品に対する滅菌技術としては、▲1▼乾熱滅菌法、▲2▼高圧蒸気滅菌法、▲3▼放射線滅菌法、▲4▼エチレンオキサイドガス滅菌法等が知られている。
【0003】
▲1▼乾熱滅菌法は160〜180℃以上の高温のため、対象物が金属やガラス製品に限られ、滅菌時間として60分が必要とされる。▲2▼高圧蒸気滅菌法は121℃の高温のため、対象物が金属やガラス製品に限られ、滅菌時間として20分が必要で、湿気が問題となる材料(紙など)では使用できない。また、▲3▼放射線滅菌法は人体への危険性や放射線の当たらないところでは効力を発揮できなかった。そして、▲4▼エチレンオキサイドガス滅菌法は毒性、引火性などによる取扱いや、滅菌後の残留物の処理問題があった。
【0004】
そして、プラズマを用いた滅菌技術も複数の企業で行われているが、これらは原理的に高熱にすることにより滅菌するものが主流であり、取り扱いに問題がある。また、真空容器中に不活性ガスであるアルゴンガスや塩素系ガスを導入して、高周波電源によりガスのプラズマを発生させて処理対象物の滅菌を行なうものもあるが、ガスの毒性に問題があると共に、放電電極の表面にプラズマが発生するものであり、効率的ではなかった。(特許文献1参照)。
【0005】
【特許文献1】
実開平6−57352号公報
【0006】
【発明が解決しようとする課題】
このように、従来の滅菌法は滅菌の対象物が限定されると共に、高温で長時間の処理が必要とされたり、人体への危険性や毒性、引火性などによる取扱いと、滅菌後の残留物の処理問題等を有していた。そこで、本発明は、滅菌装置の取扱いが安全かつ容易で、低温処理が可能な、高速処理を可能とする、大容量の処理ができる低コストのプラズマ滅菌方法および装置を実現することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明の請求項1に係るマイクロ波プラズマ滅菌方法は、酸素ガスを用いて生成した高密度マイクロ波プラズマにより被滅菌物を滅菌するように構成した。
【0008】
本発明の請求項2に係るマイクロ波プラズマ滅菌方法は、酸素ガスを用いて生成した高密度マイクロ波プラズマにより被滅菌物を滅菌するものにおいて、前記高密度マイクロ波プラズマを生成する放電条件は、マイクロ波入射パワーは1KW、反射パワーは20〜30W、酸素ガス圧は10〜200Pa(パスカル)、ガス流量は100〜200sccmであるように構成した。
【0009】
こうして、低温(70℃以下)において高密度マイクロ波プラズマを用いることによって滅菌の大容量の処理と高速化(数分)を実現でき、酸素ガスを用いることによる装置の取扱上の安全性が向上し、3分以上の照射により菌濃度10の6乗以上の被滅菌物であるサンプルの完全滅菌を確認した。滅菌後のサンプルの走査型電子顕微鏡による解析から、プラズマ照射により菌の表面が酸素プラズマによって分解され形状変化し、菌の大きさが著しく小さく、痩せ細ることが判明した。
【0010】
本発明の請求項3に係るマイクロ波プラズマ滅菌装置は、酸素ガスの導入口と真空排気口と開閉扉を有する真空容器内の上部に、マイクロ波発生装置からマイクロ波を導入するマイクロ波導入装置と、スロットアンテナを有する表面波プラズマ変換装置とからなるプラズマ発生装置が配置され、該真空容器内の中央部には被滅菌物を載置保持する載置台が配置されている構成とした。
【0011】
本発明の請求項4に係るマイクロ波プラズマ滅菌装置は、酸素ガスの導入口と真空排気口と開閉扉を有する真空容器内の上部に、2.45GHzのマイクロ波発生装置からのマイクロ波導入装置と、スロットアンテナを有する表面波プラズマ変換装置とからなるプラズマ発生装置が配置され、該真空容器内の中央部には被滅菌物を載置保持する載置台が配置されている構成とした。
【0012】
こうして、高密度マイクロ波プラズマを用いることによる滅菌の大容量の処理と高速化を実現でき、酸素ガスを用いることによる装置の取扱上の安全性が向上し、高圧蒸気、高温蒸気の取扱いが不要となり、しかも本発明に用いるマイクロ波発生装置は、電子レンジと同等の発振器を用いることができ、価格は電子レンジのものと同等程度ですむ。また、真空容器1の製造はエチレンオキサイドガス滅菌装置や高温蒸気設備が必要なオートクレーブ装置等と比べ格段に容易な構造のとなり、装置の製造コストの低減化が可能となる。
【0013】
本発明の請求項5に係るマイクロ波プラズマ滅菌装置は、酸素ガスの導入口と真空排気口と開閉扉を有する真空容器内の上部に、マイクロ波発生装置からマイクロ波を導入するマイクロ波導入装置と、スロットアンテナを有する表面波プラズマ変換装置とからなるプラズマ発生装置が配置され、該真空容器内の中央部には被滅菌物を載置保持する載置台が配置され、前記載置台は位置を調節するための昇降手段に連結されてている構成とした。
【0014】
こうして、昇降手段の昇降自在な動作により載置台に開閉扉から被滅菌物を置いた後、適度な位置に移動させたり、また、発生するプラズマの状態に合わせて被滅菌物の載置台の位置を調節することができる。
【0015】
本発明の請求項6に係るマイクロ波プラズマ滅菌装置は、酸素ガスの導入口と真空排気口と開閉扉を有する真空容器内の上部に、マイクロ波発生装置からマイクロ波を導入するマイクロ波導入装置と、スロットアンテナを有する表面波プラズマ変換装置とからなるプラズマ発生装置が配置され、該真空容器内の中央部には被滅菌物を載置保持する載置台が配置され、前記載置台は複数段に分けて設置されている構成とした。
【0016】
こうして、大量に滅菌する場合は、載置台を複数段に分けて設けることにり、その上に被滅菌物を置きガス流量も適宜増加して、適正な滅菌を行うこともできる。この結果、簡易的な装置にも拘らず、従来法よりも高速でかつ安全に滅菌が可能となる。
【0017】
【発明の実施の形態】
次に、本発明の実施形態を図を参照して説明する。図1は2.45GHzのマイクロ波プラズマ滅菌装置の概要を示し、図1(A)は正面断面図、図1(B)は上面部分破断面図である。
【0018】
ガス導入口2と真空排気口3と開閉扉4を有する真空容器1内の上部に、マイクロ波発生装置(図示せず)から2.45GHzのマイクロ波を導入するマイクロ波導入装置5と、表面波プラズマ変換装置6とからなるプラズマ発生装置が配置されている。マイクロ波導入装置5は導波路7と石英板11を冷却する冷却用ファン8と短絡プランジャー9から構成される。
【0019】
表面波プラズマ変換装置6はプラズマ変換用スロットアンテナ10と石英板11から構成される。また、該真空容器1内の中央部には被滅菌物を載置保持する台座12とを備え、台座12には金属板13とセラミック14と被滅菌物を載置する載置台15が配置されている。
【0020】
本発明に用いるマイクロ波発生装置は、電子レンジと同等の発振器を用いることができ、価格は電子レンジのものと同等程度ですむ。また、真空容器1の製造はエチレンオキサイドガス滅菌装置や高温蒸気設備が必要なオートクレーブ装置等と比べ格段に容易な構造のもので良い。
【0021】
本発明の滅菌方法の具体例は次のように行われる。まず、被滅菌物を直径40cm、高さ40cmの円筒形の真空容器1内の中央部に配置された台座12の載置台15に載置する。滅菌試験サンプルとしては、最も強力な枯草菌であるバシラス・サブチリス菌とバシラス・ステアロサーモフィラス菌を採用し、培養液にサブチリス菌の場合には48時間、ステアロサーモフィラス菌の場合には7日間放置し、菌の生存、培養を確認してから用いた。
【0022】
真空容器1を真空排気口3を介して真空ポンプ(図示せず)により所定の圧力まで排気した後、ガス導入口2から酸素ガスを導入する。真空容器1内の上部に配置されたマイクロ波導入装置5に、マイクロ波発生装置(図示せず)から導波路7を介して導入される2.45GHzのマイクロ波を表面波プラズマ変換装置6のプラズマ変換用スロットアンテナ10に供給した後、石英板11を介してマイクロ波を真空容器1内に導くと、マイクロ波放電プラズマを生成する。
【0023】
この時のプラズマ生成の放電条件は、マイクロ波入射パワー700W、反射パワーは20〜30W、酸素ガス圧は10〜20Pa(パスカル)、ガス流量は100〜200sccmである。こうして生成した酸素プラズマにより、載置台15に載置された被滅菌物を低温(70℃以下)で滅菌処理を施した。プラズマ照射は、照射時間を1分から10分まで変化させた。
【0024】
その結果、3分以上の照射により菌濃度10の6乗以上の被滅菌物であるサンプルの完全滅菌を確認した。滅菌後のサンプルの走査型電子顕微鏡による解析から、プラズマ照射により菌の大きさが著しく小さく、痩せ細ることが判明した。これは菌の表面が酸素プラズマによって分解され、形状変化したものと考えられ、従来の研究成果にはない良好な結果が得られた。
【0025】
図2は、本発明装置のより実用的な実施形態の概要であり、正面断面図を示す。図において図1のものと同等な部材には同一の符号を付している。1は真空容器、2はガス導入口、3は真空排気口、4は開閉扉、5はマイクロ波導入装置、6はスロットアンテナでなる表面波プラズマ変換装置、7は直軸タイプの導波路、15は被滅菌物を載置する載置台、16は載置台15の昇降手段である。
【0026】
滅菌方法は図1の実施形態のものと同様であるので説明は省略するが、載置台15に開閉扉4から被滅菌物を置いた後、適度な位置に移動させるために、また、発生するプラズマの状態に合わせて被滅菌物の載置台15の位置を調節するために昇降手段16により昇降自在にしている。
【0027】
また、大量に滅菌する場合は、載置台15を複数段に分けて設置し、その上に被滅菌物を置きガス流量も適宜増加して、適正な滅菌を行うこともできる。この結果、簡易的な装置にも拘らず、従来法よりも高速(数分)でかつ安全に滅菌が可能となる。
【0028】
本発明のマイクロ波プラズマ滅菌方法および装置は、金属製医療器具、ガラス製医療器具、樹脂製医療器具など医療用器具の消毒滅菌、食料包装容器、袋あるいは食料品の滅菌、あるいは一般家庭用の空気滅菌装置への応用、狂牛病プリオン、MRS菌など新種の病原体の滅菌への応用、薬品関係における製造工程における滅菌装置としての応用に適している。
【0029】
また、今後の技術改良により、細管などの微細構造物に対する滅菌や、任意の形状(ペン状、ライン状あるいはシート状)の大気圧滅菌装置への展開の可能性と、パルス放電マイクロ波プラズマを用いても同等の効果が期待でき、食料品製造工場や医療現場だけでなく公共施設等での使用等かなり広い範囲での用途、市場が考えられる。
【0030】
【発明の効果】
以上のように本発明のマイクロ波プラズマ滅菌方法および装置によれば、マイクロ波プラズマを用いることによる滅菌の低温化(70℃以下)が可能になり、酸素ガスを用いることによる装置の取扱上の安全性が向上し、高圧蒸気、高温蒸気の取扱いが不要となる。また、高密度マイクロ波プラズマを用いることによる滅菌の大容量の処理と高速化(数分)を実現できるので、装置の製造コストの低減化が図られる。
【図面の簡単な説明】
【図1】本発明装置の実施形態の概要図。
【図2】本発明装置の他の実施形態の概要図。
【符号の説明】
1 真空容器
2 ガス導入口
3 真空排気口
4 開閉扉
5 マイクロ波導入装置
6 表面波プラズマ変換装置
7 導波路
8 ファン
9 短絡プランジャー
10 スロットアンテナ
11 石英板
12 台座
13 金属板
14 セラミック
15 載置台
16 昇降手段
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a sterilization method and apparatus, and more particularly, to a sterilization method and apparatus using microwave plasma for disinfecting and sterilizing medical instruments and for food packaging containers, bags, or food products.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, techniques for disinfecting and sterilizing medical instruments and sterilizing food packaging containers, bags or foodstuffs include (1) dry heat sterilization, (2) high-pressure steam sterilization, (3) radiation sterilization, and (4) ethylene. Oxide gas sterilization and the like are known.
[0003]
{Circle around (1)} Since the dry heat sterilization method has a high temperature of 160 to 180 ° C. or higher, the target object is limited to metal or glass products, and a sterilization time of 60 minutes is required. {Circle around (2)} Since the high-pressure steam sterilization method has a high temperature of 121 ° C., the target object is limited to metal or glass products, requires a sterilization time of 20 minutes, and cannot be used for materials (such as paper) where moisture is a problem. In addition, (3) the radiation sterilization method could not be effective in places where there is no danger to the human body or where radiation is not applied. (4) The ethylene oxide gas sterilization method has problems in handling due to toxicity, flammability, and the like, and in treating residues after sterilization.
[0004]
In addition, sterilization techniques using plasma are also performed by a plurality of companies, but those which sterilize by raising the heat in principle are the mainstream, and there is a problem in handling. In some cases, an argon gas or chlorine-based gas, which is an inert gas, is introduced into a vacuum vessel, and a plasma of the gas is generated by a high-frequency power supply to sterilize the object to be treated. At the same time, plasma was generated on the surface of the discharge electrode, which was not efficient. (See Patent Document 1).
[0005]
[Patent Document 1]
JP-A-6-57352
[Problems to be solved by the invention]
As described above, the conventional sterilization method limits the objects to be sterilized, and requires long-term treatment at high temperatures, handling due to danger to humans, toxicity, flammability, etc. There was a problem with the processing of things. Accordingly, an object of the present invention is to realize a low-cost plasma sterilization method and apparatus capable of handling a sterilization apparatus safely and easily, performing low-temperature processing, enabling high-speed processing, and performing large-capacity processing. I do.
[0007]
[Means for Solving the Problems]
To achieve the above object, a microwave plasma sterilization method according to claim 1 of the present invention is configured to sterilize an object to be sterilized by high-density microwave plasma generated using oxygen gas.
[0008]
The microwave plasma sterilization method according to claim 2 of the present invention is a method for sterilizing an object to be sterilized by high-density microwave plasma generated using oxygen gas, wherein the discharge conditions for generating the high-density microwave plasma include: The microwave incident power was 1 KW, the reflection power was 20 to 30 W, the oxygen gas pressure was 10 to 200 Pa (Pascal), and the gas flow rate was 100 to 200 sccm.
[0009]
Thus, the use of high-density microwave plasma at a low temperature (70 ° C. or lower) can realize a large-volume sterilization process and a high speed (several minutes), and the use of oxygen gas improves the handling safety of the device. By irradiation for 3 minutes or more, complete sterilization of the sample, which is a sterile substance having a bacterial concentration of 10 or more to the sixth power, was confirmed. Analysis of the sterilized sample by a scanning electron microscope revealed that the surface of the bacterium was decomposed by oxygen plasma and changed its shape by plasma irradiation, and the size of the bacterium was extremely small and thin.
[0010]
A microwave plasma sterilizing apparatus according to claim 3 of the present invention is a microwave introducing apparatus for introducing microwaves from a microwave generator into an upper portion of a vacuum vessel having an oxygen gas inlet, a vacuum exhaust port, and an opening / closing door. And a surface wave plasma conversion device having a slot antenna, and a mounting table for mounting and holding an object to be sterilized is provided at the center of the vacuum vessel.
[0011]
The microwave plasma sterilization apparatus according to claim 4 of the present invention is a microwave introduction apparatus from a 2.45 GHz microwave generation apparatus in an upper portion of a vacuum vessel having an oxygen gas inlet, a vacuum exhaust port, and an opening / closing door. And a surface wave plasma conversion device having a slot antenna, and a mounting table for mounting and holding an object to be sterilized is provided at the center of the vacuum vessel.
[0012]
In this way, the use of high-density microwave plasma can achieve a large-volume sterilization process and a high speed, and the use of oxygen gas improves the handling safety of the device, eliminating the need to handle high-pressure steam and high-temperature steam. In addition, the microwave generator used in the present invention can use an oscillator equivalent to that of a microwave oven, and the price is almost the same as that of a microwave oven. Further, the manufacture of the vacuum vessel 1 has a significantly simpler structure than an ethylene oxide gas sterilization apparatus or an autoclave apparatus requiring a high-temperature steam facility, and the manufacturing cost of the apparatus can be reduced.
[0013]
The microwave plasma sterilizing apparatus according to claim 5 of the present invention is a microwave introducing apparatus for introducing microwaves from a microwave generator into an upper portion of a vacuum vessel having an oxygen gas inlet, a vacuum exhaust port, and an opening / closing door. And, a plasma generator comprising a surface wave plasma conversion device having a slot antenna is disposed, a mounting table for mounting and holding an object to be sterilized is disposed at a central portion in the vacuum vessel, and the mounting table is positioned as described above. It is configured to be connected to the elevating means for adjustment.
[0014]
In this way, the object to be sterilized is placed on the mounting table from the opening / closing door by the vertically movable operation of the elevating means, and then moved to an appropriate position, or the position of the mounting table of the object to be sterilized according to the state of the generated plasma. Can be adjusted.
[0015]
A microwave plasma sterilizing apparatus according to claim 6 of the present invention is a microwave introducing apparatus for introducing microwaves from a microwave generator into an upper portion of a vacuum vessel having an oxygen gas inlet, a vacuum exhaust port, and an opening / closing door. And a plasma generating device comprising a surface wave plasma conversion device having a slot antenna, and a mounting table for mounting and holding an object to be sterilized is disposed at a central portion in the vacuum vessel. It was configured to be installed separately.
[0016]
When a large amount of sterilization is performed in this way, the mounting table can be provided in a plurality of stages, and the object to be sterilized can be placed on the mounting table, and the gas flow rate can be appropriately increased to perform appropriate sterilization. As a result, the sterilization can be performed at higher speed and safely than the conventional method, despite the simple device.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows an outline of a microwave plasma sterilizer of 2.45 GHz. FIG. 1 (A) is a front sectional view, and FIG. 1 (B) is a partially broken top view.
[0018]
A microwave introduction device 5 for introducing a microwave of 2.45 GHz from a microwave generation device (not shown) into an upper portion in a vacuum vessel 1 having a gas introduction port 2, a vacuum exhaust port 3, and an opening / closing door 4, and a surface. A plasma generation device including the wave plasma conversion device 6 is provided. The microwave introduction device 5 includes a cooling fan 8 for cooling the waveguide 7 and the quartz plate 11 and a short-circuit plunger 9.
[0019]
The surface wave plasma converter 6 includes a slot antenna 10 for plasma conversion and a quartz plate 11. Further, a pedestal 12 for mounting and holding the object to be sterilized is provided at a central portion in the vacuum vessel 1, and a metal plate 13, a ceramic 14, and a mounting table 15 for mounting the object to be sterilized are arranged on the pedestal 12. ing.
[0020]
The microwave generator used in the present invention can use an oscillator equivalent to that of a microwave oven, and the price is about the same as that of a microwave oven. Further, the manufacture of the vacuum vessel 1 may have a structure that is much easier than an ethylene oxide gas sterilization apparatus or an autoclave apparatus requiring a high-temperature steam facility.
[0021]
A specific example of the sterilization method of the present invention is performed as follows. First, the object to be sterilized is placed on the mounting table 15 of the pedestal 12 arranged at the center in the cylindrical vacuum vessel 1 having a diameter of 40 cm and a height of 40 cm. As the sterilization test samples, Bacillus subtilis and Bacillus stearothermophilus, which are the most powerful Bacillus subtilis, are used, and 48 hours for subtilis bacteria and 48 hours for Stearothermophilus bacteria. Was used for 7 days after confirming the survival and culture of the bacteria.
[0022]
After the vacuum vessel 1 is evacuated to a predetermined pressure by a vacuum pump (not shown) through a vacuum exhaust port 3, oxygen gas is introduced from a gas inlet 2. The microwave of 2.45 GHz introduced from a microwave generator (not shown) via a waveguide 7 is applied to a microwave introduction device 5 disposed at an upper portion in the vacuum vessel 1. After the microwave is supplied to the plasma conversion slot antenna 10 and guided into the vacuum chamber 1 through the quartz plate 11, microwave discharge plasma is generated.
[0023]
The discharge conditions for plasma generation at this time are: microwave incident power of 700 W, reflection power of 20 to 30 W, oxygen gas pressure of 10 to 20 Pa (Pascal), and gas flow rate of 100 to 200 sccm. The object to be sterilized mounted on the mounting table 15 was sterilized at a low temperature (70 ° C. or lower) by the oxygen plasma thus generated. In the plasma irradiation, the irradiation time was changed from 1 minute to 10 minutes.
[0024]
As a result, it was confirmed that the sample, which was a sterile substance having a bacterial concentration of 10 or more to the sixth power, was completely sterilized by irradiation for 3 minutes or more. Analysis of the sterilized sample by a scanning electron microscope revealed that the size of the bacteria was extremely small and thin due to plasma irradiation. This is thought to be due to the fact that the surface of the bacteria was decomposed by the oxygen plasma and changed its shape, and good results were obtained that were not attained in the conventional research results.
[0025]
FIG. 2 is an outline of a more practical embodiment of the device of the present invention, and shows a front sectional view. In the figure, the same members as those in FIG. 1 are denoted by the same reference numerals. 1 is a vacuum vessel, 2 is a gas introduction port, 3 is a vacuum exhaust port, 4 is an opening / closing door, 5 is a microwave introduction device, 6 is a surface wave plasma conversion device comprising a slot antenna, 7 is a direct-axis type waveguide, Reference numeral 15 denotes a mounting table on which the object to be sterilized is mounted, and 16 denotes a means for elevating the mounting table 15.
[0026]
Since the sterilization method is the same as that of the embodiment of FIG. 1, the description is omitted. However, after the object to be sterilized is placed on the mounting table 15 from the opening / closing door 4, it is generated again to move it to an appropriate position. In order to adjust the position of the mounting table 15 for the object to be sterilized according to the state of the plasma, the object is vertically movable by an elevating means 16.
[0027]
In the case of performing a large amount of sterilization, the mounting table 15 may be divided into a plurality of stages, an object to be sterilized may be placed on the mounting table 15, and the gas flow rate may be appropriately increased to perform appropriate sterilization. As a result, the sterilization can be performed at a higher speed (several minutes) and safely than the conventional method, despite the simple device.
[0028]
The microwave plasma sterilization method and apparatus of the present invention can be used for disinfecting and sterilizing medical instruments such as metal medical instruments, glass medical instruments, and resin medical instruments, for food packaging containers, bags or foodstuffs, or for general household use. It is suitable for application to air sterilizers, sterilization of new pathogens such as mad cow prions and MRS bacteria, and application as sterilizers in manufacturing processes related to medicine.
[0029]
In addition, due to future technical improvements, it is possible to sterilize microstructures such as thin tubes and to develop it into an atmospheric pressure sterilizer of any shape (pen, line, or sheet). The same effect can be expected even if it is used, and a wide range of applications and markets can be considered, such as use in public facilities as well as food manufacturing factories and medical sites.
[0030]
【The invention's effect】
As described above, according to the microwave plasma sterilization method and apparatus of the present invention, it is possible to lower the temperature of sterilization (70 ° C. or lower) by using microwave plasma, and to handle the apparatus by using oxygen gas. Safety is improved, and high pressure steam and high temperature steam need not be handled. In addition, since a large-volume sterilization process and a high-speed (several minutes) can be realized by using the high-density microwave plasma, the manufacturing cost of the apparatus can be reduced.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of an embodiment of the device of the present invention.
FIG. 2 is a schematic view of another embodiment of the device of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Vacuum container 2 Gas introduction port 3 Vacuum exhaust port 4 Opening / closing door 5 Microwave introduction device 6 Surface wave plasma conversion device 7 Waveguide 8 Fan 9 Short-circuit plunger 10 Slot antenna 11 Quartz plate 12 Base 13 Metal plate 14 Ceramic 15 Mounting table 16 lifting means

Claims (6)

酸素ガスを用いて生成した高密度マイクロ波プラズマにより被滅菌物を滅菌することを特徴とするマイクロ波プラズマ滅菌方法。A microwave plasma sterilization method comprising sterilizing an object to be sterilized by high-density microwave plasma generated using oxygen gas. 前記高密度マイクロ波プラズマを生成する放電条件は、マイクロ波入射パワーは最大1KW、反射パワーは20〜30W、酸素ガス圧は10〜200Pa(パスカル)、ガス流量は100〜200sccmであることを特徴とする請求項1記載のマイクロ波プラズマ滅菌方法。The discharge conditions for generating the high-density microwave plasma are as follows: microwave incident power is 1 KW at maximum, reflected power is 20 to 30 W, oxygen gas pressure is 10 to 200 Pa (Pascal), and gas flow rate is 100 to 200 sccm. The microwave plasma sterilization method according to claim 1, wherein 酸素ガスの導入口と真空排気口と開閉扉を有する真空容器内の上部に、マイクロ波発生装置からマイクロ波を導入するマイクロ波導入装置と、スロットアンテナを有する表面波プラズマ変換装置とからなるプラズマ発生装置が配置され、該真空容器内の中央部には被滅菌物を載置保持する載置台が配置されていることを特徴とするマイクロ波プラズマ装置。Plasma consisting of a microwave introduction device for introducing microwaves from a microwave generator and a surface wave plasma conversion device having a slot antenna in the upper part of a vacuum vessel having an oxygen gas inlet, a vacuum exhaust port, and an opening / closing door. A microwave plasma apparatus, wherein a generator is arranged, and a mounting table for mounting and holding an object to be sterilized is arranged at a central portion in the vacuum vessel. 前記マイクロ波発生装置からマイクロ波は2.45GHzであることを特徴とする請求項3記載のマイクロ波プラズマ滅菌装置。The microwave plasma sterilizer according to claim 3, wherein the microwave from the microwave generator has a frequency of 2.45 GHz. 前記載置台は位置を調節するための昇降手段に連結されていることを特徴とする請求項3記載のマイクロ波プラズマ滅菌装置。4. The microwave plasma sterilizer according to claim 3, wherein the mounting table is connected to a lifting means for adjusting a position. 前記載置台は複数段に分けて設置されることを特徴とする請求項3記載のマイクロ波プラズマ滅菌装置。4. The microwave plasma sterilizer according to claim 3, wherein the mounting table is divided into a plurality of stages.
JP2003015655A 2003-01-24 2003-01-24 Microwave plasma sterilization method Expired - Fee Related JP3813586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003015655A JP3813586B2 (en) 2003-01-24 2003-01-24 Microwave plasma sterilization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003015655A JP3813586B2 (en) 2003-01-24 2003-01-24 Microwave plasma sterilization method

Publications (2)

Publication Number Publication Date
JP2004223038A true JP2004223038A (en) 2004-08-12
JP3813586B2 JP3813586B2 (en) 2006-08-23

Family

ID=32903338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003015655A Expired - Fee Related JP3813586B2 (en) 2003-01-24 2003-01-24 Microwave plasma sterilization method

Country Status (1)

Country Link
JP (1) JP3813586B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009218083A (en) * 2008-03-11 2009-09-24 Jiima Kk Plasma generation device
GB2459461A (en) * 2008-04-23 2009-10-28 Microoncology Ltd A non-thermal microwave plasma sterilisation system using automatic tuning
WO2016190436A1 (en) * 2015-05-28 2016-12-01 国立大学法人佐賀大学 Plasma sterilization device
CN108185262A (en) * 2017-12-27 2018-06-22 海泉百膳生物科技股份有限公司 A kind of food processing vacuum microwave drying sterilizing installation

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11229095B2 (en) 2014-12-17 2022-01-18 Campbell Soup Company Electromagnetic wave food processing system and methods
KR101968530B1 (en) * 2018-06-05 2019-08-20 국방과학연구소 Plasma sterilizable container for microwave oven
EP4309680A1 (en) * 2022-07-22 2024-01-24 Aurora Non-thermal plasma cleaning device and cleaning method
WO2024017676A1 (en) 2022-07-22 2024-01-25 Aurora Non-thermal plasma cleaning device and cleaning method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009218083A (en) * 2008-03-11 2009-09-24 Jiima Kk Plasma generation device
GB2459461A (en) * 2008-04-23 2009-10-28 Microoncology Ltd A non-thermal microwave plasma sterilisation system using automatic tuning
GB2459461B (en) * 2008-04-23 2012-08-01 Creo Medical Ltd A non-thermal microwave plasma sterilisation system using automatic tuning contained within the hand-piece of the applicator
WO2016190436A1 (en) * 2015-05-28 2016-12-01 国立大学法人佐賀大学 Plasma sterilization device
JPWO2016190436A1 (en) * 2015-05-28 2018-03-15 国立大学法人佐賀大学 Plasma sterilizer
CN108185262A (en) * 2017-12-27 2018-06-22 海泉百膳生物科技股份有限公司 A kind of food processing vacuum microwave drying sterilizing installation

Also Published As

Publication number Publication date
JP3813586B2 (en) 2006-08-23

Similar Documents

Publication Publication Date Title
EP2135625B1 (en) Microwave plasma sterilizing device and method
Moreau et al. Using the flowing afterglow of a plasma to inactivate Bacillus subtilis spores: Influence of the operating conditions
EP0313409B1 (en) Sterilization method and apparatus
EP0278623B1 (en) Hydrogen peroxide plasma sterilization system
JP4526649B2 (en) Sterilization method
Akitsu et al. Plasma sterilization using glow discharge at atmospheric pressure
EP1735014B1 (en) Vacuum sterilization process and device
EP0207417B1 (en) Hydrogen peroxide plasma sterilization system
JPH11506677A (en) Plasma steam sterilization apparatus and method
JPH11501530A (en) Apparatus and method for plasma sterilization
US20130230426A1 (en) Device for cold plasma sterilization of an object, such as medical device, particularly an implant, and method of using this device
JP2008302198A (en) Sterilizer
Nagatsu et al. Low-temperature sterilization with surface-wave-excited oxygen plasma
Hu et al. The effect of air plasma on sterilization of Escherichia coli in dielectric barrier discharge
JP3813586B2 (en) Microwave plasma sterilization method
KR100454818B1 (en) Device and method for disinfection and sterilization by using high density plasma
Hauser et al. Sterilization of heat-sensitive silicone implant material by low-pressure gas plasma
CN212308482U (en) Atmospheric pressure low temperature plasma rapid sterilization device
Neogi Inactivation characteristics of bacteria in capacitively coupled argon plasma
Tamazawa et al. Sterilization effect of wet oxygen plasma in the bubbling method
CN111150863A (en) Atmospheric pressure low-temperature plasma rapid sterilization device and sterilization method
WO2007023547A1 (en) Method of low-temperature dry sterilization and apparatus therefor
Moreira et al. Study of Oxygen Plasma for Application in Sterilization Processes.
JP3644727B2 (en) Sterilization method and apparatus
JPH0731660A (en) Sterilization apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041018

A977 Report on retrieval

Effective date: 20060224

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20060307

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060530

A61 First payment of annual fees (during grant procedure)

Effective date: 20060531

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20100609

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130609

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees