JP2004222992A - Artificial bone material and manufacturing method therefor - Google Patents

Artificial bone material and manufacturing method therefor Download PDF

Info

Publication number
JP2004222992A
JP2004222992A JP2003014794A JP2003014794A JP2004222992A JP 2004222992 A JP2004222992 A JP 2004222992A JP 2003014794 A JP2003014794 A JP 2003014794A JP 2003014794 A JP2003014794 A JP 2003014794A JP 2004222992 A JP2004222992 A JP 2004222992A
Authority
JP
Japan
Prior art keywords
pore
sintered body
control material
sintering
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003014794A
Other languages
Japanese (ja)
Inventor
Norio Yamaguchi
典男 山口
Osamu Ohashi
修 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIIGATA TLO KK
Niigata TLO Corp
Original Assignee
NIIGATA TLO KK
Niigata TLO Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIIGATA TLO KK, Niigata TLO Corp filed Critical NIIGATA TLO KK
Priority to JP2003014794A priority Critical patent/JP2004222992A/en
Publication of JP2004222992A publication Critical patent/JP2004222992A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a porous artificial bone material using a calcium phosphate based hydroxy apatite which has a high porosity, a large air cell size and an excellent mechanical strength, and to provide a method for manufacturing the same. <P>SOLUTION: An inorganic compound containing bone constituents is used as a air cell control material, and is added at an arbitrary ratio to the calcium phosphate based hydroxy apatite. After sintering, the air cell control material is dissolved in water or an aqueous solution and a porous sintered material is thereby manufactured. Since the high temperature-stable inorganic compound is used as the air cell control material, the porous material can be manufactured by pressure sintering. Further, since an organic material of an existing air cell control material is not used, the influence of sintering heat generation of the organic material on the sintered material disappears. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、気孔径および気孔率を制御した硬組織代替材料及びその作製方法に関するものである。
【0002】
【従来の技術】
人工骨や人工歯根などの硬組織代替材料は、緻密体、多孔体、顆粒などの形状で用いられている。生体内埋入時における骨芽細胞の活動性の観点から、多孔体は重要な材料形態となっており、その気孔径や気孔率などの制御が重要である。毒性や生体との親和性から、骨の無機主成分である水酸アパタイト(Ca10(PO4)6(OH)2)などのリン酸カルシウム系化合物の一群が硬組織代替材料として用いられている。既存のリン酸カルシウム系材料における多孔質焼結体の作製では、粒径を制御した有機物もしくはカーボンを気孔制御材として用い、焼結と同時もしくは予備焼成により、有機物の燃焼除去を行ない、多孔質焼結体を作製している(例えば、特開平7−291759など)。また、気孔制御材を用いずに焼結した場合、非常に小さな孔(1μm以下)を有した多孔質焼結体の作製は可能であるが、人工骨として必要な気孔径を制御できないため、人工骨用の多孔質焼結体においては、気孔制御材の使用は重要となる。
【0003】
【発明が解決しようとする課題】
しかしながら、気孔制御材として有機物もしくはカーボンを用いることにより、いくつかの問題が生じる。まず第一に、有機物やカーボンの燃焼により大きな発熱を伴う。水酸基を有している水酸アパタイトにおいて、この燃焼発熱は、水酸基の部分的な脱離を招き、変質を引き起こす。第二に、加圧しながらの焼結が困難である。有機物の除去と同時に焼結するため、加圧焼結した場合、制御された気孔径や気孔率が著しく変化してしまう恐れがある。このため既存の方法では、室温で圧粉体を形成後、無加圧で焼結する常圧焼結が行われており、高温・長時間での焼結が必要となってしまうという課題があった。
【0004】
【課題を解決するための手段】
本発明は、上述の課題を解決するために、無機化合物を気孔制御材として用い、粒径を制御した気孔制御材と水酸アパタイトからなる複合焼結体を作製し、特定の水溶液を用い室温で気孔制御材のみを選択的に溶解することにより、気孔径および気孔率を制御した多孔質焼結体の作製をすることを特徴とする。気孔制御材は、焼結温度で安定であり、水もしくは水溶液への溶解度が非常に高く、また骨の構成元素を含む化合物であることが特徴である。気孔率は連通孔形成のために30vol%以上であり、多孔質焼結体の形状維持のために80vol%以下とする。気孔径は任意のサイズが可能であるが、特に人工骨においては、生体内埋入時における骨芽細胞の活動性の観点から、100μm以上の気孔径を有する多孔質焼結体とする。
【0005】
【発明の実施の形態】
本発明の水酸アパタイト多孔体作製工程を図1に示す。水酸アパタイト粉末と粒径を制御した気孔制御材(酸化カルシウムCaO, 水酸化カルシウムCa(OH)2 , 炭酸カルシウムCaCO3等の化合物)を任意の気孔率となるように均一に混合し、複合焼結体を作製する(図2−a)。このとき、焼結方法として、室温で圧粉体を形成後、無加圧で焼結する常圧焼結、加圧しながら焼結するホットプレスやパルス通電焼結など種々の焼結法が可能であり、焼結法としては、加圧、無加圧は問わない。
【0006】
複合焼結体をそのままもしくは任意の大きさに加工した後、図3に示すように、複合焼結体を飽和NH4Cl水溶液に浸漬し、気孔制御材(CaO , Ca(OH)2 , CaCO3等の化合物)を全て溶出させ、多孔質焼結体とする(図2−b)。
【0007】
【実施例】
(実施例1) パルス通電焼結装置を用いて、気孔制御材となるCaOを700℃, 10min間で焼結した。CaO焼結体を粗粉砕し、約100〜200μmに分級した。平均粒径が約10μmの水酸アパタイト球状粉末と分級された気孔制御材を均一に混合した。気孔制御材の混合比率は50vol%である。なお、水酸アパタイトのCa/P比は化学量論である1.67である。
【0008】
水酸アパタイト/気孔制御材混合粉末を直径15mmのカーボンダイスに約1g充填し、パルス通電焼結装置を用いて、800℃で10min間、真空中で焼結した。焼結時の昇温速度は、約100℃/minであり、冷却は装置内で自然放冷とした。温度測定はダイスの温度を測定した。粉末X線回折の結果から、焼結体は水酸アパタイトとCaOからのみ構成されており、両化合物間の反応は見られなかった。
得られた焼結体を約5×5×2mmの大きさに切り出し、気孔制御材の溶出を行なった。気孔制御材CaOの溶出には、飽和NH4Cl水溶液を用い、完全に溶出するまで約30h要した。溶出後の多孔質焼結体は、水酸アパタイトのみであった。気孔制御材が溶出した後の飽和NH4Cl水溶液のpHは8〜9であり、アルカリ性で安定な水酸アパタイトの溶解はないと考えられる。作製した多孔質焼結体の各データを表1に示す。
【0009】
(実施例2) 気孔制御材CaOの粒径を約100〜200μm、気孔制御材の混合比率を70vol%とし、実施例1と同じ方法で多孔体を作製した。溶出後の多孔質焼結体は、水酸アパタイトのみであった。また、気孔制御材の溶出には約12h要した。作製した多孔質焼結体の各データを表1に示す。
【0010】
(実施例3) 気孔制御材CaOの粒径を約200〜1000μm、気孔制御材の混合比率を50vol%とし、実施例1と同じ方法で多孔体を作製した。溶出後の多孔質焼結体は、水酸アパタイトのみであった。また、気孔制御材の溶出には約30h要した。作製した多孔質焼結体の各データを表1に示す。
【0011】
(実施例4) 気孔制御材CaOの粒径を約200〜1000μm、気孔制御材の混合比率を70vol%とし、実施例1と同じ方法で多孔体を作製した。溶出後の多孔質焼結体は、水酸アパタイトのみであった。また、気孔制御材の溶出には約12h要した。作製した多孔質焼結体の各データを表1に示す。
【0012】
(比較例1) 気孔制御材CaOの粒径を約100〜200μm、気孔制御材の混合比率を20vol%とし、実施例1と同じ方法で多孔体を作製した。溶出後の多孔質焼結体は、HAの理論密度に対する相対密度が、約90%となり、混合した気孔制御材が完全には溶出されず、気孔率の制御が十分に行なえない。また、大量の気孔制御材が焼結体中に残るために、生体材料としての利用が難しい。
【0013】
(比較例2) 気孔制御材CaOの粒径を約100〜200μm、気孔制御材の混合比率を90vol%とし、実施例1と同じ方法で多孔体を作製した。気孔制御材の溶出中に焼結体の破壊が起こり、多孔質焼結体の形状を維持できなかった。
【0014】
なお気孔制御材をCaOからCa(OH)2 及びCaCO3に変えて実験を行ったところ、同様の効果が得られた。また、金属を多孔質化することは難しいが、本発明における作製方法を利用し、金属と気孔制御材の最適な組み合わせを見つけることにより、金属の多孔質化も可能となり、適用範囲を広げることも出来る。
【0015】
【表1】

Figure 2004222992
【発明の効果】
本発明による作製方法では、平均気孔径が人工骨材料に有効な大きなサイズに制御できるとともに、溶出による気孔制御材の除去のため、水酸アパタイトの水酸基への影響は極めて低くなった。また、気孔制御材に熱的に安定な無機化合物を使用するため、パルス通電焼結やホットプレスなど加圧焼結技法の利用が可能となった。特にパルス通電焼結法を利用することにより、低温短時間(800℃, 10min)での焼結が可能となり、水酸基の脱離など水酸アパタイトへの影響を大きく低減できた。
【0016】
【図面の簡単な説明】
【図1】本発明の人工骨材料作製の工程図。
【図2】本発明で作製する焼結体の説明図である。2−aは水酸アパタイトと気孔制御材からなる複合焼結体を示している。2−bは気孔制御材を除去した後の多孔質焼結体を示している。
【図3】気孔制御材の溶出装置の断面図である。
【符号の説明】
21 気孔制御材(酸化カルシウムCaOなど)
22 水酸アパタイト
23 気孔
31 複合焼結体
32 塩化アンモニウムNH4Cl飽和水溶液
33 回転子
34 スターラー
35 網
36 容器(ビーカーなど)[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hard tissue replacement material having a controlled pore diameter and porosity, and a method for producing the same.
[0002]
[Prior art]
Hard tissue replacement materials such as artificial bones and artificial tooth roots are used in the form of dense bodies, porous bodies, granules and the like. From the viewpoint of the activity of osteoblasts at the time of implantation in a living body, the porous body has an important material form, and it is important to control the pore diameter and porosity thereof. A group of calcium phosphate compounds such as hydroxyapatite (Ca10 (PO4) 6 (OH) 2), which is an inorganic main component of bone, has been used as a hard tissue replacement material due to toxicity and affinity with living bodies. In the production of a porous sintered body of existing calcium phosphate-based materials, an organic substance or carbon having a controlled particle size is used as a pore control material, and the organic substance is burned and removed at the same time as sintering or by pre-firing, and porous sintering is performed. The body is manufactured (for example, JP-A-7-291759). Further, when sintering is performed without using a pore control material, a porous sintered body having very small pores (1 μm or less) can be produced, but the pore diameter required as an artificial bone cannot be controlled. In a porous sintered body for artificial bone, the use of a pore control material is important.
[0003]
[Problems to be solved by the invention]
However, using an organic substance or carbon as the pore control material causes some problems. First of all, the combustion of organic matter and carbon generates a large amount of heat. In a hydroxyapatite having a hydroxyl group, the heat generated by combustion causes partial elimination of the hydroxyl group, thereby causing deterioration. Second, sintering under pressure is difficult. Since sintering is performed at the same time as the removal of the organic matter, the controlled pore diameter and porosity may significantly change when pressure sintering is performed. For this reason, in the existing method, normal pressure sintering, in which a green compact is formed at room temperature and then sintering without pressure, is performed, has a problem that sintering at a high temperature for a long time is required. there were.
[0004]
[Means for Solving the Problems]
The present invention solves the above problems by using an inorganic compound as a pore controlling material, producing a composite sintered body composed of a pore controlling material having a controlled particle size and hydroxyapatite, and using a specific aqueous solution at room temperature. By selectively dissolving only the pore control material, a porous sintered body having a controlled pore diameter and porosity is produced. The pore control material is characterized in that it is stable at the sintering temperature, has a very high solubility in water or an aqueous solution, and is a compound containing a constituent element of bone. The porosity is 30 vol% or more for forming communication holes, and 80 vol% or less for maintaining the shape of the porous sintered body. The pore diameter can be any size. Particularly, in the case of artificial bone, from the viewpoint of the activity of osteoblasts during implantation in a living body, a porous sintered body having a pore diameter of 100 μm or more is used.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows a process for producing a hydroxyapatite porous body of the present invention. Hydroxyapatite powder and a pore controlling material (compounds such as calcium oxide CaO, calcium hydroxide Ca (OH) 2, and calcium carbonate CaCO3) having a controlled particle size are uniformly mixed so as to have an arbitrary porosity. A binder is produced (FIG. 2-a). At this time, various sintering methods are available, such as normal pressure sintering in which a green compact is formed at room temperature and then sintering without pressure, hot pressing in which sintering is performed while applying pressure, and pulse current sintering. The sintering method may be pressurized or non-pressurized.
[0006]
After processing the composite sintered body as it is or to an arbitrary size, as shown in FIG. 3, the composite sintered body is immersed in a saturated NH4Cl aqueous solution, and a pore control material (CaO 2, Ca (OH) 2, CaCO 3, etc.) All the compounds are eluted to obtain a porous sintered body (FIG. 2-b).
[0007]
【Example】
(Example 1) CaO as a pore control material was sintered at 700 ° C for 10 minutes using a pulse current sintering apparatus. The CaO sintered body was roughly pulverized and classified to about 100 to 200 μm. Hydroxyapatite spherical powder having an average particle size of about 10 μm and the classified pore controlling material were uniformly mixed. The mixing ratio of the pore control material is 50 vol%. The Ca / P ratio of hydroxyapatite is 1.67 which is a stoichiometric ratio.
[0008]
Approximately 1 g of the hydroxyapatite / porosity controlling material mixed powder was filled in a carbon die having a diameter of 15 mm, and sintered in a vacuum at 800 ° C. for 10 minutes using a pulse current sintering apparatus. The rate of temperature rise during sintering was about 100 ° C./min, and cooling was allowed to cool naturally in the apparatus. For the temperature measurement, the temperature of the die was measured. From the results of powder X-ray diffraction, the sintered body was composed only of hydroxyapatite and CaO, and no reaction was observed between the two compounds.
The obtained sintered body was cut into a size of about 5 × 5 × 2 mm, and the pore controlling material was eluted. The pore control material CaO was eluted with a saturated NH4Cl aqueous solution, and it took about 30 hours to elute completely. The porous sintered body after elution was only hydroxyapatite. The pH of the saturated aqueous NH 4 Cl solution after the pore control material elutes is 8 to 9, and it is considered that the alkaline and stable hydroxyapatite is not dissolved. Table 1 shows each data of the produced porous sintered body.
[0009]
(Example 2) A porous body was produced in the same manner as in Example 1, except that the particle size of the pore control material CaO was about 100 to 200 µm and the mixing ratio of the pore control material was 70 vol%. The porous sintered body after elution was only hydroxyapatite. It took about 12 hours to elute the pore control material. Table 1 shows each data of the produced porous sintered body.
[0010]
Example 3 A porous body was produced in the same manner as in Example 1, except that the particle size of the pore control material CaO was about 200 to 1000 μm and the mixing ratio of the pore control material was 50 vol%. The porous sintered body after elution was only hydroxyapatite. It took about 30 hours to elute the pore control material. Table 1 shows each data of the produced porous sintered body.
[0011]
Example 4 A porous body was produced in the same manner as in Example 1, except that the particle size of the pore control material CaO was about 200 to 1000 μm, and the mixing ratio of the pore control material was 70 vol%. The porous sintered body after elution was only hydroxyapatite. It took about 12 hours to elute the pore control material. Table 1 shows each data of the produced porous sintered body.
[0012]
Comparative Example 1 A porous body was produced in the same manner as in Example 1, except that the particle size of the pore controlling material CaO was about 100 to 200 μm and the mixing ratio of the pore controlling material was 20 vol%. The relative density of the porous sintered body after elution with respect to the theoretical density of HA is about 90%, and the mixed pore control material is not completely eluted, and the porosity cannot be sufficiently controlled. Further, since a large amount of the pore control material remains in the sintered body, it is difficult to use it as a biomaterial.
[0013]
Comparative Example 2 A porous body was produced in the same manner as in Example 1, except that the particle size of the pore controlling material CaO was about 100 to 200 μm and the mixing ratio of the pore controlling material was 90 vol%. During the elution of the pore control material, the sintered body was broken, and the shape of the porous sintered body could not be maintained.
[0014]
When the experiment was performed by changing the pore control material from CaO to Ca (OH) 2 and CaCO3, the same effect was obtained. In addition, it is difficult to make metal porous, but by using the manufacturing method of the present invention to find the optimal combination of metal and pore control material, it becomes possible to make metal porous and expand its application range. Can also be.
[0015]
[Table 1]
Figure 2004222992
【The invention's effect】
In the production method according to the present invention, the average pore diameter can be controlled to a large size effective for the artificial bone material, and the influence of the hydroxyapatite on the hydroxyl group is extremely low because the pore control material is removed by elution. In addition, since a thermally stable inorganic compound is used as the pore control material, pressure sintering techniques such as pulse current sintering and hot pressing can be used. In particular, by using the pulse electric current sintering method, sintering at a low temperature and in a short time (800 ° C., 10 minutes) became possible, and the influence on hydroxyapatite such as elimination of hydroxyl groups was greatly reduced.
[0016]
[Brief description of the drawings]
FIG. 1 is a process chart for producing an artificial bone material of the present invention.
FIG. 2 is an explanatory diagram of a sintered body produced by the present invention. 2-a indicates a composite sintered body composed of hydroxyapatite and a pore controlling material. 2-b shows the porous sintered body after removing the pore control material.
FIG. 3 is a sectional view of an apparatus for eluting a pore controlling material.
[Explanation of symbols]
21 Pore control materials (calcium oxide CaO, etc.)
22 Hydroxyapatite 23 Pores 31 Composite sintered body 32 Saturated aqueous solution of ammonium chloride NH4Cl 33 Rotor 34 Stirrer 35 Mesh 36 Container (eg, beaker)

Claims (3)

粒径を制御した気孔制御材と母材粉末を任意の割合で均一に混合し焼結した後、気孔制御材のみを所定の水溶液を用いて溶出することにより、気孔径、気孔率を制御して作製した多孔質焼結体から成る人工骨材料及びその作製方法。After uniformly mixing and sintering the pore control material and the base material powder having a controlled particle size at an arbitrary ratio, the pore size and porosity are controlled by eluting only the pore control material using a predetermined aqueous solution. Bone material comprising a porous sintered body produced by the above method and a method for producing the same. 請求項1において、母材粉末を水酸アパタイトとし、これに最適な気孔制御材として、CaO , Ca(OH)2 , CaCO3の化合物の群から一種以上を主成分とし、且つ、溶出用水溶液として、飽和NH4Cl水溶液を用いて、作製した水酸アパタイト多孔質焼結体から成る人工骨材料及びその作製方法。In claim 1, the base material powder is hydroxyapatite, and as an optimal pore control material, one or more of the compounds of CaO 2, Ca (OH) 2, and CaCO 3 is used as a main component, and as an aqueous solution for elution. An artificial bone material comprising a hydroxyapatite porous sintered body produced using a saturated NH4Cl aqueous solution, and a method for producing the same. 請求項2において、気孔径が100μm以上で、かつ多孔質焼結体の気孔率が30〜80vol%の水酸アパタイト多孔質焼結体から成る人工骨材料およびその作製方法。The artificial bone material according to claim 2, comprising a hydroxyapatite porous sintered body having a pore diameter of 100 µm or more and a porosity of the porous sintered body of 30 to 80 vol%, and a method for producing the artificial bone material.
JP2003014794A 2003-01-23 2003-01-23 Artificial bone material and manufacturing method therefor Pending JP2004222992A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003014794A JP2004222992A (en) 2003-01-23 2003-01-23 Artificial bone material and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003014794A JP2004222992A (en) 2003-01-23 2003-01-23 Artificial bone material and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2004222992A true JP2004222992A (en) 2004-08-12

Family

ID=32902730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003014794A Pending JP2004222992A (en) 2003-01-23 2003-01-23 Artificial bone material and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2004222992A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111230128A (en) * 2020-03-11 2020-06-05 昆明理工大学 Based on TiH2Method for preparing porous titanium and titanium alloy by adding CaO
US11730856B2 (en) 2014-09-01 2023-08-22 Kyushu University National University Corporation Method of producing product inorganic compound and product inorganic compound

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11730856B2 (en) 2014-09-01 2023-08-22 Kyushu University National University Corporation Method of producing product inorganic compound and product inorganic compound
CN111230128A (en) * 2020-03-11 2020-06-05 昆明理工大学 Based on TiH2Method for preparing porous titanium and titanium alloy by adding CaO
CN111230128B (en) * 2020-03-11 2022-12-20 昆明理工大学 Based on TiH 2 Method for preparing porous titanium and titanium alloy by adding CaO

Similar Documents

Publication Publication Date Title
Shepherd et al. Calcium phosphate scaffolds for bone repair
Salma-Ancane et al. Development of Mg-containing porous β-tricalcium phosphate scaffolds for bone repair
US20090317278A1 (en) Composite artificial bone
Lowmunkong et al. Fabrication of freeform bone‐filling calcium phosphate ceramics by gypsum 3D printing method
US7279219B2 (en) Porous calcium phosphate ceramic and method for producing same
Wakae et al. Fabrication of macroporous carbonate apatite foam by hydrothermal conversion of α‐tricalcium phosphate in carbonate solutions
EP1501771B1 (en) Method of preparing porous calcium phosphate granules
Wu et al. Preparation and characterization of porous calcium-phosphate microspheres
WO2004112856A1 (en) Medical bone prosthetic material and process for producing the same
US7687138B2 (en) Porous calcium phosphate ceramic and method for producing same
KR101762580B1 (en) A method for preparing porous bone graft materials
JP4888930B2 (en) Method for producing calcium phosphate bone filling material
KR20020014034A (en) Cancellous bone type bone filler and process for its production
JP2004222992A (en) Artificial bone material and manufacturing method therefor
RU2596504C1 (en) Method of producing ceramic based on octacalcium phosphate (ocp)
EP3202714B1 (en) Method for producing calcium carbonate blocks
Swain Processing of porous hydroxyapatite scaffold
JP4866765B2 (en) Calcium phosphate sintered porous body and calcium phosphate sintered porous granule
CN100366301C (en) Coral hydroxyapatite artificial bone with betatype tricalcium phosphate coating and its preparation
JP6154710B2 (en) Method for producing carbonate apatite molded body, and carbonate apatite molded body produced thereby
JP4801316B2 (en) Manufacturing method of calcium phosphate porous material
JP2525011B2 (en) Calcium phosphate complex and method for producing the same
JP2013070724A (en) Bioabsorbable implant and method for manufacturing the same
JP2008279008A (en) Manufacture process for calcium phosphate moldings
KR100493396B1 (en) Biodegradable calcium phosphate glass and porous block using the same