JP2004222568A - Proteome column and analytical method using the same - Google Patents
Proteome column and analytical method using the same Download PDFInfo
- Publication number
- JP2004222568A JP2004222568A JP2003013128A JP2003013128A JP2004222568A JP 2004222568 A JP2004222568 A JP 2004222568A JP 2003013128 A JP2003013128 A JP 2003013128A JP 2003013128 A JP2003013128 A JP 2003013128A JP 2004222568 A JP2004222568 A JP 2004222568A
- Authority
- JP
- Japan
- Prior art keywords
- column
- enzyme
- immobilized
- resin
- carrier
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】本発明は蛋白質やペプチドの末端から切断していくことで蛋白質やペプチドの断片を得る為のカラム及びそのカラムを用いた分析法に関する。
【0002】
【従来の技術】ペプチドや蛋白質のアミノ酸残基配列を決定することは生命体の主要成分である蛋白質の多彩な機能の解明をするためにも重要なことである。アミノ酸の配列を解析するためにはペプチドや蛋白質からアミノ酸を切り出して解析する必要がある。アミノ酸の間のペプチド結合を切断する方法として、物理的に切断する方法(例えば特許文献1及び2参照。)や化学反応を用い切断していく方法(例えば特許文献3参照。)がある。
【0003】
生物的な方法としては、蛋白質あるいはペプチドをアミノペプチダーゼやカルボキシペプチダーゼといった酵素で分解し、経時的に一部ずつ採取し、その反応液をアミノ酸分析装置で分析して、遊離されたアミノ酸を定量する方法が用いられてきた(例えば非特許文献1参照。)。またその反応液を質量分析装置にかけて、蛋白質あるいはペプチドの断片の分子量を測定し、もとの蛋白質あるいはペプチドの分子量からの差からアミノ酸の種類を求めていく方法も報告されている(例えば非特許文献2参照。)。
【0004】
【特許文献1】
特開2001−235477
【特許文献2】
特開2002−131284
【特許文献3】
特開平10−293130
【非特許文献1】
日本生化学会編、生化学実験講座第1巻、タンパク質の化学II、p203−211、1976年発行
【非特許文献2】
A. Tsugita, R. van den Broek, M. Pyzybylski, FEBS Lett. 137, 19(1982)(A.ツギタ、R.ファン デン ブルック、M. ピジビルスキー,フェブス レター 137巻19頁(1982年))
【0005】
【発明が解決しようとする課題】しかし物理的な方法ではランダムに切断されるため、配列を決定するための解析が困難であり、化学的な方法は1つのアミノ酸を解析するのに30分以上と時間が膨大にかかる。
【0006】
また、先に述べた生化学的な手法は操作が煩雑であること、酵素が再利用できず、毎回新しい酵素を必要とすること、酵素が自己消化性を持つことや酵素の精製が不十分であることによるアミノ酸もしくはペプチドの混入が生じること等の問題点を有している。さらに、解析のため質量分析装置に導入する場合、イオン化法としてエレクトロスプレーイオン化法(以下ESI法と略す)が簡便で有用な方法であるが、この方法の欠点として、多価イオンが生じやすく、正確な分子量を見積もるのが困難になるといった問題点がある。
【0007】
酵素の再利用及び酵素の自己消化性の問題を解決するために用いられる方法の一つとして、酵素の固定化がある。固定化酵素とは、ある一定の空間内に閉じこめられた状態にある酵素のことであり、連続的に酵素反応を行うことが出来、反応後酵素を回収し、再利用できる状態にある酵素のことである。酵素の移動が制限されるため、酵素同士の反応の結果生じる酵素の自己消化もまた起きにくくなる。また使用前によく洗浄することで不純物のアミノ酸もしくはペプチドが除去できる。
【0008】
この固定化酵素をカラムの中に充填することにより、サンプルをカラムの中に通すだけで、蛋白質あるいはペプチドから末端のアミノ酸を失った断片を得ることが出来る。
【0009】
この方法は酵素の再利用が可能であるものの、固定化酵素がカラム内に一様に充填されているため、カラムを通すだけでは、ほぼ決まった回数の酵素反応が起こるだけであり、限られた範囲の長さの断片しか得ることができず、得られた断片からアミノ酸配列を求めることは困難であった。
【0010】
【課題を解決するための手段】前記問題点を解決するために鋭意検討を行った結果、以下のカラムの発明に至った。
【0011】
(1)蛋白質あるいはペプチドのペプチド結合を加水分解する固定化酵素と、固定化酵素を保持するための担体あるいは樹脂に、酵素が固定化されていない担体もしくは樹脂を添加し充填したカラム、(2)第1の発明記載の酵素を含む2種類以上の固定化酵素と、それぞれの固定化酵素を保持するための1種類以上の担体あるいは樹脂からなるカラム、(3)第1の発明記載の酵素を含む2種類以上の固定化酵素と、それぞれの固定化酵素を保持するための1種類以上の担体あるいは樹脂に、酵素が固定化されていない担体もしくは樹脂を添加し充填したカラム、(4)第1の発明記載の酵素を含む2種類以上の固定化酵素が、同一の担体あるいは樹脂に固定化されているカラム、(5)第4の発明記載の担体あるいは樹脂に、酵素が固定化されていない担体もしくは樹脂を添加し充填したカラム、(6)充填する担体あるいは樹脂が、酵素反応によって得られた物質の分離手段となることを特長とする第1の発明又は第2の発明又は第3の発明又は第4の発明又は第5の発明記載のカラム、(7)充填する担体あるいは樹脂としてイオン交換樹脂、逆相および順相クロマトグラフィー用充填剤、サイズ排除クロマトグラフィー用充填剤、疎水クロマトグラフィー用充填剤、吸着クロマトグラフィー用充填剤を単独もしくは2種類以上の混合物として用いることを特長とする第1の発明又は第2の発明又は第3の発明又は第4の発明又は第5の発明記載のカラム、(8)蛋白質あるいはペプチド試料を第1の発明又は第2の発明又は第3の発明又は第4の発明又は第5の発明又は第6の発明又は第7の発明記載のカラムに通し、質量分析装置に導入することにより、それぞれの断片の質量からアミノ酸の配列を求める分析法
【0012】
第1から第7の発明に記載されたカラムをプロテオームカラムと呼称する。
【0013】
蛋白質あるいはペプチド試料をプロテオームカラムに通し、質量分析装置に導入することにより、それぞれの断片の質量の差からアミノ酸の配列を求めることができ、従来法より反応、解析時間が短く、再利用が可能な経済的に優れたカラムとなった。
【0014】
【実施例】以下に本発明の実施例を挙げるが、本発明はこれら実施例に限定されるものではない。また以下に記されているペプチド及び蛋白質のアミノ酸表記は全て一文字表記にて表示する。
【0015】
実施例1 第1工程、ブロモシアン活性化セファロース4B(アムシャムファルマシア社)528mgを1mmol/l塩酸溶液に室温で30分浸し、樹脂の活性化を行った後、溶液をpH8.0の100mmol/lリン酸ナトリウム緩衝液に置換し、これに10μg/μlのカルボキシペプチダーゼY(以下CP−Yと略す)溶液を50μl加え、30℃で4時間振とうした。振とう終了後、リン酸ナトリウム緩衝液を除き、樹脂を洗浄した後、10mg/mlの牛血清アルブミン溶液を2ml加え、30℃で4時間振とうし、残った活性基を牛血清アルブミンにてブロックした。その後、樹脂をリン酸緩衝液にて洗浄することで、酵素が樹脂に固定化された樹脂を得た。
【0016】
第2工程、第1工程で得られた樹脂を、陰イオン交換樹脂であるトヨパールSP−650Mと体積比1:3でよく混合し、内径2mm、長さ100mmのステンレス製のカラムに充填した。またこれとは別に、第1工程で得られた樹脂を陽イオン交換樹脂であるトヨパールDEAE−650Mと体積比1:3でよく混合し、内径2mm、長さ100mmのステンレス製のカラムに充填した。
【0017】
第3工程、第2工程で得られたプロテオームカラムを液体クロマトグラフィー質量分析計に組み込み、ブラジキニン溶液のアミノ酸配列の解析を質量分析にて行った。液体クロマトグラフィーの装置として、デガッサーDGV−12AM(島津社製)及びポンプLC10ーADVP(島津社製)を用い、質量分析計としてLCMS−2010α(島津社製)を用いた。実験条件として移動相に100mmol/l酢酸アンモニウム緩衝液を流速0.2ml/分で流し、イオン化法としてESI法を用いた。また対照実験として、イオン交換樹脂が添加されていないカラムを作成し、実験に用いた。
【0018】
質量分析の結果を図1、2、3に示す。陰イオン交換樹脂を添加したプロテオームカラムではブラジキニン(アミノ酸配列RPPGFSPFR)のカルボキシ末端(以下C末端と略す)側から切断された断片として分子量904.25、757.35、660.30、573.25、426.10のところにピークが得られた。これらの差をとり、その値を解析することにより、C末端側にFSPFのアミノ酸配列が存在していることが明らかになった(図1)。
【0019】
次に陽イオン交換樹脂を添加したプロテオームカラムでは、分子量904.25、757.35、660.25、573.20、426.10のところにピークが得られ、同様に解析することでC末端側にFSPFのアミノ酸配列が存在していることが解析できた(図2)。
【0020】
一方、従来法による対照実験では、図3より分子量757.35、573.25、426.10のピークしか得られなかったことから、ピークの差をとり、その値を解析してもC末端側のFとSPの部分の配列しか求められなかった。
【0021】
この結果より担体を添加したプロテオームカラムは、従来法によるカラムより、より長いアミノ酸配列を解析できることが示された。
【0022】
実施例2 第1工程、ブロモシアン活性化セファロース4B(アムシャムファルマシア社)564mgを1mmol/l塩酸溶液に室温で30分浸し、樹脂の活性化を行った後、溶液をpH8.0の100mmol/lリン酸ナトリウム緩衝液に置換し、これに3.4mg/mlのアミノペプチダーゼM(以下AP−Mと略す)溶液を200μl加え、30℃で4時間振とうした。振とう終了後、リン酸ナトリウム緩衝液を除き、樹脂を洗浄した後、10mg/mlの牛血清アルブミン溶液を2ml加え、30℃で4時間振とうし、残った活性基を牛血清アルブミンにてブロックした。その後、樹脂をリン酸緩衝液にて洗浄することで、酵素が樹脂に固定化された樹脂を得た。
【0023】
第2工程、第1工程で得られた樹脂を、実施例1と同様にして、陰イオン交換樹脂であるトヨパールSP−650Mあるいは陽イオン交換樹脂であるトヨパールDEAE−650Mとよく混合し、内径2mm、長さ100mmのステンレス製のカラムに充填した。
【0024】
第3工程、第2工程で得られたカラムを液体クロマトグラフィー質量分析計に組み込み、アンギオテンシンIII溶液のアミノ酸配列の解析を質量分析にて行った。実験条件として移動相に100mmol/l酢酸アンモニウム緩衝液を流速0.2ml/分で流し、イオン化法としてESI法を用いた。また対照実験として、イオン交換樹脂が添加されていないカラムを作成し、実験に用いた。
【0025】
質量分析の結果を図4、5、6に示す。陰イオン交換樹脂を添加したプロテオームカラムでは、アンギオテンシンIII(アミノ酸配列RVYIHPF)のアミノ末端(以下N末端と略す)側から切断された断片として、分子量931.05、775.25、676.30、513.25、400.05、262.85のところにピークが得られた。これらの差をとり、その値を解析することにより、N末端側からRVYIHの順でアミノ酸が並んでいることが解析できた(図4)。
【0026】
また、陽イオン交換樹脂を添加したプロテオームカラムでは、分子量775.40、676.35、513.05、400.15、263.05のところにピークが得られた。同様に解析したところ、N末端側にVYIHのアミノ酸配列が存在していることが明らかになった(図5)
【0027】
一方、対照実験の方では分子量775.40、676.40、513.30、400.15のピークが得られた。同様にして解析した結果、N末端側のアミノ酸配列VYIの配列を解析することができた(図6)。
【0028】
この結果から、従来法によるカラムと比較して、陽イオン交換樹脂を添加したプロテオームカラムで1残基、陰イオン交換樹脂の添加したプロテオームカラムでは2残基分長く、アミノ酸配列を行うことができた。
【0029】
実施例3 実施例1で得られた陰イオン交換樹脂添加プロテオームカラムを液体クロマトグラフィー質量分析計に組み込み、合成ペプチド(アミノ酸配列DRVYIHPFHLVIH)溶液のアミノ酸配列の解析を質量分析にて行った。実験条件として移動相に100mmol/l酢酸アンモニウム緩衝液を流速0.2ml/分で流し、イオン化法としてESI法を用いた。試料の注入後、質量/電荷比50から2000までの分子イオンを測定し、時間ごとの各分子イオン量の変化を計測した。全イオンクロマトグラフィーの結果とペプチドのC末端のアミノ酸が切断されてできた断片のクロマトグラフィーを図7に示す。
【0030】
図7より合成ペプチドのC末端側から切断されてできた断片由来のピークうち、アミノ酸配列がDRVDの断片とRVYの断片は、保持時間が0.9分であり、アミノ酸配列がDRVYIHPの断片及びDRVYIHPFの断片は保持時間がそれぞれ2.4分、2.8分とフラグメント長と保持時間の間に相関がみられた。
【0031】
ESI法によりイオン化した場合、本条件ではDRVD断片とRVY断片は電荷数が1になるのに対し、DRVYIHP断片及びDRVYIHPF断片は電荷数が2となっているが、図7では電荷数1のDRVD断片とRVY断片は保持時間が1分のところに見られ、電荷数2のDRVYIHP断片及びDRVYIHPF断片は保持時間が2分台のところに現れており、電荷数と保持時間の間に相関が見られ、これを利用することにより解析が容易に行えるようになった。
【0032】
【発明の効果】以上説明したように、第1の発明により、固定化酵素のみを充填した従来法に比べ、より長い範囲のアミノ酸配列の解析が行えるようになると同時に、固定化酵素の使用量を25%にまで減らすことができるという効果がある。
【0033】
また第2の発明では添加する担体あるいは樹脂のかわりに、第1の発明記載の酵素と異なる酵素を固定化した担体あるいは樹脂を加えることにより、第1の発明と同様の効果を得られるだけではなく、試料の蛋白質あるいはペプチドに対し、修飾あるいは修飾された部分の脱離を行うことが可能であり、アミノ酸配列をより読みやすくする効果がある。
【0034】
第3の発明では、第2の発明の効果をより少ない酵素量で実現することが可能となる。
【0035】
第4の発明では、第2の発明で得られる効果を一つの担体あるいは樹脂によって得ることが可能になり、プロテオームカラムの作製の際、担体あるいは樹脂を混合するという工程を省略することが可能となる。
【0036】
第5の発明では、第2の発明の効果を持ちつつ、酵素をより局在化させることで、より長い範囲のアミノ酸配列の解析が行えるようになるという効果がある。
【0037】
第6の発明では、分離能を有する担体あるいは樹脂を添加することで、不純物を分離し、より感度よく測定することが可能となる。また添加する担体あるいは樹脂により、一つのカラムで反応と分離を同時に行えることから、ESI法を用いたときに生じる高価イオンの解析を容易に行えるという効果がある。
【0038】
第7の発明に記載されている担体あるいは樹脂を用いることにより、一つのプロテオームカラムで目的の蛋白質あるいはペプチドに応じた分離を行いつつ、アミノ酸配列解析についての情報を得ることができるという効果がある。
【0039】
第8の発明では、第1から第7の発明によるプロテオームカラムをアミノ酸配列解析に用いることにより、従来法よりも簡便に且つ迅速に解析が行えるという効果がある。
【図面の簡単な説明】
【図1】CP−Yを固定化した樹脂のみを用いたカラムによるブラジキニンの消化断片のマススペクトロメトリー
【図2】CP−Yを固定化した樹脂に陽イオン交換樹脂を添加したカラムによるブラジキニンの消化断片のマススペクトロメトリー
【図3】CP−Yを固定化した樹脂に陰イオン交換樹脂を添加したカラムによるブラジキニンの消化断片のマススペクトロメトリー
【図4】AM−Pを固定化した樹脂のみを用いたカラムによるアンギオテンシンIIIの消化断片のマススペクトロメトリー
【図5】AM−Pを固定化した樹脂に陽イオン交換樹脂を添加したカラムによるアンギオテンシンIIIの消化断片のマススペクトロメトリー
【図6】AM−Pを固定化した樹脂に陰イオン交換樹脂を添加したカラムによるアンギオテンシンIIIの消化断片のマススペクトロメトリー
【図7】CP−Yを固定化した樹脂に陰イオン交換樹脂を添加したカラムによる合成ペプチド(アミノ酸配列DRVYIHPFHLVIH)の全イオンクロマトグラフィー及び、C末端のアミノ酸が切断された断片(アミノ酸配列:DRV、DRVY、DRVYIHP及びDRVYIHPF)のマスクロマトグラフィー[0001]
BACKGROUND OF THE
[0002]
2. Description of the Related Art Determining the amino acid residue sequence of peptides and proteins is also important for elucidating the various functions of proteins, which are the main components of living organisms. In order to analyze the amino acid sequence, it is necessary to extract and analyze the amino acids from the peptide or protein. As a method of cleaving a peptide bond between amino acids, there is a method of physically cleaving (for example, see
[0003]
As a biological method, a protein or peptide is decomposed with an enzyme such as aminopeptidase or carboxypeptidase, and a portion is collected over time, and the reaction solution is analyzed with an amino acid analyzer to quantify the released amino acid. A method has been used (for example, see Non-Patent Document 1). In addition, a method has been reported in which the reaction solution is subjected to a mass spectrometer to measure the molecular weight of a protein or peptide fragment, and the type of amino acid is determined from the difference from the molecular weight of the original protein or peptide (for example, non-patented). Reference 2).
[0004]
[Patent Document 1]
JP-A-2001-235377
[Patent Document 2]
JP-A-2002-131284
[Patent Document 3]
JP-A-10-293130
[Non-patent document 1]
Edited by The Biochemical Society of Japan, Biochemistry Laboratory Course,
A. Tsugita, R .; van den Broek, M.E. Pyzybylski, FEBS Lett. 137, 19 (1982) (A. Tsugita, R. van den Brook, M. Pigibirsky, Febs Letter 137, 19 (1982))
[0005]
However, it is difficult to analyze a sequence by determining the sequence because it is randomly cleaved by the physical method, and the chemical method requires more than 30 minutes to analyze one amino acid. And it takes an enormous amount of time.
[0006]
In addition, the biochemical method described above is complicated in operation, the enzyme cannot be reused, a new enzyme is required each time, the enzyme has autolytic properties, and the purification of the enzyme is insufficient. However, there is a problem that amino acids or peptides are mixed due to the above. Furthermore, when introduced into a mass spectrometer for analysis, electrospray ionization (hereinafter abbreviated as ESI) is a simple and useful method as an ionization method. However, a disadvantage of this method is that multivalent ions are easily generated. There is a problem that it is difficult to estimate an accurate molecular weight.
[0007]
One of the methods used to solve the problem of enzyme recycling and enzyme autolysis is immobilization of the enzyme. An immobilized enzyme is an enzyme that is confined in a certain space, and is capable of performing an enzymatic reaction continuously, collecting the enzyme after the reaction, and reusing the enzyme in a state that can be reused. That is. Due to the limited movement of the enzymes, the autolysis of the enzymes resulting from the reaction between the enzymes is also less likely to occur. By washing well before use, impurities such as amino acids or peptides can be removed.
[0008]
By packing this immobilized enzyme into a column, a fragment from which a terminal amino acid has been deleted from a protein or peptide can be obtained simply by passing a sample through the column.
[0009]
Although this method can reuse the enzyme, the immobilized enzyme is evenly packed in the column, so passing it through the column causes only a fixed number of enzyme reactions, which is limited. Only fragments having a length in the above range could be obtained, and it was difficult to determine the amino acid sequence from the obtained fragments.
[0010]
Means for Solving the Problems As a result of intensive studies to solve the above problems, the following column was invented.
[0011]
(1) A column in which an immobilized enzyme that hydrolyzes a peptide bond of a protein or peptide and a carrier or resin for holding the immobilized enzyme are added with a carrier or resin on which the enzyme is not immobilized, A) a column comprising two or more types of immobilized enzymes containing the enzyme according to the first invention, and one or more carriers or resins for holding the respective immobilized enzymes; (3) the enzyme according to the first invention; (4) a column in which two or more types of immobilized enzymes including the above, and one or more types of carriers or resins for holding the respective immobilized enzymes are filled with a carrier or resin to which the enzymes are not immobilized; A column in which two or more types of immobilized enzymes including the enzyme according to the first invention are immobilized on the same carrier or resin; (5) the enzyme is immobilized on the carrier or resin according to the fourth invention; A column packed with a carrier or resin not added, (6) the first invention or the second invention characterized in that the packed carrier or resin serves as a means for separating a substance obtained by an enzymatic reaction; The column according to the third or fourth or fifth invention, (7) an ion-exchange resin as a carrier or resin to be packed, a packing material for reversed-phase and normal-phase chromatography, a packing material for size-exclusion chromatography, The first invention, the second invention, the third invention, the fourth invention, or the fifth invention, characterized in that the packing material for hydrophobic chromatography and the packing material for adsorption chromatography are used alone or as a mixture of two or more kinds. (8) a protein or peptide sample according to the first invention, the second invention, the third invention, the fourth invention, the fifth invention or Through sixth invention or the seventh column of the invention described in, by introducing into the mass spectrometer, the analysis method [0012] to determine the sequence of amino acids from the mass of each fragment
The column described in the first to seventh inventions is called a proteome column.
[0013]
By passing a protein or peptide sample through a proteome column and introducing it into a mass spectrometer, the amino acid sequence can be determined from the difference in the mass of each fragment. It became an economically superior column.
[0014]
EXAMPLES Examples of the present invention will be described below, but the present invention is not limited to these examples. In addition, the amino acids of peptides and proteins described below are all represented by one letter.
[0015]
Example 1 First step, 528 mg of bromocyan-activated Sepharose 4B (Amsham Pharmacia) was immersed in a 1 mmol / l hydrochloric acid solution at room temperature for 30 minutes to activate the resin, and then the solution was adjusted to pH 8.0 and 100 mmol / l. The mixture was replaced with a sodium phosphate buffer, and 50 μl of a 10 μg / μl carboxypeptidase Y (hereinafter abbreviated as CP-Y) solution was added thereto, followed by shaking at 30 ° C. for 4 hours. After completion of the shaking, the sodium phosphate buffer was removed, the resin was washed, 2 ml of a 10 mg / ml bovine serum albumin solution was added, and the mixture was shaken at 30 ° C. for 4 hours, and the remaining active groups were washed with bovine serum albumin. Blocked. Thereafter, the resin was washed with a phosphate buffer to obtain a resin in which the enzyme was immobilized on the resin.
[0016]
The resin obtained in the second step and the first step was mixed well with Toyopearl SP-650M as an anion exchange resin at a volume ratio of 1: 3, and packed into a stainless steel column having an inner diameter of 2 mm and a length of 100 mm. Separately, the resin obtained in the first step was mixed well with a cation exchange resin, Toyopearl DEAE-650M, at a volume ratio of 1: 3, and packed in a stainless steel column having an inner diameter of 2 mm and a length of 100 mm. .
[0017]
The proteome column obtained in the third step and the second step was incorporated in a liquid chromatography mass spectrometer, and the amino acid sequence of the bradykinin solution was analyzed by mass spectrometry. A degasser DGV-12AM (manufactured by Shimadzu) and a pump LC10-ADVP (manufactured by Shimadzu) were used as liquid chromatography devices, and LCMS-2010α (manufactured by Shimadzu) was used as a mass spectrometer. As an experimental condition, a 100 mmol / l ammonium acetate buffer was passed through the mobile phase at a flow rate of 0.2 ml / min, and the ESI method was used as an ionization method. As a control experiment, a column to which no ion exchange resin was added was prepared and used in the experiment.
[0018]
The results of mass spectrometry are shown in FIGS. In a proteome column to which an anion exchange resin was added, a fragment cut from the carboxy terminal (hereinafter abbreviated as C-terminal) side of bradykinin (amino acid sequence RPPGFSPFR) had a molecular weight of 904.25, 757.35, 660.30, 573.25, A peak was obtained at 426.10. By taking these differences and analyzing the values, it was revealed that the amino acid sequence of FSPF exists on the C-terminal side (FIG. 1).
[0019]
Next, in the proteome column to which the cation exchange resin was added, peaks were obtained at the molecular weights of 904.25, 757.35, 660.25, 573.20, and 426.10. Was found to have the amino acid sequence of FSPF (FIG. 2).
[0020]
On the other hand, in the control experiment according to the conventional method, only peaks having molecular weights of 757.35, 573.25, and 426.10 were obtained from FIG. Only the sequence of the F and SP portions of the above was obtained.
[0021]
The results showed that the proteome column to which the carrier was added was able to analyze a longer amino acid sequence than the conventional column.
[0022]
Example 2 First step, 564 mg of bromocyan-activated Sepharose 4B (Amsham Pharmacia) was immersed in a 1 mmol / l hydrochloric acid solution at room temperature for 30 minutes to activate the resin, and then the solution was adjusted to pH 8.0 and 100 mmol / l. The solution was replaced with a sodium phosphate buffer, and 200 μl of a 3.4 mg / ml aminopeptidase M (hereinafter abbreviated as AP-M) solution was added thereto, followed by shaking at 30 ° C. for 4 hours. After completion of the shaking, the sodium phosphate buffer was removed, the resin was washed, 2 ml of a 10 mg / ml bovine serum albumin solution was added, and the mixture was shaken at 30 ° C. for 4 hours, and the remaining active groups were washed with bovine serum albumin. Blocked. Thereafter, the resin was washed with a phosphate buffer to obtain a resin in which the enzyme was immobilized on the resin.
[0023]
The resin obtained in the second step and the first step was mixed well with Toyopearl SP-650M as an anion exchange resin or Toyopearl DEAE-650M as a cation exchange resin in the same manner as in Example 1, and the inner diameter was 2 mm. And a 100 mm long stainless steel column.
[0024]
The columns obtained in the third step and the second step were incorporated into a liquid chromatography mass spectrometer, and the amino acid sequence of the angiotensin III solution was analyzed by mass spectrometry. As an experimental condition, a 100 mmol / l ammonium acetate buffer was passed through the mobile phase at a flow rate of 0.2 ml / min, and the ESI method was used as an ionization method. As a control experiment, a column to which no ion exchange resin was added was prepared and used in the experiment.
[0025]
The results of mass spectrometry are shown in FIGS. In the proteome column to which an anion exchange resin was added, fragments cut from the amino terminus (hereinafter abbreviated as N-terminus) side of angiotensin III (amino acid sequence RVYIHPF) had a molecular weight of 931.05, 775.25, 676.30, 513. Peaks were obtained at .25, 400.05 and 262.85. By taking these differences and analyzing the values, it was possible to analyze that the amino acids were arranged in the order of RVYIH from the N-terminal side (FIG. 4).
[0026]
In the case of the proteome column to which the cation exchange resin was added, peaks were obtained at molecular weights of 775.40, 676.35, 513.05, 400.15, and 263.05. Similar analysis revealed that the amino acid sequence of VYIH was present on the N-terminal side (FIG. 5).
[0027]
On the other hand, in the control experiment, peaks with molecular weights of 775.40, 676.40, 513.30, and 400.15 were obtained. As a result of analysis in the same manner, the sequence of the N-terminal amino acid sequence VYI could be analyzed (FIG. 6).
[0028]
From these results, the amino acid sequence can be longer by one residue in the proteome column to which the cation exchange resin is added and by two residues in the proteome column to which the anion exchange resin is added, as compared with the column by the conventional method. Was.
[0029]
Example 3 The anion exchange resin-added proteome column obtained in Example 1 was incorporated into a liquid chromatography mass spectrometer, and the amino acid sequence of a synthetic peptide (amino acid sequence DRVYIHPFHLVIH) solution was analyzed by mass spectrometry. As an experimental condition, a 100 mmol / l ammonium acetate buffer was passed through the mobile phase at a flow rate of 0.2 ml / min, and the ESI method was used as an ionization method. After the injection of the sample, molecular ions having a mass / charge ratio of 50 to 2,000 were measured, and a change in the amount of each molecular ion with time was measured. FIG. 7 shows the results of total ion chromatography and the chromatography of the fragment formed by cleavage of the amino acid at the C-terminal of the peptide.
[0030]
From among the peaks derived from the fragment obtained by cleavage from the C-terminal side of the synthetic peptide from FIG. 7, the fragment having the amino acid sequence of DRVD and the fragment of RVY have a retention time of 0.9 minutes, the fragment having the amino acid sequence of DRVYIHP and DRVYIHPF fragments had retention times of 2.4 minutes and 2.8 minutes, respectively, indicating a correlation between fragment length and retention time.
[0031]
When ionized by the ESI method, the DRVD fragment and the RVY fragment have a charge number of 1 under these conditions, whereas the DRVYIHP fragment and the DRVYIHPF fragment have a charge number of 2, whereas in FIG. The fragment and the RVY fragment were observed at a retention time of 1 minute, while the DRVYIHP fragment and DRVYIHPF fragment with a charge number of 2 appeared at a retention time of the order of 2 minutes, indicating a correlation between the charge number and the retention time. Therefore, by using this, analysis can be easily performed.
[0032]
As described above, according to the first invention, it is possible to analyze a longer amino acid sequence than the conventional method in which only the immobilized enzyme is filled, and at the same time, the amount of immobilized enzyme used Is reduced to 25%.
[0033]
In the second invention, the same effect as in the first invention can be obtained only by adding a carrier or a resin on which an enzyme different from the enzyme described in the first invention is immobilized, instead of the carrier or the resin to be added. In addition, it is possible to remove the modified or modified portion of the protein or peptide of the sample, which has the effect of making the amino acid sequence more readable.
[0034]
In the third invention, the effect of the second invention can be realized with a smaller amount of enzyme.
[0035]
In the fourth invention, it is possible to obtain the effect obtained in the second invention with one carrier or resin, and it is possible to omit the step of mixing the carrier or resin when producing a proteome column. Become.
[0036]
In the fifth invention, while having the effect of the second invention, by further localizing the enzyme, there is an effect that the analysis of the amino acid sequence in a longer range can be performed.
[0037]
In the sixth aspect, by adding a carrier or a resin having a separating ability, impurities can be separated and measurement can be performed with higher sensitivity. In addition, since the reaction and the separation can be performed simultaneously in one column by the carrier or resin to be added, there is an effect that analysis of expensive ions generated when the ESI method is used can be easily performed.
[0038]
By using the carrier or resin described in the seventh invention, there is an effect that information on amino acid sequence analysis can be obtained while performing separation according to the target protein or peptide with one proteome column. .
[0039]
In the eighth invention, the use of the proteome column according to the first to seventh invention for amino acid sequence analysis has an effect that analysis can be performed more easily and more quickly than in the conventional method.
[Brief description of the drawings]
FIG. 1: Mass spectrometry of a digested fragment of bradykinin by a column using only a resin on which CP-Y is immobilized. FIG. 2: Bradykinin by a column containing a cation exchange resin added to a resin on which CP-Y is immobilized. Mass spectrometry of digested fragment [Fig. 3] Mass spectrometry of digested fragment of bradykinin using a column in which anion exchange resin is added to resin on which CP-Y is immobilized [Fig. 4] Only resin on which AM-P is immobilized Mass spectrometry of the digested fragment of angiotensin III using the column used. [FIG. 5] Mass spectrometry of the digested fragment of angiotensin III using a column in which a cation exchange resin was added to a resin on which AM-P was immobilized. Angiotensin using a column in which anion exchange resin is added to a resin on which P is immobilized Mass spectrometry of digested fragment of II. [FIG. 7] Total ion chromatography of a synthetic peptide (amino acid sequence DRVYIHPFHLVIH) using a column in which anion exchange resin is added to a resin on which CP-Y is immobilized, and C-terminal amino acids are cleaved. Chromatography of the isolated fragments (amino acid sequences: DRV, DRVY, DRVYIHP and DRVYIHPF)
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003013128A JP2004222568A (en) | 2003-01-22 | 2003-01-22 | Proteome column and analytical method using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003013128A JP2004222568A (en) | 2003-01-22 | 2003-01-22 | Proteome column and analytical method using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004222568A true JP2004222568A (en) | 2004-08-12 |
Family
ID=32901539
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003013128A Pending JP2004222568A (en) | 2003-01-22 | 2003-01-22 | Proteome column and analytical method using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004222568A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220063416A (en) * | 2020-11-10 | 2022-05-17 | 한국생산기술연구원 | Method for seperating and purifying functional peptide |
-
2003
- 2003-01-22 JP JP2003013128A patent/JP2004222568A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220063416A (en) * | 2020-11-10 | 2022-05-17 | 한국생산기술연구원 | Method for seperating and purifying functional peptide |
KR102450644B1 (en) * | 2020-11-10 | 2022-10-05 | 한국생산기술연구원 | Method for seperating and purifying functional peptide |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10345293B2 (en) | High sensitivity quantitation of peptides by mass spectrometry | |
Tholey et al. | Top-down proteomics for the analysis of proteolytic events-Methods, applications and perspectives | |
EP2044443B1 (en) | Peptide antibody depletion and its application to mass spectrometry sample preparation | |
EP2186879B1 (en) | High sensitivity quantitation of peptides by mass spectrometry | |
US7183116B2 (en) | Methods for isolation and labeling of sample molecules | |
JP5374363B2 (en) | Method for evaluating peptide mixtures | |
Mohammed et al. | Strong cation exchange (SCX) based analytical methods for the targeted analysis of protein post-translational modifications | |
CN101600959B (en) | Method for quantification of peptide and protein | |
Hedrick et al. | Digestion, purification, and enrichment of protein samples for mass spectrometry | |
WO2017166897A1 (en) | Proteomic reactor, protein chromatographic separation platform and use thereof | |
Soloviev et al. | Peptidomics, current status | |
US20040053356A1 (en) | Enzyme/chemical reactor based protein processing method for proteomics analysis by mass spectrometry | |
US20030153729A1 (en) | Enzyme/chemical reactor based protein processing method for proteomics analysis by mass spectrometry | |
JP2004222568A (en) | Proteome column and analytical method using the same | |
Righetti et al. | The “Invisible Proteome”: How to capture the low-abundance proteins via combinatorial ligand libraries | |
KR101675303B1 (en) | Monoclonal antibody-based phosphoproteomic method using online mHFER-tandem mass spectrometry | |
US20040009567A1 (en) | Enzyme/chemical reactor based protein processing method for proteomics analysis by mass spectrometry | |
WO2008053398A1 (en) | Analysis of proteolytic processing by mass spectrometry | |
AU2012200087A1 (en) | High Sensitivity Quantitation of Peptides by mass Spectrometry | |
JP2023500790A (en) | Peptide purification formulations and methods | |
Wehr | Enriching the phosphoproteome | |
Tuytten et al. | Application of a Combined Weak Cation-Exchange/Crown Ether Column: First Demonstrations of a Versatile Tool for Proteome Subselection | |
Enoksson et al. | Identification of Protease Substrates by Mass Spectrometry Approaches-1 | |
JP2008128834A (en) | Detection method of molecule bonded to carrier protein, detection kit and detector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060116 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20060116 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060406 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090106 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090519 |