JP2004222497A - Water stop material for underground buried cables with protective tube, and the water cut-off method - Google Patents
Water stop material for underground buried cables with protective tube, and the water cut-off method Download PDFInfo
- Publication number
- JP2004222497A JP2004222497A JP2004114274A JP2004114274A JP2004222497A JP 2004222497 A JP2004222497 A JP 2004222497A JP 2004114274 A JP2004114274 A JP 2004114274A JP 2004114274 A JP2004114274 A JP 2004114274A JP 2004222497 A JP2004222497 A JP 2004222497A
- Authority
- JP
- Japan
- Prior art keywords
- water
- cable
- absorbing resin
- protective tube
- stopping
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Laying Of Electric Cables Or Lines Outside (AREA)
- Electric Cable Installation (AREA)
- Underground Structures, Protecting, Testing And Restoring Foundations (AREA)
Abstract
Description
本発明は、保護管付地下埋設ケーブル用の止水材並びに止水方法に関する。 The present invention relates to a water stopping material and a water stopping method for an underground cable with a protection tube.
近年、電力ケーブルや光ファイバーケーブル等のケーブルは地下に埋設されるケースが増加している。これらのケーブルは通常塩化ビニル、プラスチック、金属パイプ等の保護管内にケーブル挿入され埋設されているが、保護管の継目や保護管のひび割れ等から管内に地下水等が浸入することが多々あり、この水が保護管内やマンホール内に堆積すると、ケーブルの点検や修理時にマンホール内の水を汲み上げても保護管内の水がマンホール内に侵入してくるため、汲み上げだけで数日を有する等の莫大な労力や時間を要したり、マンホール内に常時侵入してくる水を下水として逐次排出・処理する必要がある等の問題点があった。
そこで(i)マンホールへの出口直前部分のケーブルと保護管の間に、モルタルまたはゴム製のパッキンを設けてマンホール内への水の浸入を防ぐ方法。(ii)パッキントとして水膨潤性ウレタンを使用する方法、(iii)親水性ウレタンのプレポリマーと硬化剤を配管とケーブルの間隙に挿入し内部で硬化させる方法、(iv)膨張率が8倍以上の吸水性繊維等を圧縮した板状の水膨潤材料を使用する方法(例えば、特許文献1)、(v)吸水性樹脂を布帛で挟んだシートをケーブルに巻き付けて保護管との間隙を埋め、マンホール内への水の浸入を防ぐ方法(例えば、特許文献2)等が提案されている。
Therefore, (i) a method of providing mortar or rubber packing between the cable and the protection tube immediately before the exit to the manhole to prevent water from entering the manhole. (ii) a method of using a water-swellable urethane as a packing, (iii) a method of inserting a hydrophilic urethane prepolymer and a curing agent into a gap between a pipe and a cable and curing the inside, and (iv) an expansion rate of 8 times or more. Using a plate-like water-swelling material obtained by compressing water-absorbing fibers and the like (for example, Patent Document 1), (v) wrapping a sheet in which a water-absorbent resin is sandwiched between cloths around a cable to fill a gap with a protective tube In addition, a method of preventing water from entering a manhole (for example, Patent Document 2) has been proposed.
しかしながら、(i)の方法ではモルタルがひび割れて止水性能ができなかったり、パッキンと保護管及びケーブルの間に隙間が生じて洩れが止まらずマンホール内に水が堆積する場合が多い。また(ii)の方法では、水膨潤性のウレタンが膨潤して止水が可能となるまでに数日を有するため、止水までの時間が長すぎる問題や、通常ケーブルや保護管のサイズが統一されていないため実際の保護管やケーブルに合わせて水膨潤性ウレタンの大きさを調整する必要がある等の問題点があった。(iii)の方法では、通常保護管内には常時水が存在するため、硬化途中で水道ができてしまい、隙間を完全には埋めることができないため、実際には殆ど効果がないなどの問題点があった。
更に(iv)、(v)の方法では、通常のアニオン系を主体とする吸水性繊維や吸水性樹脂を用いているため、通常の地下水に対しては初期の止水性は良好であるものの、長期間のうちに地下水中に含まれるCa、Mg、Fe等の多価金属イオンなどにより吸水性樹脂が経時的に高度に架橋されてしまい樹脂の吸収量が大幅に低下し徐々に水漏れが生じる問題があった。また、海岸線に近い場所や過去に海であった干拓地などではCa、Mgイオンをかなり多く含有する海水や海水に近い水が保護管内に侵入してくるための通常のアニオン性単量体構成成分を主体とする吸水性繊維や樹脂では膨潤量が不充分で初期も止水性が不十分という問題があった。
However, in the method (i), the mortar is often cracked and cannot have a water stopping performance, or a gap is formed between the packing and the protective tube and the cable, so that the leakage does not stop and water is deposited in the manhole in many cases. Further, in the method (ii), since the water-swellable urethane has several days until it swells and the water can be stopped, the time until the water is stopped is too long, and the size of the cable or the protective tube is usually reduced. There is a problem that the size of the water-swellable urethane needs to be adjusted according to the actual protective tube or cable because it is not standardized. In the method of (iii), usually, water is always present in the protective tube, and water is generated during curing, and the gap cannot be completely filled. was there.
Furthermore, in the method of (iv), (v), since the water-absorbing fiber and the water-absorbing resin mainly using a normal anionic system are used, although the initial water stoppage is good for normal groundwater, The water-absorbing resin is highly crosslinked over time due to polyvalent metal ions such as Ca, Mg, and Fe contained in the groundwater over a long period of time, and the amount of absorbed resin is significantly reduced, and water leakage gradually occurs. There was a problem that occurred. In addition, in places close to the coastline or in the past, such as reclaimed land, seawater containing a large amount of Ca and Mg ions or water close to seawater enters the protective tube in the usual anionic monomer configuration. A water-absorbing fiber or resin mainly composed of components has a problem that the swelling amount is insufficient and the water stopping property is insufficient even in the initial stage.
本発明者らは、上記の問題点を改良した止水材を得るべく鋭意検討した結果、特定の吸水性樹脂を所定量封入したテープ状及び/または帯状の止水材は、上記問題を起こすことがなくほぼ完全な止水が可能であることを見出し本発明に到達した。
すなわち本発明は、少なくとも一部が透水性を有する外装材中に、カチオン性吸水性樹脂及び/又はノニオン性吸水性樹脂が、500〜5000g/m2(4000g/m2以下を除く)の目付量で封入されてなる、テープ及び/又は帯状の構造体であって、該構造体の厚みが0.1〜5cmであり、巾が0.3〜30cmであり、長さが0.1〜100mである保護管付き地下埋設ケーブル用止水材; 少なくとも一部が透水性を有する外装材中に、カチオン性吸水性樹脂(アクリルアミドとアクリロイロキシエチルトリメチルアンモニウムクロリドとの共重合体架橋物であって、アクリルアミドの量が合計モノマーに対して34.88〜80重量%であるカチオン性吸水性樹脂を除く)、ノニオン性吸水性樹脂(アクリル酸ナトリウムの含有量が0.8〜10質量%のアクリルアミド重合体の架橋物からなる吸水性樹脂を除く)、又はカチオン性吸水性樹脂及びノニオン性吸水性樹脂が、1000〜4000g/m2の目付量で封入されてなる、テープ及び/又は帯状の構造体であって、該構造体の厚みが0.1〜5cmであり、巾が0.3〜30cmであり、長さが0.1〜100mである保護管付き地下埋設ケーブル用止水材; 少なくとも一部が透水性を有する外装材中に、カチオン性吸水性樹脂、又はカチオン性吸水性樹脂及びノニオン性吸水性樹脂が、500〜5000g/m2(1000g/m2以上を除く)の目付量で封入されてなる、テープ及び/又は帯状の構造体であって、該構造体の厚みが0.1〜5cmであり、巾が0.3〜30cmであり、長さが0.1〜100mである保護管付き地下埋設ケーブル用止水材;止水用芯材並びにこれらの止水材を用いた止水方法である。
The present inventors have conducted intensive studies in order to obtain a water-stopping material that has improved the above-mentioned problems. As a result, a tape-shaped and / or belt-shaped water-stopping material in which a predetermined amount of a specific water-absorbent resin is sealed causes the above-mentioned problems. It has been found that almost complete water stoppage is possible without any problem, and the present invention has been reached.
That is, according to the present invention, the cationic water-absorbing resin and / or the nonionic water-absorbing resin have a basis weight of 500 to 5000 g / m 2 (excluding 4000 g / m 2 or less) in the exterior material having at least a part of water permeability. A tape and / or band-like structure enclosed in an amount, the structure having a thickness of 0.1 to 5 cm, a width of 0.3 to 30 cm, and a length of 0.1 to Waterproofing material for underground buried cable with protective tube of 100 m; At least a part of the water-permeable exterior material contains a cationic water-absorbing resin (a crosslinked copolymer of acrylamide and acryloyloxyethyltrimethylammonium chloride. And a nonionic water-absorbing resin (containing sodium acrylate) except that the amount of acrylamide is 34.88 to 80% by weight based on the total monomers. Excluding water absorbent resin amount comprising a crosslinked product of 0.8 to 10 wt% of acrylamide polymer), or a cationic water-absorbent resin and a nonionic water-absorbent resin is encapsulated with a basis weight of 1000~4000g / m 2 A tape and / or band-shaped structure, wherein the thickness of the structure is 0.1 to 5 cm, the width is 0.3 to 30 cm, and the length is 0.1 to 100 m. Waterproofing material for underground cable with protective tube; At least a part of the water-permeable exterior material contains 500 to 5000 g / m2 of a cationic water-absorbing resin or a cationic water-absorbing resin and a nonionic water-absorbing resin. (Excluding 1000 g / m 2 or more), a tape and / or a band-shaped structure, wherein the structure has a thickness of 0.1 to 5 cm and a width of 0.3 to 30 cm. And the length is 0.1 ~ This is a water-stopping material for an underground cable with a protection tube of 100 m; a water-stopping core material and a water-stopping method using these water-stopping materials.
本発明の保護管付地下埋設ケーブル用止水材は以下の効果を奏する。
(i)本発明の保護管付地下埋設ケーブル用止水材は、地下水や海水等に対しても従来得られなかった長期間にわたり優れた止水性能を有する。
(ii)柔軟な素材を使用し、且つ任意に大きさの調整が可能なため、保護管の径やケーブルの径が異なった場合でも、簡易に大きさの調整が可能である。また、隙間に沿って膨潤することができるので、従来起こりやすかった水道の形成を膨潤によって防止することができる。
(iii)保護管内の水を利用して、素材が膨潤することにより止水が可能となるため、初期にセットしておくだけで、保護管内に何時水が浸入してきても、それに合わせて随時止水効果を発揮できる。
(iv)更に、芯材等用いることにより、一つの保護管内に複数のケーブルを有するCVTケーブルなどの止水にも十分対応できる。
(v)保護管付地下埋設ケーブル用の止水材として、簡便な方法で利用できる。
(vi)本発明の止水方法を用いることにより、従来ケーブルの交換時などに莫大な時間と費用を要したマンホール内の排水などに関して、その時間や費用を大幅に低減できる。
すなわち、ケーブル保護管内に浸入した水がたとえ多価金属塩を含む水や海水であっても本発明の止水材に達すると、止水材中のノニオン性及び/又はカチオン性吸水性樹脂が速やかに吸水膨潤し、また長期間に渡り膨潤を維持することによって保護管内の間隙を封鎖し、従来得られなかった十分な止水性能を発揮することができる。
The water-stopping material for underground cable with protection tube of the present invention has the following effects.
(i) The water-stopping material for underground buried cable with protection tube of the present invention has excellent water-stopping performance over a long period of time, which has not been obtained before, even for groundwater, seawater, and the like.
(ii) Since a flexible material is used and the size can be arbitrarily adjusted, the size can be easily adjusted even when the diameter of the protective tube or the diameter of the cable is different. In addition, since the water can swell along the gaps, the formation of the tap water, which has conventionally been likely to occur, can be prevented by the swelling.
(iii) Since water can be stopped by swelling the material using water in the protective tube, simply setting it at the initial stage, no matter when water enters the protective tube, A water stopping effect can be exhibited.
(iv) Further, by using a core material or the like, it is possible to sufficiently cope with water stoppage of a CVT cable having a plurality of cables in one protective tube.
(v) It can be used in a simple way as a waterproof material for underground cable with protection tube.
(vi) By using the water stopping method of the present invention, it is possible to greatly reduce the time and cost of drainage in manholes and the like that required enormous time and cost when replacing cables in the past.
That is, even when the water that has entered the cable protection tube reaches the water-stopping material of the present invention even if the water or seawater contains a polyvalent metal salt, the nonionic and / or cationic water-absorbing resin in the water-stopping material becomes By quickly absorbing water and swelling and maintaining the swelling for a long period of time, the gap in the protective tube can be closed, and sufficient water-stopping performance, which has not been obtained conventionally, can be exhibited.
本発明において、止水を行うために膨張剤としてノニオン性及び/又はカチオン性の吸水性樹脂を少なくとも一部が透水性を有する外装材中に封入する。
本発明に用いるノニオン性の吸水性樹脂としては、(メタ)アクリルアミド重合体架橋物、ビニルアルコール重合体架橋物、エチレンオキサイド重合体架橋物、ポリヒドロキシアルキル(炭素数2〜5)(メタ)アクリレート架橋重合体、ポリエチレングリコール(PEG、分子量:200〜4000)(メタ)アクリレート重合体架橋物、ポリメトキシPEG(PEG分子量:200〜4000)(メタ)アクリレート架橋重合体、デンプン架橋体、ヒドロシエチルセルロース架橋体:及びこれらノニオン系ポリマーの構成成分と(メタ)アクリル酸(アルカリ金属中和塩)などに代表されるアニオン性モノマーの共重合物の架橋体などを例示できるが、アニオン性モノマーを共重合した重合体架橋物を使用する場合は、アニオン性成分の含有量が通常吸水性樹脂全体の10重量%以下が好ましく、5重量%以下が更に好ましい。アニオン性成分の含有量が10重量%を超えると、地下水や海水などに含まれる多価金属イオンによりアニオン性分が徐々に架橋されて該吸水性樹脂の吸収量の低下を招き、漏水が生じる場合がある。
In the present invention, a nonionic and / or cationic water-absorbing resin as a swelling agent is sealed in a packaging material having at least a part of water-permeability in order to stop water.
Examples of the nonionic water-absorbent resin used in the present invention include a crosslinked product of (meth) acrylamide polymer, a crosslinked product of vinyl alcohol polymer, a crosslinked product of ethylene oxide polymer, and polyhydroxyalkyl (2 to 5 carbon atoms) (meth) acrylate. Crosslinked polymer, polyethylene glycol (PEG, molecular weight: 200 to 4000) (meth) acrylate polymer crosslinked product, polymethoxy PEG (PEG molecular weight: 200 to 4000) (meth) acrylate crosslinked polymer, starch crosslinked product, hydroxyethyl cellulose crosslinked Isomers and crosslinked products of copolymers of these nonionic polymers and anionic monomers typified by (meth) acrylic acid (neutralized alkali metal salt) and the like. When using a cross-linked polymer, the anionic component Preferably 10 wt% or less of organic amount and usually water-absorbing resin, more preferably 5 wt% or less. When the content of the anionic component exceeds 10% by weight, the anionic component is gradually cross-linked by polyvalent metal ions contained in groundwater, seawater, etc., causing a decrease in the absorption amount of the water-absorbing resin, and water leakage occurs. There are cases.
本発明に用いるカチオン性の吸水性樹脂は、ジアルキルアミノ(メタ)アクリレート及びその4級塩(アルキルハライド又はジアルキル硫酸との反応物)、ジアルキルアミノヒドロキシアルキル(メタ)アクリレート及びその4級塩、ジアルキルアミノ(メタ)アクリルアミド及びその4級塩、ジアルキルアミノヒドロキシアルキル(メタ)アクリルアミド及びその4級塩、N−アルキルアミノビニルピリジニウムハライド、トリメチルアリルアンモニウムハライドなどに代表されるカチオンモノマー(a)の重合体架橋物;、これらカチオンモノマー(a)と(メタ)アクリルアミド、ビニルアルコール(酢酸ビニルケン化物)、ポリヒドロキシアルキル(炭素数2〜5)(メタ)アクリレート、ポリエチレングリコール(PEG、分子量:200〜4000)(メタ)アクリレート、ポリメトキシPEG(PEG分子量:200〜4000)(メタ)アクリレートなどに代表されるノニオン性モノマー(b)との共重合体架橋物;、該カチオン系モノマーと該ノニオン性モノマー及び(メタ)アクリル酸などに代表されるアニオン性モノマー(c)の共重合体架橋物;等を例示することができる。 The cationic water-absorbing resin used in the present invention includes dialkylamino (meth) acrylate and its quaternary salt (reacted with alkyl halide or dialkyl sulfate), dialkylaminohydroxyalkyl (meth) acrylate and its quaternary salt, dialkyl Polymer of cationic monomer (a) represented by amino (meth) acrylamide and its quaternary salt, dialkylaminohydroxyalkyl (meth) acrylamide and its quaternary salt, N-alkylaminovinylpyridinium halide, trimethylallylammonium halide and the like Crosslinked product; these cationic monomers (a) and (meth) acrylamide, vinyl alcohol (saponified vinyl acetate), polyhydroxyalkyl (2 to 5 carbon atoms) (meth) acrylate, polyethylene glycol (PEG, molecular weight) (200-4000) (meth) acrylate, cross-linked copolymer with nonionic monomer (b) represented by polymethoxy PEG (PEG molecular weight: 200-4000) (meth) acrylate, etc .; the cationic monomer and the nonion Crosslinked copolymer of an anionic monomer (c) typified by a nonionic monomer and (meth) acrylic acid; and the like.
カチオン性の吸水性樹脂におけるカチオン性モノマー(a)とノニオン性モノマー(b)及び必要により加えることができるアニオン性モノマー(c)の比率は、(a)20〜100重量%/(b)0〜80重量%/(c)0〜10重量%である。ノニオン性の吸水性樹脂と同様にアニオン性モノマーの含有量が10重量%以上になると、地下水や海水などに含まれる多価金属イオンによりアニオン性分が徐々に架橋されて該吸水性樹脂の吸収量の低下を招き、漏水が生じる場合がある。
これらノニオン性の吸水性樹脂及びカチオン性の吸水性樹脂の中で、カチオン性吸水性樹脂は地下水、海水、多価金属塩を含有する水などに対する吸収量がノニオン性の吸水性樹脂に比べ高く、その結果止水材の膨潤度合いも大きくなり、同一添加量では速やかな止水が可能であり、また添加量を減らしても止水が可能であるので更に好ましい。
これらノニオン性の吸水性樹脂及び/又はカチオン性の吸水性樹脂は、本発明において1種を使用しても良いし、2種以上を併用して使用しても良い。
The ratio of the cationic monomer (a) to the nonionic monomer (b) and the optional anionic monomer (c) in the cationic water-absorbing resin is (a) 20 to 100% by weight / (b) 0 80% by weight / (c) 0 to 10% by weight. When the content of the anionic monomer is 10% by weight or more as in the case of the nonionic water-absorbing resin, the anionic component is gradually crosslinked by polyvalent metal ions contained in groundwater, seawater, etc., and the water-absorbing resin is absorbed. This may lead to a decrease in the volume and water leakage may occur.
Among these nonionic water-absorbent resins and cationic water-absorbent resins, cationic water-absorbent resins have higher absorption amounts to groundwater, seawater, water containing polyvalent metal salts and the like than nonionic water-absorbent resins. As a result, the degree of swelling of the water-stopping material also increases, so that it is possible to quickly stop the water with the same amount of addition, and it is even more preferable since the water-stopping is possible even with a small amount of addition.
In the present invention, these nonionic water-absorbing resins and / or cationic water-absorbing resins may be used alone or in combination of two or more.
これら吸水性樹脂の架橋方法は、通常の方法で良く、例えば分子内に2重結合を2ヶ以上有する重合性架橋剤[N,N’−メチレンビスアクリルアミド、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアリルエーテルなど]をモノマーの重合時に添加し共重合させ架橋体を得る方法;分子内にモノマー、ポリマーと反応しうる官能基を2ヶ以上有する反応性架橋剤[ポリイソシアネート類(MDI、TDIなど)、ポリグリシジル化合物(エチレングリコールジグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、グリシジルメタクリレートなど)、ポリオール類(グリセロール、ポリグリセロールなど)、ポリアミン類(ポリエチレンイミン、エチレンジアミン、テトラエチレンペンタミンなど)など]をモノマー重合前、重合後、あるいは未架橋のポリマーを作成した後などの任意の段階で添加し、必要により加熱し架橋体を得る方法;ポリマーの種類にもよるが、未架橋のポリマーを通常100℃以上、好ましくは130℃以上に加熱し熱架橋させ架橋物をえる方法などを例示することができる。
吸水性樹脂の形状については特に限定はないが例えば、粒状、顆粒状、造粒状、リン片状、塊状、パール状などである。
吸水性樹脂の粒子の粒度分布についても特に限定はないが、通常平均粒径で1〜2,000ミクロン、好ましくは50〜1000ミクロンの粒子である。
The water-absorbing resin may be crosslinked by a conventional method, for example, a polymerizable crosslinking agent having two or more double bonds in the molecule [N, N'-methylenebisacrylamide, trimethylolpropane triacrylate, pentaerythritol triacrylate. A method of adding a copolymer at the time of polymerization of a monomer to obtain a crosslinked product; a reactive crosslinker [polyisocyanate (MDI, TDI, etc.) having two or more functional groups capable of reacting with a monomer or a polymer in a molecule. ), Polyglycidyl compounds (ethylene glycol diglycidyl ether, polyglycerol polyglycidyl ether, glycidyl methacrylate, etc.), polyols (glycerol, polyglycerol, etc.), polyamines (polyethyleneimine, ethylenediamine, tetraethylenepentamine, etc.)] A method of adding at an optional stage before, after polymerization or after preparing an uncrosslinked polymer and heating as necessary to obtain a crosslinked product; For example, a method of heating at a temperature of at least 130 ° C., preferably at least 130 ° C. to thermally crosslink to obtain a crosslinked product can be exemplified.
The shape of the water-absorbent resin is not particularly limited, but is, for example, granular, granular, granulated, scaly, massive, pearl-like, and the like.
The particle size distribution of the water-absorbent resin particles is not particularly limited either, but is usually 1 to 2,000 microns, preferably 50 to 1000 microns in average particle diameter.
本発明において、外装材に封入する該ノニオン性及び/またはカチオン性の吸水性樹脂の目付量は、外装材の厚みや材質、外装材の巾、吸水性樹脂の種類などにもよるが、通常500〜5000g/m2、好ましくは1000〜4000g/m2である。吸水性樹脂の目付量が、500g未満では、使用する吸水性樹脂の種類にもよるが止水材の膨潤が不充分で、完全な止水ができない場合がある。
一方、目付量が5000gを超えると外装材から該吸水性樹脂がこぼれる場合がありまた非経済的である。
In the present invention, the basis weight of the nonionic and / or cationic water-absorbing resin to be enclosed in the exterior material depends on the thickness and the material of the exterior material, the width of the exterior material, the type of the water-absorbing resin, and the like. It is 500 to 5000 g / m 2 , preferably 1000 to 4000 g / m 2 . If the basis weight of the water-absorbing resin is less than 500 g, depending on the type of the water-absorbing resin used, the water-stopping material may not swell sufficiently and may not be able to completely stop the water-stopping.
On the other hand, if the basis weight exceeds 5000 g, the water-absorbent resin may spill out of the exterior material, which is uneconomical.
本発明に用いられる外装材は、水膨潤性吸水性樹脂に水が接触できるように、少なくとも一部透水性を有する部分が必要である。外装材のすきまから水が浸入可能であるだけでもよいが、速やかに水を吸収できるようにするためには、外装材の少なくとも一部に透水性があって、且つ該吸水性樹脂が吸水膨潤した時においても破れが生じない程度の、湿潤強度及び湿潤状態での柔軟性を有する素材であることが好ましい。このため、布帛及びメッシュフィルムなどが好ましい。透水性を有する部分の面積が外装材全体の面積の内占める割合は25%以上、好ましくは50%以上、特に好ましくは75%以上である。外装材の常態強度は縦/横とも2kg/cm以上、好ましくは3kg/cm以上あれば取り扱い上の問題は生じない。湿潤強度(25℃のイオン交換水に1分浸漬後の引張強度)は0.05kg/cm以上、好ましくは0.1kg/cm以上必要である。
布帛としては、上記の湿潤強度があるものであれば特に限定は無く、任意の合成繊維(ポリエステル、ポリアミド、ビニロン、アクリル繊維など)、半合成繊維(アセテート、レーヨンなど)、天然繊維(綿、絹、羊毛など)、これらの混合品(混紡品など)などすべての繊維素材が適用できる。また織物であっても不織布であってもよい。また、メッシュフィルムとしては、ポリエチレン、ポリプロピレン等のシートに微細な穴を数多く開けたもの等が挙げられる。穴の大きさは透水性があれば特に限定はないが、好ましくは0.1〜2mm、特に好ましくは0.1〜1mmである。
The exterior material used in the present invention needs at least a part having water permeability so that water can contact the water-swellable water-absorbent resin. It is only necessary that water can enter from the gap of the exterior material, but in order to be able to quickly absorb water, at least a part of the exterior material has water permeability, and the water-absorbing resin swells. It is preferable that the material has a wet strength and a flexibility in a wet state to such an extent that the film does not tear even when it is broken. For this reason, fabrics and mesh films are preferred. The ratio of the area of the water-permeable portion to the area of the whole exterior material is at least 25%, preferably at least 50%, particularly preferably at least 75%. If the normal strength of the exterior material is 2 kg / cm or more, preferably 3 kg / cm or more in both length and width, there is no problem in handling. The wet strength (tensile strength after immersion in ion-exchanged water at 25 ° C. for 1 minute) needs to be 0.05 kg / cm or more, preferably 0.1 kg / cm or more.
The fabric is not particularly limited as long as it has the above-mentioned wet strength. Any synthetic fiber (polyester, polyamide, vinylon, acrylic fiber, etc.), semi-synthetic fiber (acetate, rayon, etc.), natural fiber (cotton, All fiber materials, such as silk and wool, and mixtures thereof (such as blended products) can be applied. It may be a woven or non-woven fabric. Examples of the mesh film include a sheet in which a number of fine holes are formed in a sheet of polyethylene, polypropylene, or the like. The size of the hole is not particularly limited as long as it has water permeability, but is preferably 0.1 to 2 mm, particularly preferably 0.1 to 1 mm.
また、水を吸収した水膨潤性吸水性樹脂が包装材内で偏り無く膨張するためには、面積当りの樹脂量がほぼ均一に挟み込まれた状態で、吸水性樹脂が外装材に固定されることが望ましく、そのために上記の素材中ではフェルト状の不織布が特に好ましい。フェルトとしては織フェルト、プレスフェルト、ニードルパンチフェルト等、一般にフェルトと称されるものであり、例えば、「産業用繊維資材ハンドブック」(日本繊維機械学会、362頁〜381頁)に記載されているものが使用できる。フェルトの目付量は特に制限はないが、50〜500g/m2が好ましく、特に90〜300g/m が好ましい。 In addition, in order for the water-swellable water-absorbent resin that has absorbed water to expand evenly in the packaging material, the water-absorbent resin is fixed to the exterior material while the amount of resin per area is almost uniformly sandwiched. Therefore, a felt-like nonwoven fabric is particularly preferable among the above-mentioned materials. The felt is generally referred to as felt, such as woven felt, press felt, needle punch felt, and the like, and is described in, for example, "Handbook of Industrial Textile Materials" (Japan Textile Machinery Society, pp. 362 to 381). Things can be used. The weight per unit area of the felt is not particularly limited, but is preferably 50 to 500 g / m 2 , and particularly preferably 90 to 300 g / m 2 .
本発明において、止水材の作成方法は、所定量の吸水性樹脂を封入できかつ構造体の大きさが所定の寸法にできるものであれば特に限定はないが、例えば、2枚の外装材のシートの間に吸水性樹脂を添加し必要により所定の大きさに裁断したもの、所定の大きさの袋状の外装材中に吸水性樹脂を添加・封入したものなどが好ましい例として挙げることができる。
また、本発明の止水材は、吸水性樹脂が膨潤後も止水材から押し出されないように、少なくとも該止水材の長さ方向の開口部は、樹脂が挟まれた状態で封鎖されていることが望ましい。
吸水性樹脂の膨潤時の押し出しを防止する方法としては、例えば、開口部の布帛を構成する繊維の一部あるいは全部を熱融着繊維にしてヒートシールする方法、縫製による方法、ホットメルト等の接着剤を使用する方法及び開口部をフィルム状のもので挟み、ヒートシールや接着剤で固着する方法、開口部をを包み込むようにヘムを用いて縫製等で取り付ける方法などが例示でき、吸水性樹脂が吸水膨潤後に押し出されなければ、何れの方法を選んでもよいが、吸水性樹脂の押し出しをほぼ完全に防止するためにはヘム止めする方法が更に好ましい。
この時のヘムの材質は特に制限はないが、水膨潤した時においても破れが生じない程度の、湿潤強度及び湿潤状態での柔軟性を有する素材であることが好ましい。このため、前記の布帛、メッシュフィルム及びスパンボンドが好ましく。特にスパンボンドが好ましい。
更に、本発明の止水材は、該外装材中に水膨潤性吸水性樹脂がほぼ均一に添加された状態のもとで該外装材間をニードルパンチやヒートシールなどの方法で部分的に固定し外装材中での吸水性樹脂の流動・偏在を抑制・防止し、水を吸収した時に吸水性樹脂がシート内で偏り無く膨張させることも可能である。
In the present invention, there is no particular limitation on the method for producing the water-stopping material, as long as the water-absorbing resin can be sealed in a predetermined amount and the size of the structure can be set to the predetermined size. Preferred examples include those obtained by adding a water-absorbent resin between sheets of a desired size and cutting to a predetermined size as necessary, and those obtained by adding and enclosing a water-absorbent resin in a bag-shaped exterior material of a predetermined size. Can be.
In addition, the water-stopping material of the present invention is such that the water-absorbent resin is not pushed out of the water-stopping material even after swelling, so that at least the opening in the length direction of the water-stopping material is closed with the resin sandwiched. Is desirable.
Examples of the method of preventing the water-absorbent resin from being extruded during swelling include, for example, a method of heat-sealing some or all of the fibers constituting the fabric of the opening into a heat-sealing fiber, a method of sewing, a method of hot melt, and the like. Examples include a method of using an adhesive, a method of sandwiching the opening with a film-like material and fixing with a heat seal or an adhesive, and a method of attaching the opening with sewing or the like using a hem so as to wrap the opening. As long as the resin is not extruded after water absorption and swelling, any method may be selected. However, in order to almost completely prevent the water absorbent resin from being extruded, hemming is more preferable.
The material of the hem at this time is not particularly limited, but is preferably a material having wet strength and flexibility in a wet state to such a degree that the hem does not break even when swollen with water. For this reason, the above-mentioned cloth, mesh film and spun bond are preferred. Particularly, spunbond is preferable.
Further, the water-stopping material of the present invention is partially formed by a method such as needle punching or heat sealing between the exterior materials in a state where the water-swellable water-absorbent resin is almost uniformly added to the exterior materials. It is also possible to fix and prevent the flow and uneven distribution of the water-absorbent resin in the exterior material, and to expand the water-absorbent resin evenly in the sheet when absorbing water.
本発明の止水材の形状としては、作業性の面から、止水対象断面の形状に合わせて適当な大きさに切って使用できる様、切断可能なテープ状又は帯状であることが望ましい。
止水材の寸法については、通常厚さ0.1〜5cm、巾0.3cm〜30cm、長さ0.1〜100mであることが望ましい。好ましくは厚さ0.2〜3cm、巾0.5〜20cm、長さ0.5〜50mである。厚さが0.1cm未満では所定量の吸水性樹脂または吸水性繊維が添加できず止水効果が不充分な場合があるため好ましくなく、一方厚みが5.0cmを超えると止水材が厚すぎてケーブルと保護管の隙間にうまく止水材が充填できない場合がある。
止水材の幅に関しては、幅が0.3cm未満であると止水材が細すぎて止水効果が不充分な場合があり、一方幅が30cmを超えると保護管のかなり内部まで止水材を押し込む必要があり作業性が低下する。
長さに関しては、0.1m未満では止水材が短すぎてケーブルと保護管の隙間を埋めることができず止水効果が不充分となり、一方長さが100mを超えると止水材が大きすぎてマンホールの様な狭い環境での作業性が著しく低下する。
From the viewpoint of workability, the shape of the water-stopping material of the present invention is desirably a tape-like or band-like shape that can be cut into an appropriate size in accordance with the shape of the cross section to be water-stopped.
Regarding the dimensions of the water blocking material, it is usually desirable that the thickness is 0.1 to 5 cm, the width is 0.3 cm to 30 cm, and the length is 0.1 to 100 m. Preferably, the thickness is 0.2 to 3 cm, the width is 0.5 to 20 cm, and the length is 0.5 to 50 m. If the thickness is less than 0.1 cm, a predetermined amount of water-absorbing resin or water-absorbing fiber cannot be added, and the water-stopping effect may be insufficient. In some cases, the gap between the cable and the protection tube may not be filled with the waterproof material.
Regarding the width of the water-stopping material, if the width is less than 0.3 cm, the water-stopping material may be too thin and the water-stopping effect may be insufficient. It is necessary to push in the material, and the workability decreases.
Regarding the length, if the length is less than 0.1 m, the water-stopping material is too short to fill the gap between the cable and the protective tube, and the water-stopping effect becomes insufficient, while if the length exceeds 100 m, the water-stopping material becomes large. Workability in a narrow environment such as a manhole is significantly reduced.
本発明の止水材を用いた止水方法について説明する。電力ケーブルや光ファイバーケーブル等の地下埋設ケーブルは、通常、塩化ビニルパイプ、陶管、ヒューム管等の保護管で保護されているが、保護管のひび割れの発生や継ぎ手のシール部のシール不良によって、地下水(場合によっては海水)が管内に浸入する場合が多い。該止水材は、保護管のシール部に外巻きして水の浸入を防止するために用いることも可能であるが、後述する図1のように地下埋設ケーブルのマンホールへの出口直前部分に、ケーブルと保護管の隙間に介在させて用いる方が、マンホール内への水の浸入するのを防止するという目的に対して効果的である。その理由は、水が保護管のどの部分から浸入するにせよ、水がマンホールへの入口直前で止水材に接触することにより、止水材に封入された吸水性樹脂が膨潤して止水材が膨張する事により、保護管とケーブルとの間隙を完全に封鎖し、マンホール内に水が侵入することを防止できるからである。 The water stopping method using the water stopping material of the present invention will be described. Underground cables such as power cables and optical fiber cables are usually protected by protective pipes such as PVC pipes, ceramic pipes, fume pipes, etc. Groundwater (or seawater in some cases) often enters the pipes. The water-stopping material can be wound around the seal portion of the protective tube and used to prevent water from penetrating. However, as shown in FIG. It is more effective to interpose the cable in the gap between the cable and the protective tube for the purpose of preventing water from entering the manhole. The reason is that no matter where the water enters from the protection tube, the water comes into contact with the waterproof material just before the entrance to the manhole, and the water-absorbing resin enclosed in the waterproof material swells and stops. This is because the expansion of the material completely closes the gap between the protective tube and the cable, and can prevent water from entering the manhole.
上記の止水材の設置方法は、通常保護管とケーブルの大きさがマチマチである場合が多いため、図2の様に保護管の手前での膨潤前の止水材をマンホール内のケーブルに巻き付けて、ケーブルと保護管の空隙をほぼ埋めることのできる大きさに合わせてテープ又は帯状の止水材を切断した後、ケーブルと保護管の間に挿入する方が止水をより完全に行うために好ましい。
通常この様にして止水材を設置するため、止水材は空隙に合わせて任意の大きさ及び形状で用いることが可能である方が好ましく、そのためには、ロール状に巻いたテープ状又は帯状であることが望ましい。テープ状又は帯状であればケーブルの周囲に巻き付けていき、ほぼ保護管の内径に達したところで切断して用いることができる。またテープ状又は帯状のものをロール状に巻いておくことにより止水材がコンパクトにできるため、多数のケーブルが存在するマンホールの狭い環境においても、ケーブルの周囲にうまく巻き付けることができる。
In the installation method of the waterproofing material described above, since the size of the protective tube and the cable is usually gusset, the waterproofing material before swelling in front of the protective tube is connected to the cable in the manhole as shown in FIG. After winding and cutting the tape or band-shaped waterproof material to a size that can almost fill the gap between the cable and the protective tube, inserting water between the cable and the protective tube provides more complete water blocking Preferred for.
Normally, in order to install the water-stopping material in this manner, it is preferable that the water-stopping material can be used in any size and shape according to the gap, and for that purpose, a tape-shaped or It is desirable that the shape be a belt. If it is in the form of a tape or a band, it can be wound around the cable and cut when it reaches almost the inner diameter of the protective tube. In addition, since the water-stopping material can be made compact by winding a tape-shaped or band-shaped material in a roll shape, the cable can be wound around the cable even in a narrow manhole environment where many cables exist.
上記に様に、電力ケーブルや光ファイバーケーブル等の地下埋設ケーブルは、通常、塩化ビニルパイプ、陶管、ヒューム管等の保護管で保護されているが、各保護管に存在する実際のケーブルの本数は、通常1本だけの単ケーブルの場合と3本のケーブルを縒った3重ケーブル(慣用名:CVT、以下CVTと記載する)の2種類があるのが一般的である。
保護管内のケーブルの本数が1本の場合は、上記の方法でほぼ完全に止水することができるが、CVTの場合は、ケーブルの外周に単純に止水材を巻き付け保護管内に挿入しただけでは、止水材が膨潤しても、図3に示した様に保護ケーブルとケーブルの間の隙間や止水材とケーブルの間の隙間を完全には封鎖できない場合が多く、その部分から漏水が起こる場合がある。
従って、CVTの止水に関しては、本発明の止水材をケーブル外周に巻き付ける他に、その隙間を埋める別の水膨潤性の芯材などを止水部分のケーブル間に挟み込んだ後、該止水材をケーブルに巻き付けた方が好ましい。
As described above, underground cables such as power cables and optical fiber cables are usually protected by protective pipes such as polyvinyl chloride pipes, ceramic pipes, fume pipes, etc. Generally, there are two types of cables: a single cable and a triple cable (common name: CVT, hereinafter referred to as CVT) in which three cables are twisted.
In the case where the number of cables in the protective tube is one, water can be almost completely stopped by the above method. However, in the case of CVT, the water-stopping material is simply wound around the outer periphery of the cable and inserted into the protective tube. In many cases, even if the water blocking material swells, the gap between the protection cable and the cable or the gap between the water blocking material and the cable cannot be completely closed as shown in FIG. May occur.
Therefore, regarding the water stopping of CVT, in addition to winding the water stopping material of the present invention around the cable outer periphery, another water swellable core material or the like that fills the gap is inserted between the cables of the water stopping portion, and then the water stopping material is stopped. It is preferable to wrap the water material around the cable.
水膨潤性の芯材としては、該止水材と同様な水膨潤性の素材であって、ケーブル間の隙間及びケーブルと止水材の隙間を埋めることのできるものであれば特に限定はないが、例えば、本発明の止水材を短く切って図4−1の様に各々のケーブルに巻き付け芯材とし更にその外側から該止水材を巻き付ける方法、該止水材の一部短く切断して図4−2の様にケーブル間の隙間に挿入した後別の該止水材をケーブルの周囲に巻き付ける方法、予め別途図5の様な該吸水性樹脂を添加した芯材を作成しておき、これをケーブル間に挿入した後、該止水材を巻き付ける方法などを例示することができる。
芯材の大きさに関しては、該間隙を埋められる大きさで有れば特に限定はないが、芯材を使用する場合は、CVTの各ケーブルの直径前後より若干大きな3辺のハネを持つ芯材が好適であり、断面がY字形(図5−1)、特に三つ葉型の芯材(図5−2、3)が止水効果も十分であり、設置も短時間で行えるため好適に使用することができる。芯材は中実(例えば、図5−1,5−2)でも中空(例えば図5−3)でもよい。
芯材の長さに対しても、目的の止水ができれば特に限定はないが、該止水材の巾と同じ程度0.3〜30cm程度のものが作業性もよく、止水効果も十分であるため好適に使用することができる。
The water-swellable core material is not particularly limited as long as it is a water-swellable material similar to the water-stopping material and can fill the gap between the cables and the gap between the cable and the water-stopping material. However, for example, as shown in Fig. 4-1, the water-stopping material according to the present invention is cut into short pieces and wound around each cable to form a core material, and the water-stopping material is wound from the outside thereof. Then, another water-stopping material is wound around the cable after being inserted into the gap between the cables as shown in FIG. 4-2, and a core material to which the water-absorbing resin is added as shown in FIG. In addition, a method of winding the waterproof material after inserting it between the cables can be exemplified.
There is no particular limitation on the size of the core material as long as it is a size that can fill the gap. However, when a core material is used, a core having three sides of a splash slightly larger than the diameter of each cable of the CVT is used. It is preferable to use a core material having a Y-shaped cross section (FIG. 5-1), particularly a three-leaf core material (FIGS. 5-2 and 3), because it has a sufficient water stopping effect and can be installed in a short time. can do. The core material may be solid (for example, FIGS. 5-1 and 5-2) or hollow (for example, FIG. 5-3).
There is no particular limitation on the length of the core material, as long as the desired water-stopping property can be achieved. Therefore, it can be suitably used.
以下、実施例及び比較例により本発明を更に説明するが、本発明はこれらに限定されるものでは無い。
本発明及び比較の止水材に使用した吸水性樹脂及び吸水性繊維に使用するモデル地下水及び人工海水に対する初期及び繰り返し後吸水量験を下記の方法で試験した。以下、特に定めない限り、%は質量%を示す。
Hereinafter, the present invention will be further described with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
The initial and repeated water absorption tests for the model water and artificial seawater used for the water-absorbent resin and the water-absorbent fiber used in the present invention and the comparative water-stopping material were tested by the following methods. Hereinafter, unless otherwise specified,% indicates mass%.
[モデル地下水の初期及び繰り返し後吸収量]
ビーカーにイオン交換水1000gに、塩化カルシウム0.1g、塩化マグネシウム0.05g及び硫酸第一鉄0.05gを添加し均一に溶解してモデル地下水とした。
このモデル地下水1000gに吸水性樹脂または吸水性繊維1.00gを添加し、マグネティックスターラーを用いて1時間撹拌した後、75μmの目開きを持つナイロンスクリーンを用いて膨潤した吸水性樹脂及び繊維をロ別し、過剰の地下水を水切りし、ナイロンスクリーン上の吸水性樹脂及び繊維の重量を測定して、モデル地下水の初期吸収量(g/g)とした。
ナイロンスクリーン上の吸水性樹脂又は繊維を全量ビーカーに入れ、更に新たに作成したモデル地下水1000gを添加し、1時間撹拌した後、再度75μmのナイロンスクリーンを用いて再度膨潤した吸水性樹脂及び繊維をろ別した。
同様な操作を計10回繰り返し、10回目の吸収量をモデル地下水の繰り返し後吸収量(g/g)とした。
[Initial and post-repeated absorption of model groundwater]
0.1 g of calcium chloride, 0.05 g of magnesium chloride and 0.05 g of ferrous sulfate were added to 1000 g of ion-exchanged water in a beaker and uniformly dissolved to obtain model groundwater.
After adding 1.00 g of water-absorbent resin or water-absorbent fiber to 1000 g of this model groundwater and stirring for 1 hour using a magnetic stirrer, the swollen water-absorbent resin and fiber were removed using a nylon screen having a 75 μm opening. Separately, excess groundwater was drained, and the weight of the water-absorbent resin and fibers on the nylon screen was measured to obtain the initial absorption amount (g / g) of the model groundwater.
Put the entire amount of the water-absorbent resin or fiber on the nylon screen into a beaker, add 1,000 g of newly created model groundwater, stir for 1 hour, and then use the 75 μm nylon screen to re-swell the water-absorbent resin and fiber. I filtered.
The same operation was repeated 10 times in total, and the absorption amount at the 10th time was taken as the absorption amount (g / g) after the repetition of the model groundwater.
[人工海水の初期吸収量と繰り返し後吸収量]
市販の「アクアマリン」(人工海水の商標、八洲薬品社製)1000gに吸水性樹脂または吸水性繊維1.00gを添加し、マグネティックスターラーを用いて1時間撹拌した後、75μmの目開きを持つナイロンスクリーンを用いて膨潤した吸水性樹脂及び繊維をロ別し、過剰の地下水を水切りし、ナイロンスクリーン上の吸水性樹脂及び繊維の重量を測定して、人工海水の初期吸収量(g/g)とした。
ナイロンスクリーン上の吸水性樹脂又は繊維を全量ビーカーに入れ、更に新たに作成した人工海水1000gを添加し、1時間撹拌した後、再度75μmのナイロンスクリーンを用いて再度膨潤した吸水性樹脂及び繊維をろ別した。
同様な操作を計10回繰り返し、10回目の吸収量を人工海水の繰り返し後吸収量(g/g)とした。
[Initial absorption of artificial seawater and absorption after repetition]
After adding 1.00 g of water-absorbent resin or fiber to 1000 g of commercially available "Aquamarine" (trademark of artificial seawater, manufactured by Yasu Pharmaceutical Co., Ltd.), stirring the mixture for 1 hour using a magnetic stirrer, then opening the opening of 75 μm. The swollen water-absorbent resin and fibers are separated using a nylon screen, and excess groundwater is drained off. The weight of the water-absorbent resin and fibers on the nylon screen is measured to determine the initial absorption amount of artificial seawater (g / g). g).
Put the entire amount of the water-absorbent resin or fiber on the nylon screen into a beaker, further add 1,000 g of newly created artificial seawater, stir for 1 hour, and again use the 75 μm nylon screen to swell the water-absorbent resin and fiber again. I filtered.
The same operation was repeated 10 times in total, and the absorption amount at the 10th time was defined as the absorption amount (g / g) after the repetition of the artificial seawater.
実施例1
3リットルの断熱重合槽にアクリルアミド50%水溶液996gとアクリル酸ナトリウム4g、メチレンビスアクリルアミド0.1g及びイオン交換水1000gを添加し、内容物を均一に溶解した後、5℃迄冷却した。
内容物に窒素を通じ、溶存酸素を除去した後、1%過酸化水素水溶液1g、0.1%L−アスコルビン酸水溶液2g及び1%アゾV−50水溶液(和光純薬社製)3gを添加し重合を開始させた。
10時間後、内容物を取り出し、ミートチョッパーで含水ゲルを細分化した後、100℃の通風式乾燥機を用いて乾燥させ、乾燥物を100〜1000μmに粉砕してノニオン性吸水性樹脂(1)を得た。このノニオン性吸水性樹脂
(1)のモデル地下水及び人工海水における初期吸収量及び繰り返し後吸収量を測定した。その結果を表1に示す。
フェルト状のポリエステル不織布(目付量:150g/m2、厚み約1mm)のに、ノニオン性吸水性樹脂(1)を1200g/m2となるよう均一に散布した。 その上にもう1枚の上記不織布を重ね、2枚の不織布をニードルパンチで固定した後、巾10cm、長さ3mに裁断した。
外周をポリエステル製のスパンボンド(巾約3cm)を用いて、ヘム止めし、本発明の止水材(A)を作成した。止水材の厚みは4mmであった。
Example 1
996 g of a 50% aqueous solution of acrylamide, 4 g of sodium acrylate, 0.1 g of methylenebisacrylamide and 1000 g of ion-exchanged water were added to a 3 liter adiabatic polymerization tank, and the contents were uniformly dissolved and cooled to 5 ° C.
After the dissolved oxygen was removed by passing nitrogen through the contents, 1 g of a 1% aqueous hydrogen peroxide solution, 2 g of a 0.1% L-ascorbic acid aqueous solution, and 3 g of a 1% azo V-50 aqueous solution (manufactured by Wako Pure Chemical Industries, Ltd.) were added. The polymerization was started.
After 10 hours, the content was taken out, the hydrogel was subdivided with a meat chopper, and dried using a ventilation dryer at 100 ° C., and the dried product was pulverized to 100 to 1000 μm to obtain a nonionic water-absorbent resin (1). ) Got. The initial absorption of the nonionic water-absorbent resin (1) in model groundwater and artificial seawater and the absorption after repetition were measured. Table 1 shows the results.
The nonionic water-absorbing resin (1) was evenly sprayed on a felt-like polyester nonwoven fabric (weight per unit area: 150 g / m 2 , thickness: about 1 mm) so as to be 1200 g / m 2 . Another nonwoven fabric was placed thereon, and the two nonwoven fabrics were fixed with a needle punch, and then cut into a width of 10 cm and a length of 3 m.
The outer periphery was hemmed using a polyester spun bond (approximately 3 cm in width) to prepare the water-stopping material (A) of the present invention. The thickness of the waterproof material was 4 mm.
実施例2
ノニオン性吸水性樹脂(1)の代わりにPNVA NA−010(N−ビニルアセトアミドの架橋重合体からなる吸水性樹脂、昭和電工社製)をノニオン性吸水性樹脂(2)として用いた以外は実施例1と同様にして本発明の止水材(B)を作成した。ノニオン性吸水性樹脂(2)のモデル地下水及び人工海水における初期吸収量及び繰り返し後吸収量を測定した。その結果を表1に示す。
Example 2
Performed except that PNVA NA-010 (a water-absorbing resin composed of a cross-linked polymer of N-vinylacetamide, manufactured by Showa Denko KK) was used as the nonionic water-absorbing resin (2) instead of the nonionic water-absorbing resin (1). A water-stopping material (B) of the present invention was prepared in the same manner as in Example 1. The initial absorption amount and the post-repetition absorption amount of the nonionic water-absorbent resin (2) in model groundwater and artificial seawater were measured. Table 1 shows the results.
実施例3
3リットルの断熱重合槽にアクリルアミド50%水溶液600gとアクリロイルオキシエチルトリメチルアンモニウムクロリドの70%水溶液800g、メチレンビスアクリルアミド0.1g及びイオン交換水600gを添加し、内容物を均一に溶解したのち、5℃まで冷却した。
内容物に窒素を通じ、溶存酸素を除去した後、1%過酸化水素水溶液1g、0.1%L−アスコルビン酸水溶液2g及び1%アゾV−50水溶液3gを添加し重合を開始させた。
10時間後、内容物を取り出し、ミートチョッパーで含水ゲルを細分化した後、100℃の通風式乾燥機を用いて乾燥させ、乾燥物を100〜1000μmに粉砕してカチオン性吸水性樹脂(3)を得た。このカチオン系吸水性樹脂(3)のモデル地下水及び人工海水における初期吸収量及び繰り返し後吸収量を測定した。その結果を表1に示す。
実施例1で用いたノニオン性吸水性樹脂(1)の代わりにカチオン性吸水性樹脂(3)を用いた以外は実施例1と同様にして本発明の止水材(C)を作成した。
Example 3
600 g of a 50% aqueous solution of acrylamide, 800 g of a 70% aqueous solution of acryloyloxyethyltrimethylammonium chloride, 0.1 g of methylenebisacrylamide and 600 g of ion-exchanged water were added to a 3-liter adiabatic polymerization tank, and the contents were uniformly dissolved. Cooled to ° C.
After nitrogen was passed through the contents to remove dissolved oxygen, 1 g of a 1% aqueous hydrogen peroxide solution, 2 g of a 0.1% L-ascorbic acid aqueous solution, and 3 g of a 1% azo V-50 aqueous solution were added to initiate polymerization.
After 10 hours, the content was taken out, the hydrogel was subdivided with a meat chopper, and dried using a ventilation dryer at 100 ° C., and the dried product was pulverized to 100 to 1000 μm to form a cationic water-absorbing resin (3). ) Got. The amount of initial absorption of this cationic water-absorbent resin (3) in model groundwater and artificial seawater and the amount of absorption after repetition were measured. Table 1 shows the results.
A water-stopping material (C) of the present invention was prepared in the same manner as in Example 1 except that a cationic water-absorbing resin (3) was used instead of the nonionic water-absorbing resin (1) used in Example 1.
比較例1
ノニオン性吸水性樹脂(1)の代わりに、アニオン性吸水性樹脂(イ)(サンウエットIM−5000D、三洋化成工業社製)を用いたを用いた以外は実施例1と同様にして比較の止水材(a)を作成した。このアニオン性吸水性樹脂(イ)のモデル地下水及び人工海水における初期吸収量及び繰り返し後吸収量を測定した。その結果を表1に示す。
Comparative Example 1
A comparison was made in the same manner as in Example 1 except that the nonionic water-absorbing resin (1) was replaced with an anionic water-absorbing resin (a) (Sunwet IM-5000D, manufactured by Sanyo Chemical Industries, Ltd.). Waterproof material (a) was created. The initial absorption amount and the repeated absorption amount of this anionic water-absorbent resin (a) in model groundwater and artificial seawater were measured. Table 1 shows the results.
比較例2
ノニオン性吸水性樹脂(1)の代わりに、アニオン性吸水性単繊維(ロ)(商品名:ベルオアシス、カネボウ合繊社製)を用いた。このアニオン性吸水性単繊維(ロ)のモデル地下水及び人工海水における初期吸収量及び繰り返し後吸収量を測定した。その結果を表1に示す。
ポリエステル短繊維(目付量:300g/m2)とアニオン性吸水性単繊維(ロ)(目付量1200g/m2)を混合・積層し、加熱圧縮して、厚み約5mmの吸水性不織布を得た。この吸水性不織布を巾10cm、長さ3mに裁断し、比較の止水材(b)を作成した。
Comparative Example 2
Instead of the nonionic water-absorbing resin (1), an anionic water-absorbing single fiber (b) (trade name: Bell Oasis, manufactured by Kanebo Gosen) was used. The initial absorption amount and the repeated absorption amount of this anionic water-absorbing single fiber (b) in model groundwater and artificial seawater were measured. Table 1 shows the results.
Polyester staple fiber (weight per unit area: 300 g / m 2 ) and anionic water-absorbing single fiber (b) (weight per unit area: 1200 g / m 2 ) are mixed and laminated, and heated and compressed to obtain a water-absorbent nonwoven fabric having a thickness of about 5 mm. Was. This water-absorbent nonwoven fabric was cut into a width of 10 cm and a length of 3 m to prepare a comparative water-stopping material (b).
比較例3
3リットルの断熱重合槽にアクリルアミド50%水溶液500gとアクリル酸ナトリウム500g、メチレンビスアクリルアミド0.1g及びイオン交換水1000gを添加し、内容物を均一に溶解したのち、5℃まで冷却した。
内容物に窒素を通じ、溶存酸素を除去した後、1%過酸化水素水溶液1g、0.1%L−アスコルビン酸水溶液2g及び1%アゾV−50水溶液3gを添加し重合を開始させた。
10時間後、内容物を取り出し、ミートチョッパーで含水ゲルを細分化した後、100℃の通風式乾燥機を用いて乾燥させ、乾燥物を100〜1000μmに粉砕してアニオン性成分を50%含有する比較の吸水性樹脂(ハ)を得た。この比較の吸水性樹脂(ハ)のモデル地下水及び人工海水における初期吸収量及び繰り返し後吸収量を測定した。その結果を表1に示す。
ノニオン性吸水性樹脂(1)の代わりに比較の吸水性樹脂(ハ)を用いた以外は実施例1と同様にして比較の止水材(c)を作成した。
Comparative Example 3
500 g of a 50% aqueous solution of acrylamide, 500 g of sodium acrylate, 0.1 g of methylenebisacrylamide and 1000 g of ion-exchanged water were added to a 3-liter adiabatic polymerization tank, and the contents were uniformly dissolved and cooled to 5 ° C.
After nitrogen was passed through the contents to remove dissolved oxygen, 1 g of a 1% aqueous hydrogen peroxide solution, 2 g of a 0.1% L-ascorbic acid aqueous solution, and 3 g of a 1% azo V-50 aqueous solution were added to initiate polymerization.
After 10 hours, the contents are taken out, the hydrogel is subdivided with a meat chopper, and dried using a ventilation dryer at 100 ° C., and the dried product is pulverized to 100 to 1000 μm to contain 50% of an anionic component. A comparative water-absorbent resin (c) was obtained. The initial absorption amount and the repeated absorption amount in the model groundwater and artificial seawater of the comparative water absorbent resin (c) were measured. Table 1 shows the results.
A comparative water-stopping material (c) was prepared in the same manner as in Example 1 except that a comparative water-absorbing resin (c) was used instead of the nonionic water-absorbing resin (1).
実施例1〜3及び比較例1〜3で作成した本発明の止水材(A)〜(C)及び比較の止水材(a)〜(c)を用いて、モデル地下水及び人工海水での単ケーブルを想定したの止水試験を下記の方法で行った。その結果を表2示す。
[単ケーブルの止水試験]
保護管を想定した内径13cm、長さ1mの塩ビ製パイプの中に外径4cm、長さ3mの電力ケーブルを挿入した。
止水材を塩ビパイプの外側の電力ケーブルに押しつけながらきっちりと巻き付け、巻き付けた止水材の直径が約13cmに達したところで、止水材を切断した。
切断した止水材を電力ケーブルに沿って滑らせ、保護管を想定した塩ビ製パイプの中にきっちりと挿入したクランプなど用いて、塩ビパイプが垂直になる様に固定(挿入した止水材は塩ビパイプの下部に位置)し、塩ビパイプの上部から、該モデル地下水を1リットル/分の速度でポンプを用いて供給した。
モデル地下水の供給を始めてから、塩ビパイプ下部から漏れていた地下水が完全に止水できた時間を初期止水時間とした。
完全に下部からの漏水が停止したら、モデル地下水の供給量を1リットル/10分の供給量に減少させ、更にモデル地下水の供給を140時間継続し、再度塩ビパイプ下部からの漏水が起こるかどうかを観察した。漏水が起こった場合は、その時間を記録した。
モデル地下水の代わりに、人工海水を用いて同様な試験を行った。
Using the waterproof materials (A) to (C) of the present invention and the comparative waterproof materials (a) to (c) prepared in Examples 1 to 3 and Comparative Examples 1 to 3, with model groundwater and artificial seawater Of the single cable was performed by the following method. Table 2 shows the results.
[Shutoff test of single cable]
A power cable having an outer diameter of 4 cm and a length of 3 m was inserted into a PVC pipe having an inner diameter of 13 cm and a length of 1 m assuming a protective tube.
The waterproof material was tightly wound while being pressed against the power cable outside the PVC pipe. When the diameter of the wound waterproof material reached about 13 cm, the waterproof material was cut.
Slide the cut waterproof material along the power cable and fix it so that the PVC pipe is vertical using clamps etc. that are inserted exactly into the PVC pipe that assumed the protective tube. The model groundwater was supplied from the upper portion of the PVC pipe at a rate of 1 liter / minute by using a pump.
After the supply of the model groundwater was started, the time during which the groundwater leaking from the lower part of the PVC pipe was completely stopped was defined as the initial stoppage time.
When the water leakage from the lower part stops completely, the supply of model groundwater is reduced to 1 liter / 10 minutes, the supply of model groundwater is continued for 140 hours, and it is checked whether water leakage from the lower part of the PVC pipe occurs again. Was observed. If a water leak occurred, the time was recorded.
Similar tests were performed using artificial seawater instead of model groundwater.
実施例4
実施例1で作成した止水材(A)を長さ30cmに切断し、約10cm毎に中心部集めて縫製し、図5−2に示した様な一辺が約4.5cmで巾が10cmの三つ葉状の芯材を作成した。
保護管を想定した内径13cm、長さ1mの塩ビ製パイプの中に外径4cm、長さ3mの電力ケーブル3本を縒ったCVTケーブルを挿入した。
実施例4で作成した芯材を塩ビパイプの内側の3本ケーブルの間に挟み込んだ。止水材(A)を塩ビパイプの外側の電力ケーブルに押しつけながらきっちりと巻き付け、巻き付けた止水材の直径が約13cmに達したところで、止水材を切断した。
切断した止水材を電力ケーブルに沿って滑らせ、ケーブル間に芯材を差し込んだ位置まで、保護管を想定した塩ビ製パイプの中にきっちりと挿入した。
クランプなど用いて、塩ビパイプが垂直になる様に固定(挿入した止水材は塩ビパイプの下部に位置)し、塩ビパイプの上部から、該モデル地下水を1リットル/分の速度でポンプを用いて供給した。
モデル地下水の供給を始めてから、塩ビパイプ下部から漏れていた地下水が完全に止水できた時間を初期止水時間とした。
完全に下部からの漏水が停止したら、モデル地下水の供給量を1リットル/10分の供給量に減少させ、更にモデル地下水の供給を140時間継続し、再度塩ビパイプ下部からの漏水が起こるかどうかを観察した。漏水が起こった場合は、その時間を記録した。
モデル地下水の代わりに、人工海水を用いて同様な試験を行った。
Example 4
The water-stopping material (A) prepared in Example 1 was cut into a length of 30 cm, and the central portion was collected and sewn about every 10 cm. As shown in FIG. 5-2, one side was about 4.5 cm and the width was 10 cm. Was prepared.
A CVT cable in which three power cables each having an outer diameter of 4 cm and a length of 3 m were inserted into a PVC pipe having an inner diameter of 13 cm and a length of 1 m assuming a protective tube.
The core material prepared in Example 4 was sandwiched between three cables inside a PVC pipe. The waterproof material (A) was tightly wound while being pressed against the power cable outside the PVC pipe. When the diameter of the wound waterproof material reached about 13 cm, the waterproof material was cut.
The cut water-stopping material was slid along the power cable, and was inserted exactly into a PVC pipe assuming a protective tube up to a position where the core was inserted between the cables.
Using a clamp or the like, fix the PVC pipe so that it is vertical (the inserted waterproof material is located at the bottom of the PVC pipe), and pump the model groundwater from the top of the PVC pipe at a rate of 1 liter / minute using a pump. Supplied.
After the supply of the model groundwater was started, the time during which the groundwater leaking from the lower part of the PVC pipe was completely stopped was defined as the initial stoppage time.
When the water leakage from the lower part stops completely, the supply of model groundwater is reduced to 1 liter / 10 minutes, the supply of model groundwater is continued for 140 hours, and it is checked whether water leakage from the lower part of the PVC pipe occurs again. Was observed. If a water leak occurred, the time was recorded.
Similar tests were performed using artificial seawater instead of model groundwater.
表1、2から以下のことが明らかである。
(i)本発明の止水材に使用するノニオン性吸水性樹脂(1)〜 (2)及びカチオン性吸水性樹脂(3)は、比較の吸水性樹脂(イ)〜(ロ)に比べ人工海水に対する吸収量が高く、また地下水や人工海水での吸収量が長期的にも殆ど変化しない。
(ii)本発明の止水材(A)〜(C)は、比較の止水材(a)〜(c)に比べ、長期間にわたり漏水を起こさず安定した止水効果を発現できる。
(iii)膨潤性の芯材を併用することにより、CVTケーブルを用いた保護管つき地下埋設ケーブルに関して安定した止水効果を発現できる。
The following is clear from Tables 1 and 2.
(i) The nonionic water-absorbing resins (1) to (2) and the cationic water-absorbing resin (3) used in the water-stopping material of the present invention are more artificial than the comparative water-absorbing resins (a) to (b). Absorption to seawater is high, and absorption in groundwater and artificial seawater hardly changes over the long term.
(ii) The water-stopping materials (A) to (C) of the present invention can exhibit a stable water-stopping effect without causing water leakage over a long period of time as compared with the comparative water-stopping materials (a) to (c).
(iii) By using a swellable core material in combination, a stable water stopping effect can be exhibited for an underground cable with a protection tube using a CVT cable.
以上のことから、電力ケーブル、光ファイバーケーブル等の保護管付地下埋設ケーブル用止水材、止水用芯材並びに止水方法として有用である。 From the above, the present invention is useful as a water-stopping material for underground buried cables with protective tubes such as power cables and optical fiber cables, a core material for water-stopping, and a water-stopping method.
1:マンホール
2:ケーブル保護管
3:地下埋設ケーブル
4:止水材
5:CVTケーブルの構造
6:止水材とケーブル及びケーブル間の隙間
7:止水材の短片
8:芯材
9:外装材
10:吸水性樹脂
1: Manhole 2: Cable protection tube 3: Underground cable 4: Waterproof material 5: CVT cable structure 6: Waterproof material and gap between cable and cable 7: Short piece of waterproof material 8: Core material 9: Exterior Material 10: Water absorbent resin
Claims (12)
At least a portion of the water-permeable exterior material contains a cationic water-absorbing resin (a water-absorbing resin composed of acrylamide and acryloyloxyethyltrimethylammonium chloride, wherein the amount of acrylamide is 34.88 to 80 with respect to the total monomer). Excluding the cationic water-absorbing resin of which weight percent is included) and / or nonionic water-absorbing resin (excluding the water-absorbing resin composed of a crosslinked acrylamide polymer having a sodium acrylate content of 0.8 to 10% by mass) ), Wherein the core section for underground buried cable having three structures in the protective tube is characterized in that the cross-section in which is enclosed is a Y-shaped or three-lobed structure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004114274A JP3971753B2 (en) | 2000-08-09 | 2004-04-08 | Waterproofing material for underground buried cable with protective tube and waterproofing method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000241750A JP3571280B2 (en) | 2000-08-09 | 2000-08-09 | Water-stopping material for underground cable with protective tube and water-stopping method |
JP2004114274A JP3971753B2 (en) | 2000-08-09 | 2004-04-08 | Waterproofing material for underground buried cable with protective tube and waterproofing method |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000241750A Division JP3571280B2 (en) | 2000-08-09 | 2000-08-09 | Water-stopping material for underground cable with protective tube and water-stopping method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004222497A true JP2004222497A (en) | 2004-08-05 |
JP3971753B2 JP3971753B2 (en) | 2007-09-05 |
Family
ID=18732893
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000241750A Expired - Fee Related JP3571280B2 (en) | 2000-08-09 | 2000-08-09 | Water-stopping material for underground cable with protective tube and water-stopping method |
JP2004114274A Expired - Fee Related JP3971753B2 (en) | 2000-08-09 | 2004-04-08 | Waterproofing material for underground buried cable with protective tube and waterproofing method |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000241750A Expired - Fee Related JP3571280B2 (en) | 2000-08-09 | 2000-08-09 | Water-stopping material for underground cable with protective tube and water-stopping method |
Country Status (1)
Country | Link |
---|---|
JP (2) | JP3571280B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107227732A (en) * | 2016-03-23 | 2017-10-03 | 上海崇成基础工程有限公司 | The waterstop pipe and its application method of underground continuous wall connector sealing |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009118548A (en) * | 2007-11-01 | 2009-05-28 | Furukawa Electric Co Ltd:The | Waterproof structure for conduit opening, waterproof member, and waterproof treatment method |
JP6354062B2 (en) * | 2013-01-07 | 2018-07-11 | 株式会社アイ・イー・ジェー | Waterproof material for underground cable with protective tube and water stop method |
-
2000
- 2000-08-09 JP JP2000241750A patent/JP3571280B2/en not_active Expired - Fee Related
-
2004
- 2004-04-08 JP JP2004114274A patent/JP3971753B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107227732A (en) * | 2016-03-23 | 2017-10-03 | 上海崇成基础工程有限公司 | The waterstop pipe and its application method of underground continuous wall connector sealing |
CN107227732B (en) * | 2016-03-23 | 2019-06-04 | 上海崇成基础工程有限公司 | The waterstop pipe and its application method of underground continuous wall connector sealing |
Also Published As
Publication number | Publication date |
---|---|
JP3571280B2 (en) | 2004-09-29 |
JP2002058147A (en) | 2002-02-22 |
JP3971753B2 (en) | 2007-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2772908C (en) | Self healing salt water barrier | |
US10016954B2 (en) | Self healing salt water barrier | |
CN100595224C (en) | Method for producing absorbent composite materials | |
JP3086300B2 (en) | Waterproofing agent for cable | |
TW200925256A (en) | Self healing salt water barier | |
JP3571280B2 (en) | Water-stopping material for underground cable with protective tube and water-stopping method | |
JP4058275B2 (en) | Waterproofing material for underground buried cable with protective tube and waterproofing method | |
DE19748631A1 (en) | Safety seal for liquid systems using swellable polymers | |
JP3680878B2 (en) | Waterproof material and waterproof structure for underground buried cable with protective pipe | |
JPH10172358A (en) | Water cut-off tape for power cable, and rubber plastic insulating power cable using the same | |
JP6354062B2 (en) | Waterproof material for underground cable with protective tube and water stop method | |
WO1992013715A1 (en) | Water barrier material and cable made therefrom | |
JP2905150B2 (en) | Composite sheet for water barrier | |
JP2009002074A (en) | Mat screwable with anchor pin | |
JP2003201711A (en) | Water stop material for anchor and cutoff method | |
JP2709561B2 (en) | Self-healing impermeable sheet | |
JPH0570762A (en) | Water absorbent composition and water stop material comprising the same | |
JPH01240547A (en) | High-mineral water-absorptive resin composition and tape and yarn using same | |
JP3107463B2 (en) | Water stoppage method using super absorbent fiber | |
JP3121184U (en) | Waterproof tape | |
JP2714919B2 (en) | Self-healing composite sheet for water barrier | |
JPH11167049A (en) | Water stopping tape for optical fiber cable | |
JPH08340623A (en) | Clearance closing structure of hollow cylindrical object | |
JPH0931983A (en) | Lubricant for extraction of temporarily buried matter | |
JPH06292320A (en) | Water seal material for cable protection pipe end and installation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040409 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061010 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061207 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070605 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070608 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100615 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110615 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110615 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120615 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120615 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130615 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |