JP2004221704A - Wireless system, server, and mobile station - Google Patents

Wireless system, server, and mobile station Download PDF

Info

Publication number
JP2004221704A
JP2004221704A JP2003003851A JP2003003851A JP2004221704A JP 2004221704 A JP2004221704 A JP 2004221704A JP 2003003851 A JP2003003851 A JP 2003003851A JP 2003003851 A JP2003003851 A JP 2003003851A JP 2004221704 A JP2004221704 A JP 2004221704A
Authority
JP
Japan
Prior art keywords
time
base stations
base station
error
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003003851A
Other languages
Japanese (ja)
Inventor
Koji Watanabe
晃司 渡辺
Atsushi Ogino
敦 荻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003003851A priority Critical patent/JP2004221704A/en
Publication of JP2004221704A publication Critical patent/JP2004221704A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mobile Radio Communication Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wireless position detection system for correcting a synchronizing error between base stations due to a measurement error of transmission reception times so as to enhance the positioning accuracy. <P>SOLUTION: The wireless position detection system evaluates and records a measurement error of transmission reception times of a signal between base stations in advance. The system evaluates and records a time error due to processing delay of the signal transmission reception or the like on the basis of transmission/reception times t1, t2 between the base stations 3, 4 and a signal propagation time T depending on the distance between the base stations. Or the system evaluates and records the measurement time error of the transmission signal between the base stations while a common clock is given to the base stations 3, 4. The system corrects a measurement result of times between the base stations by using the recorded error at positioning. <P>COPYRIGHT: (C)2004,JPO&amp;NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は無線通信システムにおける位置検出技術に関する。
【0002】
【従来の技術】
複数の基地局と移動局間の距離差を測定し、その測定結果と基地局位置とを用いて移動局位置を求めるシステムが開示されている。複数の基地局と移動局間の距離差を求めるために伝搬遅延時間差を測るので、基地局間の時間合わせが必要になる。例えば、特許文献1には複数の基地局からの信号から予め各基地局毎に決められた送信時間の差分を減算して信号の伝搬遅延時間差を得るシステムが開示されている。この例では基地局が同期しており、基地局毎に決められたタイミングで信号を送信するものである。
【0003】
また、特許文献2には、複数基地局(BTS)からの信号を移動局と既知位置の固定局との両局で同時に受信、比較し、両局で受信される各信号間の遅延を決定するシステムが開示されている。この例では基地局間が非同期であり、既知位置に設置された固定局での各基地局からの信号受信時間を用いて、各基地局から移動局への送信信号の時間差を補正するものである。
【0004】
また、同出願人が先に出願した特願2002−260772では次に説明する基地局間の同期補正が開示されている。この例は各基地局が無線信号の送信時刻または受信時刻を計測して基地局間相互の時計のずれを検出し、該ずれを用いて各基地局の時刻を補正する、または、位置計算の際に時計のずれを考慮に入れ、計算上、基地局間が同期しているのと等価の状態を作るものである。図1において、基地局3,4間の同期補正をする場合の従来例を説明する。基地局3から送信信号5を基地局4に送る。基地局3は信号5の送信時刻t1を計測、記録し、基地局4は信号5の受信時刻t2を計測、記録する。基地局i、jはそれぞれ7,6によって、それぞれ時刻t1、t2と基地局i、jの識別子とをサーバー1へ伝送する。基地局i,j間の距離Lもしくは基地局i、jのアンテナ位置の座標が予め測定され、サーバー1に登録されているものとする。サーバー1は、基地局iに対する基地局jの時刻のずれOを数1により求める。さらに時刻のずれOを基地局iと基地局j間の同期補正に用いる。但し、Tは基地局間の信号伝搬時間、cは信号伝搬の速さである。
【0005】
【数1】

Figure 2004221704
【特許文献1】特開平7−181242号公報
【特許文献2】特表平11−513482号公報
【発明が解決しようとする課題】
計測時間誤差や計測から送受信までの回路配線、処理遅延等により送信信号5の計測・記録時刻t1、t2と実際の送受信時刻とに差が生じる。図2に、図1の系内の信号送受信図を示す。時刻t1に、δt、時刻t2にδrの誤差が生じるとする。数1で表される時刻のずれOは数2の通り誤差(δr−δt)を持つこととなる。ここで誤差(δr−δt )は信号を送受信する基地局の組合せに依らず一定であるとする。一般に誤差が信号を送受信する基地局の組合せに依る場合には、誤差を(δr−δt )と記述する。ここでδrとは信号を受信する基地局iで記録された信号受信時刻と真の受信時刻との差であり、δtとは信号を送信する基地局jで記録された信号送信時刻と真の送信時刻との差であるとする。
【0006】
【数2】
Figure 2004221704
基地局(位置測定専用の信号送受信機器も含む)間で信号送受信時間を計測・記録し、該基地局間の時刻のずれを補正するシステムにおいて、計測時刻と実際の送受信時刻の差分を較正し、同期精度を上げることが本発明の課題である。
【0007】
【課題を解決するための手段】
機器間で信号送受信時間を計測し、該機器間の時刻のずれを補正するシステムにおいて、計測時刻と実際の送受信時刻との差分を補正する。予め基地局間の通信の送受信時刻を測定する。サーバーもしくは移動局において該送受信時刻と基地局間距離で決まる信号伝搬時間とから信号送受信の処理遅延等による時刻のずれの誤差の算出を行い記録する。基地局間の時刻のずれの測定結果に対して前記記録した誤差値を用いて補正を行う。
【0008】
【発明の実施の形態】
図3に本発明のシステム構成図の一例を示す。それぞれの基地局は有線(15、16、17)でLAN2に接続されている。T (i=2, 3, 23)は信号伝搬時間である。Tは既知である基地局間距離L (i=2, 3, 23)と信号伝搬の速さcから既知である。基地局間距離Lは、例えばサーバーが保持する基地局アンテナ座標から既知である。
【0009】
図8に基地局の構成図の一例を示す。基地局95は9、10、11のいずれであっても良い。LAN I/F部87はLAN2に対するインタフェースである。 時間測定部92でメモリー88に記録された受信情報と既知の情報との相関を相関器89で計算する。既知の信号とは例えば、無線パケット先頭のプリアンブルや同期ワードであって良い。CPU86が相関器89の出力が最大となる時刻をメモリ84に記録する。CPU86は相関器89出力を補間した結果が最大となる時刻をメモリ84に記録しても良い。基地局間相互の送受信タイミングをそろえる為に外部から各基地局に共通のクロックを供給しても良い。このため基地局95は外部クロックの入力端子91を備えても良い。
RF部80はDAC82からのベースバンド信号を無線周波数にアップコンバートしてアンテナに出力する。またRF部80はアンテナの受信信号をベースバンドにダウンコンバートしてADC81に出力する。ADC81はアナログ信号を入力してデジタル信号に変換して出力する。DAC82はデジタル信号を入力してアナログ信号に変換し出力する。ベースバンド部83はADC81からの入力信号に復調やデスクランブルやCRC(Cyclic Redundancy Check code)等の各種復号化の信号処理を行う。CPU86は復号された情報をメモリ84に書き込む。またCPU86は送信する信号をメモリから読み出し、ベースバンド部83に入力する。ベースバンド部83は無線送信する情報の符号化、変調を行いDAC82に出力する。
【0010】
基地局相互の時刻のずれの誤差が送受信する基地局の組に依らず一定として該時刻のずれの誤差を測定および記録し、該誤差を用いて基地局間相互の時刻のずれを補正する例を説明する。各基地局が移動局からの到来信号の受信時刻を測定し測位に用いる場合で、基地局間で双方向に送信される信号を用いて基地局相互の時刻のずれの誤差を測定する場合の例を示す。本実施例によると、後述の、誤差が送受信する基地局の組合せに依存する場合と比較して、より簡単に誤差補正ができる。また処理は複雑になるが、後述の他の例に示す通り、誤差が送受信する基地局の組合せに依存する場合でも誤差補正が可能である。
【0011】
以下に複数基地局間の信号送受信時間の測定から該送受信時間の誤差(δr−δt )を求める原理を説明する。基地局1から信号を送信し送受信時間を記録する場合の、基地局間の信号の送受信図を図4に示す。時刻t1に基地局1が信号を送信し、時刻t2に基地局2が信号を受信する。また時刻t3に基地局3が信号を受信する。t1、t2、t3は記録された時間である。記録された送信時間と実際の送信時間との間の差をδtとする。また、記録された受信時間と実際の受信時間との間の差をδrとする。このとき、基地局1を基準とした基地局i (i=2, 3)の時刻のずれをOとすると数3、数4の関係がある。
【0012】
【数3】
Figure 2004221704
【数4】
Figure 2004221704
基地局3から信号を送信し送受信時間を記録する場合の、基地局間の信号の送受信図を図5に示す。時刻t4に基地局3が信号を送信し、時刻t5に基地局2が信号を受信する。また時刻t6に基地局1が信号を受信する。t1、t2、t3は記録された時間である。記録された送信時間と実際の送信時間との間の差をδtとし、記録された受信時間と実際の受信時間との間の差をδrとする。このとき、基地局1を基準とした基地局i (i=2, 3)の時刻のずれをOとすると数5、数6の関係がある。
【0013】
【数5】
Figure 2004221704
【数6】
Figure 2004221704
以下に、前記関係式を変形して時間の誤差(δr−δt )を計算する例を示す。まず数3から数4を辺々減じて数7が得られる。
【0014】
【数7】
Figure 2004221704
さらに数5、数7より送信時間と受信時間の誤差の差分が数8で表される。右辺は測定により求まる量である。t2、t3、t4、t5は基地局で送受信時間を計測して得られる。T、T3,、T 23はそれぞれ基地局1と基地局2、基地局1と基地局3、基地局2と基地局3のアンテナ間距離を測定、もしくは基地局座標から計算し、信号伝搬の早さで割って求められる。
【0015】
【数8】
Figure 2004221704
以下に基地局相互の時刻のずれの誤差が送受信する基地局の組に依って異なる場合に該時刻のずれの誤差を測定および記録し、該誤差を用いて基地局間相互の時刻のずれを補正する実施例を説明する。本実施例によれば、時刻のずれの誤差が基地局に依存しないとする前述の方法に比べ、より精度良く誤差測定及び位置測定を行うことができる。
【0016】
基地局1から信号を送信し送受信時間を記録する場合の、基地局間の信号の送受信図を図10に示す。時刻t1に基地局1が信号を送信し、時刻t2に基地局2が信号を受信する。また時刻t3に基地局3が信号を受信する。t1、t2、t3は記録された時間である。基地局1において記録された送信時間と実際の送信時間との間の差をδtとする。また、基地局iで記録された受信時間と実際の受信時間との間の差をδrとする。このとき、基地局1を基準とした基地局i (i=2, 3)の時刻のずれをOとすると数9、数10の関係がある。
【0017】
【数9】
Figure 2004221704
【数10】
Figure 2004221704
基地局3から信号を送信し送受信時間を記録する場合の、基地局間の信号の送受信図を図11に示す。時刻t4に基地局3が信号を送信し、時刻t5に基地局2が信号23を受信する。また時刻t6に基地局1が信号24を受信する。t4、t5、t6は記録された時間である。基地局3において記録された送信時間と実際の送信時間との間の差をδtとする。また、基地局iで記録された受信時間と実際の受信時間との間の差をδrとする。このとき、基地局1を基準とした基地局i (i=2, 3)の時刻のずれをOとすると数11、数12の関係がある。
【0018】
【数11】
Figure 2004221704
【数12】
Figure 2004221704
基地局2から信号を送信し送受信時間を記録する場合の、基地局間の信号の送受信図を図12に示す。時刻t7に基地局2が信号を送信し、時刻t8に基地局3が信号101を受信する。また時刻t9に基地局1が信号102を受信する。
t7、t8、t9は記録された時間である。基地局2において記録された送信時間と実際の送信時間との間の差をδtとする。また、基地局iで記録された受信時間と実際の受信時間との間の差をδrとする。このとき、基地局1を基準とした基地局i (i=2, 3)の時刻のずれをOとすると数13、数14の関係がある。
【0019】
【数13】
Figure 2004221704
【数14】
Figure 2004221704
図9の構成により基地局を共通のクロックで動作させて測定した場合、基地局1を基準とした基地局i (i=2, 3)の時刻のずれOはゼロである。数9、数10、数11、数12、数13、数14よりそれぞれ以下の関係が求まる。ここで、誤差値Δjiとは、送信基地局i、受信基地局jの組合せについて測定された誤差(δr−δt )である。
【0020】
【数15】
Figure 2004221704
【数16】
Figure 2004221704
【数17】
Figure 2004221704
【数18】
Figure 2004221704
【数19】
Figure 2004221704
【数20】
Figure 2004221704
サーバーは数15、数16、数17、数18、数19、数20を計算し、記録する。サーバーは、時間のずれ測定時に数15、数16、数17、数18、数19、数20の値をそれぞれ数9、数10、数11、数12、数13、数14に代入し、Δjiを補正する。
【0021】
サーバーは送信基地局i、受信基地局jの組合せに対して誤差値Δjiを記録する。記録フォーマット例を図14に示す。121は送信基地局を特定する識別子である。122は通信チャンネルを特定する識別子である。123は送信基地局のアンテナ座標である。124は基地局間の時刻のずれである。例えば、前記基地局1を基準とする基地局i (i=2, 3)の時刻のずれOを格納する。一般に124は特定の基地局を基準とする必要は無く、基地局間の相対的な時刻のずれの情報であれば良い。125は送受信処理遅延等に依る時間時刻のずれの誤差である。
送信基地局と受信基地局の組合せに対して決まる値である。例えば、送信基地局識別子iで特定される基地局および受信基地局識別子jで特定される基地局に対してΔjiを格納する。
【0022】
サーバーが送受信時間および基地局座標から誤差(δr−δt )を計算し記録する。図6に、誤差(δr−δt )を計測・記録し位置計算で補正に用いる場合の信号の送受信の例を示す。サーバーが時刻誤差測定要求46、47、48を基地局1,2,3に送る。各基地局は他局からの信号の受信待機をする。基地局1は時刻t1に信号21,22を送信し、それぞれ基地局2,3が、それぞれ時刻t2、t3に受信する。基地局1、2,3はそれぞれ時刻t1、t2、t3を計測、記録する。ここで計測、記録された時刻は図4に示すように誤差を含む。基地局3は時刻t4に信号23,24を送信し、それぞれ基地局2,1が、それぞれ時刻t5、t6に受信する。基地局3、2,1はそれぞれ時刻t4、t5、t6を計測、記録する。計測、記録された時刻は図5に示すように誤差を含む。信号21、22、23、24は、例えばサーバーからの制御信号によって基地局が送信しても良く、また例えば各基地局が時刻誤差測定要求受信時刻から一定時間経過したことによって送信しても良い。基地局1,2、3は、記録した時刻をそれぞれ信号25、26、27によってサーバーに伝送する。
【0023】
図13に信号25、26、27のフォーマット例を示す。110は時間測定を行った基地局の識別子である。111は、信号25、26、27に含まれる測定回数を表す。112は送受を表すフラグである。113は測定した送信時刻もしくは受信時刻である。信号25、26、27は送受フラグと測定時刻の組を測定順に115で指定される測定回数分格納する。例えば、信号25は、110に基地局1の識別子を格納する。111に測定回数2を格納する。112に送信フラグを格納し、113に送信時刻t1を格納する。114に受信フラグを格納し、115に受信時刻t6を格納する。サーバーは測定回数毎に送受フラグ112と基地局識別子111を解析することにより、送信基地局および受信基地局を特定する。
【0024】
サーバーは数8によって誤差(δr−δt )を計算し記録する。サーバーはチャンネル監視要求41,42,43を、それぞれ基地局1,2,3に送信する。
サーバーは移動局18に送信要求44を送信する。移動局18は測位のため信号28、29、30を送信する。基地局1,2,3は、それぞれ信号28、29、30を受信し、それぞれ受信時刻t8、t9、t10を記録する。基地局1は時刻のずれを測定するため、時刻t11に信号31,32を送信する。基地局2、基地局3はそれぞれ時刻t12に信号31を、t13に信号32を受信し時刻を記録する。時刻t11、t12、t13は図2及び数2で表したのと同様に誤差(δr−δt )を含む。基地局1,2、3は、記録した時刻をそれぞれ信号34、35、36によってサーバーに伝送する。サーバは信号21,22,23,24の送受信時刻を用いて時刻のずれを求めても良い。
【0025】
数3、数4に、前記記録された誤差(δr−δt )を代入し、それぞれ時刻のずれO、Oを求めることが出来る。時刻のずれが時間の経過によらず一定の場合、本方法により信号31、32を送受信すること無く時刻のずれを求めることが出来る。
【0026】
一方、時刻のずれが時間の経過と供に変化する場合には、時刻のずれを測定した時点での基地局間の時刻のずれの関係が測位の時点では最早成り立たなくなる。そこで測位に用いる信号28,29,30の送信時刻に近い時刻に、時刻のずれを測定することが望ましい。この場合には信号28,29,30の直後に送信される信号31,32を用いて時刻のずれを求める。サーバーは次のように誤差(δr−δt )の補正を行う。信号31,32の送受信時間、t11、t12、t13と、基地局1と基地局i (i=2, 3)間の伝搬時間Tと、基地局1を基準とする基地局i (i=2, 3)の時刻のずれOとの間には数21、数22の関係がある。
【0027】
【数21】
Figure 2004221704
【数22】
Figure 2004221704
サーバーは数21、数22の(δr−δt )に数8より求めて記録した値を代入しOの補正を行う。さらにサーバーは補正したOを記録し、位置計算に用いる。サーバーは補正した時刻のずれOを用いて次のように位置計算を行う。
【0028】
基地局i ( i =1,2,3 ) のアンテナ位置座標を(xi, yi)、移動局位置を( xm,ym )とする。基地局のアンテナ位置座標は既知でサーバーが保持しているものとする。基地局間距離と、基地局が記録した信号受信時刻と、基地局間の時間のずれとの間に以下の関係がある。
【0029】
【数23】
Figure 2004221704
【数24】
Figure 2004221704
サーバーは、数23、数24を(xm, ym )について解き、移動局の位置座標を計算する。サーバーは信号37で位置計算結果を移動局18に送信する。
【0030】
図7にサーバーが保持する情報のフォーマットの例を示す。71は基地局を特定する識別子である。72は通信チャンネルを特定する識別子である。73はアンテナ座標である。74は基地局間の時刻のずれである。例えば、前記基地局1を基準とする基地局i (i=2, 3)の時刻のずれOを格納する。一般に74は特定の基地局を基準とする必要は無く、基地局間の相対的な時刻のずれの情報であれば良い。75は送受信処理遅延等に依る時間時刻のずれの誤差である。例えば、75には前記(δr−δt )を格納する。
【0031】
基地局間で相互に送信される信号を用いて各基地局相互の時刻のずれの誤差を測定し、移動局で受信した各基地局からの信号の受信時刻を測位に用いる実施例を以下に示す。
【0032】
図15に、誤差(δr−δt )を計測・記録し位置計算で補正に用いる場合の信号の送受信の他の例を示す。本例は各基地局からの送信信号を移動局18が受信し、移動局の受信時間を測位に用いる例である。システムの構成は図3に示すものと同様である。サーバーが時刻誤差測定要求46、47、48を基地局1,2,3に送る。各基地局は他局からの信号の受信待機をする。基地局1は時刻t1に信号21,22を送信し、それぞれ基地局2,3が、それぞれ時刻t2、t3に受信する。基地局1、2,3はそれぞれ時刻t1、t2、t3を計測、記録する。ここで計測、記録された時刻は図4に示すように誤差を含む。基地局3は時刻t4に信号23,24を送信し、それぞれ基地局2,1が、それぞれ時刻t5、t6に受信する。基地局3、2,1はそれぞれ時刻t4、t5、t6を計測、記録する。計測、記録された時刻は図5に示すように誤差を含む。信号21、22、23、24は、例えばサーバーからの制御信号によって基地局が送信しても良く、また例えば各基地局が時刻誤差測定要求受信時刻から一定時間経過したことによって送信しても良い。基地局1,2、3は、記録した時刻をそれぞれ信号25、26、27によってサーバーに伝送する。
【0033】
サーバーは数8によって誤差(δr−δt )を計算し記録する。サーバーは、測位に用いる信号の送信要求150,151,152、およびチャンネル監視要求153を、それぞれ基地局1,2,3、移動局18に送信する。基地局1,2,3は、それぞれ信号130、131、132を送信し、それぞれ送信時刻t16、t18、t20を測定する。移動局18は測位のため信号130、131、132を受信し、それぞれ受信時刻t17、t19、t21を測定する。基地局1,2,3と移動局18は測定した送受信時刻をそれぞれ信号154、155、156、157でサーバーに伝送する。サーバは信号21,22,23,24の送受信時刻を用いて時刻のずれを求めても良い。数3、数4に、前記記録された誤差(δr−δt )を代入し、それぞれ時刻のずれO、Oを求めることが出来る。時刻のずれが時間の経過によらず一定の場合、本方法により信号31、32を送受信すること無く時刻のずれを求めることが出来る。
【0034】
一方、時刻のずれが時間の経過と供に変化する場合には、時刻のずれを測定した時点での基地局間の時刻のずれの関係が測位の時点では最早成り立たなくなる。そこで測位に用いる信号130,131,132の送信時刻に近い時刻に、時刻のずれを測定することが望ましい。この場合には信号130,131,132の後に送信される信号31,32を用いて時刻のずれを求める。時刻のずれを測定した時刻と測位の時刻を近くすることによって、時刻のずれをより正しく求めることが出来る。
【0035】
基地局1は時刻のずれを測定するため、時刻t11に信号31,32を送信する。基地局2、基地局3はそれぞれ時刻t12に信号31を、t13に信号32を受信し時刻を記録する。時刻t11、t12、t13は図2及び数2で表したのと同様に誤差(δr−δt )を含む。基地局1,2、3は、記録した時刻をそれぞれ信号38、39、40によってサーバーに伝送する。
【0036】
サーバーは誤差(δr−δt )の補正を行う。t11、t12、t13と、基地局1と基地局i (i=2, 3)間の伝搬時間Tと、基地局1を基準とする基地局i (i=2, 3)の時刻のずれOとの間には数21、数22の関係がある。
【0037】
サーバーは数21、数22の(δr−δt )に数8より求めて記録した値を代入しOの補正を行う。さらにサーバーは補正したOを記録し、位置計算に用いる。サーバーは補正した時刻のずれOを用いて次のように位置計算を行う。
【0038】
基地局i ( i =1,2,3 ) のアンテナ位置座標を(xi, yi)、移動局位置を( xm,ym )とする。基地局のアンテナ位置座標は既知でサーバーが保持しているものとする。基地局間距離と、基地局が記録した信号受信時刻と、基地局間の時間のずれとの間に以下の関係がある。
【0039】
【数25】
Figure 2004221704
【数26】
Figure 2004221704
サーバーは、数25、数26を(xm, ym )について解き、移動局の位置座標を計算する。サーバーは信号50で位置計算結果を移動局18に送信する。
【0040】
上記例は、サーバーが計測時間を集めて基地局間の時間のずれを補正するが、移動局が計測時間を集めて時間のずれの補正を行っても良い。この場合、移動局18が図14のフォーマットの情報を保持する。またこの場合、図15において、フローは例えば以下の通り変更される。信号25、26、27はサーバーではなく、移動局18に送信される。移動局18で前記例と同様に時刻のずれを計算し記録する。測位のための測定時刻を含む信号34,35,36は移動局18に送信される、信号37は不要である。基地局間の時刻のずれ算出のための測定時刻を含む信号38、39、40が移動局18に送信される。移動局18が誤差補正および位置計算を行う。サーバーからの位置計算結果の通知のための信号50は不要である。また、フェ−ジング等無線環境による時間測定の精度劣化の影響を防ぐ為に、基地局間時刻のずれの誤差の測定を有線で行っても良い。例えば(δr−δt )およびΔjiの測定は、図3、図9の構成において基地局アンテナを信号線に換えて基地局間を結線し、有線で行っても良い。このとき前記例のT(i=2, 3, 23)は、それぞれ基地局1と基地局2間、基地局1と基地局3間、基地局2と基地局3間の信号線の信号伝搬時間とすれば、前記例と同様に誤差測定が可能である。
【0041】
各基地局相互の時刻のずれの誤差を測定および記録し、記録された該誤差を用いて前記検出された基地局間相互の時刻のずれを補正する他の例を説明する。各基地局が移動局からの到来信号の受信時刻を測定し測位に用いる場合で、各基地局に共通のクロックを供給し基地局間で一方向に送信される信号を用いて各基地局相互の時刻のずれの誤差を測定する場合の例を以下に示す。
【0042】
基地局1,2,3が外部から共通のクロック99を、外部クロックの入力端子91から入力する場合のシステム構成を図9に示す。信号線96、97、98の長さを揃え、99から各基地局までの信号伝搬時間を一定とする。
【0043】
基地局1,2,3で共通のクロックのため、数3、数4、数5、数6、数21、数22においてOがゼロとなる。数3より、誤差(δr−δt )は数27で表される。送信時刻t1と、受信時刻t2と、基地局1,2間距離より求めた信号伝播時間Tとの測定により誤差(δr−δt )が求められる。図3の構成で基地局間が非同期で運用するシステムでも、実際に運用するシステム構築前に図9の構成として基地局間時刻のずれの誤差測定および記録を行っても良い。時刻のずれの誤差は基地局位置に依存しない為、図9と図3とで基地局位置が異なっていても良い。また、図9は3基地局からなるシステムの例であるが、一般に2基地局以上なら良い。例えば基地局iと基地局jの2局に共通のクロックを供給し誤差(δr−δt )の測定を行っても良い。数27は基地局1と基地局2との2基地局のみを共通のクロックとしても成り立つ。この場合も、前記と同様にサーバーへ情報を伝達し、サーバーで数27より(δr−δt )を計算し図7のフォーマットで記録できる。図3の構成において運用時の誤差(δr−δt )の補正方法は前記例と同様である。
【0044】
【数27】
Figure 2004221704
【発明の効果】
本発明のシステムは、各基地局が無線信号の送信時刻および受信時刻を計測して基地局間相互の時刻のずれを検出し、前記各基地局相互の時刻のずれを用いて移動局の位置を検出する。さらに本発明のシステムは各基地局が信号の送信時刻および受信時刻を計測して基地局間相互の時刻のずれの誤差を測定および記録する。本発明のサーバーもしくは移動局は、該送受信時刻と基地局間距離で決まる信号伝搬時間とから信号送受信の処理遅延等による時刻のずれの誤差の算出を行い記録する。記録された該誤差を用いて前記検出された基地局間相互の時刻のずれを補正する。本発明のシステムは基地局間の時刻のずれの測定結果に対して前記記録した誤差値を用いて補正を行うので、基地局間の時刻のずれを精度良く測定出来る。
【0045】
本発明のシステムは、各基地局相互の時刻のずれを用いて移動局の位置を検出する、また、計測時刻と実際の送受信時刻との差分を補正するので、基地局間の同期精度を上げることが出来る。結果として位置検出の精度を上げることが出来る。
【図面の簡単な説明】
【図1】同期補正系構成の一例の図。
【図2】系内の信号送受信の一例の図。
【図3】本発明によるシステム構成の一例の図。
【図4】本発明による基地局間信号送受信の一例の図。
【図5】本発明による基地局間信号送受信の一例の図。
【図6】本発明による測位フローの一例の図。
【図7】本発明によるデータフォーマットの一例の図。
【図8】基地局構成の一例の図。
【図9】本発明によるシステム構成の一例の図。
【図10】本発明による基地局間信号送受信の一例の図。
【図11】本発明による基地局間信号送受信の一例の図。
【図12】本発明による基地局間信号送受信の一例の図。
【図13】本発明による信号フォーマットの一例の図。
【図14】本発明によるデータフォーマットの一例の図。
【図15】本発明による測位フローの一例の図。
【符号の説明】
1:サーバ、2:LAN、3、4、9、10、11:基地局、5:送信信号、6:受信時刻情報、7:送信時刻情報、18:移動局、21、22、23、24、25、26、27、34、35、36:信号、37:位置計算結果、41、42、43:チャンネル監視要求、44:送信要求、46、47、48:時刻誤差測定要求
71:基地局識別子、72:チャンネル識別子、73、アンテナ座標、74:時刻のずれ、75:時刻のずれの誤差
80:RF部、81:ADC、82:DAC、83:ベースバンド部、84、88:メモリ、86:CPU、87:LAN I/F部、89:相関器、90、99:クロック、91:外部クロックの入力端子、92:時間測定部
110:基地局識別子、111:測定回数、112:送受フラグ、113:送受時刻、
121:送信基地局識別子、122:チャンネル識別子、123:送信基地局アンテナ座標、124:時刻のずれ、125:時刻のずれの誤差
150、151、152:測位信号送信要求、153:チャンネル監視要求、154、155、156、157:送受信時刻信号。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a position detection technique in a wireless communication system.
[0002]
[Prior art]
A system is disclosed in which a distance difference between a plurality of base stations and a mobile station is measured, and a mobile station position is obtained by using the measurement results and the base station position. Since a propagation delay time difference is measured in order to obtain a distance difference between a plurality of base stations and a mobile station, time alignment between the base stations is required. For example, Patent Literature 1 discloses a system that obtains a signal propagation delay time difference by subtracting a transmission time difference predetermined for each base station from signals from a plurality of base stations. In this example, the base stations are synchronized and transmit a signal at a timing determined for each base station.
[0003]
Patent Document 2 discloses that a signal from a plurality of base stations (BTS) is simultaneously received and compared by both a mobile station and a fixed station at a known position, and a delay between signals received by both stations is determined. A system is disclosed. In this example, the base stations are asynchronous, and the time difference between the transmission signals from each base station to the mobile station is corrected using the signal reception time from each base station at a fixed station installed at a known position. is there.
[0004]
Japanese Patent Application No. 2002-260772, filed earlier by the same applicant, discloses a synchronization correction between base stations described below. In this example, each base station measures a transmission time or a reception time of a radio signal to detect a time lag between the base stations, and corrects the time of each base station using the lag, or performs position calculation. At this time, taking into account the clock skew, a state equivalent to synchronization between base stations is created in calculation. FIG. 1 shows a conventional example in which the synchronization between the base stations 3 and 4 is corrected. The transmission signal 5 is transmitted from the base station 3 to the base station 4. The base station 3 measures and records the transmission time t1 of the signal 5, and the base station 4 measures and records the reception time t2 of the signal 5. The base stations i and j transmit the times t1 and t2 and the identifiers of the base stations i and j to the server 1 by means of 7 and 6, respectively. It is assumed that the distance L between the base stations i and j or the coordinates of the antenna positions of the base stations i and j are measured in advance and registered in the server 1. The server 1 calculates the time difference O of the time of the base station j with respect to the base station i by Expression 1. Further, the time lag O is used for synchronization correction between the base station i and the base station j. Here, T is the signal propagation time between base stations, and c is the signal propagation speed.
[0005]
(Equation 1)
Figure 2004221704
[Patent Document 1] JP-A-7-181242
[Patent Document 2] Japanese Patent Publication No. 11-513482
[Problems to be solved by the invention]
Due to a measurement time error, circuit wiring from measurement to transmission and reception, processing delay, and the like, a difference occurs between the measurement and recording times t1 and t2 of the transmission signal 5 and the actual transmission and reception times. FIG. 2 shows a signal transmission / reception diagram in the system of FIG. It is assumed that an error of δt occurs at time t1 and an error of δr occurs at time t2. The time lag O represented by Equation 1 has an error (δr−δt) as shown in Equation 2. Here, it is assumed that the error (δr−δt) is constant irrespective of the combination of base stations that transmit and receive signals. Generally, when the error depends on the combination of base stations that transmit and receive signals, the error is calculated as (δr i -Δt j ). Where δr i Is the difference between the signal reception time recorded at the base station i that receives the signal and the true reception time, and δt j Is the difference between the signal transmission time recorded at the base station j transmitting the signal and the true transmission time.
[0006]
(Equation 2)
Figure 2004221704
In a system for measuring and recording signal transmission / reception time between base stations (including signal transmission / reception devices dedicated to position measurement) and correcting a time lag between the base stations, a difference between the measured time and the actual transmission / reception time is calibrated. It is an object of the present invention to improve synchronization accuracy.
[0007]
[Means for Solving the Problems]
In a system for measuring a signal transmission / reception time between devices and correcting a time difference between the devices, a difference between a measured time and an actual transmission / reception time is corrected. The transmission / reception time of communication between base stations is measured in advance. The server or mobile station calculates and records a time deviation error due to a signal transmission / reception processing delay or the like from the transmission / reception time and the signal propagation time determined by the distance between base stations. The measurement result of the time lag between the base stations is corrected using the recorded error value.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 3 shows an example of a system configuration diagram of the present invention. Each base station is connected to LAN2 by wire (15, 16, 17). T i (I = 2, 3, 23) is the signal propagation time. T i Is a known distance L between base stations. i (I = 2, 3, 23) and the signal propagation speed c. Base station distance L i Is known from the base station antenna coordinates held by the server, for example.
[0009]
FIG. 8 shows an example of a configuration diagram of a base station. The base station 95 may be any one of 9, 10, and 11. The LAN I / F unit 87 is an interface for LAN2. The correlator 89 calculates the correlation between the received information recorded in the memory 88 and the known information in the time measuring unit 92. The known signal may be, for example, a preamble or a synchronization word at the head of a wireless packet. The CPU 86 records the time when the output of the correlator 89 becomes maximum in the memory 84. The CPU 86 may record the time at which the result of interpolation of the correlator 89 becomes maximum in the memory 84. A common clock may be externally supplied to each base station in order to align the transmission and reception timings between the base stations. Therefore, the base station 95 may include an input terminal 91 for an external clock.
The RF unit 80 up-converts the baseband signal from the DAC 82 to a radio frequency and outputs the radio frequency to the antenna. Further, the RF unit 80 down-converts the received signal of the antenna to a baseband and outputs the signal to the ADC 81. The ADC 81 receives an analog signal, converts the signal into a digital signal, and outputs the digital signal. The DAC 82 receives a digital signal, converts the signal into an analog signal, and outputs the analog signal. The baseband unit 83 performs demodulation, descrambling, and various kinds of decoding signal processing such as CRC (Cyclic Redundancy Check code) on the input signal from the ADC 81. The CPU 86 writes the decrypted information into the memory 84. Further, the CPU 86 reads out a signal to be transmitted from the memory and inputs the signal to the baseband unit 83. The baseband unit 83 encodes and modulates information to be wirelessly transmitted, and outputs the result to the DAC 82.
[0010]
An example of measuring and recording an error of a time difference between base stations, regardless of a set of transmitting and receiving base stations, and measuring and recording the error of the time difference, and correcting the time difference between the base stations using the error. Will be described. When each base station measures the reception time of the incoming signal from the mobile station and uses it for positioning, and when measuring the error of the time difference between the base stations using the signal transmitted bidirectionally between the base stations. Here is an example. According to the present embodiment, error correction can be performed more easily as compared with a case where an error depends on a combination of transmitting and receiving base stations, which will be described later. Further, although the processing becomes complicated, as shown in another example described later, error correction can be performed even when the error depends on a combination of transmitting and receiving base stations.
[0011]
Hereinafter, the principle of obtaining the error (δr−δt) of the transmission / reception time from the measurement of the signal transmission / reception time between a plurality of base stations will be described. FIG. 4 shows a signal transmission / reception diagram between base stations when a signal is transmitted from the base station 1 and the transmission / reception time is recorded. At time t1, base station 1 transmits a signal, and at time t2, base station 2 receives the signal. At time t3, the base station 3 receives a signal. t1, t2, and t3 are recorded times. Let the difference between the recorded transmission time and the actual transmission time be δt. The difference between the recorded reception time and the actual reception time is denoted by δr. At this time, the time lag of the base station i (i = 2, 3) with respect to the base station 1 is represented by O i Then, there is a relationship of Equations 3 and 4.
[0012]
[Equation 3]
Figure 2004221704
(Equation 4)
Figure 2004221704
FIG. 5 shows a signal transmission / reception diagram between base stations when a signal is transmitted from the base station 3 and the transmission / reception time is recorded. At time t4, the base station 3 transmits a signal, and at time t5, the base station 2 receives the signal. At time t6, base station 1 receives the signal. t1, t2, and t3 are recorded times. The difference between the recorded transmission time and the actual transmission time is δt, and the difference between the recorded reception time and the actual reception time is δr. At this time, the time lag of the base station i (i = 2, 3) with respect to the base station 1 is represented by O i Then, there is a relationship of Expressions 5 and 6.
[0013]
(Equation 5)
Figure 2004221704
(Equation 6)
Figure 2004221704
Hereinafter, an example of calculating the time error (δr−δt) by modifying the relational expression will be described. First, Equation 7 is obtained by subtracting Equation 4 from Equation 3 everywhere.
[0014]
(Equation 7)
Figure 2004221704
Further, from Expressions 5 and 7, the difference between the error between the transmission time and the reception time is expressed by Expression 8. The right side is an amount obtained by measurement. t2, t3, t4, and t5 are obtained by measuring the transmission / reception time at the base station. T 2 , T 3, , T 23 Is obtained by measuring the distance between the antennas of the base station 1 and the base station 2, the base station 1 and the base station 3, the base station 2 and the base station 3, or calculating from the base station coordinates, and dividing by the signal propagation speed. .
[0015]
(Equation 8)
Figure 2004221704
If the time difference error between the base stations is different depending on the set of transmitting and receiving base stations, the time difference error is measured and recorded, and the time difference between the base stations is calculated using the error. An embodiment for correction will be described. According to the present embodiment, the error measurement and the position measurement can be performed more accurately than the above-described method in which the error of the time difference does not depend on the base station.
[0016]
FIG. 10 shows a signal transmission / reception diagram between base stations when a signal is transmitted from the base station 1 and the transmission / reception time is recorded. At time t1, base station 1 transmits a signal, and at time t2, base station 2 receives the signal. At time t3, the base station 3 receives a signal. t1, t2, and t3 are recorded times. The difference between the transmission time recorded at the base station 1 and the actual transmission time is δt 1 And Also, the difference between the reception time recorded at the base station i and the actual reception time is δr i And At this time, the time lag of the base station i (i = 2, 3) with respect to the base station 1 is represented by O i Then, there is the relationship of Expression 9 and Expression 10.
[0017]
(Equation 9)
Figure 2004221704
(Equation 10)
Figure 2004221704
FIG. 11 shows a signal transmission / reception diagram between base stations when a signal is transmitted from the base station 3 and the transmission / reception time is recorded. At time t4, the base station 3 transmits a signal, and at time t5, the base station 2 receives the signal 23. At time t6, the base station 1 receives the signal 24. t4, t5, and t6 are the recorded times. The difference between the transmission time recorded at the base station 3 and the actual transmission time is δt 3 And Also, the difference between the reception time recorded at the base station i and the actual reception time is δr i And At this time, the time lag of the base station i (i = 2, 3) with respect to the base station 1 is represented by O i Then, there is the relationship of Expression 11 and Expression 12.
[0018]
[Equation 11]
Figure 2004221704
(Equation 12)
Figure 2004221704
FIG. 12 shows a signal transmission / reception diagram between base stations when a signal is transmitted from the base station 2 and the transmission / reception time is recorded. At time t7, the base station 2 transmits a signal, and at time t8, the base station 3 receives the signal 101. At time t9, base station 1 receives signal 102.
t7, t8, and t9 are the recorded times. The difference between the recorded transmission time at base station 2 and the actual transmission time is δt 2 And Also, the difference between the reception time recorded at the base station i and the actual reception time is δr i And At this time, the time lag of the base station i (i = 2, 3) with respect to the base station 1 is represented by O i Then, there is a relationship of Expressions 13 and 14.
[0019]
(Equation 13)
Figure 2004221704
[Equation 14]
Figure 2004221704
When the measurement is performed by operating the base station with a common clock by the configuration of FIG. i Is zero. The following relationships can be obtained from Expression 9, Expression 10, Expression 11, Expression 12, Expression 13, and Expression 14, respectively. Here, the error value Δ ji Is the error (δr) measured for the combination of the transmitting base station i and the receiving base station j. j -Δt i ).
[0020]
(Equation 15)
Figure 2004221704
(Equation 16)
Figure 2004221704
[Equation 17]
Figure 2004221704
(Equation 18)
Figure 2004221704
[Equation 19]
Figure 2004221704
(Equation 20)
Figure 2004221704
The server calculates and records Equation 15, Equation 16, Equation 17, Equation 18, Equation 19, and Equation 20. The server substitutes the values of Equation 15, Equation 16, Equation 17, Equation 18, Equation 19, and Equation 20 into Equations 9, 9, 10, 11, 12, 13, and 14 when measuring the time lag, Δ ji Is corrected.
[0021]
The server determines the error value Δ for the combination of the transmitting base station i and the receiving base station j. ji Record FIG. 14 shows an example of the recording format. Reference numeral 121 denotes an identifier for specifying a transmission base station. An identifier 122 specifies a communication channel. 123 is the antenna coordinates of the transmitting base station. Reference numeral 124 denotes a time lag between base stations. For example, the time lag O of the base station i (i = 2, 3) with respect to the base station 1 i Is stored. In general, reference numeral 124 does not need to be based on a specific base station, but may be any information on the relative time lag between base stations. Reference numeral 125 denotes an error of a time / time shift due to a transmission / reception processing delay or the like.
This value is determined for a combination of the transmitting base station and the receiving base station. For example, for the base station specified by the transmitting base station identifier i and the base station specified by the receiving base station identifier j, Δ ji Is stored.
[0022]
The server calculates and records the error (δr−δt) from the transmission / reception time and the base station coordinates. FIG. 6 shows an example of signal transmission / reception when an error (δr−δt) is measured and recorded and used for correction in position calculation. The server sends the time error measurement requests 46, 47, 48 to the base stations 1, 2, 3. Each base station waits for reception of a signal from another station. The base station 1 transmits signals 21 and 22 at time t1, and the base stations 2 and 3 receive the signals at times t2 and t3, respectively. The base stations 1, 2, and 3 measure and record the times t1, t2, and t3, respectively. Here, the time measured and recorded includes an error as shown in FIG. The base station 3 transmits signals 23 and 24 at time t4, and the base stations 2 and 1 receive the signals at times t5 and t6, respectively. The base stations 3, 2, and 1 measure and record times t4, t5, and t6, respectively. The time measured and recorded includes an error as shown in FIG. The signals 21, 22, 23, and 24 may be transmitted by the base station according to a control signal from a server, for example, or may be transmitted when each base station has passed a certain time from the time error measurement request reception time. . The base stations 1, 2, and 3 transmit the recorded times to the server by signals 25, 26, and 27, respectively.
[0023]
FIG. 13 shows a format example of the signals 25, 26, and 27. 110 is an identifier of the base station that performed the time measurement. 111 represents the number of measurements included in the signals 25, 26, and 27. A flag 112 indicates transmission / reception. Reference numeral 113 denotes a measured transmission time or reception time. Signals 25, 26, and 27 store sets of transmission / reception flags and measurement times for the number of measurements specified by 115 in the measurement order. For example, the signal 25 stores the identifier of the base station 1 in 110. The number of measurements 2 is stored in 111. The transmission flag is stored in 112, and the transmission time t1 is stored in 113. The reception flag is stored in 114, and the reception time t6 is stored in 115. The server specifies the transmitting base station and the receiving base station by analyzing the transmission / reception flag 112 and the base station identifier 111 for each measurement count.
[0024]
The server calculates and records the error (δr-δt) according to equation (8). The server sends channel monitoring requests 41, 42, 43 to base stations 1, 2, 3, respectively.
The server sends a transmission request 44 to the mobile station 18. The mobile station 18 transmits signals 28, 29, 30 for positioning. The base stations 1, 2, and 3 receive the signals 28, 29, and 30, respectively, and record the reception times t8, t9, and t10, respectively. The base station 1 transmits signals 31 and 32 at time t11 to measure the time lag. Base station 2 and base station 3 receive signal 31 at time t12 and signal 32 at t13, respectively, and record the time. Times t11, t12, and t13 include an error (δr−δt) as shown in FIG. The base stations 1, 2, and 3 transmit the recorded times to the server by signals 34, 35, and 36, respectively. The server may determine the time lag using the transmission / reception times of the signals 21, 22, 23, and 24.
[0025]
The recorded error (δr−δt) is substituted into Equations 3 and 4, and the time difference O 2 , O 3 Can be requested. If the time lag is constant over time, the method can determine the time lag without transmitting and receiving the signals 31 and 32.
[0026]
On the other hand, when the time lag changes with the passage of time, the relationship of the time lag between the base stations at the time when the time lag is measured is no longer established at the time of positioning. Therefore, it is desirable to measure the time lag at a time close to the transmission time of the signals 28, 29, 30 used for positioning. In this case, the time lag is determined using the signals 31, 32 transmitted immediately after the signals 28, 29, 30. The server corrects the error (δr−δt) as follows. The transmission and reception times of the signals 31 and 32, t11, t12 and t13, and the propagation time T between the base station 1 and the base station i (i = 2, 3) i And the time difference O of the base station i (i = 2, 3) with respect to the base station 1 i And the relationship of Expression 21 and Expression 22.
[0027]
(Equation 21)
Figure 2004221704
(Equation 22)
Figure 2004221704
The server substitutes the value obtained from Equation 8 and recorded in (δr-δt) of Equations 21 and 22 to obtain O i Is corrected. In addition, the server corrected O i Is recorded and used for position calculation. The server corrects the time difference O i Is used to calculate the position as follows.
[0028]
Assume that the antenna position coordinates of the base station i (i = 1, 2, 3) are (xi, yy) and the mobile station position is (xm, ym). It is assumed that the antenna position coordinates of the base station are known and are held by the server. The following relationship exists between the distance between base stations, the signal reception time recorded by the base station, and the time lag between base stations.
[0029]
[Equation 23]
Figure 2004221704
(Equation 24)
Figure 2004221704
The server solves Equations 23 and 24 for (xm, ym) and calculates the position coordinates of the mobile station. The server transmits the position calculation result to the mobile station 18 by a signal 37.
[0030]
FIG. 7 shows an example of the format of information held by the server. 71 is an identifier for identifying the base station. 72 is an identifier for specifying a communication channel. 73 is an antenna coordinate. 74 is a time lag between base stations. For example, the time lag O of the base station i (i = 2, 3) with respect to the base station 1 i Is stored. Generally, 74 does not need to be based on a specific base station, but may be any information on the relative time lag between base stations. Reference numeral 75 denotes an error of a time and time shift due to a transmission / reception processing delay or the like. For example, the above (δr−δt) is stored in 75.
[0031]
An example in which the error of the time difference between each base station is measured using signals mutually transmitted between the base stations and the reception time of the signal from each base station received by the mobile station is used for positioning is described below. Show.
[0032]
FIG. 15 shows another example of signal transmission / reception when the error (δr−δt) is measured and recorded and used for correction in position calculation. In this example, a mobile station 18 receives a transmission signal from each base station and uses the reception time of the mobile station for positioning. The configuration of the system is the same as that shown in FIG. The server sends the time error measurement requests 46, 47, 48 to the base stations 1, 2, 3. Each base station waits for reception of a signal from another station. The base station 1 transmits signals 21 and 22 at time t1, and the base stations 2 and 3 receive the signals at times t2 and t3, respectively. The base stations 1, 2, and 3 measure and record the times t1, t2, and t3, respectively. Here, the time measured and recorded includes an error as shown in FIG. The base station 3 transmits signals 23 and 24 at time t4, and the base stations 2 and 1 receive the signals at times t5 and t6, respectively. The base stations 3, 2, and 1 measure and record times t4, t5, and t6, respectively. The time measured and recorded includes an error as shown in FIG. The signals 21, 22, 23, and 24 may be transmitted by the base station according to a control signal from a server, for example, or may be transmitted when each base station has passed a certain time from the time error measurement request reception time. . The base stations 1, 2, and 3 transmit the recorded times to the server by signals 25, 26, and 27, respectively.
[0033]
The server calculates and records the error (δr-δt) according to equation (8). The server transmits a transmission request 150, 151, 152 and a channel monitoring request 153 of a signal used for positioning to the base stations 1, 2, 3 and the mobile station 18, respectively. The base stations 1, 2, and 3 transmit signals 130, 131, and 132, respectively, and measure transmission times t16, t18, and t20, respectively. The mobile station 18 receives the signals 130, 131, and 132 for positioning, and measures reception times t17, t19, and t21, respectively. The base stations 1, 2, 3, and the mobile station 18 transmit the measured transmission / reception times to the server as signals 154, 155, 156, and 157, respectively. The server may determine the time lag using the transmission / reception times of the signals 21, 22, 23, and 24. The recorded error (δr−δt) is substituted into Equations 3 and 4, and the time difference O 2 , O 3 Can be requested. If the time lag is constant over time, the method can determine the time lag without transmitting and receiving the signals 31 and 32.
[0034]
On the other hand, when the time lag changes with the passage of time, the relationship of the time lag between the base stations at the time when the time lag is measured is no longer established at the time of positioning. Therefore, it is desirable to measure the time lag at a time close to the transmission time of the signals 130, 131, 132 used for positioning. In this case, the time lag is determined using the signals 31, 32 transmitted after the signals 130, 131, 132. By making the time at which the time difference is measured close to the time of the positioning, the time difference can be obtained more correctly.
[0035]
The base station 1 transmits signals 31 and 32 at time t11 to measure the time lag. Base station 2 and base station 3 receive signal 31 at time t12 and signal 32 at t13, respectively, and record the time. Times t11, t12, and t13 include an error (δr−δt) as shown in FIG. The base stations 1, 2, and 3 transmit the recorded times to the server by signals 38, 39, and 40, respectively.
[0036]
The server corrects the error (δr−δt). propagation times T11, t12, and t13 between the base station 1 and the base station i (i = 2, 3) i And the time difference O of the base station i (i = 2, 3) with respect to the base station 1 i And the relationship of Expression 21 and Expression 22.
[0037]
The server substitutes the value obtained from Equation 8 and recorded in (δr-δt) of Equations 21 and 22 to obtain O i Is corrected. In addition, the server corrected O i Is recorded and used for position calculation. The server corrects the time difference O i Is used to calculate the position as follows.
[0038]
Assume that the antenna position coordinates of the base station i (i = 1, 2, 3) are (xi, yy) and the mobile station position is (xm, ym). It is assumed that the antenna position coordinates of the base station are known and are held by the server. The following relationship exists between the distance between base stations, the signal reception time recorded by the base station, and the time lag between base stations.
[0039]
(Equation 25)
Figure 2004221704
(Equation 26)
Figure 2004221704
The server solves the equations (25) and (26) for (xm, ym) and calculates the position coordinates of the mobile station. The server transmits the position calculation result to the mobile station 18 by a signal 50.
[0040]
In the above example, the server collects the measurement time and corrects the time lag between the base stations. However, the mobile station may collect the measurement time and correct the time lag. In this case, the mobile station 18 holds the information in the format of FIG. In this case, in FIG. 15, the flow is changed as follows, for example. The signals 25, 26, 27 are transmitted to the mobile station 18, not to the server. The mobile station 18 calculates and records the time lag in the same manner as in the above example. The signals 34, 35 and 36 including the measurement time for positioning are transmitted to the mobile station 18, and the signal 37 is unnecessary. Signals 38, 39, and 40 including the measurement time for calculating the time difference between the base stations are transmitted to the mobile station 18. The mobile station 18 performs error correction and position calculation. The signal 50 for notifying the position calculation result from the server is unnecessary. Further, in order to prevent the influence of the accuracy of the time measurement from deteriorating due to the radio environment such as fading, the error of the time difference between the base stations may be measured by wire. For example, (δr−δt) and Δ ji 3 and FIG. 9, the base station antenna may be replaced with a signal line in the configuration of FIG. At this time, T i (I = 2, 3, 23) is the signal propagation time between the base station 1 and the base station 2, between the base station 1 and the base station 3, and between the base station 2 and the base station 3, respectively. Error measurement is possible as in the example.
[0041]
Another example of measuring and recording a time difference error between the base stations, and correcting the detected time difference between the base stations using the recorded error will be described. When each base station measures the reception time of an incoming signal from a mobile station and uses it for positioning, it supplies a common clock to each base station and uses signals transmitted in one direction between base stations to allow each base station to communicate with each other. An example of the case of measuring the error of the time lag is shown below.
[0042]
FIG. 9 shows a system configuration in which the base stations 1, 2, and 3 externally input a common clock 99 from an external clock input terminal 91. The lengths of the signal lines 96, 97 and 98 are made uniform, and the signal propagation time from 99 to each base station is made constant.
[0043]
Since the clocks are common to the base stations 1, 2, and 3, O in Equations 3, 4, 4, 5, 6, 21, and 22 i Becomes zero. From Equation 3, the error (δr−δt) is expressed by Equation 27. The transmission time t1, the reception time t2, and the signal propagation time T calculated from the distance between the base stations 1 and 2. 2 , An error (δr−δt) is obtained. Even in a system in which the base stations operate asynchronously in the configuration of FIG. 3, the error measurement and recording of the time lag between the base stations may be performed as the configuration of FIG. 9 before constructing the system to actually operate. Since the error of the time shift does not depend on the base station position, the base station position may be different between FIG. 9 and FIG. FIG. 9 shows an example of a system composed of three base stations. For example, a common clock may be supplied to the two base stations i and j to measure the error (δr−δt). Equation 27 holds even when only two base stations, base station 1 and base station 2, are used as a common clock. Also in this case, information can be transmitted to the server in the same manner as described above, and (δr−δt) can be calculated from Equation 27 by the server and recorded in the format shown in FIG. In the configuration of FIG. 3, the method of correcting the error (δr−δt) during operation is the same as in the above example.
[0044]
[Equation 27]
Figure 2004221704
【The invention's effect】
In the system of the present invention, each base station measures a transmission time and a reception time of a radio signal to detect a time difference between the base stations, and uses the time difference between the base stations to determine a position of the mobile station. Is detected. Further, in the system of the present invention, each base station measures a transmission time and a reception time of a signal, and measures and records an error of a time difference between the base stations. The server or the mobile station of the present invention calculates and records a time deviation error due to a signal transmission / reception processing delay or the like from the transmission / reception time and the signal propagation time determined by the distance between base stations. Using the recorded error, the detected time lag between the base stations is corrected. The system of the present invention corrects the measurement result of the time lag between the base stations using the recorded error value, so that the time lag between the base stations can be accurately measured.
[0045]
The system of the present invention detects the position of the mobile station using the time lag between the respective base stations, and corrects the difference between the measured time and the actual transmission / reception time, thereby increasing the synchronization accuracy between the base stations. I can do it. As a result, the accuracy of position detection can be improved.
[Brief description of the drawings]
FIG. 1 is a diagram of an example of a configuration of a synchronization correction system.
FIG. 2 is a diagram showing an example of signal transmission / reception in a system.
FIG. 3 is a diagram showing an example of a system configuration according to the present invention.
FIG. 4 is a diagram showing an example of signal transmission and reception between base stations according to the present invention.
FIG. 5 is a diagram showing an example of signal transmission / reception between base stations according to the present invention.
FIG. 6 is a diagram showing an example of a positioning flow according to the present invention.
FIG. 7 is a diagram showing an example of a data format according to the present invention.
FIG. 8 is a diagram of an example of a base station configuration.
FIG. 9 is a diagram showing an example of a system configuration according to the present invention.
FIG. 10 is a diagram showing an example of signal transmission / reception between base stations according to the present invention.
FIG. 11 is a diagram showing an example of signal transmission and reception between base stations according to the present invention.
FIG. 12 is a diagram showing an example of signal transmission and reception between base stations according to the present invention.
FIG. 13 is a diagram showing an example of a signal format according to the present invention.
FIG. 14 is a diagram showing an example of a data format according to the present invention.
FIG. 15 is a diagram showing an example of a positioning flow according to the present invention.
[Explanation of symbols]
1: server, 2: LAN, 3, 4, 9, 10, 11: base station, 5: transmission signal, 6: reception time information, 7: transmission time information, 18: mobile station, 21, 22, 23, 24 , 25, 26, 27, 34, 35, 36: signal, 37: position calculation result, 41, 42, 43: channel monitoring request, 44: transmission request, 46, 47, 48: time error measurement request
71: base station identifier, 72: channel identifier, 73, antenna coordinates, 74: time deviation, 75: time deviation error
80: RF unit, 81: ADC, 82: DAC, 83: baseband unit, 84, 88: memory, 86: CPU, 87: LAN I / F unit, 89: correlator, 90, 99: clock, 91: External clock input terminal, 92: time measurement unit
110: base station identifier, 111: number of measurements, 112: transmission / reception flag, 113: transmission / reception time,
121: transmitting base station identifier, 122: channel identifier, 123: transmitting base station antenna coordinates, 124: time deviation, 125: time deviation error
150, 151, 152: positioning signal transmission request, 153: channel monitoring request, 154, 155, 156, 157: transmission / reception time signal.

Claims (9)

複数の基地局がそれぞれ異なる時刻を有し、各基地局間で送信される第1の無線信号の送信時刻または受信時刻を計測して基地局間相互の時刻のずれを検出し、前記各基地局と移動局との間で送信される第2の無線信号の受信時刻及び前記各基地局相互の時刻のずれを用いて前記移動局の位置を検出する無線システムであって、
前記第1の無線信号の該送信時刻と該受信時刻の差分と各基地局間距離とを用いて基地局間相互の時刻のずれの誤差を算出し、前記誤差を記録し、該誤差を用いて前記検出された基地局間相互の時刻のずれを補正して前記移動局の位置を検出することを特徴とする無線システム。
A plurality of base stations having different times, measuring a transmission time or a reception time of a first radio signal transmitted between the base stations, detecting a time difference between the base stations, A wireless system that detects a position of the mobile station using a reception time of a second wireless signal transmitted between a station and a mobile station and a time difference between the respective base stations,
Using the difference between the transmission time and the reception time of the first radio signal and the distance between the base stations, calculate the error of the time difference between the base stations, record the error, and use the error. A mobile station that detects the position of the mobile station by correcting the detected time lag between the base stations.
請求項1記載の無線システムであって、前記各基地局が前記移動局から送信された第1の無線信号の受信時刻を測定し、前記移動局からの到来信号の受信時刻と前記各基地局相互の時刻のずれと前記各基地局の位置とを用いて移動局の位置を検出することを特徴とする無線システム。2. The radio system according to claim 1, wherein each of the base stations measures a reception time of a first radio signal transmitted from the mobile station, and a reception time of an incoming signal from the mobile station and each of the base stations. A wireless system for detecting a position of a mobile station using a time difference between each other and a position of each of the base stations. 請求項1記載の無線システムであって、前記移動局が前記各基地局から送信された第2の無線信号の受信時刻を測定し、前記各基地局からの到来信号の受信時刻と前記各基地局相互の時刻のずれと前記各基地局の位置とを用いて位置を検出することを特徴とする無線システム。2. The radio system according to claim 1, wherein the mobile station measures a reception time of a second radio signal transmitted from each of the base stations, and determines a reception time of an incoming signal from each of the base stations and the base station. A wireless system for detecting a position using a time difference between stations and a position of each of the base stations. 請求項1ないし3記載の無線システムであって、該基地局間相互の時刻のずれの誤差の算出は、各基地局に共通クロックを供給し、前記各基地局が該共通クロックに基づいて送信する前記第1の無線信号を用いて行われることを特徴とする無線システム。4. The wireless system according to claim 1, wherein the calculation of the time difference error between the base stations supplies a common clock to each base station, and the base stations transmit based on the common clock. A wireless system is performed using the first wireless signal. 請求項1ないし3記載の無線システムであって、該基地局間相互の時刻のずれの誤差の算出は、前記基地局間で送信される2以上の前記第1の無線信号を用いて行われることを特徴とする無線システム。4. The wireless system according to claim 1, wherein the calculation of the time difference error between the base stations is performed using two or more of the first wireless signals transmitted between the base stations. A wireless system, characterized in that: 複数の基地局がそれぞれ異なる時刻を有するシステムにおいて、基地局間で送信される信号の、送信基地局で測定された送信時刻と受信基地局で測定された受信時刻との差分と、各基地局間距離とを用いて基地局間相互の時刻のずれの誤差を算出し、各基地局相互の時刻のずれの誤差を記録することを特徴とするサーバー。In a system in which a plurality of base stations have different times, a difference between a transmission time measured at the transmission base station and a reception time measured at the reception base station of a signal transmitted between the base stations, A server which calculates an error of a time difference between base stations using an inter-distance and records an error of a time difference between base stations. 請求項6記載のサーバーであって、上記算出した各基地局相互の時刻のずれの誤差を、上記送信基地局及び上記受信基地局と対応付けて記録することを特徴とするサーバー。7. The server according to claim 6, wherein the calculated time difference error between the base stations is recorded in association with the transmitting base station and the receiving base station. 複数の基地局がそれぞれ異なる時刻を有するシステムにおいて、基地局間で送信される信号の、送信基地局で測定された送信時刻と受信基地局で測定された受信時刻との差分と、各基地局間距離とを用いて基地局間相互の時刻のずれの誤差を算出し、各基地局相互の時刻のずれの誤差を記録することを特徴とする移動局。In a system in which a plurality of base stations have different times, a difference between a transmission time measured at the transmission base station and a reception time measured at the reception base station of a signal transmitted between the base stations, A mobile station which calculates an error of a time difference between base stations using an inter-distance and records an error of a time difference between base stations. 請求項8記載の移動局であって、上記算出した各基地局相互の時刻のずれの誤差を、上記送信基地局及び上記受信基地局と対応付けて記録することを特徴とする移動局。9. The mobile station according to claim 8, wherein the calculated time difference error between the base stations is recorded in association with the transmitting base station and the receiving base station.
JP2003003851A 2003-01-10 2003-01-10 Wireless system, server, and mobile station Pending JP2004221704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003003851A JP2004221704A (en) 2003-01-10 2003-01-10 Wireless system, server, and mobile station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003003851A JP2004221704A (en) 2003-01-10 2003-01-10 Wireless system, server, and mobile station

Publications (1)

Publication Number Publication Date
JP2004221704A true JP2004221704A (en) 2004-08-05

Family

ID=32894997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003003851A Pending JP2004221704A (en) 2003-01-10 2003-01-10 Wireless system, server, and mobile station

Country Status (1)

Country Link
JP (1) JP2004221704A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006170891A (en) * 2004-12-17 2006-06-29 Hitachi Ltd Node position positioning system, radio base station, and position measuring method
JP2007043587A (en) * 2005-08-05 2007-02-15 Hitachi Ltd Radio position detection method and system thereof
JP2007187639A (en) * 2006-01-16 2007-07-26 Fujitsu Ltd Radio positioning system
CN100461948C (en) * 2005-09-05 2009-02-11 北京信威通信技术股份有限公司 Method for terminal location in SCDMA system
JP2011180148A (en) * 2011-04-28 2011-09-15 Hitachi Ltd Receiving device, frequency deviation measuring unit, and positioning ranging system
CN104869632A (en) * 2015-04-30 2015-08-26 天津菲利科电子技术有限公司 Bucket wheel machine or turbine stroke position detection system based on wireless positioning
JP2016217807A (en) * 2015-05-18 2016-12-22 株式会社東芝 Multistatic radar system, and synchronization monitoring method
JP2018510366A (en) * 2015-03-07 2018-04-12 ベリティ ストゥディオス アーゲー Distributed location system and method and self-location device
US11259154B2 (en) 2015-05-29 2022-02-22 Verity Ag Methods and systems for scheduling the transmission of localization signals and operating self-localizing apparatus

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006170891A (en) * 2004-12-17 2006-06-29 Hitachi Ltd Node position positioning system, radio base station, and position measuring method
JP4693405B2 (en) * 2004-12-17 2011-06-01 株式会社日立製作所 NODE POSITIONING SYSTEM, WIRELESS BASE STATION, AND POSITION MEASURING METHOD
JP2007043587A (en) * 2005-08-05 2007-02-15 Hitachi Ltd Radio position detection method and system thereof
US7848766B2 (en) 2005-08-05 2010-12-07 Hitachi, Ltd. Wireless terminal position detecting method and system therefor
JP4609231B2 (en) * 2005-08-05 2011-01-12 株式会社日立製作所 Wireless position detection method and system
CN100461948C (en) * 2005-09-05 2009-02-11 北京信威通信技术股份有限公司 Method for terminal location in SCDMA system
JP2007187639A (en) * 2006-01-16 2007-07-26 Fujitsu Ltd Radio positioning system
JP2011180148A (en) * 2011-04-28 2011-09-15 Hitachi Ltd Receiving device, frequency deviation measuring unit, and positioning ranging system
US10908619B2 (en) 2015-03-07 2021-02-02 Verity Ag Distributed localization systems and methods and self-localizing apparatus
JP2018510366A (en) * 2015-03-07 2018-04-12 ベリティ ストゥディオス アーゲー Distributed location system and method and self-location device
US11378985B2 (en) 2015-03-07 2022-07-05 Verity Ag Distributed localization systems and methods and self-localizing apparatus
CN104869632B (en) * 2015-04-30 2019-01-15 天津菲利科电子技术有限公司 Bucket wheel machine or turbine travel position detection system based on wireless location
CN104869632A (en) * 2015-04-30 2015-08-26 天津菲利科电子技术有限公司 Bucket wheel machine or turbine stroke position detection system based on wireless positioning
JP2016217807A (en) * 2015-05-18 2016-12-22 株式会社東芝 Multistatic radar system, and synchronization monitoring method
US11259154B2 (en) 2015-05-29 2022-02-22 Verity Ag Methods and systems for scheduling the transmission of localization signals and operating self-localizing apparatus
US11595795B2 (en) 2015-05-29 2023-02-28 Verity Ag Methods and systems for scheduling the transmission of localization signals and operating self-localizing apparatus
US11924719B2 (en) 2015-05-29 2024-03-05 Verity Ag Methods and systems for scheduling the transmission of localization signals and operating self-localizing apparatus

Similar Documents

Publication Publication Date Title
US8335173B2 (en) Inserting time of departure information in frames to support multi-channel location techniques
CN110099354B (en) Ultra-wideband communication two-dimensional positioning method combining TDOA and TOF
EP3109665B1 (en) Error compensation apparatus and method for measuring distance in wireless communication system
KR102129265B1 (en) Apparatus and method for location estimation in a wireless communicationsystem
JP2004101254A (en) Wireless system, its server, and its base station
JP4647515B2 (en) Coordinate detection device, writing instrument, and coordinate input system
KR20130048124A (en) Method and system for accurate clock synchronization through interaction between communication layers and sub-layers for communication systems
JP2002262330A (en) Method and apparatus for locating mobile terminal in cellular radio system
JP2007218614A (en) Position-estimating method and position estimation system
EP1233280A3 (en) Method and apparatus for location detection
JP2013513786A (en) Location measurement method based on TDOA using correction factor calculation to correct clock drift of asynchronous network stations
US10852387B2 (en) Method and system for determining a location of a client device, a client device apparatus and a network device apparatus
US20080279173A1 (en) Method to Synchronize Receiver&#39;s Clock to Transmitter&#39;s Clock at Sub-100Nsec
WO2016098635A1 (en) Wireless base station
JP2004221704A (en) Wireless system, server, and mobile station
US8150378B2 (en) Determining position of a node based on aged position data
WO2017054673A1 (en) Wireless network-based positioning method and positioning device
EP3419325B1 (en) Distance measurement method using wireless fidelity (wi-fi), related device, and system
US20110016232A1 (en) Time stamping apparatus and method for network timing synchronization
US20050078626A1 (en) Wireless position measurement method and wireless position measurement system
US7447236B2 (en) Method and apparatus for determining an arrival time associated with a synchronization burst
US20100127934A1 (en) Positioning system, communication signal receiver for positioning system, and position calculation method
JP2005130154A (en) Base station apparatus in mobile terminal positioning system
US10320690B1 (en) Methods and apparatus for range measurement
JP2022084136A (en) Wireless communication device, system, and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050601

RD01 Notification of change of attorney

Effective date: 20060420

Free format text: JAPANESE INTERMEDIATE CODE: A7421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A02 Decision of refusal

Effective date: 20070529

Free format text: JAPANESE INTERMEDIATE CODE: A02