JP2004221332A - Active carbon composition for electrode of electric double layer capacitor and its manufacturing method - Google Patents

Active carbon composition for electrode of electric double layer capacitor and its manufacturing method Download PDF

Info

Publication number
JP2004221332A
JP2004221332A JP2003007026A JP2003007026A JP2004221332A JP 2004221332 A JP2004221332 A JP 2004221332A JP 2003007026 A JP2003007026 A JP 2003007026A JP 2003007026 A JP2003007026 A JP 2003007026A JP 2004221332 A JP2004221332 A JP 2004221332A
Authority
JP
Japan
Prior art keywords
activated carbon
double layer
electrode
layer capacitor
electric double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003007026A
Other languages
Japanese (ja)
Inventor
Tetsuya Horiguchi
哲也 堀口
Masaru Kimura
勝 木村
Akiyuki Kojima
昭之 小島
Toshiya Tanioka
俊哉 谷岡
Asao Otani
朝男 大谷
Soji Shiraishi
壮志 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gun Ei Chemical Industry Co Ltd
Original Assignee
Gun Ei Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gun Ei Chemical Industry Co Ltd filed Critical Gun Ei Chemical Industry Co Ltd
Priority to JP2003007026A priority Critical patent/JP2004221332A/en
Publication of JP2004221332A publication Critical patent/JP2004221332A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an active carbon composition for an electrode of an electric double layer capacitor that can improve its capacitance per unit weight and unit volume, and to provide its manufacturing method. <P>SOLUTION: A cured product made of thermosetting resin that is obtained by additional condensating the reaction of at least one or more of a group composed of cresols, xylenols and methyl phenols with aldehydes is used as a material for active carbon, and the gas activation of a water steam, carbon dioxide, etc. or chemical activation using metal compounds, inorganic salts, etc., or activation using their combination is applied. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明が属する技術分野】
本発明は、クレゾール類、キシレノール類、及びトリメチルフェノール類からなる群より少なくとも1種以上をアルデヒド類と付加縮合反応して得られた熱硬化性樹脂を活性炭の原料として使用することにより単位重量、及び単位体積当たりの静電容量を高めることができる電気二重層キャパシタの電極用活性炭組成物及びその製造方法に関するものである。
【0002】
【従来の技術】
近年、環境負荷への対応、地球資源に対する省資源化などの理由から電気エネルギーの利用が急速に進んでいる。例えば自動車においては従来の内燃機関に加え、ハイブリッド電気自動車のように減速時の回生エネルギーを利用し、加速時にエンジンの出力を補助するという回生エネルギーを電気エネルギーへの変換に利用する技術がすでに実用化している。一般住宅においても夜間電力の貯蔵等、太陽光発電が利用されるようになったことなども挙げられる。
【0003】
電気エネルギーの利用が活発になるにつれ重要となるのが電気エネルギーの貯蔵・取り出し方法である。この方法には電気の充放電を繰り返し行う二次電池があるが、充放電に化学反応による電荷の移動を利用するため急速充放電が出来ないことや、環境温度により効率が変わること、充放電を繰り返すことで徐々に容量が低下してくることが問題とされている。前出のハイブリッド電気自動車には動力・回生電流の充電用として二次電池が搭載されているが、充電に時間がかかることや、重量増の問題、さらには短い走行距離などがハイブリッド電気自動車そのものの普及を妨げることになっている。
【0004】
この二次電池に代わり最近注目されているのが電気二重層キャパシタである。この電気二重層キャパシタは不活性な電子導電性の電極が電解液に接触すると、その界面に電荷層が生じる現象を利用した蓄電体であり、電気二重層コンデンサとも呼ばれる。電気二重層キャパシタは充放電に従来の二次電池のように化学反応を利用するものではないため、充放電の繰り返し特性や、急速充放電に優れ、かつ大電流の放電が可能である。しかも維持管理が容易で環境にも悪影響を及ぼさないことから注目されている。
【0005】
しかしながら、電気二重層キャパシタをハイブリッド電気自動車や燃料電池自動車用として利用する場合、二次電池と比較してエネルギー密度が低いことが欠点として挙げられる。鉛蓄電池のエネルギー密度は約70Wh/L、リチウムイオン電池は約200Wh/Lであるのに対して電気二重層キャパシタのエネルギー密度は現状で約4Wh/Lほどに過ぎない。このため、その向上を目的として種々の検討開発が行われてきた。
【0006】
現在、電気二重層キャパシタには大別するとプロピレンカーボネート等の有機系極性溶媒にテトラエチルアンモニウムテトラフルオロ硼酸等の4級アンモニウム塩、あるいは過塩素酸リチウム等の電解質を溶解させた有機系電解液を使用するものと、硫酸水溶液あるいは水酸化カリウム水溶液のような水溶液系電解液を使用するもの等が存在する。
【0007】
水溶液系電解液は電気抵抗が低く、キャパシタに使用した場合に有機溶媒系電解液と比較してキャパシタの静電容量を約1.3倍から2倍に上げることができ、さらに内部抵抗を1/5から1/10に下げることができる。この理由は、水溶液系電解液の電気抵抗が低いことに起因している。但し、水溶液系の電解液を使用する場合には電圧を1V余りまでにしか上げることができないため、単位体積あたりの蓄電エネルギー量(蓄電エネルギー量=1/2CV、但し、C:キャパシタ静電容量、V:電圧)が小さいという短所を有している。
【0008】
一方、有機系溶媒の電解液を使用した場合には、電気二重層キャパシタの電圧を3V程度まで上げられることができる。したがってキャパシタの、単位体積あたりの蓄電エネルギー量の向上という観点からキャパシタの静電容量が小さいという欠点を差し引いても有機溶媒系電解液を使用する方が有利とされている。
【0009】
ところで電気二重層キャパシタの電極材料に関してであるが、これまでにヤシ殻炭、石炭、フェノール樹脂炭素材等の難黒鉛化性炭素材を、水蒸気を用いたガス賦活して得られる高比表面積の活性炭が用いられ、各方面でその最適化の研究が盛んである。
【0010】
例えば、特許文献1では直径が2nm以上の細孔の専有容積が全細孔容積の40%以上である活性炭を用いた電極について開示されており、また特許文献2には連通している細孔率が50%以上の活性炭を用いた電極について開示されているように活性炭を電気二重層キャパシタの電極に使用した場合、キャパシタの静電容量は活性炭の微細構造や細孔の分布状態が大きく係わっていると考えられる。特にキャパシタの静電容量は活性炭の比表面積の増加に伴って増加する傾向が見られることから電気二重層キャパシタの電極用活性炭の開発は、大きな比表面積を有する活性炭を効率良く作製することに主眼が置かれてきた。
【0011】
このことから、最近では難黒鉛化性炭素材料に代わり、さらに大きな比表面積の活性炭を製造できる炭素材料として、石油系または石炭系ピッチなどの易黒鉛化性炭素が注目されてきており、このような易黒鉛化性炭素材を用いたアルカリ賦活による二次電池電極用またはキャパシタ電極用活性炭の製造方法が種々に提案されている。例えば、特許文献3には特定の温度で処理したメソフェーズピッチ系炭素繊維を原料としてアルカリ賦活によって得られる活性炭素繊維が内部抵抗の小さな大電流充放電に適した電気二重層キャパシタ用の電極材に適することが開示されている。また、特許文献4には高分子の分子鎖がフィルム表面や繊維表面に平行または垂直に配列した構造を有する原料を使用し、易黒鉛化性炭素と同様な構造になるグラファイト結晶が配向している活性炭を使用することが開示されている。
【0012】
しかしながら、前述のあらゆる手段を用いても十分なキャパシタの静電容量を実現できている活性炭材料は未だ開発されていないのが実状である。
【0013】
【特許文献1】
特開昭61−102023号公報
【特許文献2】
特開昭62−203086号公報
【特許文献3】
特開平11−222732号公報
【特許文献4】
特開2000−58398号公報
【0014】
【発明が解決しようとする課題】
大きな比表面積を有する活性炭を効率良く作製することに主眼が置かれてきたこれまでの研究では未だ十分な静電容量を実現できていない実状に対し、原料を変性することによって得られる活性炭の細孔構造、細孔分布状態等を調整することが電気二重層キャパシタとした時の静電容量を効率良く向上できることが考えられる。すなわち、本発明の課題は、前述の考えを基に単位重量及び単位体積当たりの静電容量を高めることができる電気二重層キャパシタの電極用活性炭組成物及びその製造方法を提供することにある。
【0015】
【課題を解決するための手段】
本発明者らは、上記課題を鋭意検討した結果、以下の新たなる方法を用いることで解決できることを見出したものである。すなわち、静電容量を向上させるためには、従来より盛んに研究されてきた比表面積の増加を求めるよりも、細孔径や細孔構造を適正に制御することが極めて有効であることを見出した。
【0016】
この手法に基づいて、本発明者らはフェノール−ホルムアルデヒド樹脂の原料のなかでフェノール原料に替わり、フェノール骨格にメチル基を導入したクレゾール類、キシレノール類、およびトリメチルフェノール類からなる少なくとも1種以上を使用した活性炭を、電気二重層キャパシタの電極用活性炭とすることで高静電容量の電気二重層キャパシタを提供し得ることを見出した。
【0017】
フェノール−ホルムアルデヒド樹脂を活性炭の原料とした場合、一般的に難黒鉛化性炭素となり、このような炭素を賦活することによって細孔直径が1nm以下のミクロ孔が多量に存在する活性炭が得られる。これに対して電解液イオンの直径はおおよそ0.5nmであり、上述した活性炭の細孔直径が1nm以下の孔では電解液イオンが入りづらく、静電容量に寄与しない孔となってしまう。
【0018】
一方、フェノール−ホルムアルデヒド樹脂のフェノール原料にメチル基を導入したクレゾール類、キシレノール類、およびトリメチルフェノール類からなる少なくとも1種以上を使用した場合にはフェノール−ホルムアルデヒド樹脂の活性炭と比較して易黒鉛化性炭素に近づくことが知られている。
【0019】
このことからクレゾール類、キシレノール類、およびトリメチルフェノール類からなる少なくとも1種以上を原料とした活性炭の比表面積の増加には炭素六角網面間のエッジ部分が賦活されることによって、細孔直径が1〜2nm程度の比較的大きいミクロ孔が増加することによるためと考えられる。そのため電解液イオンの吸脱着がしやすくなり、静電容量に効率良く寄与する孔になっていると考えられる。
【0020】
すなわち、本発明による活性炭はクレゾール類、キシレノール類、およびトリメチルフェノール類からなる群より少なくとも1種以上を原料としたことによる活性炭構造の変化によって静電容量に効率良く寄与する孔を持ち、フェノール系樹脂を水蒸気、二酸化炭素等によるガス賦活、または金属化合物、無機塩類等による薬品賦活処理もしくはその併用による賦活処理を施してBET比表面積が300m/g以上3000m/g以下とすることで前述の目的を達することができる。
【0021】
ここでBET比表面積に関しては、300m/g未満では充分な静電容量を得ることが出来ず、BET比表面積が3000m/gを超えると活性炭そのものの密度が低下し、相対的に電極材の密度低下からキャパシタの単位体積当たりの静電容量が低下する問題があるため好ましくない。
【0022】
これらの活性炭を電極として使用できる電気二重層キャパシタの電解液には、有機系電解液、および水溶液系電解液ともに使用できる。また、最近の研究成果から特別な方法として挙げられる常温でも液体の有機塩を使用する常温溶融塩系電解液も使用できる。
【0023】
【発明の実施の形態】
本発明で使用されるモノマーは、例えば、o−クレゾール、m−クレゾール、p−クレゾール、3,5−キシレノール、2,5−キシレノール、3,4−キシレノール、2,6−キシレノール、2,4−キシレノール、2,3−キシレノール、2,3,4−トリメチルフェノール、2,3,5−トリメチルフェノール、2,3,6−トリメチルフェノールであり、これらを単独、あるいは2種類以上併用しても良い。中でも3,5−キシレノール、2,5−キシレノール、2,3−キシレノール、及び2,3,5−トリメチルフェノールが好ましい。
【0024】
本発明で使用されるアルデヒド類としては以下に例示したアルデヒド類に限定されるものではないが、例えばホルムアルデヒド、トリオキサン、フルフラール、パラホルムアルデヒド、ベンズアルデヒド、メチルヘミホルマール、エチルへミホルマール、プロピルへミホルマール、ブチルヘミホルマール、フェニルへミホルマール、アセトアルデヒド、プロピルアルデヒド、フェニルアセトアルデヒド、α−フェニルプロピルアルデヒド、β−フェニルプロピルアルデヒド、o−ヒドロキシベンズアルデヒド、m−ヒドロキシベンズアルデヒド、p−ヒドロキシベンズアルデヒド、o−クロロベンズアルデヒド、o−ニトロベンズアルデヒド、m−ニトロベンズアルデヒド、p−ニトロベンズアルデヒド、o―メチルベンズアルデヒド、m−メチルベンズアルデヒド、p−メチルベンズアルデヒド、p−エチルベンズアルデヒド、p−n−ブチルベンズアルデヒド或いはこれらの混合物等が挙げられる。このうち、ホルムアルデヒド、パラホルムアルデヒド、フルフラール、ベンズアルデヒド、サリチルアルデヒドが好ましく、特にホルムアルデヒド、パラホルムアルデヒドが最も好ましい。さらに本発明において、使用される酸性触媒は、例えば塩酸、硫酸、リン酸、蟻酸、酢酸、蓚酸、酪酸、乳酸、ベンゼンスルフォン酸、p−トルエンスルフォン酸、硼酸、または塩化亜鉛や酢酸亜鉛のような金属との塩、あるいはこれらの混合物が挙げられ、塩基性触媒は例えば水酸化ナトリウム、水酸化カルシウム、水酸化バリウム、水酸化リチウムのようなアルカリ金属またはアルカリ土類金属の水酸化物や水酸化アンモニウム、ジエチルアミン、トリエチルアミン、トリエタノールアミンのようなアミン類あるいはこれらの混合物が挙げられる。これら触媒は、一般的にフェノール樹脂製造時に使用される触媒と同様なものが使用可能である。
【0025】
得られた熱硬化性樹脂の硬化方法としては、酸性触媒を使用した樹脂はホルムアルデヒド、アセトアルデヒド、ヘキサメチレンテトラミン、エポキシ樹脂等の硬化剤を加えて熱硬化させる方法、塩酸等酸性触媒とホルムアルデヒド類との混合水溶液に含浸し、沸点近くで数時間保持することによって硬化する液相中の方法や塩酸等酸性触媒とホルムアルデヒド類混合物の気相下での硬化、さらには前述の混合水溶液中での硬化反応後に窒素、ヘリウム、炭酸ガス等の不活性ガス雰囲気下100℃から300℃の温度で加熱することによる硬化など、公知の方法を用いることができる。塩基性触媒を使用した樹脂はp−トルエンスフォン酸等の酸を加えることによる酸硬化やエステル類を使用しそのガス雰囲気下でのエステル硬化、乾熱式あるいはエチレングリコール等の高沸点溶液中で行う湿熱式による熱硬化による方法などの一般的な方法を用いることができる。
【0026】
活性炭調製の賦活方法において、ガス賦活方法で用いる賦活ガスは、例えば水蒸気、一酸化炭素、二酸化炭素、酸素、塩化水素またはこれらの混合ガス等が挙げられる。薬品賦活方法で用いる化学薬品類は金属化合物として塩化物、水酸化物、硫化物、炭酸化物が挙げられ、例えば塩化亜鉛、塩化カルシウム、塩化マグネシウム、水酸化ナトリウム、水酸化カリウム、硫酸化ナトリウム、硫化カリウム、炭酸ナトリウム、炭酸カリウムまたはこれらの混合物が挙げられる。無機塩類として硼酸、リン酸、硫酸、塩酸、チオシアン酸などの塩類、例えば硼酸ナトリウム、リン酸、リン酸ナトリウム、リン酸カルシウム、硫酸ナトリウム、硫酸カリウム、チオシアン酸カリウムまたはこれらの混合物等が挙げられる。また、ガス賦活方法と薬品賦活方法の併用による調製も挙げられる。賦活温度は400℃から1200℃の範囲で上述した賦活処理方法を行う一般的な温度で良い。
【0027】
電気二重層キャパシタの電解液については有機系電解液に用いられる有機系極性溶媒には、プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、スルホラン、N,N−ジメチルホルムアミド、ジメチルスルホキシド、アセトニトニル等が挙げられ、電解質にはテトラエチルアンモニウムテトラフルオロ硼酸等の4級アンモニウム塩、テトラエチルホスホニウムテトラフルオロ硼酸等の4級ホスホニウム塩、あるいは過塩素酸リチウム等が挙げられる。水溶液系電解液には硫酸水溶液、水酸化カリウム水溶液等が挙げられる。常温溶融塩系電解液には1,3−ジメチルイミダゾリウム、1,3,4−トリメチルイミダゾリウム、1,2,3,4−トリメチルイミダゾリウム、1−エチル−3−メチルイミダゾリウム等のイミダゾリウム塩誘導体が挙げられる。
【0028】
【実施例】
以下に実施例を示し、本発明を詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。
【0029】
[測定及びサンプル作製]
尚、本例では活性炭の比表面積の測定は液体窒素温度条件下の窒素吸着によるBET法による。
【0030】
電気二重層キャパシタの静電容量は、対極に活性炭素繊維、参照極にリチウム金属、及び作用極には調製された活性炭からなる三極式セルを用い、定電流40mA/gを加えることによる電圧変化から求めた。作用電極は、実施例、比較例で得られた活性炭と導電材としてアセチレンブラック、粘結材としてポリテトラフルオロエチレンをそれぞれ重量比87:10:3になるように混合し、圧縮成型後、作用電極とした。
【0031】
使用した電解液はプロピレンカーボネート溶液中にテトラエチレンアンモニウムテトラフルオロ硼酸を0.5モル/リットルの濃度になるように溶解して調整した。
【0032】
[実施例1]
攪拌機及び冷却器つき反応フラスコに3,5−キシレノール400g、50%ホルマリン157g、触媒として蓚酸2gを加えて約30分で100℃まで昇温後、還流反応5時間を行った。反応終了後、60mmHgの減圧下で200℃まで3時間かけて脱水濃縮反応を行い、固形状の樹脂を得た。得られた樹脂を15重量%の塩酸と12重量%のホルムアルデヒドとの25℃混合水溶液に10分間含浸し、25℃から95℃までを4時間で昇温し、さらに95℃で24時間保持することで硬化樹脂を得た。
【0033】
得られた硬化樹脂を平均粒径が10μmになるようにポットミルで粉砕後、窒素ガス雰囲気下5℃/分の昇温速度で1000℃30分保持し、あらかじめ80℃に調製されている温水中に窒素ガスを導入し、窒素・水蒸気の混合ガスを150分導入し、賦活処理を行うことによって活性炭を得た。
【0034】
得られた活性炭は収率14%、BET比表面積1006m/gであった。
【0035】
また、電気二重層容量は得られた活性炭を使用し、前述の[測定及びサンプル作製]通りに測定用電極を作製し、静電容量を測定した。測定結果を表1に示す。
【0036】
[比較例1]
攪拌機及び冷却器つき反応フラスコにフェノール400g、50%ホルマリン204g、触媒として蓚酸2gを加えて約30分で100℃まで昇温後、還流反応5時間行った。反応終了後、60mmHgの減圧下で200℃まで3時間かけて脱水濃縮反応を行い、固形状の樹脂を得た。得られた樹脂を15重量%の塩酸と12重量%のホルムアルデヒドとの25℃混合水溶液に10分間含浸し、25℃から95℃までを4時間で昇温し、さらに95℃で24時間保持することで硬化樹脂を得た。
【0037】
得られた硬化樹脂を平均粒径が10μmになるようにポットミルで粉砕後、窒素ガス雰囲気下5℃/分の昇温速度で1000℃30分保持し、あらかじめ80℃に調製されている温水中に窒素ガスを導入し、窒素・水蒸気の混合ガスを30分導入し、賦活処理を行うことによって活性炭を得た。
【0038】
得られた活性炭は収率48%、BET比表面積934m/gであった。
【0039】
また、電気二重層容量は得られた活性炭を使用し、前述の[測定及びサンプル作製]通りに測定用電極を作製し、静電容量を測定した。測定結果を表1に示す。
【0040】
[実施例2]
攪拌機及び冷却器つき反応フラスコに2,3,5−トリメチルフェノール400g、50%ホルマリン141g、触媒として蓚酸4gを加えて約30分で100℃まで昇温後、還流反応5時間を行った。反応終了後、60mmHgの減圧下で200℃まで3時間かけて脱水濃縮反応を行い、固形状の樹脂を得た。得られた樹脂を15重量%の塩酸と12重量%のホルムアルデヒドとの25℃混合水溶液に10分間含浸し、25℃から95℃までを4時間で昇温し、さらに95℃で24時間保持することで硬化樹脂を得た。
【0041】
得られた硬化樹脂を平均粒径が10μmになるようにポットミルで粉砕後、窒素ガス雰囲気下5℃/分の昇温速度で1000℃30分保持し、あらかじめ80℃に調製されている温水中に窒素ガスを導入し、窒素・水蒸気の混合ガスを270分導入し、賦活処理を行うことによって活性炭を得た。
【0042】
得られた活性炭は収率7%、BET比表面積557m/gであった。
【0043】
また、電気二重層容量は得られた活性炭を使用し、前述の[測定及びサンプル作製]通りに測定用電極を作製し、静電容量を測定した。測定結果を表1に示す。
【0044】
[比較例2]
攪拌機及び冷却器つき反応フラスコにフェノール400g、50%ホルマリン204g、触媒として蓚酸2gを加えて約30分で100℃まで昇温後、還流反応5時間を行った。反応終了後、60mmHgの減圧下で200℃まで3時間かけて脱水濃縮反応を行い、固形状の樹脂を得た。得られた樹脂を15重量%の塩酸と12重量%のホルムアルデヒドとの25℃混合水溶液に10分間含浸し、25℃から95℃までを4時間で昇温し、さらに95℃で24時間保持することで硬化樹脂を得た。
【0045】
得られた硬化樹脂を平均粒径が10μmになるようにポットミルで粉砕後、窒素ガス雰囲気下5℃/分の昇温速度で1000℃30分保持し、あらかじめ80℃に調製されている温水中に窒素ガスを導入し、窒素・水蒸気の混合ガスを10分導入し、賦活処理を行うことによって活性炭を得た。
【0046】
得られた活性炭は収率52%、BET比表面積654m/gであった。
【0047】
また、電気二重層容量は得られた活性炭を使用し、前述の[測定及びサンプル作製]通りに測定用電極を作製し、静電容量を測定した。測定結果を表1に示す。
【0048】
【表1】

Figure 2004221332
【0049】
【発明の効果】
従来より検討されてきたフェノール樹脂活性炭を電気二重層キャパシタの電極材として使用した際の静電容量は比較例に示されるような値であったが、本発明の実施例が示すように、クレゾール類、キシレノール類、及びトリメチルフェノール類からなる少なくとも1種以上を原料とした活性炭では、単位重量、及び単位体積当たりの静電容量が高容量な値を得ることができる。
【0050】
よって、本発明によるクレゾール類、キシレノール類、及びトリメチルフェノール類からなる少なくとも1種以上を原料とし、反応して得られた熱硬化性樹脂を炭素化、賦活処理することによって得られる活性炭を電気二重層キャパシタの電極材として用いることで、従来に比べ高静電容量の電気二重層キャパシタを製造することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a unit weight by using, as a raw material of activated carbon, a thermosetting resin obtained by addition condensation reaction of at least one or more of cresols, xylenols, and trimethylphenols with aldehydes. The present invention also relates to an activated carbon composition for an electrode of an electric double layer capacitor capable of increasing the capacitance per unit volume and a method for producing the same.
[0002]
[Prior art]
2. Description of the Related Art In recent years, the use of electric energy has been rapidly advancing for reasons such as response to environmental loads and resource saving for global resources. For example, in automobiles, in addition to the conventional internal combustion engine, a technology that uses regenerative energy at the time of deceleration and assists the output of the engine at the time of acceleration, such as a hybrid electric vehicle, that uses regenerative energy to convert it to electric energy is already in practical use. Is becoming Even in ordinary houses, solar power generation has been used, such as storage of nighttime electric power.
[0003]
As the use of electric energy becomes more active, how to store and retrieve electric energy is important. In this method, there is a secondary battery that repeatedly charges and discharges electricity.However, charge and discharge cannot be performed quickly because charge transfer due to a chemical reaction is used. It is a problem that the capacity gradually decreases by repeating the above. The aforementioned hybrid electric vehicle is equipped with a secondary battery for charging power and regenerative current. However, it takes a long time to charge, a problem of weight increase, and a short mileage. It is supposed to hinder the spread.
[0004]
An electric double layer capacitor has recently attracted attention in place of this secondary battery. This electric double layer capacitor is a power storage device utilizing a phenomenon that a charge layer is formed at an interface between an inactive electron conductive electrode and an electrolytic solution, and is also called an electric double layer capacitor. The electric double layer capacitor does not use a chemical reaction for charging and discharging unlike a conventional secondary battery, and thus has excellent repetition characteristics of charging and discharging, rapid charging and discharging, and can discharge a large current. In addition, it is attracting attention because it is easy to maintain and does not adversely affect the environment.
[0005]
However, when the electric double layer capacitor is used for a hybrid electric vehicle or a fuel cell vehicle, the drawback is that the energy density is lower than that of a secondary battery. The energy density of a lead storage battery is about 70 Wh / L and that of a lithium ion battery is about 200 Wh / L, whereas the energy density of an electric double layer capacitor is only about 4 Wh / L at present. For this reason, various studies and developments have been made for the purpose of improvement.
[0006]
At present, an electric double layer capacitor is roughly divided into an organic polar solvent such as propylene carbonate and a quaternary ammonium salt such as tetraethylammonium tetrafluoroborate, or an organic electrolytic solution obtained by dissolving an electrolyte such as lithium perchlorate. And an aqueous electrolyte such as a sulfuric acid aqueous solution or a potassium hydroxide aqueous solution.
[0007]
The aqueous electrolyte solution has a low electric resistance, and when used for a capacitor, can increase the capacitance of the capacitor from about 1.3 to 2 times as compared with the organic solvent electrolyte solution, and furthermore, has an internal resistance of 1 to 2 times. It can be reduced from / 5 to 1/10. The reason for this is that the electric resistance of the aqueous electrolyte solution is low. However, when an aqueous electrolyte solution is used, the voltage can be raised only to about 1 V or more, so that the amount of stored energy per unit volume (the amount of stored energy = 1/2 CV 2 , where C: capacitor electrostatic capacity) It has the disadvantage that the capacitance (V: voltage) is small.
[0008]
On the other hand, when an electrolyte of an organic solvent is used, the voltage of the electric double layer capacitor can be increased to about 3V. Therefore, it is considered more advantageous to use an organic solvent-based electrolytic solution even if the disadvantage that the capacitance of the capacitor is small is subtracted from the viewpoint of improving the amount of stored energy per unit volume of the capacitor.
[0009]
By the way, regarding the electrode material of the electric double layer capacitor, a high specific surface area obtained by activating a non-graphitizable carbon material such as coconut shell coal, coal, phenol resin carbon material, etc. Activated carbon is used, and research on its optimization is active in various fields.
[0010]
For example, Patent Document 1 discloses an electrode using activated carbon in which the occupied volume of pores having a diameter of 2 nm or more is 40% or more of the total pore volume, and Patent Document 2 discloses a communicating pore. When activated carbon is used for an electrode of an electric double layer capacitor as disclosed for an electrode using activated carbon having a ratio of 50% or more, the capacitance of the capacitor is greatly affected by the fine structure of the activated carbon and the distribution of pores. It is thought that it is. In particular, since the capacitance of a capacitor tends to increase as the specific surface area of activated carbon increases, the development of activated carbon for electrodes of electric double layer capacitors focuses on efficiently producing activated carbon having a large specific surface area. Has been placed.
[0011]
For this reason, recently, graphitizable carbon such as petroleum-based or coal-based pitch has attracted attention as a carbon material capable of producing activated carbon having a larger specific surface area, instead of the non-graphitizable carbon material. Various methods for producing activated carbon for secondary battery electrodes or capacitor electrodes by alkali activation using a non-graphitizable carbon material have been proposed. For example, Patent Document 3 discloses that an activated carbon fiber obtained by alkali activation using a mesophase pitch-based carbon fiber treated at a specific temperature as a raw material is used as an electrode material for an electric double layer capacitor suitable for large current charging and discharging with a small internal resistance. It is disclosed that it is suitable. Further, Patent Document 4 uses a raw material having a structure in which polymer molecular chains are arranged parallel or perpendicular to the film surface or fiber surface, and a graphite crystal having a structure similar to graphitizable carbon is oriented. The use of activated carbon is disclosed.
[0012]
However, an activated carbon material that can realize a sufficient capacitance of a capacitor using any of the above-described means has not been developed yet.
[0013]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 61-102023 [Patent Document 2]
Japanese Patent Application Laid-Open No. 62-20386 [Patent Document 3]
JP-A-11-222732 [Patent Document 4]
JP 2000-58398 A
[Problems to be solved by the invention]
In previous studies, which focused on the efficient production of activated carbon with a large specific surface area, it was not possible to achieve sufficient capacitance yet. It is considered that adjusting the pore structure, the pore distribution state, and the like can efficiently improve the capacitance of the electric double layer capacitor. That is, an object of the present invention is to provide an activated carbon composition for an electrode of an electric double layer capacitor and a method for producing the same, which can increase the capacitance per unit weight and unit volume based on the above-mentioned concept.
[0015]
[Means for Solving the Problems]
Means for Solving the Problems As a result of intensive studies on the above problems, the present inventors have found that the problems can be solved by using the following new method. That is, in order to improve the capacitance, it has been found that it is extremely effective to properly control the pore diameter and the pore structure, rather than to seek an increase in the specific surface area, which has been actively studied conventionally. .
[0016]
Based on this method, the present inventors replaced at least one of cresols, xylenols, and trimethylphenols having a methyl group introduced into the phenol skeleton in place of the phenol raw material among the phenol-formaldehyde resin raw materials. It has been found that an electric double layer capacitor having a high capacitance can be provided by using the activated carbon used as the electrode active carbon of the electric double layer capacitor.
[0017]
When a phenol-formaldehyde resin is used as a raw material of activated carbon, the carbon generally becomes non-graphitizable carbon. By activating such carbon, activated carbon having a large number of micropores having a pore diameter of 1 nm or less can be obtained. On the other hand, the diameter of the electrolyte ions is about 0.5 nm, and the pores of the activated carbon having a pore diameter of 1 nm or less are difficult for the electrolyte ions to enter, and the pores do not contribute to the capacitance.
[0018]
On the other hand, when at least one of cresols, xylenols, and trimethylphenols having a methyl group introduced into the phenol raw material of the phenol-formaldehyde resin is used, graphitization becomes easier as compared with activated carbon of the phenol-formaldehyde resin. It is known to approach sex carbon.
[0019]
Therefore, the increase in the specific surface area of the activated carbon made of at least one or more of cresols, xylenols, and trimethylphenols is activated by the edge portion between the carbon hexagonal meshes. This is probably due to the increase in relatively large micropores of about 1 to 2 nm. Therefore, it is considered that the electrolyte ions are easily absorbed and desorbed, and the pores efficiently contribute to the capacitance.
[0020]
That is, the activated carbon according to the present invention has pores that efficiently contribute to the capacitance due to a change in the activated carbon structure due to the use of at least one material selected from the group consisting of cresols, xylenols, and trimethylphenols. The BET specific surface area is set to 300 m 2 / g or more and 3000 m 2 / g or less by subjecting the resin to gas activation using water vapor, carbon dioxide, or the like, or chemical activation treatment using a metal compound, an inorganic salt, or the like, or an activation treatment using a combination thereof. Can achieve its purpose.
[0021]
Here, with respect to the BET specific surface area, if the BET specific surface area is less than 300 m 2 / g, a sufficient capacitance cannot be obtained, and if the BET specific surface area exceeds 3000 m 2 / g, the density of the activated carbon itself decreases, and the electrode material is relatively reduced. This is not preferable because there is a problem that the capacitance per unit volume of the capacitor decreases due to the decrease in the density of the capacitor.
[0022]
As an electrolytic solution of an electric double layer capacitor in which these activated carbons can be used as electrodes, both an organic electrolytic solution and an aqueous electrolytic solution can be used. Further, a room temperature molten salt-based electrolyte using an organic salt which is liquid even at room temperature, which is given as a special method based on recent research results, can also be used.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
The monomers used in the present invention include, for example, o-cresol, m-cresol, p-cresol, 3,5-xylenol, 2,5-xylenol, 3,4-xylenol, 2,6-xylenol, 2,4 -Xylenol, 2,3-xylenol, 2,3,4-trimethylphenol, 2,3,5-trimethylphenol and 2,3,6-trimethylphenol, and these may be used alone or in combination of two or more. good. Among them, 3,5-xylenol, 2,5-xylenol, 2,3-xylenol, and 2,3,5-trimethylphenol are preferable.
[0024]
The aldehydes used in the present invention are not limited to the aldehydes exemplified below. Hemiformal, phenylhemiformal, acetaldehyde, propylaldehyde, phenylacetaldehyde, α-phenylpropylaldehyde, β-phenylpropylaldehyde, o-hydroxybenzaldehyde, m-hydroxybenzaldehyde, p-hydroxybenzaldehyde, o-chlorobenzaldehyde, o-nitro Benzaldehyde, m-nitrobenzaldehyde, p-nitrobenzaldehyde, o-methylbenzaldehyde, Examples include tilbenzaldehyde, p-methylbenzaldehyde, p-ethylbenzaldehyde, pn-butylbenzaldehyde, and mixtures thereof. Of these, formaldehyde, paraformaldehyde, furfural, benzaldehyde, and salicylaldehyde are preferred, and formaldehyde and paraformaldehyde are particularly preferred. Further, in the present invention, the acidic catalyst used is, for example, hydrochloric acid, sulfuric acid, phosphoric acid, formic acid, acetic acid, oxalic acid, butyric acid, lactic acid, benzenesulfonic acid, p-toluenesulfonic acid, boric acid, or zinc chloride or zinc acetate. Examples of the basic catalyst include alkali metal or alkaline earth metal hydroxides and hydroxides such as sodium hydroxide, calcium hydroxide, barium hydroxide, and lithium hydroxide. Examples include amines such as ammonium oxide, diethylamine, triethylamine, and triethanolamine, and mixtures thereof. As these catalysts, those similar to those generally used in the production of phenol resins can be used.
[0025]
As a curing method of the obtained thermosetting resin, a resin using an acidic catalyst is a method of thermally curing by adding a curing agent such as formaldehyde, acetaldehyde, hexamethylenetetramine, epoxy resin, and an acid catalyst such as hydrochloric acid and formaldehyde. Impregnated in a mixed aqueous solution and kept at the boiling point for several hours to cure in a liquid phase, or to cure an acidic catalyst such as hydrochloric acid and a formaldehyde mixture in the gas phase, and to cure in the above-mentioned mixed aqueous solution After the reaction, a known method such as curing by heating at a temperature of 100 ° C. to 300 ° C. in an atmosphere of an inert gas such as nitrogen, helium, or carbon dioxide can be used. Resins using a basic catalyst are acid-cured by adding an acid such as p-toluenesulfonic acid, or ester-based using an ester-cured resin, in a dry atmosphere or in a high boiling solution such as ethylene glycol. And a general method such as a method of heat curing by a wet heat method.
[0026]
In the activation method for preparing activated carbon, the activation gas used in the gas activation method includes, for example, steam, carbon monoxide, carbon dioxide, oxygen, hydrogen chloride, or a mixed gas thereof. Chemicals used in the chemical activation method include chlorides, hydroxides, sulfides, and carbonates as metal compounds, such as zinc chloride, calcium chloride, magnesium chloride, sodium hydroxide, potassium hydroxide, sodium sulfate, Potassium sulfide, sodium carbonate, potassium carbonate or mixtures thereof. Examples of the inorganic salts include salts such as boric acid, phosphoric acid, sulfuric acid, hydrochloric acid, and thiocyanic acid, such as sodium borate, phosphoric acid, sodium phosphate, calcium phosphate, sodium sulfate, potassium sulfate, potassium thiocyanate, and mixtures thereof. In addition, preparation by a combination of a gas activating method and a chemical activating method is also included. The activation temperature may be a general temperature in the range of 400 ° C. to 1200 ° C. for performing the activation treatment method described above.
[0027]
For the electrolyte of the electric double layer capacitor, the organic polar solvent used for the organic electrolyte includes propylene carbonate, ethylene carbonate, diethyl carbonate, sulfolane, N, N-dimethylformamide, dimethyl sulfoxide, acetonitonyl, and the like. Examples of the electrolyte include quaternary ammonium salts such as tetraethylammonium tetrafluoroborate, quaternary phosphonium salts such as tetraethylphosphonium tetrafluoroborate, and lithium perchlorate. Examples of the aqueous electrolyte include a sulfuric acid aqueous solution and a potassium hydroxide aqueous solution. Room temperature molten salt electrolytes include imidazos such as 1,3-dimethylimidazolium, 1,3,4-trimethylimidazolium, 1,2,3,4-trimethylimidazolium, 1-ethyl-3-methylimidazolium and the like. Lithium salt derivatives are mentioned.
[0028]
【Example】
Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited to these Examples.
[0029]
[Measurement and sample preparation]
In this example, the specific surface area of the activated carbon is measured by the BET method using nitrogen adsorption under liquid nitrogen temperature conditions.
[0030]
The capacitance of the electric double layer capacitor is determined by applying a constant current of 40 mA / g using a triode cell made of activated carbon fiber for the counter electrode, lithium metal for the reference electrode, and prepared activated carbon for the working electrode. It was determined from the change. The working electrode was prepared by mixing the activated carbon obtained in Examples and Comparative Examples with acetylene black as a conductive material and polytetrafluoroethylene as a binder in a weight ratio of 87: 10: 3. An electrode was used.
[0031]
The electrolyte used was prepared by dissolving tetraethyleneammonium tetrafluoroboric acid in a propylene carbonate solution to a concentration of 0.5 mol / liter.
[0032]
[Example 1]
400 g of 3,5-xylenol, 157 g of 50% formalin, and 2 g of oxalic acid as a catalyst were added to a reaction flask equipped with a stirrer and a condenser, and the temperature was raised to 100 ° C. in about 30 minutes, and then a reflux reaction was performed for 5 hours. After completion of the reaction, a dehydration-concentration reaction was performed under reduced pressure of 60 mmHg to 200 ° C. for 3 hours to obtain a solid resin. The obtained resin is impregnated with a mixed solution of 15% by weight of hydrochloric acid and 12% by weight of formaldehyde at 25 ° C. for 10 minutes, the temperature is raised from 25 ° C. to 95 ° C. in 4 hours, and further maintained at 95 ° C. for 24 hours. As a result, a cured resin was obtained.
[0033]
The obtained cured resin is pulverized with a pot mill so that the average particle size becomes 10 μm, and then kept at 1000 ° C. for 30 minutes at a temperature rising rate of 5 ° C./min in a nitrogen gas atmosphere, and warm water previously adjusted to 80 ° C. Activated carbon was obtained by introducing a nitrogen gas and introducing a mixed gas of nitrogen and water vapor for 150 minutes and performing an activation treatment.
[0034]
The obtained activated carbon had a yield of 14% and a BET specific surface area of 1006 m 2 / g.
[0035]
For the electric double layer capacity, the obtained activated carbon was used, an electrode for measurement was prepared as described in [Measurement and Sample Preparation], and the capacitance was measured. Table 1 shows the measurement results.
[0036]
[Comparative Example 1]
400 g of phenol, 204 g of 50% formalin, and 2 g of oxalic acid as a catalyst were added to a reaction flask equipped with a stirrer and a condenser, and the temperature was raised to 100 ° C. in about 30 minutes, followed by a reflux reaction for 5 hours. After completion of the reaction, a dehydration-concentration reaction was performed under reduced pressure of 60 mmHg to 200 ° C. for 3 hours to obtain a solid resin. The obtained resin is impregnated with a mixed solution of 15% by weight of hydrochloric acid and 12% by weight of formaldehyde at 25 ° C. for 10 minutes, the temperature is raised from 25 ° C. to 95 ° C. in 4 hours, and further maintained at 95 ° C. for 24 hours. As a result, a cured resin was obtained.
[0037]
The obtained cured resin is pulverized with a pot mill so that the average particle size becomes 10 μm, and then kept at 1000 ° C. for 30 minutes at a temperature rising rate of 5 ° C./min in a nitrogen gas atmosphere, and warm water previously adjusted to 80 ° C. Activated carbon was obtained by introducing nitrogen gas, introducing a mixed gas of nitrogen and water vapor for 30 minutes, and performing an activation treatment.
[0038]
The obtained activated carbon had a yield of 48% and a BET specific surface area of 934 m 2 / g.
[0039]
For the electric double layer capacity, the obtained activated carbon was used, an electrode for measurement was prepared as described in [Measurement and Sample Preparation], and the capacitance was measured. Table 1 shows the measurement results.
[0040]
[Example 2]
400 g of 2,3,5-trimethylphenol, 141 g of 50% formalin, and 4 g of oxalic acid as a catalyst were added to a reaction flask equipped with a stirrer and a condenser, and the temperature was raised to 100 ° C. in about 30 minutes, and then a reflux reaction was performed for 5 hours. After completion of the reaction, a dehydration-concentration reaction was performed under reduced pressure of 60 mmHg to 200 ° C. for 3 hours to obtain a solid resin. The obtained resin is impregnated with a mixed solution of 15% by weight of hydrochloric acid and 12% by weight of formaldehyde at 25 ° C. for 10 minutes, the temperature is raised from 25 ° C. to 95 ° C. in 4 hours, and further maintained at 95 ° C. for 24 hours. As a result, a cured resin was obtained.
[0041]
The obtained cured resin is pulverized with a pot mill so that the average particle size becomes 10 μm, and then kept at 1000 ° C. for 30 minutes at a temperature rising rate of 5 ° C./min in a nitrogen gas atmosphere, and warm water previously adjusted to 80 ° C. Activated carbon was obtained by introducing nitrogen gas into the mixture, introducing a mixed gas of nitrogen and steam for 270 minutes, and performing an activation treatment.
[0042]
The obtained activated carbon had a yield of 7% and a BET specific surface area of 557 m 2 / g.
[0043]
For the electric double layer capacity, the obtained activated carbon was used, an electrode for measurement was prepared as described in [Measurement and Sample Preparation], and the capacitance was measured. Table 1 shows the measurement results.
[0044]
[Comparative Example 2]
400 g of phenol, 204 g of 50% formalin, and 2 g of oxalic acid as a catalyst were added to a reaction flask equipped with a stirrer and a condenser, and the temperature was raised to 100 ° C. in about 30 minutes, and then a reflux reaction was performed for 5 hours. After completion of the reaction, a dehydration-concentration reaction was performed under reduced pressure of 60 mmHg to 200 ° C. for 3 hours to obtain a solid resin. The obtained resin is impregnated with a mixed solution of 15% by weight of hydrochloric acid and 12% by weight of formaldehyde at 25 ° C. for 10 minutes, the temperature is raised from 25 ° C. to 95 ° C. in 4 hours, and further maintained at 95 ° C. for 24 hours. As a result, a cured resin was obtained.
[0045]
The obtained cured resin is pulverized with a pot mill so that the average particle size becomes 10 μm, and then kept at 1000 ° C. for 30 minutes at a temperature rising rate of 5 ° C./min in a nitrogen gas atmosphere, and warm water previously adjusted to 80 ° C. Activated carbon was obtained by introducing nitrogen gas into the mixture, introducing a mixed gas of nitrogen and water vapor for 10 minutes, and performing an activation treatment.
[0046]
The obtained activated carbon had a yield of 52% and a BET specific surface area of 654 m 2 / g.
[0047]
For the electric double layer capacity, the obtained activated carbon was used, an electrode for measurement was prepared as described in [Measurement and Sample Preparation], and the capacitance was measured. Table 1 shows the measurement results.
[0048]
[Table 1]
Figure 2004221332
[0049]
【The invention's effect】
The capacitance when phenol resin activated carbon, which has been conventionally studied, was used as an electrode material of an electric double layer capacitor was a value as shown in a comparative example, but as shown in the examples of the present invention, cresol Activated carbon using at least one or more of benzene, xylenols, and trimethylphenols as raw materials can provide high values of capacitance per unit weight and per unit volume.
[0050]
Therefore, activated carbon obtained by carbonizing and activating the thermosetting resin obtained by the reaction using at least one of cresols, xylenols and trimethylphenols according to the present invention as a raw material is converted into an electric By using it as an electrode material of a multilayer capacitor, an electric double layer capacitor having higher capacitance than before can be manufactured.

Claims (3)

クレゾール類、キシレノール類、及びトリメチルフェノール類からなる群より少なくとも1種以上をアルデヒド類と付加縮合反応して得られた熱硬化性樹脂の硬化物を活性炭の原料として使用することを特徴とする電気二重層キャパシタの電極用活性炭組成物。An electric power characterized by using a cured product of a thermosetting resin obtained by subjecting at least one or more members selected from the group consisting of cresols, xylenols, and trimethylphenols to an addition condensation reaction with aldehydes as a raw material for activated carbon. Activated carbon composition for electrode of double layer capacitor. 請求項1に記載した熱硬化性樹脂を得る際に酸性触媒を使用した場合には、ヘキサメチレンテトラミン・エポキシ樹脂等の硬化剤を加えて熱硬化させる方法、酸性触媒とアルデヒド類を用いて液相中または気相中で硬化させる方法を用いること、もしくは熱硬化性樹脂を得る際に塩基性触媒を使用した場合には、乾熱式または湿熱式により熱硬化させる方法、またはp−トルエンスフォン酸等の酸を加えることによる酸硬化させる方法やエステル類を使用してエステル硬化させる方法を用いることを特徴とする電気二重層キャパシタの電極用活性炭組成物の製造方法。When an acidic catalyst is used to obtain the thermosetting resin according to claim 1, a method of adding a curing agent such as hexamethylenetetramine / epoxy resin and performing thermosetting, and a method using an acidic catalyst and an aldehyde. In the case of using a method of curing in a phase or a gas phase, or in the case of using a basic catalyst in obtaining a thermosetting resin, a method of thermally curing by a dry heat or wet heat method, or p-toluene A method for producing an activated carbon composition for an electrode of an electric double layer capacitor, wherein a method of acid curing by adding an acid such as fonic acid or a method of ester curing using an ester is used. 請求項1に記載した活性炭の調製に際し、水蒸気、及び二酸化炭素を始めとする少なくても1種以上のガス類による賦活処理、または金属の塩化物・水酸化物・硫化物・炭酸化物や硼酸塩類・リン酸塩類・硫酸塩類・塩酸塩類・チオシアン酸塩類などの無機塩類を始めとする少なくとも1種以上の化学薬品類による賦活処理、もしくはその併用による賦活処理を施すことによって、BET比表面積が300m/g以上3000m/g以下の範囲に賦活することを特徴とする電気二重層キャパシタの電極用活性炭組成物の製造方法。In the preparation of the activated carbon according to claim 1, activation treatment with at least one or more gases including steam and carbon dioxide, or chlorides, hydroxides, sulfides, carbonates and boric acids of metals. By performing an activation treatment with at least one or more chemicals including inorganic salts such as salts, phosphates, sulfates, hydrochlorides, and thiocyanates, or an activation treatment using a combination thereof, the BET specific surface area is increased. A method for producing an activated carbon composition for an electrode of an electric double layer capacitor, wherein the activated carbon composition is activated in a range of 300 m 2 / g or more and 3000 m 2 / g or less.
JP2003007026A 2003-01-15 2003-01-15 Active carbon composition for electrode of electric double layer capacitor and its manufacturing method Pending JP2004221332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003007026A JP2004221332A (en) 2003-01-15 2003-01-15 Active carbon composition for electrode of electric double layer capacitor and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003007026A JP2004221332A (en) 2003-01-15 2003-01-15 Active carbon composition for electrode of electric double layer capacitor and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004221332A true JP2004221332A (en) 2004-08-05

Family

ID=32897242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003007026A Pending JP2004221332A (en) 2003-01-15 2003-01-15 Active carbon composition for electrode of electric double layer capacitor and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004221332A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008030981A (en) * 2006-07-27 2008-02-14 Showa Highpolymer Co Ltd Phenol resin-based activated carbon, polarizable electrode using the same, and electric double layer capacitor
JP2009107898A (en) * 2007-10-31 2009-05-21 National Institute Of Advanced Industrial & Technology Porous carbon film and its manufacturing method
EP2141184A1 (en) * 2006-10-20 2010-01-06 Air Water Inc. Non-thermofusible phenol resin powder, method for producing the same, thermosetting resin composition, sealing material for semiconductor, and adhesive for semiconductor
CN101983918A (en) * 2010-11-25 2011-03-09 中国科学院山西煤炭化学研究所 Preparation method of millimeter activated carbon beads
US20120034548A1 (en) * 2009-05-01 2012-02-09 W. L. Gore & Associates, Co., Ltd. Gas diffusion layer for fuel cell
JP2012508155A (en) * 2008-11-04 2012-04-05 コーニング インコーポレイテッド Very porous activated carbon with controlled oxygen content
JP2012532088A (en) * 2009-07-01 2012-12-13 エナジーツー・テクノロジーズ・インコーポレイテッド Ultra high purity synthetic carbon material
US9269502B2 (en) 2010-12-28 2016-02-23 Basf Se Carbon materials comprising enhanced electrochemical properties
US9412523B2 (en) 2010-09-30 2016-08-09 Basf Se Enhanced packing of energy storage particles
US9409777B2 (en) 2012-02-09 2016-08-09 Basf Se Preparation of polymeric resins and carbon materials
US9680159B2 (en) 2010-03-12 2017-06-13 Basf Se Mesoporous carbon materials comprising bifunctional catalysts
US10141122B2 (en) 2006-11-15 2018-11-27 Energ2, Inc. Electric double layer capacitance device
US10147950B2 (en) 2015-08-28 2018-12-04 Group 14 Technologies, Inc. Materials with extremely durable intercalation of lithium and manufacturing methods thereof
CN108940201A (en) * 2018-07-24 2018-12-07 北海和荣活性炭科技有限责任公司 It washes charcoal slot and low ash divides the production method of water purification active carbon
US10195583B2 (en) 2013-11-05 2019-02-05 Group 14 Technologies, Inc. Carbon-based compositions with highly efficient volumetric gas sorption
US10454103B2 (en) 2013-03-14 2019-10-22 Group14 Technologies, Inc. Composite carbon materials comprising lithium alloying electrochemical modifiers
US10490358B2 (en) 2011-04-15 2019-11-26 Basf Se Flow ultracapacitor
US10522836B2 (en) 2011-06-03 2019-12-31 Basf Se Carbon-lead blends for use in hybrid energy storage devices
US10590277B2 (en) 2014-03-14 2020-03-17 Group14 Technologies, Inc. Methods for sol-gel polymerization in absence of solvent and creation of tunable carbon structure from same
US10763501B2 (en) 2015-08-14 2020-09-01 Group14 Technologies, Inc. Nano-featured porous silicon materials
US11174167B1 (en) 2020-08-18 2021-11-16 Group14 Technologies, Inc. Silicon carbon composites comprising ultra low Z
US11335903B2 (en) 2020-08-18 2022-05-17 Group14 Technologies, Inc. Highly efficient manufacturing of silicon-carbon composites materials comprising ultra low z
US11611071B2 (en) 2017-03-09 2023-03-21 Group14 Technologies, Inc. Decomposition of silicon-containing precursors on porous scaffold materials
US11639292B2 (en) 2020-08-18 2023-05-02 Group14 Technologies, Inc. Particulate composite materials

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008030981A (en) * 2006-07-27 2008-02-14 Showa Highpolymer Co Ltd Phenol resin-based activated carbon, polarizable electrode using the same, and electric double layer capacitor
US8658120B2 (en) 2006-10-20 2014-02-25 Air Water Inc. Non-thermofusible phenol resin powder, method for producing the same, thermosetting resin composition, sealing material for semiconductor, and adhesive for semiconductor
EP2141184A1 (en) * 2006-10-20 2010-01-06 Air Water Inc. Non-thermofusible phenol resin powder, method for producing the same, thermosetting resin composition, sealing material for semiconductor, and adhesive for semiconductor
EP2145906A1 (en) * 2006-10-20 2010-01-20 Air Water Inc. Non-thermofusible phenol resin powder, method for producing the same, thermosetting resin composition, sealing material for semiconductor, and adhesive for semiconductor
US8158095B2 (en) 2006-10-20 2012-04-17 Air Water Inc. Non-thermofusible phenol resin powder, method for producing the same, thermosetting resin composition, sealing material for semiconductor, and adhesive for semiconductor
US8293860B2 (en) 2006-10-20 2012-10-23 Air Water Inc. Non-thermofusible phenol resin powder, method for producing the same, thermosetting resin composition, sealing material for semiconductor, and adhesive for semiconductor
US8409756B2 (en) 2006-10-20 2013-04-02 Air Water Inc. Non-thermofusible phenol resin powder, method for producing the same, thermosetting resin composition, sealing material for semiconductor, and adhesive for semiconductor
US8411415B2 (en) 2006-10-20 2013-04-02 Air Water Inc. Non-thermofusible phenol resin powder, method for producing the same, thermosetting resin composition, sealing material for semiconductor, and adhesive for semiconductor
US10141122B2 (en) 2006-11-15 2018-11-27 Energ2, Inc. Electric double layer capacitance device
US10600581B2 (en) 2006-11-15 2020-03-24 Basf Se Electric double layer capacitance device
JP2009107898A (en) * 2007-10-31 2009-05-21 National Institute Of Advanced Industrial & Technology Porous carbon film and its manufacturing method
JP2012508155A (en) * 2008-11-04 2012-04-05 コーニング インコーポレイテッド Very porous activated carbon with controlled oxygen content
US20120034548A1 (en) * 2009-05-01 2012-02-09 W. L. Gore & Associates, Co., Ltd. Gas diffusion layer for fuel cell
US9112230B2 (en) 2009-07-01 2015-08-18 Basf Se Ultrapure synthetic carbon materials
JP2012532088A (en) * 2009-07-01 2012-12-13 エナジーツー・テクノロジーズ・インコーポレイテッド Ultra high purity synthetic carbon material
US10287170B2 (en) 2009-07-01 2019-05-14 Basf Se Ultrapure synthetic carbon materials
US9580321B2 (en) 2009-07-01 2017-02-28 Basf Se Ultrapure synthetic carbon materials
US9680159B2 (en) 2010-03-12 2017-06-13 Basf Se Mesoporous carbon materials comprising bifunctional catalysts
US9412523B2 (en) 2010-09-30 2016-08-09 Basf Se Enhanced packing of energy storage particles
US9985289B2 (en) 2010-09-30 2018-05-29 Basf Se Enhanced packing of energy storage particles
CN101983918A (en) * 2010-11-25 2011-03-09 中国科学院山西煤炭化学研究所 Preparation method of millimeter activated carbon beads
US9269502B2 (en) 2010-12-28 2016-02-23 Basf Se Carbon materials comprising enhanced electrochemical properties
US10490358B2 (en) 2011-04-15 2019-11-26 Basf Se Flow ultracapacitor
US10522836B2 (en) 2011-06-03 2019-12-31 Basf Se Carbon-lead blends for use in hybrid energy storage devices
US11999828B2 (en) 2012-02-09 2024-06-04 Group14 Technologies, Inc. Preparation of polymeric resins and carbon materials
US11732079B2 (en) 2012-02-09 2023-08-22 Group14 Technologies, Inc. Preparation of polymeric resins and carbon materials
US12006400B2 (en) 2012-02-09 2024-06-11 Group14 Technologies, Inc. Preparation of polymeric resins and carbon materials
US11725074B2 (en) 2012-02-09 2023-08-15 Group 14 Technologies, Inc. Preparation of polymeric resins and carbon materials
US11718701B2 (en) 2012-02-09 2023-08-08 Group14 Technologies, Inc. Preparation of polymeric resins and carbon materials
US9409777B2 (en) 2012-02-09 2016-08-09 Basf Se Preparation of polymeric resins and carbon materials
US11401363B2 (en) 2012-02-09 2022-08-02 Basf Se Preparation of polymeric resins and carbon materials
US10714744B2 (en) 2013-03-14 2020-07-14 Group14 Technologies, Inc. Composite carbon materials comprising lithium alloying electrochemical modifiers
US11495793B2 (en) 2013-03-14 2022-11-08 Group14 Technologies, Inc. Composite carbon materials comprising lithium alloying electrochemical modifiers
US10454103B2 (en) 2013-03-14 2019-10-22 Group14 Technologies, Inc. Composite carbon materials comprising lithium alloying electrochemical modifiers
US11707728B2 (en) 2013-11-05 2023-07-25 Group14 Technologies, Inc. Carbon-based compositions with highly efficient volumetric gas sorption
US10814304B2 (en) 2013-11-05 2020-10-27 Group14 Technologies, Inc. Carbon-based compositions with highly efficient volumetric gas sorption
US10195583B2 (en) 2013-11-05 2019-02-05 Group 14 Technologies, Inc. Carbon-based compositions with highly efficient volumetric gas sorption
US11661517B2 (en) 2014-03-14 2023-05-30 Group14 Technologies, Inc. Methods for sol-gel polymerization in absence of solvent and creation of tunable carbon structure from same
US10590277B2 (en) 2014-03-14 2020-03-17 Group14 Technologies, Inc. Methods for sol-gel polymerization in absence of solvent and creation of tunable carbon structure from same
US10711140B2 (en) 2014-03-14 2020-07-14 Group14 Technologies, Inc. Methods for sol-gel polymerization in absence of solvent and creation of tunable carbon structure from same
US10763501B2 (en) 2015-08-14 2020-09-01 Group14 Technologies, Inc. Nano-featured porous silicon materials
US11611073B2 (en) 2015-08-14 2023-03-21 Group14 Technologies, Inc. Composites of porous nano-featured silicon materials and carbon materials
US11942630B2 (en) 2015-08-14 2024-03-26 Group14 Technologies, Inc. Nano-featured porous silicon materials
US10923722B2 (en) 2015-08-28 2021-02-16 Group14 Technologies, Inc. Materials with extremely durable intercalation of lithium and manufacturing methods thereof
US11495798B1 (en) 2015-08-28 2022-11-08 Group14 Technologies, Inc. Materials with extremely durable intercalation of lithium and manufacturing methods thereof
US11437621B2 (en) 2015-08-28 2022-09-06 Group14 Technologies, Inc. Materials with extremely durable intercalation of lithium and manufacturing methods thereof
US10608254B2 (en) 2015-08-28 2020-03-31 Group14 Technologies, Inc. Materials with extremely durable intercalation of lithium and manufacturing methods thereof
US10147950B2 (en) 2015-08-28 2018-12-04 Group 14 Technologies, Inc. Materials with extremely durable intercalation of lithium and manufacturing methods thereof
US11646419B2 (en) 2015-08-28 2023-05-09 Group 14 Technologies, Inc. Materials with extremely durable intercalation of lithium and manufacturing methods thereof
US10784512B2 (en) 2015-08-28 2020-09-22 Group14 Technologies, Inc. Materials with extremely durable intercalation of lithium and manufacturing methods thereof
US10756347B2 (en) 2015-08-28 2020-08-25 Group14 Technologies, Inc. Materials with extremely durable intercalation of lithium and manufacturing methods thereof
US11611071B2 (en) 2017-03-09 2023-03-21 Group14 Technologies, Inc. Decomposition of silicon-containing precursors on porous scaffold materials
CN108940201A (en) * 2018-07-24 2018-12-07 北海和荣活性炭科技有限责任公司 It washes charcoal slot and low ash divides the production method of water purification active carbon
CN108940201B (en) * 2018-07-24 2021-06-25 北海和荣活性炭科技有限责任公司 Carbon washing tank and production method of low-ash water purification activated carbon
US11174167B1 (en) 2020-08-18 2021-11-16 Group14 Technologies, Inc. Silicon carbon composites comprising ultra low Z
US11639292B2 (en) 2020-08-18 2023-05-02 Group14 Technologies, Inc. Particulate composite materials
US11611070B2 (en) 2020-08-18 2023-03-21 Group14 Technologies, Inc. Highly efficient manufacturing of silicon-carbon composites materials comprising ultra low Z
US11804591B2 (en) 2020-08-18 2023-10-31 Group14 Technologies, Inc. Highly efficient manufacturing of silicon-carbon composite materials comprising ultra low Z
US11498838B2 (en) 2020-08-18 2022-11-15 Group14 Technologies, Inc. Silicon carbon composites comprising ultra low z
US11492262B2 (en) 2020-08-18 2022-11-08 Group14Technologies, Inc. Silicon carbon composites comprising ultra low Z
US11335903B2 (en) 2020-08-18 2022-05-17 Group14 Technologies, Inc. Highly efficient manufacturing of silicon-carbon composites materials comprising ultra low z

Similar Documents

Publication Publication Date Title
JP2004221332A (en) Active carbon composition for electrode of electric double layer capacitor and its manufacturing method
US9136064B2 (en) Carbon for high voltage EDLCs
US7691782B2 (en) Active carbon, production method thereof and polarizable electrode
US20200144619A1 (en) Carbon materials for improving performance of lead acid batteries
JP4924966B2 (en) Lithium ion capacitor
US20180294484A1 (en) Low-gassing carbon materials for improving performance of lead acid batteries
JP4618929B2 (en) Activated carbon for electric double layer capacitors
JP4420381B2 (en) Activated carbon, manufacturing method thereof and polarizable electrode
US9859561B2 (en) High-performance cathode materials for lithium sulfur batteries from lignosulfonate
JPH09320906A (en) Activated carbon for electric double layer capacitor electrode, its manufacture, and electric double layer capacitor electrode
JP2008030981A (en) Phenol resin-based activated carbon, polarizable electrode using the same, and electric double layer capacitor
WO2016043154A1 (en) Electrode material for electrochemical capacitor, electrode coating solution for electrochemical capacitor, electrode for electrochemical capacitor, and electrochemical capacitor
TWI660912B (en) Non-aqueous alkali metal ion capacitor
JP4128233B2 (en) Manufacturing method of electric double layer capacitor
JP2013065765A (en) Nonaqueous lithium type storage device
JP5027540B2 (en) Lithium ion capacitor
JP2013080780A (en) Negative electrode material for nonaqueous lithium type power storage element, and nonaqueous lithium type power storage element using the same
JP4916632B2 (en) Vapor grown carbon fiber and its use
JP2005294607A (en) Electric double-layer capacitor using activated carbon fiber and its manufacturing method
JP2005243933A (en) Electric double-layer capacitor
CN113782348B (en) Carbon material, preparation method and application thereof
JP5085869B2 (en) Organic electrolyte battery
JP2619845B2 (en) Organic electrolyte battery
JP3054335B2 (en) Manufacturing method of organic electrolyte battery
JP2004356127A (en) Electric double layer capacitor using fine phenol resin based active carbon fiber, and its manufacturing method