JP2004220225A - Scattered light type smoke sensor - Google Patents

Scattered light type smoke sensor Download PDF

Info

Publication number
JP2004220225A
JP2004220225A JP2003005364A JP2003005364A JP2004220225A JP 2004220225 A JP2004220225 A JP 2004220225A JP 2003005364 A JP2003005364 A JP 2003005364A JP 2003005364 A JP2003005364 A JP 2003005364A JP 2004220225 A JP2004220225 A JP 2004220225A
Authority
JP
Japan
Prior art keywords
light
opening
light receiving
light emitting
smoke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003005364A
Other languages
Japanese (ja)
Other versions
JP3842739B2 (en
Inventor
Manabu Doi
学 土肥
Akio Yokoshima
昭雄 横嶋
Hayato Tsurumi
隼人 津留見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hochiki Corp
Original Assignee
Hochiki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hochiki Corp filed Critical Hochiki Corp
Priority to JP2003005364A priority Critical patent/JP3842739B2/en
Publication of JP2004220225A publication Critical patent/JP2004220225A/en
Application granted granted Critical
Publication of JP3842739B2 publication Critical patent/JP3842739B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fire-Detection Mechanisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the influence of the adhesion of dust and lint to the vicinity of the openings of a light emitting part and a light receiving part embedded at a mounting face side with respect to a smoke detecting space on the light receiving part to the minimum. <P>SOLUTION: A scattered light type smoke sensor is configured by embedding a light emitting part and a light receiving part at a mounting face side by providing an opening without projecting them in a smoke detecting space, and arranging the light emitting part and the light receiving part so that an optical axis from the light emitting part directed to the smoke detecting space can cross the optical axis of light scattered by smoke particles in the smoke detecting space and directed to the light receiving part at a predetermined angle in a horizontal direction and at a predetermined angle in a vertical direction. In this case, the opening shapes at the facing side of the respective openings 9 and 10 of the light emitting part and the light receiving part are constituted as a portion of roughly ellipsoidal shapes. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、外部から流入した検煙空間内の煙粒子による光の散乱光を受光して火災を検出する散乱光式煙感知器に関する。
【0002】
【従来の技術】
従来、この種の散乱光式煙感知器としては例えば図12のものがある(特許文献1)。図12(A)において、感知器本体100の下部にカバー102が装着され、その内部に煙が流入する検煙空間103を形成している。検煙空間103内の感知器本体100側にはホルダー104が装着され、ホルダー104には開口110,112を介して発光部106と受光部108が収納される。
【0003】
この構造にあっては、図12(B)に示すように、発光部106は光軸114の方向に光を出し、流入した煙に光が当たることによる散乱光を光軸116の方向から受光部108で受光している。
【0004】
ここで発光部106と受光部108は、感知器における仮想的な水平面上で光軸110,116が斜めに交差するように配置し、光軸交点118の散乱角θを所定の角度に設定している。ここで、散乱角θに対する補角となる光軸の交差角δを構成角と呼び、θ=180°−δの関係にある。
【0005】
更に間に二枚の遮光板120,122を配置し、遮光板120で受光部108に向かう直接光を遮り、次の遮光板122で手前の遮光板120の先端に当たった光の反射光を遮るための光トラップを形成している。
尚、この従来構造にあっては、図12(A)のように、発光部106と受光部108の光軸を3°〜5°程度下向きにして光軸交点が検煙空間103の上部面に近づきすぎないように調整している。
【0006】
しかしながら、このような従来の散乱光式煙感知器の構造にあっては、感知器内部の煙が流入する検煙空間103に発光部106、受光部108、遮光板120,122等が突出しており、外部からの煙の流入に方向性を持つ可能性が高いという不具合がある。
【0007】
そこで検煙空間103への煙流入に方向性を持たないようにするため、例えば図13のような散乱光式煙感知器が知られている(特許文献2)。
【0008】
図13において、感知器本体200の下部にカバー202が装着され、その内部に煙が流入する検煙空間203を形成している。検煙空間203内の感知器本体200側にはホルダー204が装着され、ホルダー204には開口210,212を介して発光部206と受光部208が埋め込まれ、検煙空間203に飛び出すことのない構造となっており、煙の流入特性に方向性が無い構造をとっている。
【0009】
発光部206は光軸214の方向に光を出し、流入した煙に光が当たることによる散乱光を光軸216の方向に設置された受光部208で受光する。このため感知器内の仮想的な鉛直面に、発光部206と受光部208を対向しないように光軸214,216を斜め下向きに配置し、光軸交点218の散乱角θを所定の角度に設定している。なお、構成角δは、θ=180°−δの関係にある。
【0010】
一方で、火災による煙の種類は燃焼する材料等により、煙の粒子径は比較的大きなものから小さなものまで様々である。このため、様々な粒子径の煙に対し、極力感度に差のないようにすることがひとつの課題とされている。
【0011】
煙粒子径に対し、感度差の少ない散乱角θは60〜90°程度(構成角δでは90〜120°)であることが知られている(特許文献3)。
【0012】
しかし、図13の従来構造にあっては、煙粒子径に対する感度差を少なくするために散乱角θを例えば60°というように大きくすると、ホルダー204の設置面に対し光軸交点218’のように下にさがり、その分、感知器の高さを大きくしなければならず、さらに天井面からの反射光の影響を避けるため感知器(検煙部)を薄型化できないために、鉛直面上で散乱角θを60〜90°といった適切な角度範囲とすることができない。
【0013】
この場合、散乱角を60〜90°とするために発光部206と受光部208の間隔を狭くすれば、薄型化が可能であるが、この場合、受光部に対する電気的な誘導や直接の漏れ光の影響の問題が発生する。すなわち発光部と受光部は極力遠ざけて配置する必要があるため、検煙空間の高さを変えずに散乱角を60°〜90°にしようとすると、検煙部を薄型にすることができない。
【0014】
そこで本願出願人にあっては、検煙部を更に薄型に構成し、かつ散乱角を自在に設定可能とし、検煙空間への煙流入に方向性が無く、更に発光部と受光部を極力遠ざけて配置できる光電式煙感知器を提案している(特願2002−4221)。
【0015】
この散乱光式煙感知器は、図14のように、検煙部の一方の検煙部本体300に発光部302および受光部303を、検煙空間内に突出することなく発光側開口部301と受光側開口部304を開けて埋設し、検煙空間に向かう発光部302からの光軸と検煙空間内の煙粒子によって散乱されて受光部303に向かう散乱光の光軸が、水平方向に所定の角度で交差し且つ鉛直方向に所定の角度で交差するように、発光部302と受光部303を固定している。
【0016】
このように発光部302と受光部303を検煙空間に対する取付面側に埋め込み、光軸の散乱角を60〜90°の範囲に設定した状態で水平方向及び垂直方向の両方に所定の角度を持つように配置したことで、取付面に対する光軸交点の飛び出し高さを低くし、検煙空間全体として更に薄型にできる。
【0017】
また発光部と受光部の光軸交差による散乱角を60〜90°程度の範囲に設定することで、煙の粒子選択性を低減することができる。更に、取付面に対し光軸交点の飛び出し高さを低くしても、発光部と受光部を近づくことが無いため、受光部が受ける電気的な誘導や漏れ光の影響などの問題も起きない。
【0018】
【特許文献1】
実公昭10606号公報
【特許文献2】
特開昭60−10393号公報
【特許文献3】
特開平7−72073号公報
【特許文献4】
実開昭63−103190号公報
【特許文献5】
特開平1−259495号公報
【0019】
【発明が解決しようとする課題】
ところで図13に示す散乱光式煙感知器において、発光部開口部220と受光部開口部221の開口形状は矩形状となっており、受光部開口部220と発光部開口部221の間隔はセンター部222においても、エッジ部223においても一律、距離L5が保たれる。
【0020】
これに対し図14のように発光部302と受光部303を検煙空間に対する取付面側に埋め込んで水平方向及び垂直方向の両方に所定の角度を持つように配置した散乱光式煙感知器にあっては、発光側矩形開口部301及び受光側矩形開口部304との間の距離は、各開口部のセンター部cの間の距離L4と各開口部のエッジ部d間の距離L3とが異なることとなる。
【0021】
このため、発光側の矩形開口305における受光側の矩形開口306に近いエッヂdの点線の丸の部分に粉塵や糸埃などが付着した場合、発光部302からの光が粉塵や糸埃などに当って散乱することにより迷光を増大させ、同等の大きさの粉塵やその糸埃がセンター部cに付着した場合よりも散乱による迷光が受光部に入射し易くなるという問題がある。
【0022】
本発明は、検煙空間に対する取付面側に埋め込こまれた発光部及び受光部の開口部付近に粉塵や糸埃などが付着した場合の受光部への影響を最小限に抑えるようにした散乱光式煙感知器を提供することを目的とする。
【0023】
【課題を解決するための手段】
この目的を達成するため本発明は次のように構成する。まず本発明は、発光部および受光部を検煙空間内に突出することなく開口部を設けて取付面側に埋設すると共に、検煙空間に向かう発光部からの光軸と検煙空間内の煙粒子によって散乱されて受光部に向かう散乱光の光軸が、水平方向に所定の角度で交差し且つ鉛直方向に所定の角度で交差するように、発光部と受光部を配置した散乱光式煙感知器を対象とする。
【0024】
このような構造の散乱光式煙感知器につき本発明にあっては、発光部及び又は受光部の各開口部の向かい合う側での開口形状を略楕円形状の一部としたことを特徴とする。 ここで略楕円形状の一部とする開口形状は、矩形開口のコーナ部を切り欠いた形状であっても良い。
【0025】
このように発光部と受光部の向かい合う側の開口形状を略楕円形状の一部とすることで、従来の矩形開口における開口部の間隔を短くしているエッジ部分がなくなり、開口縁部に粉塵や糸埃などが付着しても、受光部側開口との距離を長くできることで、受光部に対する影響を最小限に抑え、S/N比の低下を防ぐことができる。
【0026】
また発光部及び受光部の開口部は、開口に沿って側壁を起立しており、発光側開口部に沿って起立する近受光側側壁と受光側開口部に沿って起立する近発光側側壁の高さが略同等である。更に、発光部側側壁において受光部に近い側の側壁が受光部に遠い側の側壁よりも高く形成される。
【0027】
このような発光部側壁の受光部に近い側の側壁を反対側の側壁に対し高く形成することで、受光部に遠い側の低い方の側壁に糸埃などが付着して散乱光を生じても、この散乱光は開放高い方の側壁に当たって遮られ、受光部に対する影響を最小限に抑え、S/N比の低下を防ぐことができる。
【0028】
また本発明の散乱光式煙感知器においては、発光部の開口部として、発光部を収納する円筒穴に続いて開口凹部を形成し、開口凹部に対する円筒穴の開口上部に、受光部に対し近い側が上がり遠い側が下がった円弧状の遮光部を形成したことを特徴とする。
【0029】
このような発光部からの光が射出される円筒穴の開口上部に遮光部を設けることで、検煙空間の天井面に直接当たる光を低減させ、検煙部の薄型化、結果的には感知器の薄型化を可能とする。更に、発光部からの光が射出される円筒穴の開口上部に、受光部に対し近い側が上がり遠い側が下がった弦状の遮光部を形成することで、遮光部の下がった側に糸埃などが付着して散乱光を生じても、この散乱光が低い位置で発生することで、受光部に近い側の開口部側壁に当たって遮られ、受光部に対する影響を最小限に抑え、S/N比の低下を防ぐことができる。
【0030】
【発明の実施の形態】
図1は本発明による散乱光式煙検知器の実施形態を示した断面図である。図1において、散乱光式煙感知器は、感知器本体1とカバー2で構成される。感知器本体1は、検煙部本体5の下部に取り付けられた検煙部カバー6と検煙部本体5の上部に取り付けられた端子盤13で構成されている。
【0031】
検煙部本体5の下部に配置された検煙部カバー6内には、検煙空間4が形成されている。検煙空間4の周囲には検煙部カバー6と一体にラビリンス14が形成され、外部からの煙を容易に流入させる経路をつくると同時に、外部からの光の入射を遮っている。このラビリンス14の周囲に位置するカバー2の部分には煙流入口3が開口されている。
【0032】
検煙部本体5はその裏側となる上部に回路基板12を配置すると共に、検煙空間4側に発光部7と受光部8を設けており、それぞれのリード線を回路基板12に接続し、発光駆動及び受光処理を行うようにしている。発光部7は発光側開口部9を介して検煙空間4に光を照射し、検煙空間4に煙が流入した際の煙粒子に光が当たった時に生ずる散乱光を、受光側開口部10を介して受光部8に入射するようにしている。
【0033】
ここで本発明にあっては、検煙空間4に向かう発光部7からの光軸と、検煙空間内の煙粒子によって散乱されて受光部8に向かう散乱光の光軸が水平方向に所定の角度αで交差し、且つ鉛直方向に所定角度βで交差するように検煙部本体5に発光部7と受光部8を配置している。
【0034】
図2は図1の散乱光式煙感知器の組立分解図である。図2において、感知器本体1は、端子盤13に対し下側より検煙部本体5を組み付け、更に検煙部本体5に対し下側から検煙部カバー6を組み付けている。組立の済んだ感知器本体1はカバー2に収納され、図1のような組立状態を得ることができる。
【0035】
図3は本発明における検煙部本体5を検煙空間4側から見た斜視図である。検煙部本体5の検煙空間側の面には発光側開口部9と受光側開口部10が形成されている。この検煙部本体5における発光側開口部9及び受光側開口部10の部分の断面は、図4に示すようになる。
【0036】
図4は本発明における検煙部本体5と検煙部カバー6を組み合わせた検煙部アッセンブリの断面図であり、図1,図2に対し上下を逆にして示している。図4において、検煙部本体5に対し発光部7及び受光部8は検煙空間4に向かう発光部7からの発光光軸25と、検煙空間4内の煙粒子によって散乱された受光部8に向かう散乱光の受光光軸26が、後の説明で明らかにするように、水平方向に所定の角度αで交差し、且つ鉛直方向に角度βで交差するように配置している。
【0037】
また発光部7の収納部に続いては円筒穴15が形成され、この円筒穴15に続いて開口凹部16が形成され、円筒穴15は開口凹部16の内壁面に開口している。同様に受光部8側についても受光穴18と開口凹部19が形成され、開口凹部19に受光穴18が開口している。
【0038】
図5(A)は図3の検煙部本体5に設けている発光部7と受光部8の設置位置に対応した光学的な位置関係を3次元座標空間で模式的に表している。
【0039】
図5(A)において、発光部7による発光点Pからの発光光軸25をベクトルで示し、光軸交点Oからの散乱光が入射する受光光軸26を受光部9の受光点Qに対するベクトルで示している。
【0040】
この発光点P、光軸交点O及び受光点Qを結ぶ三角形が本発明の煙感知器構造における散乱光式煙検知のための仮想的な光学面であり、三角形POQを形成する面はxy平面となる水平面及びzx平面となる鉛直面のそれぞれに対し、ある角度を持って配置されている。
【0041】
説明を簡単にするため発光点Pのx軸上への投影を投影点Aとなるように配置しており、従って発光光軸14の鉛直方向の傾斜角φは、この場合x軸に対する角度となる。
【0042】
ここで発光光軸25と受光光軸26をxy平面となる水平面から見ると図5(B)のように、投影点Aが発光点Pに対応し、投影点Bが受光点Qに対応する。すなわち発光光軸25と受光光軸26は、水平方向において、所定の角度αをもって交差している。一方、発光光軸14と受光光軸15を面ABQPに投影すると、発光光軸と受光光軸が鉛直方向において、所定の角度βをもって交差する。
【0043】
例えば垂直方向の傾斜角φ=30°に設定し、水平面でのみかけ上の構成角α=120°とすると、構成角δ=97°となる。また水平面でのみかけ上の構成角αをα=120°、傾斜角φをφ=9.8°に設定していると、構成角δはδ=117°となる。
【0044】
これをまとめると、みかけ上の構成角α=120°を一定に保った場合の傾斜角φ=9.8°,30°に対し、実際の構成角δ=117°,97°となり、発光点Pと受光点Qの水平方向での位置を変化させない場合、垂直方向の傾斜角φを大きくすれば、逆に実際の構成角δを小さくする関係が得られる。もちろん垂直方向の傾斜角φを小さくすれば光軸交点Oの高さが低くなることから、より薄型化することになる。
【0045】
図5のような発光から受光までの光軸の3次元関係に基づき、本発明の実施形態では、発光光軸25と受光光軸26の構成角δを略110°としている。もちろんこの構成角δ=110°に対応する散乱角θはθ=180°−δ=70°である。
【0046】
このように本発明にあっては、発光部7の光軸25と受光部8の光軸26を構成角δ=110°に設定した状態で水平面におけるみかけ上の構成角α及び垂直面における傾斜角φをもつように検煙部本体5内に埋め込み配置することで、煙粒子の大きさに対する感度の影響の少ない最適な角度配置を行っても、煙に対する光軸交点の飛び出し量を低く抑え、感知器の薄型構造を実現できる。
【0047】
図6は本発明における検煙部本体5の発光側開口部9及び受光側開口部10を検煙空間側から見た平面図であり、開口部以外の部分は省略して単なる円で表している。
【0048】
図6において、発光側開口部9と受光側開口部10は互いに向かいあう側において、図6の斜線で囲う領域において開口形状を楕円形の一部であるとした楕円開口20,21を形成している。この楕円開口20,21における最小間隔は図示のL1となっている。
【0049】
図7及び図8は従来の開口部と本発明の開口部を対比して示した説明図である。図7(A)は従来の開口部であり、これは図13に示したものと同じである。一方、図7(B)は本発明の開口部であり、図6に相当するものである。
【0050】
また図8(C)は本発明の開口部の他の実施形態であり、発光部の発光方向中心線25aと受光部の受光方向中心26aにより挟まれない、即ち互いに向かい合わない側の発光側開口部9と受光側開口部10の形状が矩形の一部となっている点で図7(B)と異なる。ただし、両開口部の最も近接する位置は、発光側開口部と受光側開口部が互いに向かう合う側にあり、最小距離L1である。
【0051】
更に図8(D)は本発明の開口部の他の実施形態であり、発光部の発光方向中心線25aと受光部の受光方向中心26aにより挟まれた発光側部開口部9、受光側開口部10が互いに向かい合う側において、矩形形状の一部を切り欠いた開口部形状となっている。即ち発光側開口部、受光側開口部のうちの切り欠いた1辺29a、29bの方向とが、発光方向中心線25a又は受光方向中心線26aとそれぞれ90°未満の交差角φ1,φ2で交差する1辺を有する開口部形状となっており、発光側開口部9と受光側開口部10の最小距離はL1に保たれる。
【0052】
ここで、図7(A)の従来の開口部にあっては、即ち発光部の発光方向中心線25aと受光部の受光方向中心線26aによりはさまれる領域において発光側開口部301及び受光側開口部304と共に矩形開口305,306であり、受光部と発光部の感知器内での位置を固定した場合、矩形開口305のエッジaと矩形開口306のエッジbの間の距離は上述の距離L1より短い距離L2となる。
【0053】
このような矩形開口305,306のエッジa,b間の距離L2が短いと、発光側のエッジaの点線の丸の部分に糸埃などが付着した時、糸埃に当った光の散乱による迷光が受光側の矩形開口306から受光部に入射し易くなってしまう。
【0054】
この発光側開口部のエッジa付近での埃の付着による迷光を低減するためには、距離L2を大きくする必要があり、そのために発光部と受光部の間隔を広げなければならない。しかしながら、発光部と受光部の間隔を広げると埃の付着による迷光の影響は低減できるが、絶対光量が低下するという問題がある。
【0055】
そこで本発明にあっては、図7(B)、図8(C)(D)のように、発光部と受光部の配置位置を変化させずに、即ち絶対光量を落とさずに発光側開口部9に付着した埃などによる影響だけを低減させるため、発光側開口部9及び受光側開口部10の向かいあう側を楕円開口20,21又は矩形の一部を切り欠いた形状の切り欠き開口22,23としている。
【0056】
これによって図7(A)の従来の矩形開口305,306における開口部の間隔を縮めているエッジa,bをなくすることによって、楕円開口20,21及び切欠開口22,23のいずれの場合も最近接距離としてL1を保っている。この各開口20,21,22,23間の距離L1は、図7(A)の矩形開口305,306の距離L2に比べ、発光部及び受光部の配置位置を変えることなく、開口部の間隔を大きくすることができ、これによって発光側楕円開口20の縁に付着した埃などによる迷光の影響を低減し、感知器のS/N比を向上させることができる。
【0057】
図9は埃の付着に対する受光部の相対出力を従来の開口部と本発明の開口部について対比して示したグラフ図である。図9において、従来の矩形開口特性40は埃の大きさが0.5mm付近で相対出力が出はじめ、0.7mmを超えると相対出力が急激に増加している。
【0058】
これに対し本発明の楕円開口特性又は切欠開口特性41にあっては、埃の大きさが1mm付近から相対出力が表れ、1.2mmを超えると相対出力が急激に増加している。このような埃の大きさに対する相対出力の特性から、本発明による発光部及び受光部の開口部を楕円開口としたことによる埃の付着に対するS/N比の改善効果が十分に得られていることが確認できる。
【0059】
なお、実施例の説明では楕円という用語を用いて説明したが、本願発明は、「2点間の距離の和が一定になる点全体のあつまり」といういわゆる楕円の定義を厳格に満足していなければならないものではなく、矩形開口部の一部もしくは全部を曲線とした開口形状であっても良く、これらを包括した略楕円形状であれば問題はない。
【0060】
図10は本発明における発光側開口部の円筒穴開口の上部に設けられる遮光部30の説明図である。図10(A)は検煙部本体5の斜視図であり、発光側開口部9の光軸方向を正面に見て表している。図10(B)は図4における発光側開口部9の点線位置で切った場合の矢印X−X方向から見た場合の筒穴開口部の垂直断面を取り出して拡大している。
【0061】
図10(B)において、開口部断面はU字型の溝形状を持っており、図4に示した発光部7からの光を出射する円筒穴15が開口している。
【0062】
また、本発明にあっては円筒穴15の開口上部に遮光部24を形成している。この遮光部24は受光部に対し近い側の内側端部24aが上がり、遠い側の外側端部24bが下がった円弧状の遮光形状を持っており、遮光部24の傾きγはγ=5°程度に設定されている。
【0063】
また角度γの傾きを持った円弧形状の遮光部24に合わせ、開口凹部16の受光部に近い方の近受光側壁9aが高く、受光部に遠い方の遠受光側壁9bが低くなるようにしている。
【0064】
ここで発光側開口部9及び受光側開口部10の開口に沿って起立された側壁構造を図3を参照して説明すると次のようになる。発光側開口部9には開口に沿って受光部に近い近受光側側壁9aと受光部に遠い遠受光部側側壁9bを起立している。また受光部側開口部10には開口に沿って発光部に近い近発光側側壁10aと発光部に遠い遠発光側側壁10bを起立している。
【0065】
本発明にあっては,図10(B)に示すように、発光側開口部9の近遠受光側側壁9aは遠受光側側壁9bに比して高くなるように形成されている。このため遠受光側側壁9bの上縁部に糸埃が付着しても、近受光側側壁9aが高く形成されているので、糸埃が後述の図11(B)に示す受光領域に入る可能性が低下する。よって、発光側開口部9の近受光側側壁9aと遠受光側側壁9bの突出量が同じ場合に比較して、遠受光側側壁9bの上縁部に糸埃が付着した場合の影響を低減する。
【0066】
また本発明にあっては、近受光側側壁9aと近発光側側壁10aの検煙部本体からの突出高さは、略同等に形成される。これは、図11(A)に示すように、発光部7からの光は遮光部24と発光側開口部9の近受光側側壁9a、遠受光側側壁9bによって監視領域11aが形成される。この場合、受光側開口部10の近発光側側壁10aまたは遠発光側側壁l0bが監視領域11aに入る事がないように、特に近発光側側壁10aと近受光側側壁9a突出高さが略同等であることが望ましい。
【0067】
さらに、図11(B)に示すように、逆に受光部8が光を受ける受光領域1lbに発光側開口部9の近受光側側壁9aおよび遠受光側側壁9bが入らないようにするため、特に受光側開口部10の近発光側側壁10aと近受光側側壁9aの突出高さが略同等である必要がある。なお、遠受光側側壁9bは近受光側側壁9aより低いことから、受光領域1lbに入ることはない。
【0068】
このように本発明にあっては、発光側開口部9における発光部からの光が出射される円筒穴15の上部に円弧状の遮光部24を形成したことで、発光部からの光が遮光部24により遮られ、直接、検煙空間4の天井側にあたって散乱光となり、検知器のS/N比を悪化させることを防ぐようにしている。
【0069】
また埃が付着しやすい発光側開口部9の遠受光側側壁9bが近受光側側壁9aより下がった低い位置にあるが、図11(B)のように、遮光部24は内側端部24aより外側端部24bで低くなる所定の角度γの傾きをもって配置されることで、低い遠受光側側壁を超えて光がラビリンス方向に照射されることを防止する。
【0070】
尚、上記の実施形態にあっては説明を簡単にするため、発光光軸と受光光軸が鉛直方向に等角度となるように発光部と受光部を埋め込んだ場合を例にとっているが、発光光軸と受光光軸が鉛直方向にそれぞれ異なる角度となるように発光部と受光部を埋め込むようにしても良い。
【0071】
また本発明は上記の実施形態に限定されず、その目的と利点を損なうことのない適宜の変形を含む。さらに上記の実施形態に示した数値による限定は受けない。
【0072】
【発明の効果】
以上説明してきたように本発明によれば、発光部と受光部の向かいあう側の開口形状を略楕円形状の一部とすることで、従来の矩形開口における開口部の間隔を短くしているエッジ部分がなくなり、開口縁部に粉塵や糸埃などが付着しても楕円開口によって受光側開口部との距離を長くできることで、埃などの付着などで生じた迷光が受光部に入射してしまうことを防ぎ、感知器のS/N比を改善することができる。
【0073】
また発光部及び受光部の開口部は、開口に沿って側壁を起立し、受光側側壁と発光側側壁の高さが略同等とし、更に、発光部側側壁において受光部に近い側の側壁が受光部に遠い側の側壁よりも高く形成することで、受光部に遠い側の低い方の側壁に糸埃などが付着して散乱光を生じても、この散乱光は開放高い方の側壁に当たって遮られ、受光部に対する影響を最小限に抑え、S/N比の低下を防ぐことができる。
【0074】
また発光部からの開口部として発光部からの光を出射する円筒穴に続いて開口凹部を形成し、開口凹部に対する円筒穴の開口上部に受光部側に近い側が上がり、遠い側が下がった円弧状の遮光部を形成したことで、検煙空間の天井面に直接あたる光を低減させ、検煙部の薄型化、結果的には感知器の薄型化を可能とする。
【0075】
更に発光部からの光が出射する円筒穴の上部の円筒状遮光部につき受光部に対し、近い側を上げ、遠い側を下げることで、受光部に遠い側の遮光端部に埃などが付着して散乱光を生じても、この散乱光が低い位置で発生することで受光部に近い反対側の開口凹部の側壁に当って遮られ、埃などの付着による受光部に対する影響を最小限に抑え、感知器のS/N比を改善することができる。
【図面の簡単な説明】
【図1】本発明による散乱光式煙感知器の実施形態を示した断面図
【図2】図1の散乱光式煙感知器の組立分解図
【図3】本発明における検煙部本体の検煙空間側から見た斜視図
【図4】本発明における検煙部本体と検煙部カバーを組み合わせた検煙部アッセンブリの断面図
【図5】本発明における発光部と受光部の位置関係の説明図
【図6】本発明における検煙部本体の検煙空間側から見た平面図
【図7】従来の開口部と本発明の開口部を対比して示した説明図
【図8】本発明の開口部における他の実施形態の説明図
【図9】埃の付着に対する受光部の相対出力を従来の開口部と本発明の開口部について対比して示したグラフ図
【図10】本発明において発光側開口部の円筒穴開口の上部に設けられる遮光部の説明図
【図11】本発明の検煙空間における監視領域と受光領域の説明図
【図12】従来の感知器構造の説明図
【図13】検煙空間に発光部、受光部等を突出させない従来構造の説明図
【図14】本願出願人が提案している散乱光式感知器における発光部と受光部の矩形開口をもつ開口部の説明図
【符号の説明】
1:感知器本体
2:カバー
3:煙流入口
4:検煙空間
5:検煙部本体
6:検煙部カバー
7:発光部
8:受光部
9:発光側開口部
9a:近受光側側壁
9b:遠受光側側壁
10:受光側開口部
10a:近発光側側壁
10b:遠発光側側壁
11a:監視領域
11b:受光領域
12:回路基板
13:端子盤
14:ラビリンス
15:円筒穴
18:受光穴
20,21:楕円開口
22,23:切欠開口
24:遮光部
25,26:光軸
25a:発光方向中心線
26a:受光方向中心線
30:遮光部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a scattered light smoke sensor that detects a fire by receiving light scattered by smoke particles in a smoke detection space that flows in from the outside.
[0002]
[Prior art]
Conventionally, as this type of scattered light type smoke detector, for example, there is one shown in FIG. 12 (Patent Document 1). In FIG. 12A, a cover 102 is attached to a lower part of the sensor main body 100, and a smoke detection space 103 into which smoke flows is formed. A holder 104 is mounted on the sensor body 100 side in the smoke detection space 103, and the light emitting unit 106 and the light receiving unit 108 are housed in the holder 104 via openings 110 and 112.
[0003]
In this structure, as shown in FIG. 12B, the light emitting unit 106 emits light in the direction of the optical axis 114 and receives scattered light caused by the light hitting the flowing smoke from the direction of the optical axis 116. The light is received by the unit 108.
[0004]
Here, the light emitting unit 106 and the light receiving unit 108 are arranged such that the optical axes 110 and 116 obliquely intersect on a virtual horizontal plane in the sensor, and the scattering angle θ of the optical axis intersection 118 is set to a predetermined angle. ing. Here, the intersection angle δ of the optical axis, which is a complementary angle to the scattering angle θ, is called a constituent angle, and has a relationship of θ = 180 ° −δ.
[0005]
Further, two light shielding plates 120 and 122 are disposed therebetween, and the light shielding plate 120 blocks direct light toward the light receiving unit 108, and the next light shielding plate 122 reflects reflected light of light that has hit the front end of the light shielding plate 120 on the near side. An optical trap for blocking is formed.
In this conventional structure, as shown in FIG. 12A, the optical axis of the light emitting section 106 and the light receiving section 108 is directed downward by about 3 ° to 5 °, and the optical axis intersection is formed on the upper surface of the smoke detection space 103. It is adjusted so that it does not get too close to.
[0006]
However, in the structure of such a conventional scattered light smoke detector, the light emitting unit 106, the light receiving unit 108, the light shielding plates 120, 122, and the like protrude into the smoke detection space 103 into which the smoke inside the detector flows. Therefore, there is a problem that there is a high possibility that the inflow of smoke from the outside has a direction.
[0007]
Therefore, a scattered light type smoke detector as shown in FIG. 13, for example, is known in order to prevent the flow of smoke into the smoke detection space 103 from having a direction (Patent Document 2).
[0008]
In FIG. 13, a cover 202 is attached to a lower portion of the sensor main body 200, and a smoke detection space 203 into which smoke flows is formed. A holder 204 is mounted on the sensor main body 200 side in the smoke detection space 203, and a light emitting unit 206 and a light receiving unit 208 are embedded in the holder 204 via openings 210 and 212, so that the holder 204 does not jump out into the smoke detection space 203. It has a structure with no directivity in the smoke inflow characteristics.
[0009]
The light emitting unit 206 emits light in the direction of the optical axis 214, and receives the scattered light caused by the light hitting the inflowing smoke by the light receiving unit 208 provided in the direction of the optical axis 216. For this reason, the optical axes 214 and 216 are arranged obliquely downward so that the light emitting unit 206 and the light receiving unit 208 do not face each other on a virtual vertical plane in the sensor, and the scattering angle θ of the optical axis intersection 218 is set to a predetermined angle. You have set. Note that the constituent angle δ has a relationship of θ = 180 ° −δ.
[0010]
On the other hand, the type of smoke caused by a fire varies depending on the burning material and the like, and the particle size of the smoke varies from relatively large to small. For this reason, one of the problems is to minimize the difference in sensitivity to smoke of various particle sizes.
[0011]
It is known that the scattering angle θ having a small sensitivity difference with respect to the smoke particle diameter is about 60 to 90 ° (90 to 120 ° for the constituent angle δ) (Patent Document 3).
[0012]
However, in the conventional structure shown in FIG. 13, when the scattering angle θ is increased to, for example, 60 ° in order to reduce the sensitivity difference with respect to the smoke particle diameter, the optical axis intersection point 218 ′ with respect to the installation surface of the holder 204 is obtained. The height of the detector must be increased accordingly, and the detector (smoke detector) cannot be thinned to avoid the effects of the reflected light from the ceiling surface. And the scattering angle θ cannot be set to an appropriate angle range such as 60 to 90 °.
[0013]
In this case, if the distance between the light emitting unit 206 and the light receiving unit 208 is narrowed so that the scattering angle is 60 to 90 °, it is possible to reduce the thickness. However, in this case, electric induction or direct leakage to the light receiving unit is performed. The problem of light effects occurs. That is, since the light emitting unit and the light receiving unit need to be arranged as far apart as possible, if the scattering angle is set to 60 ° to 90 ° without changing the height of the smoke detecting space, the smoke detecting unit cannot be made thin. .
[0014]
Therefore, the applicant of the present application has made the smoke detection section thinner and made it possible to freely set the scattering angle, there is no directionality in the flow of smoke into the smoke detection space, and furthermore, the light emitting section and the light receiving section are minimized. A photoelectric smoke detector that can be arranged at a distance has been proposed (Japanese Patent Application No. 2002-4221).
[0015]
As shown in FIG. 14, this scattered light type smoke detector has a light emitting portion 302 and a light receiving portion 303 in one smoke detecting portion main body 300 of a smoke detecting portion without projecting into a smoke detecting space, and a light emitting side opening 301. And the light receiving side opening 304 is opened and buried, and the optical axis from the light emitting unit 302 toward the smoke detection space and the optical axis of the scattered light scattered by the smoke particles in the smoke detection space toward the light receiving unit 303 are aligned in the horizontal direction. The light emitting unit 302 and the light receiving unit 303 are fixed so as to intersect at a predetermined angle with each other and at a predetermined angle in the vertical direction.
[0016]
As described above, the light emitting unit 302 and the light receiving unit 303 are embedded on the mounting surface side with respect to the smoke detection space, and a predetermined angle is set in both the horizontal direction and the vertical direction with the scattering angle of the optical axis set in the range of 60 to 90 °. With the arrangement, the height of the intersection of the optical axis with respect to the mounting surface is reduced, and the overall smoke detection space can be made even thinner.
[0017]
By setting the scattering angle of the light emitting portion and the light receiving portion due to the intersection of the optical axes in a range of about 60 to 90 °, the selectivity of smoke particles can be reduced. Furthermore, even if the height of the intersection of the optical axis with respect to the mounting surface is reduced, the light emitting unit and the light receiving unit do not come close to each other, so that there is no problem such as the influence of electric induction or leakage light received by the light receiving unit. .
[0018]
[Patent Document 1]
Japanese Utility Model Publication No. 10606 [Patent Document 2]
JP-A-60-10393 [Patent Document 3]
JP-A-7-72073 [Patent Document 4]
JP-A-63-103190 [Patent Document 5]
JP-A-1-259495
[Problems to be solved by the invention]
By the way, in the scattered light type smoke detector shown in FIG. 13, the opening shape of the light emitting part opening 220 and the light receiving part opening 221 is rectangular, and the interval between the light receiving part opening 220 and the light emitting part opening 221 is the center. The distance L5 is maintained uniformly in both the part 222 and the edge part 223.
[0020]
On the other hand, as shown in FIG. 14, the scattered light type smoke detector in which the light emitting unit 302 and the light receiving unit 303 are embedded on the mounting surface side with respect to the smoke detection space and arranged so as to have a predetermined angle in both the horizontal direction and the vertical direction. The distance between the light emitting side rectangular opening 301 and the light receiving side rectangular opening 304 is determined by the distance L4 between the center c of each opening and the distance L3 between the edge d of each opening. Will be different.
[0021]
For this reason, when dust, dust, or the like adheres to the dotted circle of the edge d near the light-receiving side rectangular opening 306 in the light-emitting side rectangular opening 305, the light from the light emitting unit 302 is applied to the dust, dust, or the like. There is a problem that stray light is increased due to the scattering, and stray light due to scattering is more likely to be incident on the light receiving unit than when dust of the same size or its dust adheres to the center part c.
[0022]
The present invention minimizes the effect on the light receiving unit when dust or lint adheres to the vicinity of the opening of the light emitting unit and the light receiving unit embedded on the mounting surface side with respect to the smoke detection space. It is an object to provide a scattered light smoke detector.
[0023]
[Means for Solving the Problems]
To achieve this object, the present invention is configured as follows. First, the present invention provides an opening portion without embedding the light emitting portion and the light receiving portion into the smoke detection space and burying the light emitting portion and the light receiving portion on the mounting surface side, and the optical axis from the light emitting portion toward the smoke detection space and the inside of the smoke detection space. A scattered light type in which the light emitting unit and the light receiving unit are arranged such that the optical axis of the scattered light scattered by the smoke particles and traveling toward the light receiving unit intersects at a predetermined angle in the horizontal direction and at a predetermined angle in the vertical direction. Targets smoke detectors.
[0024]
In the present invention, the scattered light type smoke detector having such a structure is characterized in that the opening shape on the side opposite to each opening of the light emitting unit and / or the light receiving unit is a part of a substantially elliptical shape. . Here, the opening shape that is a part of the substantially elliptical shape may be a shape in which a corner of a rectangular opening is cut out.
[0025]
In this way, by making the opening shape on the side where the light emitting unit and the light receiving unit face each other a part of a substantially elliptical shape, there is no edge portion that shortens the interval between the opening portions in the conventional rectangular opening, and the opening edge has dust. Even if dust or lint adheres, the distance to the light receiving unit side opening can be increased, so that the influence on the light receiving unit can be minimized, and a decrease in the S / N ratio can be prevented.
[0026]
The opening of the light emitting unit and the light receiving unit has a side wall standing upright along the opening, and a near light receiving side wall standing up along the light emitting side opening and a near light emitting side wall standing up along the light receiving side opening. The heights are approximately equal. Further, the side wall closer to the light receiving unit in the light emitting unit side wall is formed higher than the side wall farther from the light receiving unit.
[0027]
By forming the side wall closer to the light receiving portion of the light emitting portion side higher than the opposite side wall, dust and the like adhere to the lower side wall farther from the light receiving portion to generate scattered light. However, the scattered light hits the open upper side wall and is blocked, thereby minimizing the influence on the light receiving section and preventing a decrease in the S / N ratio.
[0028]
Further, in the scattered light smoke sensor of the present invention, as the opening of the light emitting portion, an opening concave portion is formed following the cylindrical hole for accommodating the light emitting portion. An arc-shaped light shielding portion is formed in which the near side is raised and the far side is lowered.
[0029]
By providing a light-shielding portion above the opening of the cylindrical hole from which light from the light emitting portion is emitted, light that directly hits the ceiling surface of the smoke detection space is reduced, and the smoke detection portion is made thinner, and consequently The sensor can be made thinner. Furthermore, by forming a chord-shaped light-shielding portion on the upper side of the opening of the cylindrical hole from which light from the light-emitting portion is emitted, a side closer to the light-receiving portion and a side farther down are formed, so that dust and the like are formed on the lower side of the light-shielding portion. Even if scattered light is generated due to adherence, the scattered light is generated at a low position, so that the scattered light hits the side wall of the opening close to the light receiving unit and is blocked, thereby minimizing the influence on the light receiving unit and reducing the S / N ratio. Can be prevented from decreasing.
[0030]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a sectional view showing an embodiment of a scattered light type smoke detector according to the present invention. In FIG. 1, the scattered light smoke detector includes a detector main body 1 and a cover 2. The detector main body 1 is composed of a smoke detector cover 6 attached to the lower part of the smoke detector main body 5 and a terminal board 13 attached to the upper part of the smoke detector main body 5.
[0031]
A smoke detection space 4 is formed in a smoke detection unit cover 6 arranged below the smoke detection unit main body 5. A labyrinth 14 is formed around the smoke detection space 4 integrally with the smoke detection section cover 6 to create a path through which smoke from the outside can easily flow in, and at the same time, block the incidence of light from the outside. A smoke inlet 3 is opened at a portion of the cover 2 located around the labyrinth 14.
[0032]
The smoke detection section main body 5 has a circuit board 12 disposed on the upper side on the back side, and a light emitting section 7 and a light receiving section 8 are provided on the smoke detection space 4 side, and respective lead wires are connected to the circuit board 12, Light emission driving and light receiving processing are performed. The light emitting section 7 irradiates light to the smoke detection space 4 through the light emission side opening 9 and scatters light generated when the smoke collides with the smoke particles when the smoke flows into the smoke detection space 4, and outputs the scattered light to the light reception side opening. The light enters the light receiving unit 8 through the reference numeral 10.
[0033]
Here, in the present invention, the optical axis from the light emitting unit 7 toward the smoke detection space 4 and the optical axis of the scattered light scattered by the smoke particles in the smoke detection space toward the light receiving unit 8 are predetermined in the horizontal direction. The light emitting unit 7 and the light receiving unit 8 are arranged in the smoke detection unit main body 5 so as to intersect at an angle α of the above and at a predetermined angle β in the vertical direction.
[0034]
FIG. 2 is an exploded view of the scattered light type smoke detector of FIG. In FIG. 2, the detector main body 1 has a smoke detector main body 5 attached to the terminal board 13 from below, and further has a smoke detector cover 6 attached to the smoke detector main body 5 from below. The assembled sensor main body 1 is housed in the cover 2, and an assembled state as shown in FIG. 1 can be obtained.
[0035]
FIG. 3 is a perspective view of the smoke detection section main body 5 according to the present invention as viewed from the smoke detection space 4 side. A light-emitting side opening 9 and a light-receiving side opening 10 are formed on the surface of the smoke detection section main body 5 on the smoke detection space side. The cross section of the light emitting side opening 9 and the light receiving side opening 10 in the smoke detector main body 5 is as shown in FIG.
[0036]
FIG. 4 is a cross-sectional view of a smoke detection section assembly in which the smoke detection section main body 5 and the smoke detection section cover 6 in the present invention are combined, and is shown upside down with respect to FIGS. In FIG. 4, the light emitting unit 7 and the light receiving unit 8 with respect to the smoke detecting unit main body 5 include a light emitting optical axis 25 from the light emitting unit 7 toward the smoke detecting space 4 and a light receiving unit scattered by smoke particles in the smoke detecting space 4. The light receiving optical axis 26 of the scattered light toward 8 intersects at a predetermined angle α in the horizontal direction and intersects at an angle β in the vertical direction, as will be described later.
[0037]
Further, a cylindrical hole 15 is formed following the storage portion of the light emitting section 7, and an opening concave portion 16 is formed following the cylindrical hole 15, and the cylindrical hole 15 opens to the inner wall surface of the opening concave portion 16. Similarly, a light receiving hole 18 and an opening recess 19 are formed on the light receiving section 8 side, and the light receiving hole 18 is opened in the opening recess 19.
[0038]
FIG. 5A schematically shows, in a three-dimensional coordinate space, an optical positional relationship corresponding to the installation positions of the light emitting unit 7 and the light receiving unit 8 provided in the smoke detection unit main body 5 of FIG.
[0039]
In FIG. 5 (A), the light-emitting optical axis 25 from the light-emitting point P by the light-emitting unit 7 is indicated by a vector, and the light-receiving optical axis 26 on which the scattered light from the optical axis intersection O enters is a vector with respect to the light-receiving point Q of the light receiving unit 9 Indicated by.
[0040]
The triangle connecting the light emitting point P, the optical axis intersection O and the light receiving point Q is a virtual optical surface for scattered light type smoke detection in the smoke detector structure of the present invention, and the surface forming the triangle POQ is an xy plane. Are arranged at a certain angle with respect to each of a horizontal plane and a vertical plane which is a zx plane.
[0041]
For the sake of simplicity, the projection of the light emitting point P on the x axis is arranged so as to be the projection point A. Therefore, the vertical inclination angle φ of the light emitting optical axis 14 is equal to the angle with respect to the x axis in this case. Become.
[0042]
Here, when the light emitting optical axis 25 and the light receiving optical axis 26 are viewed from a horizontal plane that is an xy plane, the projection point A corresponds to the light emitting point P and the projection point B corresponds to the light receiving point Q as shown in FIG. . That is, the light emitting optical axis 25 and the light receiving optical axis 26 intersect at a predetermined angle α in the horizontal direction. On the other hand, when the light emitting optical axis 14 and the light receiving optical axis 15 are projected on the surface ABQP, the light emitting optical axis and the light receiving optical axis intersect at a predetermined angle β in the vertical direction.
[0043]
For example, if the vertical inclination angle φ is set to 30 ° and the apparent constituent angle α in the horizontal plane is 120 °, the constituent angle δ is 97 °. If the apparent constituent angle α in the horizontal plane is set to α = 120 ° and the inclination angle φ is set to φ = 9.8 °, the constituent angle δ becomes δ = 117 °.
[0044]
In summary, the actual angle δ is 117 ° and 97 °, while the angle φ = 9.8 ° and 30 ° when the apparent angle α = 120 ° is kept constant. In the case where the position of P and the light receiving point Q in the horizontal direction is not changed, if the inclination angle φ in the vertical direction is increased, a relationship in which the actual constituent angle δ is reduced is obtained. Of course, if the inclination angle φ in the vertical direction is reduced, the height of the optical axis intersection O is reduced, so that the thickness is further reduced.
[0045]
Based on the three-dimensional relationship between the optical axes from light emission to light reception as shown in FIG. 5, in the embodiment of the present invention, the constituent angle δ between the light emission optical axis 25 and the light reception optical axis 26 is approximately 110 °. Of course, the scattering angle θ corresponding to this constituent angle δ = 110 ° is θ = 180 ° −δ = 70 °.
[0046]
As described above, according to the present invention, with the optical axis 25 of the light emitting unit 7 and the optical axis 26 of the light receiving unit 8 set to the constituent angle δ = 110 °, the apparent constituent angle α in the horizontal plane and the inclination in the vertical plane By embedding and arranging in the smoke detection unit main body 5 so as to have an angle φ, the amount of projection of the optical axis intersection point for smoke is suppressed to a low level even if optimum angle arrangement with little effect on sensitivity to the size of smoke particles is performed. Therefore, a thin structure of the sensor can be realized.
[0047]
FIG. 6 is a plan view of the light-emitting side opening 9 and the light-receiving side opening 10 of the smoke detection section main body 5 according to the present invention as viewed from the smoke detection space side. I have.
[0048]
In FIG. 6, the light-emitting side opening 9 and the light-receiving side opening 10 form elliptical openings 20 and 21 on the side facing each other, where the opening shape is a part of the elliptical shape in a region surrounded by oblique lines in FIG. I have. The minimum interval between the elliptical openings 20 and 21 is L1 in the drawing.
[0049]
7 and 8 are explanatory views showing the conventional opening and the opening of the present invention in comparison. FIG. 7A shows a conventional opening, which is the same as that shown in FIG. On the other hand, FIG. 7B shows an opening of the present invention, which corresponds to FIG.
[0050]
FIG. 8C shows another embodiment of the opening of the present invention, in which the light emitting side openings which are not sandwiched by the light emitting direction center line 25a of the light emitting portion and the light receiving direction center 26a of the light receiving portion, that is, are not opposed to each other. FIG. 7B differs from FIG. 7B in that the shape of the portion 9 and the light-receiving-side opening 10 is a part of a rectangle. However, the position of the two openings closest to each other is on the side where the light-emitting side opening and the light-receiving side opening face each other, and is the minimum distance L1.
[0051]
FIG. 8D shows another embodiment of the opening of the present invention, in which the light emitting side opening 9 and the light receiving side opening sandwiched between the light emitting direction center line 25a of the light emitting portion and the light receiving direction center 26a of the light receiving portion. On the side where the parts 10 face each other, the opening has a shape in which a part of a rectangular shape is cut out. That is, the directions of the notched sides 29a and 29b of the light emitting side opening and the light receiving side opening intersect with the light emitting direction center line 25a or the light receiving direction center line 26a at intersection angles φ1 and φ2 of less than 90 °, respectively. The light emitting side opening 9 and the light receiving side opening 10 have a minimum distance of L1.
[0052]
Here, in the conventional opening of FIG. 7A, that is, in the region between the light emitting direction center line 25a of the light emitting unit and the light receiving direction center line 26a of the light receiving unit, the light emitting side opening 301 and the light receiving side When the positions of the light receiving unit and the light emitting unit in the sensor are fixed, the distance between the edge a of the rectangular opening 305 and the edge b of the rectangular opening 306 is the above-mentioned distance. The distance L2 is shorter than L1.
[0053]
When the distance L2 between the edges a and b of the rectangular openings 305 and 306 is short, when dust or the like adheres to the dotted circle portion of the light emitting side edge a, the light hit by the dust is scattered. The stray light is likely to enter the light receiving unit from the rectangular opening 306 on the light receiving side.
[0054]
In order to reduce stray light due to the adhesion of dust near the edge a of the light emitting side opening, the distance L2 needs to be increased, and therefore, the distance between the light emitting part and the light receiving part must be increased. However, if the distance between the light-emitting portion and the light-receiving portion is increased, the effect of stray light due to the adhesion of dust can be reduced, but there is a problem that the absolute light amount decreases.
[0055]
Therefore, according to the present invention, as shown in FIGS. 7B, 8C, and 8D, the light emitting side opening is not changed without changing the arrangement positions of the light emitting portion and the light receiving portion, that is, without decreasing the absolute light amount. In order to reduce only the influence of dust or the like attached to the portion 9, the side opposite to the light-emitting side opening 9 and the light-receiving side opening 10 is formed with an oval opening 20, 21 or a notch opening 22 having a shape in which a part of a rectangle is cut out. , 23.
[0056]
This eliminates the edges a and b of the conventional rectangular openings 305 and 306 in FIG. 7A that shorten the distance between the openings, thereby eliminating the cases of the elliptical openings 20 and 21 and the cutout openings 22 and 23. L1 is maintained as the closest distance. The distance L1 between the openings 20, 21, 22, and 23 is smaller than the distance L2 between the rectangular openings 305 and 306 in FIG. 7A without changing the arrangement positions of the light emitting unit and the light receiving unit. Can be increased, thereby reducing the influence of stray light due to dust or the like adhering to the edge of the light-emitting side elliptical opening 20 and improving the S / N ratio of the sensor.
[0057]
FIG. 9 is a graph showing the relative output of the light receiving unit to the adhesion of dust between the conventional opening and the opening of the present invention. In FIG. 9, the relative output of the conventional rectangular aperture characteristic 40 starts to appear when the size of dust is around 0.5 mm, and the relative output sharply increases when the size exceeds 0.7 mm.
[0058]
On the other hand, in the elliptical opening characteristic or the notch opening characteristic 41 of the present invention, the relative output appears when the dust size is around 1 mm, and when the dust exceeds 1.2 mm, the relative output sharply increases. From the characteristics of the relative output with respect to the size of the dust, the effect of improving the S / N ratio against the adhesion of the dust by the opening of the light emitting unit and the light receiving unit according to the present invention having the elliptical openings is sufficiently obtained. Can be confirmed.
[0059]
In the description of the embodiments, the term “ellipse” is used. However, the present invention must strictly satisfy the definition of a so-called ellipse, that is, “the whole point where the sum of the distances between two points becomes constant”. The opening shape is not limited to this, and may be an opening shape in which a part or the whole of the rectangular opening is curved, and there is no problem as long as the opening has a substantially elliptical shape.
[0060]
FIG. 10 is an explanatory view of the light shielding portion 30 provided above the cylindrical hole opening of the light emitting side opening in the present invention. FIG. 10A is a perspective view of the smoke detection section main body 5, and shows the light axis direction of the light emission side opening 9 as viewed from the front. FIG. 10B is an enlarged view of a vertical cross section of the cylindrical hole opening when viewed from the direction of arrow XX when cut at the dotted line position of the light emitting side opening 9 in FIG.
[0061]
10B, the cross section of the opening has a U-shaped groove shape, and the cylindrical hole 15 for emitting light from the light emitting unit 7 shown in FIG. 4 is opened.
[0062]
Further, in the present invention, the light shielding portion 24 is formed above the opening of the cylindrical hole 15. The light-shielding portion 24 has an arc-shaped light-shielding shape in which an inner end 24a closer to the light-receiving portion rises and an outer end 24b farther away lowers, and the inclination γ of the light-shielding portion 24 is γ = 5 °. Set to about.
[0063]
Further, in accordance with the arc-shaped light shielding portion 24 having an inclination of the angle γ, the near light receiving side wall 9a closer to the light receiving portion of the opening concave portion 16 is higher and the far light receiving side wall 9b farther from the light receiving portion is lower. I have.
[0064]
Here, the side wall structure raised along the openings of the light emitting side opening 9 and the light receiving side opening 10 will be described with reference to FIG. The light emitting side opening 9 has a near light receiving side wall 9a close to the light receiving portion along the opening and a far light receiving portion side wall 9b far from the light receiving portion. The light-receiving-portion-side opening 10 has a near-light-emitting-side sidewall 10a near the light-emitting portion and a far-light-emitting-side sidewall 10b far from the light-emitting portion along the opening.
[0065]
In the present invention, as shown in FIG. 10 (B), the near / far light receiving side wall 9a of the light emitting side opening 9 is formed to be higher than the far light receiving side wall 9b. For this reason, even if dust adheres to the upper edge portion of the far light receiving side wall 9b, the dust can enter the light receiving area shown in FIG. Is reduced. Therefore, compared to the case where the near light receiving side wall 9a and the far light receiving side wall 9b of the light emitting side opening 9 have the same protrusion amount, the effect of dust attached to the upper edge of the far light receiving side wall 9b is reduced. I do.
[0066]
Further, in the present invention, the protruding heights of the near-light-receiving side wall 9a and the near-light-emitting side wall 10a from the smoke detection unit main body are formed to be substantially equal. In this case, as shown in FIG. 11 (A), the light from the light emitting section 7 forms a monitoring area 11a by the light shielding section 24 and the near light receiving side wall 9a and the far light receiving side wall 9b of the light emitting side opening 9. In this case, in particular, the near-light-emitting side wall 10a and the near-light-receiving-side wall 9a have substantially the same height so that the near-light-emitting side wall 10a or the far-light-emitting side wall 10b of the light-receiving-side opening 10 does not enter the monitoring area 11a. It is desirable that
[0067]
Further, as shown in FIG. 11 (B), in order to prevent the near light receiving side wall 9a and the far light receiving side wall 9b of the light emitting side opening 9 from entering the light receiving area 1lb where the light receiving unit 8 receives light. In particular, the protruding heights of the near-light-emitting side wall 10a and the near-light-receiving side wall 9a of the light-receiving opening 10 need to be substantially equal. Since the far side wall 9b is lower than the near side wall 9a, it does not enter the light receiving region 1lb.
[0068]
As described above, in the present invention, the light from the light emitting unit is shielded by forming the arc-shaped light shielding unit 24 above the cylindrical hole 15 through which the light from the light emitting unit is emitted in the light emitting side opening 9. The scattered light, which is blocked by the section 24 and directly hits the ceiling side of the smoke detection space 4, prevents the S / N ratio of the detector from being deteriorated.
[0069]
Also, the far light receiving side wall 9b of the light emitting side opening 9 to which dust easily adheres is located at a lower position lower than the near light receiving side wall 9a, but as shown in FIG. By arranging the outer end 24b with the inclination of the predetermined angle γ that becomes lower at the outer end 24b, it is possible to prevent the light from being irradiated in the labyrinth direction beyond the lower side wall on the far light receiving side.
[0070]
In the above embodiment, for simplicity of description, the case where the light emitting unit and the light receiving unit are embedded such that the light emitting optical axis and the light receiving optical axis are at the same angle in the vertical direction is taken as an example. The light emitting unit and the light receiving unit may be embedded such that the optical axis and the light receiving optical axis are at different angles in the vertical direction.
[0071]
In addition, the present invention is not limited to the above embodiments, and includes appropriate modifications without impairing the objects and advantages thereof. Furthermore, there is no limitation by the numerical values shown in the above embodiment.
[0072]
【The invention's effect】
As described above, according to the present invention, the opening shape on the side facing the light-emitting portion and the light-receiving portion is made a part of a substantially elliptical shape, thereby reducing the interval between the opening portions in the conventional rectangular opening. Even if dust or thread dust adheres to the edge of the opening, the elliptical opening can increase the distance from the light-receiving side opening, so that stray light generated by the attachment of dust or the like enters the light-receiving part. Can be prevented, and the S / N ratio of the sensor can be improved.
[0073]
In addition, the opening of the light emitting unit and the light receiving unit, the side wall is erected along the opening, the height of the light receiving side wall and the height of the light emitting side wall are substantially equal, and the side wall of the light emitting unit side wall closer to the light receiving unit is By forming it higher than the side wall on the far side of the light receiving section, even if dust and the like adhere to the lower side wall on the far side of the light receiving section and generate scattered light, the scattered light hits the open side higher side wall. It is possible to minimize the influence on the light receiving unit due to being blocked, and to prevent a decrease in the S / N ratio.
[0074]
In addition, as an opening from the light emitting portion, an opening concave portion is formed following the cylindrical hole that emits light from the light emitting portion, and an upper portion near the light receiving portion rises above the opening of the cylindrical hole with respect to the opening concave portion, and a far side decreases and has an arc shape. By forming the light-shielding portion, light directly hitting the ceiling surface of the smoke detection space can be reduced, and the smoke detection portion can be made thinner, and as a result, the sensor can be made thinner.
[0075]
In addition, dust is attached to the light-shielding end far from the light-receiving part by raising the near side and lowering the far-side of the cylindrical light-shielding part above the cylindrical hole from which the light from the light-emitting part exits. Even if scattered light is generated, this scattered light is generated at a low position and is blocked by hitting the side wall of the opening concave side on the opposite side near the light receiving unit, minimizing the influence on the light receiving unit due to adhesion of dust etc. And improve the S / N ratio of the sensor.
[Brief description of the drawings]
1 is a sectional view showing an embodiment of a scattered light type smoke detector according to the present invention; FIG. 2 is an exploded view of the scattered light type smoke detector of FIG. 1; FIG. FIG. 4 is a cross-sectional view of a smoke detector assembly in which a smoke detector main body and a smoke detector cover are combined according to the present invention. FIG. 5 is a positional relationship between a light emitting unit and a light receiving unit according to the present invention. FIG. 6 is a plan view of the main part of the smoke detection section of the present invention viewed from the smoke detection space side. FIG. 7 is an explanatory view showing a conventional opening and an opening of the present invention in comparison. FIG. 9 is an explanatory view of another embodiment of the opening of the present invention. FIG. 9 is a graph showing the relative output of the light receiving unit to the adhesion of dust between the conventional opening and the opening of the present invention. FIG. 11 is an explanatory view of a light shielding portion provided above a cylindrical hole opening of a light emitting side opening in the present invention. FIG. 12 is an explanatory view of a monitoring area and a light receiving area in a space. FIG. 12 is an explanatory view of a conventional sensor structure. FIG. 13 is an explanatory view of a conventional structure in which a light emitting unit, a light receiving unit, and the like are not protruded into a smoke detection space. Explanatory drawing of a light-emitting part and a light-receiving part in a scattered light sensor proposed by humans with rectangular openings.
1: Sensor body 2: Cover 3: Smoke inlet 4: Smoke detection space 5: Smoke detection unit main body 6: Smoke detection unit cover 7: Light emitting unit 8: Light receiving unit 9: Light emitting side opening 9a: Near light receiving side side wall 9b: far light receiving side wall 10: light receiving side opening 10a: near light emitting side wall 10b: far light emitting side wall 11a: monitoring area 11b: light receiving area 12: circuit board 13: terminal board 14: labyrinth 15: cylindrical hole 18: light receiving Holes 20, 21: Elliptical apertures 22, 23: Notch aperture 24: Light shield 25, 26: Optical axis 25a: Light emission direction center line 26a: Light reception direction center line 30: Light shield

Claims (4)

発光部および受光部を検煙空間内に突出することなく開口部を設けて取付面側に埋設すると共に、前記検煙空間に向かう前記発光部からの光軸と前記検煙空間内の煙粒子によって散乱されて前記受光部に向かう散乱光の光軸が、水平方向に所定の角度で交差し且つ鉛直方向に所定の角度で交差するように、前記発光部と前記受光部を配置した散乱光式煙感知器に於いて、
前記発光部及び又は受光部の各開口部の向かい合う側での開口形状を略楕円形状の一部、又は開口形状を矩形開口のコーナ部を切り欠いた形状であることを特徴とする散乱光式煙感知器。
The light emitting part and the light receiving part are provided with an opening without being protruded into the smoke detection space and buried on the mounting surface side, and the optical axis from the light emitting part toward the smoke detection space and the smoke particles in the smoke detection space The scattered light in which the light emitting unit and the light receiving unit are arranged so that the optical axis of the scattered light scattered by the light receiving unit crosses at a predetermined angle in the horizontal direction and crosses at a predetermined angle in the vertical direction. In the smoke detector,
The scattered light type, wherein the opening shape on the side opposite to each opening of the light emitting unit and / or the light receiving unit is a part of a substantially elliptical shape, or the opening shape is a shape obtained by cutting out a corner portion of a rectangular opening. Smoke detectors.
請求項1記載の散乱光式煙感知器において、前記発光部及び受光部の開口部は、開口に沿って側壁を起立しており、発光側開口部に沿って起立する近受光側側壁と受光側開口部に沿って起立する近発光側側壁の高さが略同等であることを特徴とする散乱光式煙感知器。2. The scattered light type smoke detector according to claim 1, wherein the opening of the light emitting unit and the light receiving unit has a side wall standing up along the opening, and the near light receiving side wall standing up along the light emitting side opening and receiving light. A scattered light type smoke detector characterized in that the height of the near light emitting side wall rising along the side opening is substantially equal. 請求項1又は2記載の散乱光式煙感知器において、前記発光部及び受光部の開口部は、開口に沿って側壁を起立しており、受光側側壁と発光側側壁の高さが略同等であり、更に、発光部側側壁において受光部に近い側の側壁が受光部に遠い側の側壁よりも高く形成されたことを特徴とする散乱光式煙感知器。3. The scattered light type smoke detector according to claim 1, wherein the opening of the light emitting unit and the light receiving unit has a side wall standing upright along the opening, and the heights of the light receiving side wall and the light emitting side wall are substantially equal. A scattered light type smoke detector, wherein a side wall closer to the light receiving unit in the side wall on the light emitting unit is formed higher than a side wall farther from the light receiving unit. 請求項1乃至3のいずれかに記載の散乱光式煙感知器において、前記発光部の開口部は、前記発光部を収納する円筒穴に続いて開口凹部を形成し、前記開口凹部に対する前記円筒穴の開口上部に、受光部に対し近い側が上がり遠い側が下がった円弧状の遮光部を形成したことを特徴とする散乱光式煙感知器。4. The scattered light smoke sensor according to claim 1, wherein the opening of the light-emitting unit forms an opening recess following the cylindrical hole that houses the light-emitting unit, and the cylinder with respect to the opening recess. 5. A scattered light type smoke detector characterized in that an arc-shaped light shielding portion is formed at the upper part of the opening of the hole, with the side close to the light receiving part rising and the side far from the light receiving part falling.
JP2003005364A 2003-01-14 2003-01-14 Scattered smoke detector Expired - Fee Related JP3842739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003005364A JP3842739B2 (en) 2003-01-14 2003-01-14 Scattered smoke detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003005364A JP3842739B2 (en) 2003-01-14 2003-01-14 Scattered smoke detector

Publications (2)

Publication Number Publication Date
JP2004220225A true JP2004220225A (en) 2004-08-05
JP3842739B2 JP3842739B2 (en) 2006-11-08

Family

ID=32896033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003005364A Expired - Fee Related JP3842739B2 (en) 2003-01-14 2003-01-14 Scattered smoke detector

Country Status (1)

Country Link
JP (1) JP3842739B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016200980A (en) * 2015-04-10 2016-12-01 ホーチキ株式会社 Smoke detector
WO2020003712A1 (en) 2018-06-25 2020-01-02 ホーチキ株式会社 Fire detection device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016200980A (en) * 2015-04-10 2016-12-01 ホーチキ株式会社 Smoke detector
WO2020003712A1 (en) 2018-06-25 2020-01-02 ホーチキ株式会社 Fire detection device
US11614396B2 (en) 2018-06-25 2023-03-28 Hochiki Corporation Fire detection device

Also Published As

Publication number Publication date
JP3842739B2 (en) 2006-11-08

Similar Documents

Publication Publication Date Title
JP3934423B2 (en) Scattered smoke detector
US7248173B2 (en) Smoke detector
US9297753B2 (en) Photoelectric smoke sensor
JP4157212B2 (en) Light scattering particle detection sensor
JP2022186842A (en) Smoke detector
JPH11248629A (en) Light scattering type particle detecting sensor
WO2018139499A1 (en) Alarm device
JP3835546B2 (en) Scattered smoke detector
JP3848488B2 (en) Fire detector
WO2018230225A1 (en) Alarm device
JP3842739B2 (en) Scattered smoke detector
JP2011102710A (en) Light scattering particle detector and fire alarm
JP5145162B2 (en) smoke detector
JP3938780B2 (en) Scattered smoke detector
TWI725400B (en) Smoke detector
JP2581838B2 (en) Light scattering particle detection sensor
JPH09231485A (en) Photoelectric smoke sensor
JP2533687B2 (en) Light scattering particle detection sensor
TWI722368B (en) Smoke detector
JPH11248628A (en) Light scattering type particle detecting sensor
JP2009003510A (en) Smoke sensor
TWI753237B (en) Smoke detector
JP3927127B2 (en) Scattered smoke detector
JP2721788B2 (en) Scattered light smoke detector
JP2002015382A (en) Scattered-light type smoke detector

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060810

R150 Certificate of patent or registration of utility model

Ref document number: 3842739

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees