JP2004219136A - Method for inspecting foreign matter using ultrasonic wave and inspection device for the method - Google Patents

Method for inspecting foreign matter using ultrasonic wave and inspection device for the method Download PDF

Info

Publication number
JP2004219136A
JP2004219136A JP2003004110A JP2003004110A JP2004219136A JP 2004219136 A JP2004219136 A JP 2004219136A JP 2003004110 A JP2003004110 A JP 2003004110A JP 2003004110 A JP2003004110 A JP 2003004110A JP 2004219136 A JP2004219136 A JP 2004219136A
Authority
JP
Japan
Prior art keywords
ultrasonic
foreign matter
liquid
sealed package
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003004110A
Other languages
Japanese (ja)
Inventor
Yoshihiro Murakawa
善浩 村川
Hiroshi Yashiro
弘 家城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunze Ltd
Original Assignee
Gunze Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunze Ltd filed Critical Gunze Ltd
Priority to JP2003004110A priority Critical patent/JP2004219136A/en
Publication of JP2004219136A publication Critical patent/JP2004219136A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To detect foreign matter by distinguishing between the foreign matter such as a metal and air bubbles included in the liquid of a sealed package. <P>SOLUTION: In this foreign matter inspecting method for inspecting the foreign matter included in the sealed package filled with a liquid, the phase data of ultrasonic waves reflected by the foreign matter is investigated to distinguish between the forcign matter and air bubbles. The sealed package filled with the liquid is arranged in a water tank so as to be sunk in the water stored in the water tank and the ultrasonic probe connected to an ultrasonic device is also arranged in the water in the same way. Ultrasonic waves are emitted to the liquid of the sealed package from the probe while the reflected ultrasonic waves are received by the same probe and the phase data of ultrasonic waves reflected in the ultrasonic device is detected to distinguish between the foreign matter and air bubbles included in the liquid of the sealed package. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、食品及び医薬品等の液体が充填された容器或いは袋等からなる密封包装体中の異物(液体に溶解せず有形固形物として混在し、微細形状を有するものも含む)の有無を検査する方法に関し、詳細には液体中に混在する異物の存在を確認すると共に気泡とを見分ける方法に関する。
【0002】
【従来の技術】
従来、液体中に含まれる気泡を異物として検査する方法として超音波を利用する方法は、超音波発信器と超音波受信器を備え発信した超音波が液体中を透過し受信された超音波が減少する量を電気信号に変換し検出する方式が開示されている(例えば特許文献1)。
更に、密閉した容器中の液体に含まれる異物を検出するには、容器を水槽内に位置せしめ同水槽内に超音波信号発生受信機を用いて固有音響インピーダンスの差を検出することにより内容物と異物とを判別する方法がなされている(例えば特許文献2)
【0003】
【特許文献1】
特開2000−28587号公報
【特許文献2】
実用新案登録第3082285号公報
【0004】
【発明が解決しようとする課題】
上記、特許文献1、2に記載されたように液体中に含まれる異物を検査する際には、異物に反射される超音波量の大きさ、或いは固有音響インピーダンスの差を調べる方法が用いられることが多かった。これらの方法は、超音波のデータの波形で言うと振幅の大きさ(反射波の大きさ)を検出し比較判断する手段である。
これら固有音響インピーダンスの差の大きさを測定し比較検出する方法では、異物や気泡に対する超音波の入射角度が一定であれば問題ないが、実際は異物や気泡に対する超音波の入射角度が一定とできないので、反射波の振幅が大きく変化し、固有音響インピーダンスの差の大きさを測定し比較検出する方法では、異物か、気泡かを判別することができないという問題がある。
【0005】
【課題を解決するための手段】
本発明は、液体が充填された密封包装体中に混在する異物を検査する方法において、異物に反射される超音波の位相情報を調べることによって異物と気泡を見分けることを特徴とする。
【0006】
又、本発明の超音波による異物検査装置は、液体が充填された密封包装体を水槽内に貯留する水内に沈めた状態に配置されると共に、超音波装置に接続された超音波プローブも同じく水内に配置し、プローブから超音波を密封包装体の液体へ向けて発信し、反射される超音波を同じプローブにて受信し、超音波装置にて反射された超音波の位相情報を検出し、密封包装体の液体に含まれる異物と気泡との判断を行う事を特徴とする。
【0007】
図2、図3は、超音波プローブから発信された超音波が密封包装体から反射されて同プローブに受信されたものを電気信号に変換されたグラフであり(Aモード)、図2は水中の気泡からの反射波の始まりの位相が超音波の発信時の位相と反転していることを示しており、図3は水中に存在する針金片からの反射波の位相は非反転で同相であることを示していることに着目し、本発明を完成するに至った。
【0008】
即ち、我々が確認した範囲では、超音波が反射する境界面の固有音響インピーダンス(ρc)の大小の関係によって、反射波の位相が決まることになっているということである。水の中に気泡が存在する場合、ρcが水(1,52×10kg/m・s)よりも極めて小さな気泡(0,0004×10kg/m・s )の場合は、位相が反転して反射するが、ρcが水よりも極めて大きな針金(4,5×10kg/m・s )の場合は、位相が非反転(同相)して反射するのである。
一般的に、超音波が媒質1(ρc1)から媒質2(ρc2)の界面に当たって反射する場合、
ρc1>>ρc2の場合は、位相は反転する
ρc1<<ρc2の場合は、位相は非反転であると言える。
表1に、我々が確認した媒質の固有音響インピーダンスと水中での異物判別の可能性についてのリストを記載する。
【0009】
【表1】

Figure 2004219136
【0010】
超音波を異物検査の物差しとして採用するには、異物の大きさを勘案し、少なくとも波長が100〜200μm以下となる検出周波数が望ましく、超音波は水の中では周波数の2乗に比例して減衰するので、検出周波数は低いほうが良い。又、異物検査では、少なくとも10mm進んだときの減衰率が6dB(=1/2)は欲しいことなどから、検出周波数は10〜20MHzが望ましい。
【0011】
【発明の実施の形態】
以下、実施例により本発明の実施形態を具体的に説明し、その内容を詳細に開示する。
図1に示すように密封包装体2は、検査装置10に設けた水槽11内に貯留する水3内に沈めた状態に配置されると共に、超音波装置5に接続された超音波プローブ4も同じく水3内に配置される。プローブ4から超音波を密封包装体2の液体1へ向けて発信し、反射される超音波を同じプローブ4にて受信し、超音波装置5にて密封包装体2の液体1に含まれる異物Xからの反射を電気信号に変換し時系列信号として表示し異物か気泡かの判断を行う。
【0012】
密封包装体2は、金属、ガラス、樹脂などからなるシリンジや、目薬、コンタクトレンズ洗浄液、輸液ボトルやバック、清涼飲料水、ドリンク剤等の容器であり、透明、不透明を問わず適用可能である。
【0013】
同密封包装体2の内部に充填される液体1は、ブドウ糖、食塩水、蒸留水、お茶などのように固形物を含まない液体であれば良い。本発明は、液体1の中に含まれる有形の固形物を異物として取り扱う際に、微細な固形物と微細な気泡とを判別する方法に関するものである。
【0014】
水槽11に貯留する水3内に密封包装体2と、超音波プローブ4を配置する理由は、超音波は空気中よりも水中の方が超音波の伝達速度が非常に大きいためであり、検出速度を向上させるためである。
【0015】
超音波プローブ4と超音波装置5は、一体的に接続されており、適宜の検出周波数、好ましくは10MHzの超音波を発信し、密封包装体2から反射する超音波を受信し、電気信号に変換するとともに、反射波の位相と発信波の位相を比較し、反射波の位相が反転位相か、同相の位相かを判別することにより、異物が気泡であるか金属のようなものであるかを簡単に区別する事が出来るものである。
【0016】
超音波プローブ4は、超音波のパルス信号を発信するとともに、時系列的に反射されてくる反射波を受信できる構成のものであれば適用可能であり、パルス反射法による超音波の送受信1回で一直線上の情報が得られる走査線(ラスター)方式を用いても良い。走査線を密封包装体2の全体にスキャンして固有音響インピーダンスによる超音波画像を作成し、位相情報と組み合わせることにより、気泡の位置情報など詳細な情報が得られることも可能となるであろう。
超音波装置5は、電気信号に変換されている超音波信号の位相情報を調べるとともに、発信信号の位相情報と比較する判定回路を有する。これら判定回路等の制御回路に就いては何ら特定されるものではなく適宜必要に応じて採用すればよい。
【0017】
図4は、本発明方法による異物検査の手順をブロック図にて示している。S1では密封包装体2が検査装置10の水槽11の水3中にセットされる。勿論、密封包装体2は停止していても良いし移動していても可能であり、超音波プローブ4から発信される超音波と同期が取れれば可能である。
S2では密封包装体2を回転させるなどして遠心力等で中の液体1をかき回し異物を包装体2の中央に集める。このようなステップを組み入れることにより、液体1中に混在する異物を捉えやすくなり、検出精度が向上する。特に微細な気泡は、包装体2の壁面に付着している場合が多くそのような場合でもかき回すことにより中央に集められ、見逃すことが少なくなる。
【0018】
S3では、超音波プローブ4から発信周波数10MHzの超音波の1個のパルス信号を発信する。S4では、各界面からの反射超音波を同じ超音波プローブ4で受信する。反射波は受信する時間差で何からの反射波か判別可能である。S5では、受信した反射超音波を電気信号に変換し超音波装置5に送信する。
【0019】
S6の超音波装置5では、受信した反射超音波の電気信号から受信超音波の位相は発信超音波の位相と同じであるか、否かを判定する。判定手段は特に制限されるものではなく公知の手段が適用可能であり適宜に行われる。引き続いてS7では、位相が同じであれば金属などの異物からの反射と判断し、S8では、反転位相であれば気泡からの反射と判断する。
【0020】
S9では、検査終了であればS10に進み、密封包装体2が検査装置から外される。また検査終了でない場合は、再度S3に戻り超音波を発信し繰り返し検査を行う
【0021】
【発明の効果】
密封包装体の液中に金属等の微細固形物の異物と気泡が混在しても、異物と気泡とを判別することが可能となる。
【0022】
【図面の簡単な説明】
【図1】本発明方法を実現する異物検査装置の説明図である。
【図2】水中に混在する気泡へ向けて発信した超音波の検出信号を示す線図である。
【図3】水中に混在する針金に向けて発信した超音波の検出信号を示す線図である。
【図4】本発明による異物検査の簡単なブロック図である。
【符号の説明】
1 液体
2 密封包装体
3 水
4 超音波プローブ
5 超音波装置
B 壁面
X 異物[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention detects the presence or absence of foreign substances (including fine particles) which are not dissolved in liquid but are mixed as tangible solids and contained in a sealed package consisting of containers or bags filled with liquids such as foods and pharmaceuticals. More specifically, the present invention relates to a method for checking the presence of foreign matter mixed in a liquid and distinguishing it from bubbles.
[0002]
[Prior art]
Conventionally, a method of using ultrasonic waves as a method of inspecting air bubbles contained in a liquid as a foreign substance includes an ultrasonic transmitter and an ultrasonic receiver, and the transmitted ultrasonic waves pass through the liquid and are received. A method of converting a decreasing amount into an electric signal and detecting the electric signal is disclosed (for example, Patent Document 1).
Furthermore, in order to detect foreign substances contained in the liquid in the sealed container, the container is positioned in a water tank, and the difference in the specific acoustic impedance is detected by using an ultrasonic signal generation receiver in the water tank. (For example, Patent Document 2)
[0003]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2000-28587 [Patent Document 2]
Japanese Utility Model Registration No. 3082285
[Problems to be solved by the invention]
When inspecting a foreign substance contained in a liquid as described in Patent Documents 1 and 2 described above, a method of examining the magnitude of the amount of ultrasonic waves reflected by the foreign substance or the difference in intrinsic acoustic impedance is used. There were many things. These methods are means for detecting and comparing and judging the magnitude of the amplitude (magnitude of the reflected wave) in the waveform of the ultrasonic data.
In the method of measuring and comparing the magnitude of the difference between the intrinsic acoustic impedances, there is no problem as long as the incident angle of the ultrasonic wave to the foreign matter or the bubble is constant, but in practice, the incident angle of the ultrasonic wave to the foreign matter or the bubble cannot be fixed. Therefore, the amplitude of the reflected wave greatly changes, and the method of measuring and comparing the magnitude of the difference between the specific acoustic impedances has a problem that it is not possible to determine whether it is a foreign substance or a bubble.
[0005]
[Means for Solving the Problems]
The present invention, in a method for inspecting foreign substances mixed in a sealed package filled with liquid, is characterized in that foreign substances are distinguished from bubbles by examining phase information of ultrasonic waves reflected by the foreign substances.
[0006]
Further, the ultrasonic inspection device of the present invention is arranged such that the hermetically sealed package filled with liquid is immersed in the water stored in the water tank, and the ultrasonic probe connected to the ultrasonic device is also provided. Also placed in water, the probe transmits ultrasonic waves toward the liquid in the sealed package, receives the reflected ultrasonic waves with the same probe, and obtains the phase information of the ultrasonic waves reflected by the ultrasonic device. It is characterized by detecting and judging foreign matter and bubbles contained in the liquid of the sealed package.
[0007]
2 and 3 are graphs in which ultrasonic waves transmitted from an ultrasonic probe are reflected from a sealed package and received by the probe and converted into electric signals (A mode). FIG. 3 shows that the phase of the start of the reflected wave from the bubble is inverted from the phase at the time of transmission of the ultrasonic wave, and FIG. 3 shows that the phase of the reflected wave from the wire piece existing in the water is non-inverted and in phase. By paying attention to the fact that the present invention is present, the present invention has been completed.
[0008]
That is, within the range confirmed by us, the phase of the reflected wave is determined by the magnitude relationship of the specific acoustic impedance (ρc) of the boundary surface where the ultrasonic wave is reflected. If there are air bubbles in the water, when ρc is water (1,52 × 10 6 kg / m 2 · s) very small bubbles than (0,0004 × 10 6 kg / m 2 · s) is The phase is inverted and reflected, but in the case of a wire (4.5 × 10 6 kg / m 2 · s) whose ρc is much larger than water, the phase is non-inverted (in-phase) and reflected.
In general, when an ultrasonic wave is reflected from an interface between the medium 1 (ρc1) and the medium 2 (ρc2),
In the case of ρc1 >> ρc2, the phase is inverted. In the case of ρc1 << ρc2, the phase is non-inverted.
Table 1 provides a list of the intrinsic acoustic impedance of the media we have identified and the possibility of foreign matter discrimination in water.
[0009]
[Table 1]
Figure 2004219136
[0010]
In order to adopt ultrasonic waves as a ruler for foreign substance inspection, considering the size of foreign substances, it is desirable that the detection frequency is at least a wavelength of 100 to 200 μm or less, and ultrasonic waves are proportional to the square of the frequency in water. Since the frequency is attenuated, the lower the detection frequency, the better. In the foreign substance inspection, the detection frequency is desirably 10 to 20 MHz because, for example, an attenuation rate of 6 dB (= 1/2) at the time of at least 10 mm advance is desired.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be specifically described with reference to examples, and the details thereof will be disclosed.
As shown in FIG. 1, the hermetically sealed package 2 is disposed so as to be submerged in water 3 stored in a water tank 11 provided in the inspection device 10, and the ultrasonic probe 4 connected to the ultrasonic device 5 is also provided. Also placed in the water 3. Ultrasonic waves are transmitted from the probe 4 toward the liquid 1 in the sealed package 2, and the reflected ultrasonic waves are received by the same probe 4, and foreign matter contained in the liquid 1 in the sealed package 2 is received by the ultrasonic device 5. The reflection from X is converted into an electric signal, displayed as a time-series signal, and it is determined whether it is a foreign substance or a bubble.
[0012]
The hermetically sealed package 2 is a syringe made of metal, glass, resin, or the like, a container for eye drops, a contact lens cleaning solution, an infusion bottle or bag, a soft drink, a drink, and the like, and is applicable regardless of transparency or opacity. .
[0013]
The liquid 1 to be filled into the hermetically sealed package 2 may be a liquid that does not contain a solid such as glucose, saline, distilled water, tea, and the like. The present invention relates to a method for distinguishing between fine solids and fine air bubbles when handling a tangible solid contained in the liquid 1 as a foreign substance.
[0014]
The reason why the hermetically sealed package 2 and the ultrasonic probe 4 are arranged in the water 3 stored in the water tank 11 is that ultrasonic waves are transmitted at a much higher speed in water than in air, and are detected. This is to improve speed.
[0015]
The ultrasonic probe 4 and the ultrasonic device 5 are integrally connected, transmit an ultrasonic wave of an appropriate detection frequency, preferably 10 MHz, receive the ultrasonic wave reflected from the sealed package 2, and convert the ultrasonic wave into an electric signal. In addition to the conversion, the phase of the reflected wave is compared with the phase of the transmitted wave, and it is determined whether the phase of the reflected wave is inverted or in-phase, so that the foreign matter is a bubble or a metal-like substance. Can be easily distinguished.
[0016]
The ultrasonic probe 4 is applicable as long as it can transmit a pulse signal of an ultrasonic wave and can receive a reflected wave reflected in time series. For example, a scanning line (raster) method that can obtain information on a straight line may be used. By scanning a scanning line over the entire hermetically sealed package 2 to create an ultrasonic image based on the specific acoustic impedance and combining it with the phase information, detailed information such as bubble position information may be obtained. .
The ultrasonic device 5 has a determination circuit that checks the phase information of the ultrasonic signal converted into the electric signal and compares the phase information with the phase information of the transmission signal. The control circuits such as these determination circuits are not specified at all, and may be appropriately adopted as needed.
[0017]
FIG. 4 is a block diagram showing a procedure for inspecting foreign matter according to the method of the present invention. In S1, the sealed package 2 is set in the water 3 of the water tank 11 of the inspection device 10. Needless to say, the sealed package 2 may be stopped or moved, and may be synchronized with the ultrasonic waves transmitted from the ultrasonic probe 4.
In S2, the liquid 1 inside is agitated by centrifugal force or the like by rotating the hermetically sealed package 2 to collect foreign matter in the center of the package 2. By incorporating such steps, foreign substances mixed in the liquid 1 can be easily captured, and detection accuracy can be improved. In particular, fine air bubbles often adhere to the wall surface of the package 2, and even in such a case, the air bubbles are collected at the center by stirring, so that the air bubbles are rarely overlooked.
[0018]
In S3, one pulse signal of an ultrasonic wave having a transmission frequency of 10 MHz is transmitted from the ultrasonic probe 4. In S4, the reflected ultrasonic waves from each interface are received by the same ultrasonic probe 4. The reflected wave can be distinguished from the reflected wave based on the time difference of reception. In S5, the received reflected ultrasonic wave is converted into an electric signal and transmitted to the ultrasonic device 5.
[0019]
The ultrasonic device 5 in S6 determines whether the phase of the received ultrasonic wave is the same as the phase of the transmitted ultrasonic wave based on the received electric signal of the reflected ultrasonic wave. The determination means is not particularly limited, and a known means can be applied and is appropriately performed. Subsequently, in S7, if the phases are the same, it is determined that the reflection is from a foreign substance such as a metal. In S8, if the phase is the reverse phase, it is determined that the reflection is from a bubble.
[0020]
In S9, if the inspection is completed, the process proceeds to S10, and the sealed package 2 is removed from the inspection device. If the inspection is not completed, the flow returns to S3 to transmit the ultrasonic wave to perform the inspection repeatedly.
【The invention's effect】
Even if foreign matter of fine solid matter such as metal and bubbles are mixed in the liquid of the sealed package, it is possible to distinguish the foreign matter and bubbles.
[0022]
[Brief description of the drawings]
FIG. 1 is an explanatory view of a foreign matter inspection apparatus for realizing the method of the present invention.
FIG. 2 is a diagram showing a detection signal of an ultrasonic wave transmitted toward bubbles mixed in water.
FIG. 3 is a diagram showing a detection signal of an ultrasonic wave transmitted toward a wire mixed in water.
FIG. 4 is a simple block diagram of a foreign substance inspection according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Liquid 2 Sealing package 3 Water 4 Ultrasonic probe 5 Ultrasonic device B Wall surface X Foreign matter

Claims (2)

液体が充填された密封包装体中に混在する異物を検査する方法において、異物に反射される超音波の位相情報を調べることによって異物と気泡を見分ける異物検査方法。What is claimed is: 1. A method for inspecting foreign matter mixed in a sealed package filled with liquid, wherein the foreign matter is distinguished from bubbles by examining phase information of ultrasonic waves reflected by the foreign matter. 液体が充填された密封包装体を水槽内に貯留する水内に沈めた状態に配置されると共に、超音波装置に接続された超音波プローブも同じく水内に配置し、プローブから超音波を密封包装体の液体へ向けて発信し、反射される超音波を同じプローブにて受信し、超音波装置にて反射された超音波の位相情報を検出し、密封包装体の液体に含まれる異物と気泡との判断を行う事を特徴とする超音波による異物検査装置。The sealed package filled with liquid is placed in the water that is submerged in the water tank, and the ultrasonic probe connected to the ultrasonic device is also placed in the water, and the ultrasonic wave is sealed from the probe. Transmits toward the liquid in the package, receives the reflected ultrasonic waves with the same probe, detects the phase information of the ultrasonic waves reflected by the ultrasonic device, and detects foreign matter contained in the liquid in the sealed package. An ultrasonic inspection device for foreign matter, characterized in that it is determined that a bubble is present.
JP2003004110A 2003-01-10 2003-01-10 Method for inspecting foreign matter using ultrasonic wave and inspection device for the method Pending JP2004219136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003004110A JP2004219136A (en) 2003-01-10 2003-01-10 Method for inspecting foreign matter using ultrasonic wave and inspection device for the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003004110A JP2004219136A (en) 2003-01-10 2003-01-10 Method for inspecting foreign matter using ultrasonic wave and inspection device for the method

Publications (1)

Publication Number Publication Date
JP2004219136A true JP2004219136A (en) 2004-08-05

Family

ID=32895182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003004110A Pending JP2004219136A (en) 2003-01-10 2003-01-10 Method for inspecting foreign matter using ultrasonic wave and inspection device for the method

Country Status (1)

Country Link
JP (1) JP2004219136A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242820A (en) * 2005-03-04 2006-09-14 Dainippon Printing Co Ltd Foreign matter inspection device in paper container, filling-sealing device using it, and filling-sealing method
WO2015050061A1 (en) * 2013-10-02 2015-04-09 ヤマハファインテック株式会社 Inspection device and inspection method for sealed packed product

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242820A (en) * 2005-03-04 2006-09-14 Dainippon Printing Co Ltd Foreign matter inspection device in paper container, filling-sealing device using it, and filling-sealing method
WO2015050061A1 (en) * 2013-10-02 2015-04-09 ヤマハファインテック株式会社 Inspection device and inspection method for sealed packed product
JPWO2015050061A1 (en) * 2013-10-02 2017-03-09 ヤマハファインテック株式会社 Inspection device and inspection method for sealed pack products

Similar Documents

Publication Publication Date Title
US6053041A (en) Noninvasive method for determining the liquid level and density inside of a container
US5837898A (en) Electromagnetic acoustic transducer (EMAT) for ultrasonic inspection of liquids in containers
AU2011295663B2 (en) Apparatus and method for visualization of particles suspended in a fluid and fluid flow patterns using ultrasound
EP0345313B1 (en) Acoustic method for measuring properties of a mobile medium
US10908131B2 (en) Acoustic gas volume fraction measurement in a multiphase flowing liquid
EP1943953A3 (en) Ultrasonic diagnostic apparatus, IMT measurement method, and IMT measurement program
DE69006218T2 (en) ULTRASONIC EXAMINATION OF SEALED CONTAINERS.
JPS60122549A (en) Ultrasonic diagnostic apparatus
JP2004219136A (en) Method for inspecting foreign matter using ultrasonic wave and inspection device for the method
JPH02118435A (en) Apparatus for detecting and analyzing particle settling in fluid by echo-graphy
JP3169534B2 (en) Inundation detection method
CN216791546U (en) Ultrasonic liquid leakage detection sensor and in-vitro diagnostic instrument
JP4561336B2 (en) Bubble detection device and coating device using the same
Ayhan et al. Inspection of seal integrity of food packages using ultrasound and pressure differential techniques
JPH073350B2 (en) Fluid velocity measuring method and device
CN117616263A (en) Fluid sensor
JP2854423B2 (en) Interface device for suspended foreign matter
CN115931635A (en) Method and system for detecting liquid density in liquid filling pipeline based on frequency modulation ultrasonic guided wave
JPH11113893A (en) Ultrasonograph
JPH0972888A (en) Apparatus for measuring sound velocity in solid
RU2200316C2 (en) Device determining physical properties of liquids
JPH0346586A (en) Ultrasonic distance measuring device
JP3082285U (en) Foreign object detection device in water container by reflection type ultrasonic wave
Čarada The authorretains ownership ofthe L'auteur conserve la propriété du
JP2000171447A (en) Measuring method for interface of content in airtight container and measuring method for amount of liquid co2 in airtight container as well as liquid level measuring apparatus