JP2004218953A - Device and method for regulating cooling water flow in condenser - Google Patents

Device and method for regulating cooling water flow in condenser Download PDF

Info

Publication number
JP2004218953A
JP2004218953A JP2003007578A JP2003007578A JP2004218953A JP 2004218953 A JP2004218953 A JP 2004218953A JP 2003007578 A JP2003007578 A JP 2003007578A JP 2003007578 A JP2003007578 A JP 2003007578A JP 2004218953 A JP2004218953 A JP 2004218953A
Authority
JP
Japan
Prior art keywords
cooling water
condenser
liquid level
supply pump
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003007578A
Other languages
Japanese (ja)
Inventor
Norihide Egami
法秀 江上
Mitsunobu Nakajo
光伸 中条
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003007578A priority Critical patent/JP2004218953A/en
Publication of JP2004218953A publication Critical patent/JP2004218953A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a condenser cooling water flow regulating device capable of stably supplying cooling water without relying upon a variation in liquid level difference in a condenser cooling device for cooling a condenser recycling turbine steam of a power generating plant. <P>SOLUTION: This condenser cooling water flow control device comprises an intake chamber liquid level gauge 22 fitted to an intake chamber 4 arranged continuously with an intake port 1 for taking cooling water from a condenser cooling device 10 with a condenser 9 of a steam turbine, a water release tank liquid level gauge 23 fitted to a cooling water release tank for releasing cooling water after cooling the condenser, and a control device 24 controlling the opening of a pump outlet valve 7 installed at the outlet of a cooling water supply pump 5 pumping up water from the water storage tank. The liquid levels in the intake tank 4 and at the water release port 18 are measured with the intake tank liquid level gauge 22 and the water release tank liquid level gauge 23, the liquid levels are inputted into the control device 24 to calculate a liquid level difference, and the flow of condenser cooling water is regulated by controlling the opening of the pump outlet valve 7. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、発電設備の蒸気タービンの復水器を冷却するために設置される復水器冷却装置に流通する冷却水の流量を調整する復水器冷却水流量調整装置に関する。
【0002】
【従来の技術】
蒸気タービンを用いた発電設備において、蒸気タービンから排気される蒸気は復水器にて凝縮され、ボイラー給水として再利用される。このタービン蒸気は、タービンに付設される復水器により熱交換されてボイラー給水となるが、この復水器の冷却媒体としては、海水が用いられることが多く、復水器に海水(冷却水)を流通するための復水器冷却装置が付設される。
【0003】
図5に、冷却水に海水を用いた場合の、従来の復水器冷却装置50の構成を示す。
【0004】
海水は、外洋に面した取水口51より取水路52およびスクリーン53を経由して取水槽54に導入される。取水槽54に導入された海水は、取水槽54に設置された冷却水供給ポンプ55により、冷却水配管56を流通してポンプ出口弁57および逆洗弁58を介して復水器59に供給され、蒸気タービンTからの蒸気と熱交換を行う。熱交換に使用された冷却水(海水)は再び逆洗弁58を通り、復水器出口弁60を通過し、放水槽61より外洋へ放出される。
【0005】
従来の復水器冷却装置50において、復水器59に流通する冷却水の流量は、復水器出口弁60の開度により調整されていた。この復水器出口弁60の開度は以下のように決定される。すなわち、ポンプ吐出圧力を圧力計62で確認しながら復水器出口弁60を操作し、ポンプの流量−揚程特性曲線(ポンプQ−Hカーブ)に基づいて復水器冷却水の定格流量となる復水器出口弁60の開度を決定する。但し、配管への海洋性生物の付着や配管腐食等のような経年劣化による配管圧力損失の増加を予め見込んで、冷却水流量が定格流量より多めとなるように、復水器出口弁60の開度が調整される。
【0006】
特に、図6に示すコンバインドサイクル発電設備70のように、複数の冷却水供給ポンプ55が取水槽54に設置されている場合、複数の冷却水供給ポンプ55の運転による冷却水使用量の増加に伴う取水槽54の取水面レベルの低下が生じやすい。このような場合、放水槽61の水面レベルとのレベル差が増大する。すなわち、冷却水供給ポンプが必要とする静水頭の増加により、冷却水供給ポンプ55の流量が低下する。従って、配管圧力損失の経年変化分およびこの静水頭の増加による流量の低下を見込んで、予め復水器出口弁60の開度を大きめの冷却水流量となるように調整する必要があった。
【0007】
従来の複数の冷却水供給ポンプを有する場合の放水槽の水面レベルの制御に関しては、各冷却水供給ポンプ下流側に流量計を設け、それぞれの冷却水供給ポンプから復水器に供給される冷却水量や圧力を測定し、その流量、圧力に応じて放水槽と外洋との間に設けた水槽の開閉制御を行うことにより放水槽の水面の制御を行う技術がある(例えば、特許文献1参照)。
【0008】
【特許文献1】
特開平6−82178号公報
【0009】
【発明が解決しようとする課題】
図7を参照してポンプ流量と取水槽と放水槽の液面レベル差との関係について説明する。
【0010】
図7において、81はポンプの流量−揚程特性曲線(ポンプQ−Hカーブ)を示す。また82は、液面レベル差がある値ΔH1の場合のポンプ流量−圧力特性曲線を示す。このポンプQ−Hカーブ81とポンプ流量−圧力特性曲線82との交点により液面レベル差ΔH1のときの冷却水の流量Q1が求められる。同様にして液面レベル差がΔH2の場合のポンプ流量−圧力特性曲線83とポンプQ−Hカーブ81との交点により液面レベル差ΔH2のときの冷却水の流量Q2が求められる。
【0011】
この図7においてΔH2>ΔH1である。すなわち取水槽4と放水槽61の液面レベル差ΔHが大きいほどポンプが吐出する冷却水流量が小さくなる。
【0012】
一般的に、復水器冷却装置のポンプ全揚程のうち、この液面レベル差に基づく静水頭の占める割合はおよそ15%〜20%である。従って、図7のポンプQ−Hカーブ81に明らかなように、取水槽水面レベルの変動によって冷却水流量が大きく変動する。そのため、取水槽の液面レベルの変動によらず、安定的に冷却水を供給することが可能な冷却水流量調整装置が必要とされていた。
【0013】
また、復水器冷却装置50において、復水器59に流通する冷却水の流量は、復水器出口弁60のみによって調整される。この従来の復水器冷却装置50の初期運転時には、冷却水供給ポンプ55による冷却水の流量が多めに設定されている。そのため、単体の冷却水供給ポンプ55を備えた復水器冷却装置50の場合、初期運転時は過流量運転となっていた。そのため、ポンプキャビテーションが発生して復水器出口弁60において大きな運転音が発生していた。
【0014】
また、コンバインドサイクル発電設備70のように複数の冷却水供給用ポンプ55が運転される場合、冷却水の使用量増加に伴う取水槽54の取水面レベルの低下が大きいため、静水頭が増加することにより冷却水供給ポンプ55の揚程も増加する。このため、冷却水流量のさらなる低下を招く原因となっていた。
【0015】
一方、冷却水配管56には、継続使用により海洋性生物が付着するため、経年的に配管の圧力損失が増大する。このため冷却水供給ポンプ55の揚程が増大して冷却水流量が低下するため、復水器冷却水が必要量確保できなくなり、発電設備の性能に影響を及ぼすという問題もあった。
【0016】
さらに、上記特許文献1は、放水槽の水面レベルに関しては制御されているが、取水槽側の水面レベルに関しては何等考慮されていない。
【0017】
本発明は、上述した事情を考慮してなされたものであり、復水器を冷却するための冷却水を導入する復水器冷却装置において、取水槽と放水槽との液面レベル差の変動によらずに冷却水を安定に供給することが可能な復水器冷却水流量調整装置および調整方法を提供することを目的とする。
【0018】
【課題を解決するための手段】
本発明に係る復水器冷却水流量調整装置は、上述した課題を解決するために、請求項1に記載したように、蒸気タービンの復水器を冷却するための冷却水を貯水する取水槽と、この取水槽から冷却水を前記復水器に導く冷却水供給ポンプと、この冷却水供給ポンプの出口側に設けられた冷却水供給ポンプ出口弁と、前記復水器出口側に設けられた復水器出口弁と、この復水器を冷却した後の冷却水が排水される放水槽とからなる復水器冷却装置における復水器冷却水流量調整装置において、前記取水槽に設けられて貯水量を計測する取水槽液面レベル計と、前記放水槽に設けられて貯水量を計測する放水槽液面レベル計とを備え、前記取水槽液面レベル計と前記放水槽液面レベル計にてそれぞれ計測された計測値から取水槽と放水槽との液面レベル差を求め、予め前記冷却水供給ポンプの性能と前記復水器に必要な冷却水量とから求められた前記液面レベルの差と前記冷却水供給ポンプ出口弁開度との関係に基づいて前記冷却水出口ポンプの開度を制御する制御装置を備えたことを特徴とするものである。
【0019】
また、本発明に係る復水器冷却水流量調整装置は、上述した課題を解決するために、請求項2に記載したように、複数の蒸気タービンのそれぞれの復水器を冷却するための冷却水を貯水する共通の取水槽と、この取水槽から冷却水を前記復水器に導く複数の冷却水供給ポンプと、これら冷却水供給ポンプの出口側に設けられた冷却水供給ポンプ出口弁と、前記復水器出口側に設けられた復水器出口弁と、これら復水器を冷却した後の冷却水が排水される共通の放水槽とからなる復水器冷却装置における復水器冷却水流量調整装置において、前記取水槽に設けられて貯水量を計測する取水槽液面レベル計と、前記放水槽に設けられて貯水量を計測する放水槽液面レベル計とを備え、前記取水槽液面レベル計と前記放水槽液面レベル計にてそれぞれ計測された計測値から取水槽と放水槽との液面レベル差を求め、予め前記冷却水供給ポンプの性能と前記復水器に必要な冷却水量とから求められた前記液面レベルの差と前記冷却水供給ポンプ出口弁開度との関係に基づいて前記冷却水出口ポンプの開度を制御する制御装置を備えたものである。
【0020】
さらに、本発明に係る復水器冷却水流量調整装置は、上述した課題を解決するために、請求項3に記載したように、請求項1または請求項2記載の復水器冷却水流量調整装置において、前記制御装置は前記復水器内における経年的に増加する配管流量損失に基づいて前記冷却水供給ポンプ出口弁開度を調整する手段を備えたことを特徴とするものである。
【0021】
一方、本発明に係る復水器冷却水流量調整装置は、上述した課題を解決するために、請求項4に記載したように、蒸気タービンの復水器を冷却するための冷却水を貯水する取水槽と、この取水槽から冷却水を前記復水器に導く冷却水供給ポンプと、この冷却水供給ポンプの出口側に設けられた冷却水供給ポンプ出口弁と、前記復水器出口側に設けられた復水器出口弁と、この復水器を冷却した後の冷却水が排水される放水槽とからなる復水器冷却装置における復水器冷却水流量調整方法において、この復水器冷却水流量調整方法は、取水槽液面レベル計により取水槽の液面レベルを計測する工程と、放水槽液面レベル計により放水槽の液面レベルを計測する工程と、取水槽と放水槽との液面レベル差を求める工程と、予め前記冷却水供給ポンプの性能と前記復水器に必要な冷却水量とから求められた液面レベル差と前記冷却水供給ポンプ出口弁開度との関係から冷却水供給ポンプ出口弁の開度を算出する工程と、前記液面レベル差を求める工程と前記液面レベル差と前記冷却水供給ポンプ出口弁開度との関係を算出する工程とで得られた情報に基づいて前記冷却水供給ポンプ出口弁の開度を制御する制御工程とからなることを特徴とする方法である。
【0022】
また、本発明に係る復水器冷却水流量調整装置は、上述した課題を解決するために、請求項5に記載したように、複数の蒸気タービンのそれぞれの復水器を冷却するための冷却水を貯水する取水槽と、この取水槽から冷却水を前記各復水器に導く複数の冷却水供給ポンプと、これら冷却水供給ポンプの出口側に設けられた冷却水供給ポンプ出口弁と、前記復水器出口側に設けられた復水器出口弁と、これら復水器を冷却した後の冷却水が排水される放水槽とからなる復水器冷却装置における復水器冷却水流量調整方法において、この復水器冷却水流量調整方法は、取水槽液面レベル計により取水槽の液面レベルを計測する工程と、放水槽液面レベル計により放水槽の液面レベルを計測する工程と、取水槽と放水槽との液面レベル差を求める工程と、予め前記冷却水供給ポンプの性能と前記復水器に必要な冷却水量とから求められた液面レベル差と前記冷却水供給ポンプ出口弁開度との関係から冷却水供給ポンプ出口弁の開度を算出する工程と、前記液面レベル差を求める工程と前記液面レベル差と前記冷却水供給ポンプ出口弁開度との関係を算出する工程とで得られた情報に基づいて前記冷却水供給ポンプ出口弁の開度を制御する制御工程とからなることを特徴とする方法である。
【0023】
さらに、本発明に係る復水器冷却水流量調整装置は、上述した課題を解決するために、請求項6に記載したように、前記制御工程は前記復水器内における経年的に増加する配管流量損失に基づいて前記冷却水供給ポンプ出口弁開度を調整する工程を備えたことを特徴とする方法である。
【0024】
【発明の実施の形態】
本発明に係る復水器冷却水流量制御装置の実施の形態について、図を参照して以下に説明する。
【0025】
図1に本発明の復水器冷却水流量調整装置を備えた復水器冷却装置の構成を示す。復水器冷却装置10は、海水を取り入れる取水口1と、取水路2とスクリーン3を介して取水口1に連なる取水槽4を有し、この取水槽4には冷却水供給ポンプ5が設置される。海水は、冷却水供給ポンプ5により冷却水配管6を流通して、冷却水供給ポンプ出口弁7および逆洗弁8を介してタービンTに付設される復水器9に流通する。タービン蒸気と熱交換された冷却水は、出口側冷却水配管17に流通し、逆洗弁8および復水器出口弁16を通して放水槽18より外洋に放出される。復水器出口弁16の開度は、予め初期設定される。
【0026】
この復水器冷却装置10に、冷却水の流量を制御するための復水器冷却水流量調整装置が設置される。この復水器冷却水流量調整装置は、取水槽4に設置される取水槽液面レベル計22と、放水槽18付近に設置される放水槽液面レベル計23と、それぞれの液面レベル計からの信号を入力し、冷却水供給ポンプ出口弁7の開度を制御する制御装置24とで構成される。
【0027】
一方、制御装置24は以下のように構成される。
【0028】
最初に、予め対象とする復水器が必要とする冷却水量が有る範囲を持って決められる。次に、図7の曲線81で表されたポンプ性能を示すポンプQ−H特性カーブから、ある静水頭Hに対してポンプが吸い出す冷却水流量が求められる。さらに、このポンプが吸い出す冷却水量と上記した復水器が必要とする冷却水量とから、図2に示す冷却水供給ポンプ出口弁7の流量特性曲線に基づいて弁開度が決められる。そして、図3に示すような関数fxとして、前記ある静水頭Hと冷却水供給ポンプ出口弁7の開度との関係を予め制御装置24に格納しておく。このように構成することにより、前記液面レベル差ΔHが制御装置24に入力されると、前記関数fxに基づいて、入口側冷却水配管6に流通する冷却水の流量が常に復水器が必要とする冷却水量になるように冷却水供給ポンプ出口弁7の開度を制御する。なお、復水器出口弁16は予め決められた略固定した開度になるように設定される。
【0029】
図4は、制御装置24内で行われる上記液面レベル差ΔHから冷却水供給ポンプ出口弁7の開度を出力する各工程をブロック線図で示したものである。
【0030】
すなわち、工程31、工程32において、それぞれ取水槽液面レベル計22および放水槽液面レベル計23で測定された液面レベル計測値が制御装置24に入力される。次にこの計測値から両者の液面レベル差ΔHが工程33にて算出される。次にこの液面レベル差ΔHのデータは、冷却水供給ポンプ5の出力すべき静水頭Hとして用いられ、上記した静水頭Hと冷却水供給ポンプ出口弁7の開度との関係であるfxに入力される。この関数fxにより静水頭H(液面レベル差ΔH)に対して最適な冷却水供給ポンプ出口弁7の開度が工程34において算出されて出力される。出力された冷却水供給ポンプ出口弁7の開度に基づいて、工程35により冷却水供給ポンプ出口弁7の開度が制御される。なお、図示していないが、制御装置24からは、復水器出口弁16を予め固定された開度に設定する信号も出力される。
【0031】
また、関数fxには、復水器内の配管類に経年的に付着、堆積する腐食物や海洋性生物により冷却水流通の際の配管内で発生する圧力損失を補償するための工程36から調整値が入力され、液面レベル差ΔHから関数fxにより計算された冷却水供給ポンプ出口弁7の開度を調整できるようになっている。
【0032】
なお、本実施の形態においては、取水槽液面レベル計22および放水槽液面レベル計23でそれぞれ測定された液面レベルデータから求められる両者の液面レベル差ΔHのデータに基づいて冷却水供給ポンプ出口弁7の開度を制御しているが、上記関数fxを以下のようにして、液面レベル差ΔHのデータに基づいて冷却水供給ポンプ出口弁7と復水器出口弁16の両者の開度を制御するようにしても良い。すなわち、図7の曲線81で表されたポンプ性能を示すポンプQ−H特性カーブから、ある静水頭Hに対してポンプが吸い出す冷却水流量を求め、このポンプが吸い出す冷却水量と予め決められた復水器が必要とする冷却水量とから、図2に示すような流量特性曲線に基づいて冷却水供給ポンプ出口弁7と復水器出口弁16のそれぞれの弁開度が決定される。その際にそれぞれの弁の開度の組み合わせが多くなるので、最適な各弁の開度の組み合わせを予め検討しておく必要がある。そして、この冷却水供給ポンプ出口弁7と復水器出口弁16の弁の開度の組み合わせに基づいて関数fxを作成し、前記ある静水頭Hと冷却水供給ポンプ出口弁7の開度および復水器出口弁16の開度の関係を予め制御装置24に格納しておくものである。
【0033】
このような構成とした復水器冷却水流量制御装置は、図6に示すような複数の取水系統を有するコンバインドサイクル発電設備70にも設置することが可能である。
【0034】
以上説明したように、本発明に係る復水器冷却水流量調整装置によれば、貯水槽液面レベルと放水槽液面レベルのレベル差を計測して、この液面レベル差の変動に追従して冷却水供給ポンプ出口弁7の開度を制御し、復水器冷却水の流量を調整する。すなわち、液面レベルの変動によらず、常に安定した流量の冷却水を復水器9に供給することが可能であるため、発電設備の性能を安定化することが可能である。
【0035】
また、復水器冷却水流量調整装置は、発電設備の初期運転時においても、冷却水を安定した流量で流通するため、冷却水供給ポンプ5が過流量運転となることがない。従って、ポンプキャビテーションが防止され、プラント稼動中の騒音が効果的に抑制される。特に、冷却水流量が冷却水供給ポンプ出口弁7および復水器出口弁16の2箇所で調整されるため、従来に比較して復水器出口弁16における騒音が軽減される。
【0036】
さらに、復水器冷却水流量調整装置によれば、冷却水配管6に付着する海洋性生物や配管腐食による配管圧力損失の経年的変化についても、制御装置24において経年的な配管圧力損失を加算して調整することにより、液面レベル差の変動に組入れて制御することが可能である。従って、発電設備の長期運転に際して冷却水の流量を安定的に維持することが可能である。
【0037】
【発明の効果】
以上説明のとおり、本発明に係る復水器冷却水流量調整装置および調整方法によれば、取水槽と放水槽との液面レベル差の変動に追従してポンプ出口弁の開度を調整するため、冷却水を常に安定した流量で供給することが可能である。
【図面の簡単な説明】
【図1】本発明に係る冷却水流量調整装置を備えた復水器冷却装置の構成図。
【図2】ポンプ出口弁の流量特性曲線。
【図3】ポンプ出口弁の開度を決定する関数fx曲線。
【図4】本発明の復水器冷却水流量調整装置における制御ブロック図。
【図5】従来の復水器冷却装置を示す構成図。
【図6】復水器冷却装置ユニットを備えたコンバインド発電設備の取水槽付近の構成を示す構造図。
【図7】ポンプQ−Hカーブと流量−圧力曲線との相関を示すグラフ。
【符号の説明】
1 取水口
2 取水路
3 スクリーン
4 取水槽
5 冷却水供給ポンプ
6 入口側冷却水配管
7 冷却水供給ポンプ出口弁
8 逆洗弁
9 復水器
10 復水器冷却装置
16 復水器出口弁
17 出口側冷却水排水配管
18 放水槽
22 取水槽液面レベル計
23 放水槽液面レベル計
24 制御装置
31 取水槽の液面レベルを計測する工程
32 放水槽の液面レベルを計測する工程
33 液面レベル差を求める工程
34 冷却水供給ポンプ出口弁の開度を算出する工程
35 冷却水供給ポンプ出口弁の開度を制御する工程
36 配管内の経年的な圧力損失の増加について調整する工程
50 復水器冷却装置(従来)
51 取水口
52 取水路
53 スクリーン
54 取水槽
55 冷却水供給ポンプ
56 冷却水配管
57 冷却水供給ポンプ出口弁
58 逆洗弁
59 復水器
60 復水器出口弁
61 放水槽
62 圧力計
70 コンバインドサイクル発電設備
81 ポンプQ−Hカーブ
82 ポンプ流量−圧力特性曲線(ΔH1)
83 ポンプ流量−圧力特性曲線(ΔH2)
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a condenser cooling water flow rate adjusting device that adjusts a flow rate of cooling water flowing through a condenser cooling device installed for cooling a condenser of a steam turbine of a power generation facility.
[0002]
[Prior art]
In a power generation facility using a steam turbine, steam exhausted from the steam turbine is condensed in a condenser and reused as boiler feedwater. This turbine steam is heat-exchanged by a condenser attached to the turbine and becomes boiler feedwater. In many cases, seawater is used as a cooling medium for the condenser, and seawater (cooling water) is supplied to the condenser. ) Is provided with a condenser cooling device.
[0003]
FIG. 5 shows a configuration of a conventional condenser cooling device 50 when seawater is used as cooling water.
[0004]
Seawater is introduced into an intake tank 54 from an intake port 51 facing the open sea via an intake channel 52 and a screen 53. The seawater introduced into the intake tank 54 is supplied to a condenser 59 through a cooling water pipe 56 through a pump outlet valve 57 and a backwash valve 58 by a cooling water supply pump 55 installed in the intake tank 54. Then, heat exchange is performed with steam from the steam turbine T. The cooling water (seawater) used for the heat exchange passes through the backwash valve 58 again, passes through the condenser outlet valve 60, and is discharged from the water discharge tank 61 to the open sea.
[0005]
In the conventional condenser cooling device 50, the flow rate of the cooling water flowing through the condenser 59 is adjusted by the opening of the condenser outlet valve 60. The opening of the condenser outlet valve 60 is determined as follows. That is, the condenser outlet valve 60 is operated while checking the pump discharge pressure with the pressure gauge 62, and the rated flow rate of the condenser cooling water is obtained based on the pump flow rate-head characteristic curve (pump QH curve). The opening of the condenser outlet valve 60 is determined. However, in anticipation of an increase in pipe pressure loss due to aging such as the adhesion of marine organisms to the pipe or pipe corrosion, the condenser outlet valve 60 is set so that the cooling water flow rate is higher than the rated flow rate. The opening is adjusted.
[0006]
In particular, when a plurality of cooling water supply pumps 55 are installed in the water intake tank 54 as in the combined cycle power generation facility 70 shown in FIG. As a result, the level of the water intake surface of the water intake tank 54 tends to decrease. In such a case, the level difference from the water surface level of the water discharge tank 61 increases. That is, the flow rate of the cooling water supply pump 55 decreases due to the increase in the hydrostatic head required by the cooling water supply pump. Therefore, in consideration of the secular change of the pipe pressure loss and the decrease of the flow rate due to the increase of the hydrostatic head, it is necessary to adjust the opening degree of the condenser outlet valve 60 in advance so as to have a larger cooling water flow rate.
[0007]
Regarding the control of the water surface level of the water discharge tank when a plurality of conventional cooling water supply pumps are provided, a flow meter is provided downstream of each cooling water supply pump, and the cooling water supplied from each cooling water supply pump to the condenser is provided. There is a technique of controlling the water surface of a water discharge tank by measuring a water amount and a pressure and controlling the opening and closing of a water tank provided between the water discharge tank and the open sea according to the flow rate and the pressure (for example, see Patent Document 1). ).
[0008]
[Patent Document 1]
JP-A-6-82178
[Problems to be solved by the invention]
The relationship between the pump flow rate and the liquid level difference between the water intake tank and the water discharge tank will be described with reference to FIG.
[0010]
In FIG. 7, reference numeral 81 denotes a pump flow-head characteristic curve (pump QH curve). Reference numeral 82 denotes a pump flow rate-pressure characteristic curve when the liquid level difference is a certain value ΔH1. From the intersection of the pump QH curve 81 and the pump flow rate-pressure characteristic curve 82, the flow rate Q1 of the cooling water at the liquid level difference ΔH1 is obtained. Similarly, the flow rate Q2 of the cooling water at the liquid level difference ΔH2 is determined from the intersection of the pump flow rate-pressure characteristic curve 83 and the pump QH curve 81 when the liquid level difference is ΔH2.
[0011]
In FIG. 7, ΔH2> ΔH1. That is, the larger the liquid level difference ΔH between the water intake tank 4 and the water discharge tank 61, the smaller the cooling water flow rate discharged by the pump.
[0012]
Generally, the ratio of the hydrostatic head based on the liquid level difference is about 15% to 20% of the total pumping head of the condenser cooling device. Accordingly, as is apparent from the pump QH curve 81 in FIG. 7, the cooling water flow rate largely fluctuates due to the fluctuation of the water level of the intake tank. Therefore, there has been a need for a cooling water flow control device capable of stably supplying cooling water irrespective of fluctuations in the liquid level of the intake tank.
[0013]
In the condenser cooling device 50, the flow rate of the cooling water flowing through the condenser 59 is adjusted only by the condenser outlet valve 60. During the initial operation of the conventional condenser cooling device 50, the flow rate of the cooling water by the cooling water supply pump 55 is set to be relatively large. Therefore, in the case of the condenser cooling device 50 including the single cooling water supply pump 55, the excess flow operation was performed at the time of the initial operation. As a result, pump cavitation occurred and a large operating noise was generated at the condenser outlet valve 60.
[0014]
Further, when a plurality of cooling water supply pumps 55 are operated as in the combined cycle power generation equipment 70, the level of the water intake surface of the water intake tank 54 largely decreases due to an increase in the amount of cooling water used, so that the hydrostatic head increases. Thereby, the head of the cooling water supply pump 55 also increases. For this reason, the cooling water flow rate was further reduced.
[0015]
On the other hand, since marine organisms adhere to the cooling water pipe 56 due to continuous use, the pressure loss of the pipe increases over time. For this reason, the head of the cooling water supply pump 55 increases and the flow rate of the cooling water decreases, so that it becomes impossible to secure the required amount of condenser cooling water, and there is a problem that the performance of the power generation equipment is affected.
[0016]
Further, in Patent Document 1, the water level of the water discharge tank is controlled, but no consideration is given to the water level of the water intake tank.
[0017]
The present invention has been made in consideration of the above-described circumstances, and in a condenser cooling device that introduces cooling water for cooling a condenser, a fluctuation in a liquid level difference between an intake tank and a water discharge tank. It is an object of the present invention to provide a condenser cooling water flow rate adjusting device and an adjusting method capable of stably supplying cooling water regardless of the above.
[0018]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, a condenser cooling water flow rate adjusting device according to the present invention has an intake tank for storing cooling water for cooling a condenser of a steam turbine, as described in claim 1. A cooling water supply pump that guides cooling water from the water intake tank to the condenser, a cooling water supply pump outlet valve provided on an outlet side of the cooling water supply pump, and a cooling water supply pump provided on the condenser outlet side. A condenser outlet valve, and a condenser cooling water flow control device in a condenser cooling device comprising a water discharge tank from which cooling water after cooling the condenser is drained, provided in the water intake tank. A water tank level meter for measuring the amount of water stored in the tank, and a water tank level meter for measuring the amount of water provided in the water tank, wherein the water level meter for the water tank and the liquid level for the water tank are provided. The liquid level of the water intake tank and the water discharge tank from the measured values Determine the bell difference, based on the relationship between the difference between the liquid level and the opening of the cooling water supply pump outlet valve previously determined from the performance of the cooling water supply pump and the amount of cooling water required for the condenser. A control device for controlling an opening of the cooling water outlet pump is provided.
[0019]
According to a second aspect of the present invention, there is provided a condenser cooling water flow rate adjusting device according to the present invention for cooling the condensers of a plurality of steam turbines. A common intake tank for storing water, a plurality of cooling water supply pumps for guiding cooling water from the intake tank to the condenser, and a cooling water supply pump outlet valve provided on an outlet side of the cooling water supply pump. A condenser cooling device comprising a condenser outlet valve provided on the condenser outlet side and a common water discharge tank from which cooling water after cooling these condensers is drained. The water flow rate adjusting device further includes an intake tank liquid level meter provided in the water intake tank for measuring a water storage amount, and a water discharge tank liquid level meter provided in the water discharge tank for measuring the water storage amount. Water tank level meter and water tank level meter The liquid level difference between the intake tank and the water discharge tank is determined from the measured value, and the difference between the liquid level determined in advance from the performance of the cooling water supply pump and the amount of cooling water required for the condenser. A control device is provided for controlling the opening of the cooling water outlet pump based on the relationship with the opening of the cooling water supply pump outlet valve.
[0020]
In addition, the condenser cooling water flow rate adjusting device according to the present invention can solve the above-mentioned problem by providing the condenser cooling water flow rate adjusting apparatus according to claim 1 or 2 as described in claim 3. In the apparatus, the control device includes means for adjusting the opening of the cooling water supply pump outlet valve based on a pipe flow loss that increases with time in the condenser.
[0021]
On the other hand, the condenser cooling water flow rate adjusting device according to the present invention stores the cooling water for cooling the condenser of the steam turbine as described in claim 4 in order to solve the above-described problem. An intake tank, a cooling water supply pump that guides cooling water from the intake tank to the condenser, a cooling water supply pump outlet valve provided on an outlet side of the cooling water supply pump, and a condenser outlet side. The condenser cooling water flow rate adjusting method in the condenser cooling device comprising a condenser outlet valve provided and a water discharge tank from which cooling water after cooling the condenser is drained. The method of adjusting the cooling water flow rate includes the steps of measuring the liquid level of the water intake tank with a water level meter of the water intake tank, measuring the liquid level of the water discharge tank with the liquid level meter of the water discharge tank, Determining a liquid level difference between the cooling water supply pump and the cooling water supply pump. Calculating the opening of the cooling water supply pump outlet valve from the relationship between the liquid level difference determined from the performance of the condenser and the amount of cooling water required for the condenser and the opening of the cooling water supply pump outlet valve, Opening of the cooling water supply pump outlet valve based on information obtained in the step of obtaining the liquid level difference and the step of calculating the relationship between the liquid level difference and the opening of the cooling water supply pump outlet valve And a control step of controlling the following.
[0022]
According to a fifth aspect of the present invention, there is provided a condenser cooling water flow control device according to the present invention for cooling condensers of a plurality of steam turbines. An intake tank for storing water, a plurality of cooling water supply pumps for guiding cooling water from the intake tank to the respective condensers, a cooling water supply pump outlet valve provided on an outlet side of the cooling water supply pump, Condenser cooling water flow adjustment in a condenser cooling device comprising a condenser outlet valve provided on the condenser outlet side and a water discharge tank from which cooling water after cooling these condensers is drained. In the method, the condenser cooling water flow rate adjusting method includes a step of measuring a liquid level of an intake tank with an intake tank liquid level meter and a step of measuring a liquid level of the water discharge tank with a water discharge tank liquid level meter. To calculate the liquid level difference between the intake tank and the water discharge tank And the relationship between the liquid level difference determined in advance from the performance of the cooling water supply pump and the amount of cooling water required for the condenser and the opening of the cooling water supply pump outlet valve. The cooling based on information obtained in a step of calculating an opening, a step of calculating the liquid level difference, and a step of calculating a relationship between the liquid level difference and the opening of the cooling water supply pump outlet valve. And controlling the opening of the water supply pump outlet valve.
[0023]
Furthermore, in order to solve the above-mentioned problem, the condenser cooling water flow control device according to the present invention is configured such that the control step is a pipe that increases with time in the condenser. Adjusting the opening of the cooling water supply pump outlet valve based on the flow rate loss.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of a condenser cooling water flow control device according to the present invention will be described below with reference to the drawings.
[0025]
FIG. 1 shows the configuration of a condenser cooling device provided with the condenser cooling water flow rate adjusting device of the present invention. The condenser cooling device 10 has an intake port 1 for taking in seawater, and an intake tank 4 connected to the intake port 1 via an intake channel 2 and a screen 3, and a cooling water supply pump 5 is installed in the intake tank 4. Is done. The seawater flows through the cooling water pipe 6 by the cooling water supply pump 5 and flows through the cooling water supply pump outlet valve 7 and the backwash valve 8 to the condenser 9 attached to the turbine T. The cooling water exchanged with the turbine steam flows through the outlet-side cooling water pipe 17, and is discharged from the water discharge tank 18 to the open sea through the backwash valve 8 and the condenser outlet valve 16. The opening of the condenser outlet valve 16 is initially set in advance.
[0026]
The condenser cooling device 10 is provided with a condenser cooling water flow control device for controlling the flow rate of the cooling water. The condenser cooling water flow rate adjusting device includes a water intake tank liquid level meter 22 installed in the water intake tank 4, a water discharge tank liquid level meter 23 installed near the water discharge tank 18, and a respective liquid level meter. And a control device 24 for inputting a signal from the controller and controlling the opening of the cooling water supply pump outlet valve 7.
[0027]
On the other hand, the control device 24 is configured as follows.
[0028]
First, the cooling water amount required by the target condenser is determined in advance with a certain range. Next, from the pump QH characteristic curve showing the pump performance represented by the curve 81 in FIG. Further, the valve opening is determined based on the flow rate characteristic curve of the cooling water supply pump outlet valve 7 shown in FIG. 2 from the amount of cooling water sucked by the pump and the amount of cooling water required by the condenser described above. Then, the relationship between the certain hydrostatic head H and the opening of the cooling water supply pump outlet valve 7 is stored in the control device 24 in advance as a function fx as shown in FIG. With such a configuration, when the liquid level difference ΔH is input to the control device 24, the flow rate of the cooling water flowing through the inlet-side cooling water pipe 6 is constantly changed based on the function fx. The opening of the cooling water supply pump outlet valve 7 is controlled so that the required amount of cooling water is obtained. In addition, the condenser outlet valve 16 is set so as to have a predetermined substantially fixed opening degree.
[0029]
FIG. 4 is a block diagram showing each step of outputting the opening of the cooling water supply pump outlet valve 7 from the liquid level difference ΔH performed in the control device 24.
[0030]
That is, in steps 31 and 32, the measured liquid level measured by the intake tank liquid level meter 22 and the water discharge tank liquid level meter 23 are input to the control device 24. Next, the liquid level difference ΔH between the two is calculated in step 33 from the measured value. Next, the data of the liquid level difference ΔH is used as the hydrostatic head H to be output from the cooling water supply pump 5, and is the relationship between the above-mentioned hydrostatic head H and the opening degree of the cooling water supply pump outlet valve fx. Is input to The optimum opening of the cooling water supply pump outlet valve 7 with respect to the hydrostatic head H (liquid level difference ΔH) is calculated in step 34 by this function fx and output. In step 35, the opening of the cooling water supply pump outlet valve 7 is controlled based on the output opening of the cooling water supply pump outlet valve 7. Although not shown, the control device 24 also outputs a signal for setting the condenser outlet valve 16 to a previously fixed opening.
[0031]
In addition, the function fx includes a process 36 for compensating for pressure loss generated in the piping during the flow of cooling water due to corrosive substances and marine organisms that adhere to and accumulate over the piping in the condenser over time. The adjustment value is input, and the opening of the cooling water supply pump outlet valve 7 calculated by the function fx from the liquid level difference ΔH can be adjusted.
[0032]
In the present embodiment, the cooling water is measured based on the data of the liquid level difference ΔH between the water level measured by the water level meter 22 and the liquid level difference measured by the water level meter 23. Although the opening degree of the supply pump outlet valve 7 is controlled, the function fx is set as follows, and the cooling water supply pump outlet valve 7 and the condenser outlet valve 16 are set based on the data of the liquid level difference ΔH. The opening degree of both may be controlled. That is, from the pump QH characteristic curve showing the pump performance shown by the curve 81 in FIG. 7, the cooling water flow rate of the pump with respect to a certain hydrostatic head H is obtained, and the cooling water amount drawn by the pump is determined in advance. From the amount of cooling water required by the condenser, the respective valve openings of the cooling water supply pump outlet valve 7 and the condenser outlet valve 16 are determined based on a flow characteristic curve as shown in FIG. At that time, the combination of the opening degrees of the respective valves increases, so that it is necessary to consider in advance the optimum combination of the opening degrees of the respective valves. Then, a function fx is created based on the combination of the opening degrees of the cooling water supply pump outlet valve 7 and the condenser outlet valve 16, and the certain hydrostatic head H, the opening degree of the cooling water supply pump outlet valve 7 and The relationship of the opening degree of the condenser outlet valve 16 is stored in the control device 24 in advance.
[0033]
The condenser cooling water flow control device having such a configuration can be installed in a combined cycle power generation facility 70 having a plurality of intake systems as shown in FIG.
[0034]
As described above, according to the condenser cooling water flow rate adjusting device according to the present invention, the level difference between the water tank liquid level and the discharge tank liquid level is measured, and the fluctuation of the liquid level difference is followed. Then, the opening of the cooling water supply pump outlet valve 7 is controlled to adjust the flow rate of the condenser cooling water. That is, it is possible to always supply a stable flow rate of the cooling water to the condenser 9 irrespective of the fluctuation of the liquid level, so that the performance of the power generation equipment can be stabilized.
[0035]
Further, since the condenser cooling water flow rate adjusting device allows the cooling water to flow at a stable flow rate even during the initial operation of the power generation equipment, the cooling water supply pump 5 does not operate in an excessive flow rate. Therefore, pump cavitation is prevented, and noise during plant operation is effectively suppressed. In particular, since the flow rate of the cooling water is adjusted at two points, that is, the cooling water supply pump outlet valve 7 and the condenser outlet valve 16, noise at the condenser outlet valve 16 is reduced as compared with the related art.
[0036]
Further, according to the condenser cooling water flow rate adjusting device, the control device 24 adds the aging piping pressure loss with respect to the aging of the piping pressure loss due to marine organisms adhering to the cooling water piping 6 and pipe corrosion. By performing the adjustment, it is possible to incorporate and control the fluctuation of the liquid level difference. Therefore, it is possible to stably maintain the flow rate of the cooling water during long-term operation of the power generation equipment.
[0037]
【The invention's effect】
As described above, according to the condenser cooling water flow rate adjusting device and the adjusting method according to the present invention, the opening degree of the pump outlet valve is adjusted by following the fluctuation of the liquid level difference between the intake tank and the water discharge tank. Therefore, the cooling water can always be supplied at a stable flow rate.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a condenser cooling device provided with a cooling water flow control device according to the present invention.
FIG. 2 is a flow characteristic curve of a pump outlet valve.
FIG. 3 is a function fx curve for determining an opening of a pump outlet valve.
FIG. 4 is a control block diagram in the condenser cooling water flow rate adjusting device of the present invention.
FIG. 5 is a configuration diagram showing a conventional condenser cooling device.
FIG. 6 is a structural diagram showing a configuration near an intake tank of a combined power generation facility including a condenser cooling device unit.
FIG. 7 is a graph showing a correlation between a pump QH curve and a flow rate-pressure curve.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Intake port 2 Intake channel 3 Screen 4 Intake tank 5 Cooling water supply pump 6 Inlet side cooling water pipe 7 Cooling water supply pump outlet valve 8 Backwash valve 9 Condenser 10 Condenser cooling device 16 Condenser outlet valve 17 Outlet-side cooling water drainage pipe 18 Water discharge tank 22 Water intake tank liquid level meter 23 Water discharge tank liquid level meter 24 Controller 31 Step of measuring liquid level of water intake tank 32 Step of measuring liquid level of water discharge tank 33 Liquid Step 34 of calculating surface level difference Step 35 of calculating the opening of the cooling water supply pump outlet valve Step 35 of controlling the opening of the cooling water supply pump outlet valve Step 36 of adjusting the increase in the pressure loss over time in the pipe 50 Condenser cooling device (conventional)
51 intake port 52 intake channel 53 screen 54 intake tank 55 cooling water supply pump 56 cooling water piping 57 cooling water supply pump outlet valve 58 backwash valve 59 condenser 60 condenser outlet valve 61 water discharge tank 62 pressure gauge 70 combined cycle Power generation equipment 81 Pump QH curve 82 Pump flow-pressure characteristic curve (ΔH1)
83 Pump flow-pressure characteristic curve (ΔH2)

Claims (6)

蒸気タービンの復水器を冷却するための冷却水を貯水する取水槽と、この取水槽から冷却水を前記復水器に導く冷却水供給ポンプと、この冷却水供給ポンプの出口側に設けられた冷却水供給ポンプ出口弁と、前記復水器出口側に設けられた復水器出口弁と、この復水器を冷却した後の冷却水が排水される放水槽とからなる復水器冷却装置における復水器冷却水流量調整装置において、
前記取水槽に設けられて貯水量を計測する取水槽液面レベル計と、前記放水槽に設けられて貯水量を計測する放水槽液面レベル計とを備え、前記取水槽液面レベル計と前記放水槽液面レベル計にてそれぞれ計測された計測値から取水槽と放水槽との液面レベル差を求め、予め前記冷却水供給ポンプの性能と前記復水器に必要な冷却水量とから求められた前記液面レベルの差と前記冷却水供給ポンプ出口弁開度との関係に基づいて前記冷却水出口ポンプの開度を制御する制御装置を備えたことを特徴とする復水器冷却水流量調整装置。
An intake tank for storing cooling water for cooling the condenser of the steam turbine, a cooling water supply pump for guiding cooling water from the intake tank to the condenser, and an outlet side of the cooling water supply pump. A cooling water supply pump outlet valve, a condenser outlet valve provided on the condenser outlet side, and a water discharge tank from which cooling water after cooling the condenser is discharged. In the condenser cooling water flow control device in the device,
An intake tank liquid level meter provided in the water intake tank to measure the amount of water storage, and a water discharge tank liquid level meter provided in the water discharge tank to measure the amount of water storage, wherein the water intake tank liquid level meter and The liquid level difference between the intake tank and the water discharge tank is obtained from the measured value measured by the water tank liquid level meter, and the performance of the cooling water supply pump and the amount of cooling water required for the condenser are determined in advance. A condenser for controlling an opening degree of the cooling water outlet pump based on a relationship between the obtained difference in the liquid level and an opening degree of the cooling water supply pump outlet valve. Water flow control device.
複数の蒸気タービンのそれぞれの復水器を冷却するための冷却水を貯水する共通の取水槽と、この取水槽から冷却水を前記復水器に導く複数の冷却水供給ポンプと、これら冷却水供給ポンプの出口側に設けられた冷却水供給ポンプ出口弁と、前記復水器出口側に設けられた復水器出口弁と、これら復水器を冷却した後の冷却水が排水される共通の放水槽とからなる復水器冷却装置における復水器冷却水流量調整装置において、
前記取水槽に設けられて貯水量を計測する取水槽液面レベル計と、前記放水槽に設けられて貯水量を計測する放水槽液面レベル計とを備え、前記取水槽液面レベル計と前記放水槽液面レベル計にてそれぞれ計測された計測値から取水槽と放水槽との液面レベル差を求め、予め前記冷却水供給ポンプの性能と前記復水器に必要な冷却水量とから求められた前記液面レベルの差と前記冷却水供給ポンプ出口弁開度との関係に基づいて前記冷却水出口ポンプの開度を制御する制御装置を備えたことを特徴とする復水器冷却水流量調整装置。
A common intake tank for storing cooling water for cooling the condensers of the plurality of steam turbines, a plurality of cooling water supply pumps for guiding cooling water from the intake tank to the condenser, A cooling water supply pump outlet valve provided on the outlet side of the supply pump, a condenser outlet valve provided on the condenser outlet side, and a common drainage of cooling water after cooling these condensers. In the condenser cooling water flow control device in the condenser cooling device consisting of a water discharge tank,
An intake tank liquid level meter provided in the water intake tank to measure the amount of water storage, and a water discharge tank liquid level meter provided in the water discharge tank to measure the amount of water storage, wherein the water intake tank liquid level meter and The liquid level difference between the intake tank and the water discharge tank is obtained from the measured value measured by the water tank liquid level meter, and the performance of the cooling water supply pump and the amount of cooling water required for the condenser are determined in advance. A condenser for controlling an opening degree of the cooling water outlet pump based on a relationship between the obtained difference in the liquid level and an opening degree of the cooling water supply pump outlet valve. Water flow control device.
請求項1または請求項2記載の復水器冷却水流量調整装置において、前記制御装置は前記復水器内における経年的に増加する配管流量損失に基づいて前記冷却水供給ポンプ出口弁開度を調整する手段を備えたことを特徴とする復水器冷却水流量調整装置。3. The condenser cooling water flow control device according to claim 1, wherein the control device adjusts the cooling water supply pump outlet valve opening based on a pipe flow loss that increases with time in the condenser. 4. A condenser cooling water flow rate adjusting device comprising an adjusting means. 蒸気タービンの復水器を冷却するための冷却水を貯水する取水槽と、この取水槽から冷却水を前記復水器に導く冷却水供給ポンプと、この冷却水供給ポンプの出口側に設けられた冷却水供給ポンプ出口弁と、前記復水器出口側に設けられた復水器出口弁と、この復水器を冷却した後の冷却水が排水される放水槽とからなる復水器冷却装置における復水器冷却水流量調整方法において、
この復水器冷却水流量調整方法は、取水槽液面レベル計により取水槽の液面レベルを計測する工程と、放水槽液面レベル計により放水槽の液面レベルを計測する工程と、取水槽と放水槽との液面レベル差を求める工程と、予め前記冷却水供給ポンプの性能と前記復水器に必要な冷却水量とから求められた液面レベル差と前記冷却水供給ポンプ出口弁開度との関係から冷却水供給ポンプ出口弁の開度を算出する工程と、前記液面レベル差を求める工程と前記液面レベル差と前記冷却水供給ポンプ出口弁開度との関係を算出する工程とで得られた情報に基づいて前記冷却水供給ポンプ出口弁の開度を制御する制御工程とからなることを特徴とする復水器冷却水流量調整方法。
An intake tank for storing cooling water for cooling the condenser of the steam turbine, a cooling water supply pump for guiding cooling water from the intake tank to the condenser, and an outlet side of the cooling water supply pump. A cooling water supply pump outlet valve, a condenser outlet valve provided on the condenser outlet side, and a water discharge tank from which cooling water after cooling the condenser is discharged. In the condenser cooling water flow adjustment method in the device,
This condenser cooling water flow rate adjustment method includes a step of measuring the liquid level of the water intake tank with a liquid level meter of the water intake tank, a step of measuring the liquid level of the water discharge tank with the liquid level meter of the water discharge tank, A step of determining a liquid level difference between a water tank and a water discharge tank; and a liquid level difference previously determined from the performance of the cooling water supply pump and the amount of cooling water required for the condenser, and the cooling water supply pump outlet valve. Calculating the opening of the cooling water supply pump outlet valve from the relationship with the opening; calculating the liquid level difference; and calculating the relationship between the liquid level difference and the cooling water supply pump outlet valve opening. Controlling a degree of opening of the cooling water supply pump outlet valve based on the information obtained in the step (a).
複数の蒸気タービンのそれぞれの復水器を冷却するための冷却水を貯水する取水槽と、この取水槽から冷却水を前記各復水器に導く複数の冷却水供給ポンプと、これら冷却水供給ポンプの出口側に設けられた冷却水供給ポンプ出口弁と、前記復水器出口側に設けられた復水器出口弁と、これら復水器を冷却した後の冷却水が排水される放水槽とからなる復水器冷却装置における復水器冷却水流量調整方法において、
この復水器冷却水流量調整方法は、取水槽液面レベル計により取水槽の液面レベルを計測する工程と、放水槽液面レベル計により放水槽の液面レベルを計測する工程と、取水槽と放水槽との液面レベル差を求める工程と、予め前記冷却水供給ポンプの性能と前記復水器に必要な冷却水量とから求められた液面レベル差と前記冷却水供給ポンプ出口弁開度との関係から冷却水供給ポンプ出口弁の開度を算出する工程と、前記液面レベル差を求める工程と前記液面レベル差と前記冷却水供給ポンプ出口弁開度との関係を算出する工程とで得られた情報に基づいて前記冷却水供給ポンプ出口弁の開度を制御する制御工程とからなることを特徴とする復水器冷却水流量調整方法。
An intake tank for storing cooling water for cooling the condensers of the plurality of steam turbines, a plurality of cooling water supply pumps for guiding the cooling water from the intake tank to the condensers, A cooling water supply pump outlet valve provided on the outlet side of the pump, a condenser outlet valve provided on the condenser outlet side, and a water discharge tank for discharging cooling water after cooling the condenser In the condenser cooling water flow rate adjusting method in the condenser cooling device comprising:
This condenser cooling water flow rate adjustment method includes a step of measuring the liquid level of the water intake tank with a liquid level meter of the water intake tank, a step of measuring the liquid level of the water discharge tank with the liquid level meter of the water discharge tank, A step of determining a liquid level difference between a water tank and a water discharge tank; and a liquid level difference previously determined from the performance of the cooling water supply pump and the amount of cooling water required for the condenser, and the cooling water supply pump outlet valve. Calculating the opening of the cooling water supply pump outlet valve from the relationship with the opening; calculating the liquid level difference; and calculating the relationship between the liquid level difference and the cooling water supply pump outlet valve opening. Controlling a degree of opening of the cooling water supply pump outlet valve based on the information obtained in the step (a).
請求項4または請求項5記載の復水器冷却水流量調整方法において、前記制御工程は前記復水器内における経年的に増加する配管流量損失に基づいて前記冷却水供給ポンプ出口弁開度を調整する工程を備えたことを特徴とする復水器冷却水流量調整方法。6. The condenser cooling water flow rate adjusting method according to claim 4 or 5, wherein the control step adjusts the cooling water supply pump outlet valve opening based on a pipe flow loss that increases with time in the condenser. A method for adjusting a condenser cooling water flow rate, comprising a step of adjusting.
JP2003007578A 2003-01-15 2003-01-15 Device and method for regulating cooling water flow in condenser Pending JP2004218953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003007578A JP2004218953A (en) 2003-01-15 2003-01-15 Device and method for regulating cooling water flow in condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003007578A JP2004218953A (en) 2003-01-15 2003-01-15 Device and method for regulating cooling water flow in condenser

Publications (1)

Publication Number Publication Date
JP2004218953A true JP2004218953A (en) 2004-08-05

Family

ID=32897631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003007578A Pending JP2004218953A (en) 2003-01-15 2003-01-15 Device and method for regulating cooling water flow in condenser

Country Status (1)

Country Link
JP (1) JP2004218953A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263489A (en) * 2006-03-29 2007-10-11 Chugoku Electric Power Co Inc:The Cooling water circulation device
JP2008274816A (en) * 2007-04-27 2008-11-13 Hitachi Ltd Circulating water system protection device used for power-generating plant
CN102901371A (en) * 2012-10-11 2013-01-30 沈阳仪表科学研究院 Mist spraying cooling device for indirect air cooling system of power plant condenser
JP2020133981A (en) * 2019-02-18 2020-08-31 株式会社東芝 Cooling water circulation system, cooling water circulation method and steam power plant
CN113546971A (en) * 2020-04-24 2021-10-26 德国考科斯技术有限公司 Apparatus for cooling long products and method for cooling long products using said apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263489A (en) * 2006-03-29 2007-10-11 Chugoku Electric Power Co Inc:The Cooling water circulation device
JP2008274816A (en) * 2007-04-27 2008-11-13 Hitachi Ltd Circulating water system protection device used for power-generating plant
CN102901371A (en) * 2012-10-11 2013-01-30 沈阳仪表科学研究院 Mist spraying cooling device for indirect air cooling system of power plant condenser
JP2020133981A (en) * 2019-02-18 2020-08-31 株式会社東芝 Cooling water circulation system, cooling water circulation method and steam power plant
CN113546971A (en) * 2020-04-24 2021-10-26 德国考科斯技术有限公司 Apparatus for cooling long products and method for cooling long products using said apparatus
JP2021171824A (en) * 2020-04-24 2021-11-01 コックス・テヒニク・ゲーエムベーハー・ウント・コ・カーゲー Apparatus for cooling long product and method for cooling long product using the apparatus

Similar Documents

Publication Publication Date Title
RU2470751C2 (en) Protective gas flow rate controller for welding set
KR100826889B1 (en) Constant temperature liquid circulating device and method of controlling temperature in the device
RU2706897C2 (en) Method of operation for pump, particularly for multiphase pump, and pump
JP2009209523A (en) Water distribution pressure optimization control system
JP2016525682A5 (en)
JP2012047234A (en) Gas filling device
JP2004218953A (en) Device and method for regulating cooling water flow in condenser
CN111412132A (en) Control method of water feed pump system and water feed pump system
RU2007100446A (en) AUTOMATED INFORMATION SYSTEM FOR MONITORING AND MANAGEMENT OF OPERATION OF A HEATING BOILER WITH WATER BOILERS
JP2009019842A (en) Water delivery control system and water delivery control method
JP2004174462A (en) Method and apparatus for injecting chemical
WO2014181237A1 (en) Method for controlling a part of a pump station
JP2010277376A (en) Device and method for controlling pressure in water supply network
JP4889340B2 (en) Cooling water circulation device
JP5841386B2 (en) Variable speed pumped storage power generator
JP3540627B2 (en) Distributing valve control device
JP2003269702A (en) Deaerator level controller
JP3603145B2 (en) Operating device for seawater pump
RU2003134954A (en) METHOD AND DEVICE FOR REGULATING THE WATER FLOW TEMPERATURE EXITING FROM THE HEAT EXCHANGER, AND MEASURING THE PRODUCED HEAT
JP2020143641A (en) Compressor pressure control method and pressure control device
JP2006183496A (en) Operation method of pump for supplying fluid
KR20190046498A (en) Apparatus for regulating flow rate of heat exchanger
JP2923040B2 (en) Power plant and water level control method and apparatus
JP2013015276A (en) Device and method for controlling circulating water pump
JPH11294712A (en) Method and apparatus for reducing pressure loss of boiler water supply system