JP2004218668A - Kinetic pressure gas bearing device, and disk recording/reproducing apparatus - Google Patents

Kinetic pressure gas bearing device, and disk recording/reproducing apparatus Download PDF

Info

Publication number
JP2004218668A
JP2004218668A JP2003003814A JP2003003814A JP2004218668A JP 2004218668 A JP2004218668 A JP 2004218668A JP 2003003814 A JP2003003814 A JP 2003003814A JP 2003003814 A JP2003003814 A JP 2003003814A JP 2004218668 A JP2004218668 A JP 2004218668A
Authority
JP
Japan
Prior art keywords
peripheral surface
dynamic pressure
outer peripheral
shaft
bearing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003003814A
Other languages
Japanese (ja)
Inventor
Keigo Kusaka
圭吾 日下
隆文 ▲浅▼田
Takafumi Asada
Toshiaki Matsumoto
才明 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003003814A priority Critical patent/JP2004218668A/en
Publication of JP2004218668A publication Critical patent/JP2004218668A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Rotational Drive Of Disk (AREA)
  • Motor Or Generator Frames (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance reliability and kinetic characteristics of a kinetic pressure gas bearing device. <P>SOLUTION: The thickness B of a film surface-treated between two sets of circumferential surface side kinetic pressure generation grooves 2d and 2e is set to be larger than the thickness C of a film surface-treated between the two sets of circumferential surface side kinetic pressure generation grooves 2d and 2e on an outer circumferential surface of a shaft 2. A contact area of the outer circumferential surface of the shaft 2 with an inner circumference of a sleeve 1 when the rotation of a sleeve 1 is started and stopped is reduced thereby. Reliability and kinetic characteristics of a kinetic pressure gas bearing device are enhanced. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、磁気ディスクなどの記録/再生用のディスクを回転させる駆動部に適用される動圧気体軸受装置、およびディスクに対して電気信号の記録/再生を行うためのハードディスク装置などの当該動圧気体軸受装置を搭載するディスク記録/再生装置に関するものである。
【0002】
【従来の技術】
近年、磁気ディスクなど、記録/再生用ディスク装置は、高速化,大記憶容量化の傾向にあり、特に、大記憶容量化に当たって記録の高密度化が必須である。
【0003】
そのためには、回転主軸部の高精度の回転技術が必要であり、従来の玉軸受あるいは真円すべり軸受に代えて、特許文献1に例示するような、高精度な動圧気体軸受を採用する傾向にある。
【0004】
図5は従来の動圧気体軸受装置を使用したディスク記録再生装置の主要部を示す断面図であり、通気孔4を有するキャップ3により閉塞されたスリーブ1の外周には、記録/再生用のディスク8が固定されており、固定軸である軸2と回転体としてのスリーブ1との間に気体が充填されている。軸2は、軸本体2aと、軸本体2aの下方に伸びる突出軸部2bとから構成され、軸2の上端面にはスラスト軸受部2cが設けられている。突出軸部2bはベース7に固定されている。また、軸本体2aの外周面には、膜厚さEの表面処理が均一に施されている。
【0005】
さらに、図5において、2d,2eはラジアル方向に圧力を発生する周面側動圧発生溝、2fはスラスト方向に圧力を発生する上面側動圧発生溝であり、5はコイル、6はマグネットである。
【0006】
次に、以上のように構成された従来の動圧気体軸受装置について、その動作を説明する。図5において、まず、コイル5に通電されると、コイル5とマグネット6との間に電磁力が発生して、スリーブ1は矢印A方向に回転を始める。このとき、軸2の外周面の周面側動圧発生溝2d,2eは気体をかき集め、ラジアル方向に圧力を発生してスリーブ1を浮上させる。
【0007】
一方、スラスト軸受部2cの上面側動圧発生溝2fが対面するキャップ3との間で発生する圧力によってスリーブ1がスラスト方向に支持され、スリーブ1の回転位置が定まって非接触で回転し、スリーブ1に固定されたディスク8は高精度に回転する。
【0008】
【特許文献1】
特開平11−336747号公報
【0009】
【発明が解決しようとする課題】
しかしながら、前記従来の動圧気体軸受装置の構成では、次のような問題がある。すなわち、流体として、油と比較して潤滑性がない気体を用いている動圧気体軸受装置では、スリーブ1の回転開始時および回転停止時において、軸本体2aの外周面の周面側動圧発生溝2d,2eは、対向するスリーブ1の内周面と接触を生じ、軸受装置として性能上、重要な動圧発生溝部の損傷を引き起こすことがある。
【0010】
また、油と比較して粘性が低い気体を用いている動圧気体軸受装置では、軸受のラジアル方向の剛性および負荷容量を大きくするために固定軸2の直径は大きく、軸方向の長さは長く設定する。このため、スリーブ1の回転開始時においては軸2の外周面とスリーブ1の内周面の接触面積は大きくなり、コイル5に投入する起動電流が多くなると共に、軸受に発熱が生じることによりコイル5の回転効率が悪化する。その結果、軸受装置のバッテリーの消耗,消費電力の増加などを引き起こすという問題がある。
【0011】
本発明は、前記従来の問題点に鑑み、動圧発生溝の損傷を防ぐと共に、軸受装置の回転効率を向上させることができ、動圧気体軸受装置およびそれを用いたディスク記録/再生装置の信頼性と動作特性の向上を図ることを目的とする。
【0012】
【課題を解決するための手段】
前記目的を達成するため、本発明の動圧気体軸受装置は、固定軸と、内周面が前記固定軸の外周面に回転可能に対向し、上部が通気孔を有するキャップで閉塞したスリーブと、前記固定軸の外周面と該外周面に対向する前記スリーブの内周面との少なくとも一方に設けられ、ラジアル方向に支持力を発生する少なくとも2組の周面側動圧発生溝と、前記固定軸の上端面と前記キャップにおける前記軸の上端面に対向する面との少なくとも一方に設けられて、スラスト方向に支持力を発生させる上面側動圧発生溝と、前記スリーブを回転駆動する駆動部とを備えた動圧気体軸受装置であって、前記固定軸の外周面における前記周面側動圧発生溝の間に表面処理される膜厚さを、前記固定軸の外周面における前記周面側動圧発生溝の形成部分に表面処理される膜厚さよりも大きく設定したことを特徴とする。
【0013】
この構成により、スリーブの回転開始時および回転停止時に軸受装置として性能上、重要な動圧発生溝部の接触による損傷を避けることができると共に、スリーブの回転開始時においては軸の外周面とスリーブの内周面の接触面積は小さくすることができ、コイルに投入する起動電流は低下し、軸受の発熱を抑えることができる。したがって、動圧発生溝の損傷を防ぐと共に、軸受装置の回転効率を向上させることができ、動圧気体軸受装置の信頼性と動作特性が向上する。
【0014】
また、軸に施す表面処理としてDLC(ダイヤモンド・ライク・カーボン)処理を行うことにより、他の表面処理(メッキ、樹脂コーティングなど)に比べ、上記の形状が形成しやすくなる。
【0015】
加えて、形成膜の耐摩耗性および耐剥離性の観点から、固定軸の外周面における周面側動圧発生溝の間に表面処理される膜厚さを、固定軸の外周面における周面側動圧発生溝の形成部分に表面処理される膜厚さよりも0.5〜1.0μm大きくすることが望ましい。
【0016】
また、本発明のディスク記録/再生装置は、前記動圧気体軸受装置を搭載したことにより、信頼性および動作特性が向上でき、サーバー用、あるいはモバイル機器用のハードディスクドライブなどとして好適なものとなる。
【0017】
【発明の実施の形態】
以下、本発明の好適な実施形態について図面を参照しながら説明する。
【0018】
図1は本発明に係る動圧気体軸受装置の実施形態を説明するためのディスク記録再生装置の要部を示す断面図である。
【0019】
図1に示すように、通気孔4を有するキャップ3により閉塞したスリーブ1の外周には、記録/再生用のディスク8が固定されており、固定軸である軸2と回転体としてのスリーブ1との間に気体が充填されている。軸2は、軸本体2aと、軸本体2aの下方に伸びる突出軸部2bとから構成される。軸2の上端面にはスラスト軸受部2cが設けられている。突出軸部2bはベース7に固定されている。
【0020】
2d,2eはラジアル方向に圧力を発生する複数(本例では2組のものを示している)の周面側動圧発生溝、2fはスラスト方向に圧力を発生する上面側動圧発生溝である。また、軸本体2aの外周面において、2組の周面側動圧発生溝2d,2e間には、周面側動圧発生溝2d,2eが形成された部分よりも膜厚さが大きい表面処理が施されている。なお、図中、5はコイル、6はマグネットであって、スリーブ1の回転駆動部を構成している。
【0021】
前記のように構成された本実施形態の動圧気体軸受装置では、コイル5に通電されると、コイル5とマグネット6との間に電磁力が発生して、スリーブ1は、矢印A方向に回転を始める。このとき、軸本体2aの外周面の周面側動圧発生溝2d,2eは気体をかき集め、ラジアル方向に圧力を発生してスリーブ1を浮上させる。一方、図2に示すスラスト軸受部2cにおける上面側動圧発生溝2fが対面するキャップ3との間で発生する圧力によって、スリーブ1がスラスト方向に支持され、スリーブ1の回転位置が定まって非接触で回転し、スリーブ1に固定された記録/再生用のディスク8は高精度に回転する。
【0022】
この結果、スリーブ1の回転開始時および回転停止時において、軸2の外周面とスリーブ1の内周面の接触部は、軸本体2aの外周面に形成された周面側動圧発生溝2d,2eの間の部分に設定することができ、よって、軸受装置として性能上、重要な動圧発生溝部の接触による損傷を避けることができる。さらに、スリーブ1の回転開始時においては軸本体2aの外周面とスリーブ1の内周面の接触面積を小さくすることができるため、コイル5に投入する起動電流は低下し、軸受の発熱による軸受装置の回転効率の劣化を抑えることができる。
【0023】
軸本体2aに施す表面処理は、図3に示すように真空容器9の中でイオン源10により炭化水素ガスをプラズマ中で分解し、プラズマ中のイオンあるいは励起分子を軸2に衝突させることにより、軸2の外周面に成膜するDLC(ダイヤモンド・ライク・カーボン)処理とする。
【0024】
また、この表面処理装置において、軸2とイオン源10との設置位置の間に、軸本体2aの外周面に形成された周面側動圧発生溝2d,2e間に対向した空所11aを有し、各周面側動圧発生溝2d,2fの形成部分をカバーするような大きさのマスク板11を、軸2から距離をおいて設置している。また、軸2には回転駆動用のモータ12が取り付けられている。
【0025】
このため、真空容器9の中のイオンあるいは励起分子はマスク板11の空所11aを通り、周面側動圧発生溝2d,2e間の軸本体2aの外周面に膜厚さBのDLC膜を形成すると共に、マスク板11と軸2との間隙Sにおける上下からイオンあるいは励起分子が回り込んで、軸本体2aの外周面に形成された周面側動圧発生溝2d,2eの部分に膜厚さCのDLC膜を形成する。そして、処理中には、軸2はモータ12によって回転(矢印E方向)するため、軸2の外周面に均一に前記膜厚さで成膜がなされる。
【0026】
このDLC処理により、処理時に軸本体2aにマスキングを装着する必要がある他の表面処理(メッキ,樹脂コーティングなど)に比べて、容易に前記膜厚さの被膜が形成される。
【0027】
また、形成されたDLC膜の耐摩耗性および耐剥離性の観点から、軸2の外周面における周面側動圧発生溝2d,2e間に表面処理される膜厚さBを、軸2の外周面における周面側動圧発生溝2d,2eが形成されている部分に表面処理される膜厚さCよりも0.5〜1.0μm大きくすることが望ましい。具体的には、軸2の外周面における周面側動圧発生溝2d,2e間に表面処理される膜厚さBは1.0〜1.3μmとする。なお、これ以上の大きさのDLC膜では剥離しやすくなる可能性がある。また、軸2の外周面における周面側動圧発生溝2d,2eに表面処理された膜厚さCは、軸2とスリーブ1の円筒度といった加工精度の関係から、本発明の目的を果たすために前記0.5〜1.0μmの膜厚さの差を持たせる必要があり、よって0.3〜0.5μmとする。
【0028】
図4は本発明に係る動圧気体軸受装置が使用されたディスク記録/再生装置の実施形態の構成図である。ヘッドアーム14は、ベース7に設けたボイスコイルモータ16によって揺動軸15を中心に揺動運動(矢印D方向)する。そして、ヘッドアーム14にそれぞれ取り付けられたヘッド13は、回転するディスク8の表面上で揺動運動を行い、任意の位置に位置決めされ、ディスク8との間で信号の記録/再生を行うように構成されている。
【0029】
このようにディスク記録/再生装置に図1〜図3にて説明したような動圧気体軸受装置を使用することにより、ディスク8を高精度に回転させることができ、記録/再生において高い信頼性があるディスク記録/再生装置を提供することができる。
【0030】
なお、本実施形態において、周面側動圧発生溝2d,2eは、軸2の外周面と該外周面に対向するスリーブ1の内周面との少なくとも一方に設けられ、また、上面側動圧発生溝2fは、軸2の上端面とキャップ3における軸2の上端面に対向する面との少なくとも一方に設けられていればよく、図1〜図5にて説明した設置構造に限定されない。
【0031】
【発明の効果】
以上説明したように、本発明の動圧気体軸受装置は、軸の外周面における周面側動圧発生溝の間に表面処理される膜厚さを、軸の外周面における周面側動圧発生溝の形成部分に表面処理される膜厚さよりも大きく設定したことにより、スリーブの回転開始時および回転停止時に軸受装置として性能上、重要な動圧発生溝部の接触による損傷を避けることができると共に、スリーブの回転開始時においては軸の外周面とスリーブの内周面の接触面積は小さくすることができ、コイルに投入する起動電流は低下し、軸受の発熱を抑えることができ、軸受装置の回転効率を向上させることができる。
【0032】
また、本発明のディスク記録再生装置は、前記動圧気体軸受装置を備えたことにより、信頼性や動作特性が向上できるため、サーバー用あるいはモバイル機器用としてのハードディスクドライブなどに用いて好適である。
【図面の簡単な説明】
【図1】本発明に係る動圧気体軸受装置の実施形態を説明するためのディスク記録再生装置の要部を示す断面図
【図2】図1の動圧気体軸受装置のスラスト軸受部を示す平面図
【図3】図1の動圧気体軸受装置の軸本体に施す表面処理を行う処理装置の説明図
【図4】本発明に係る動圧気体軸受装置が使用されたディスク記録/再生装置の実施形態の構成図
【図5】従来の動圧気体軸受装置を使用したディスク記録再生装置の主要部を示す断面図
【符号の説明】
1 スリーブ
2 軸(固定軸)
2a 軸本体
2b 突出軸部
2c スラスト軸受部
2d,2e 周面側動圧発生溝
2f 上面側動圧発生溝
3 キャップ
4 通気穴
5 コイル
6 マグネット
7 ベース
8 ディスク
9 真空容器
10 イオン源
11 マスク板
12 モータ
13 ヘッド
14 ヘッドアーム
15 揺動軸
16 ボイスコイルモータ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a dynamic pressure gas bearing device applied to a drive unit for rotating a recording / reproducing disk such as a magnetic disk and a hard disk device for recording / reproducing an electric signal to / from the disk. The present invention relates to a disk recording / reproducing device equipped with a pressurized gas bearing device.
[0002]
[Prior art]
2. Description of the Related Art In recent years, recording / reproducing disk devices such as magnetic disks have tended to have higher speeds and larger storage capacities. In particular, higher recording densities are essential for larger storage capacities.
[0003]
For that purpose, a high-precision rotation technology of the rotating main shaft part is required, and a high-precision dynamic pressure gas bearing as exemplified in Patent Document 1 is employed instead of the conventional ball bearing or perfect plain bearing. There is a tendency.
[0004]
FIG. 5 is a cross-sectional view showing a main part of a disk recording / reproducing apparatus using a conventional dynamic pressure gas bearing device. A recording / reproducing apparatus is provided around an outer periphery of a sleeve 1 closed by a cap 3 having a vent hole 4. The disk 8 is fixed, and the space between the shaft 2 as a fixed shaft and the sleeve 1 as a rotating body is filled with gas. The shaft 2 includes a shaft main body 2a and a protruding shaft portion 2b extending below the shaft main body 2a, and a thrust bearing 2c is provided on an upper end surface of the shaft 2. The protruding shaft portion 2b is fixed to the base 7. The outer peripheral surface of the shaft main body 2a is uniformly subjected to a surface treatment having a thickness E.
[0005]
Further, in FIG. 5, 2d and 2e are circumferential-side dynamic pressure generating grooves that generate pressure in the radial direction, 2f are upper-side dynamic pressure generating grooves that generate pressure in the thrust direction, 5 is a coil, and 6 is a magnet. It is.
[0006]
Next, the operation of the conventional hydrodynamic gas bearing device configured as described above will be described. In FIG. 5, when the coil 5 is energized, an electromagnetic force is generated between the coil 5 and the magnet 6, and the sleeve 1 starts rotating in the direction of arrow A. At this time, the peripheral surface side dynamic pressure generating grooves 2d and 2e on the outer peripheral surface of the shaft 2 collect the gas and generate pressure in the radial direction to cause the sleeve 1 to float.
[0007]
On the other hand, the sleeve 1 is supported in the thrust direction by the pressure generated between the upper surface side dynamic pressure generating groove 2f of the thrust bearing portion 2c and the facing cap 3, the rotational position of the sleeve 1 is determined, and the sleeve 1 rotates in a non-contact manner. The disk 8 fixed to the sleeve 1 rotates with high precision.
[0008]
[Patent Document 1]
JP-A-11-336747
[Problems to be solved by the invention]
However, the configuration of the conventional hydrodynamic gas bearing device has the following problems. That is, in the hydrodynamic gas bearing device using a gas having less lubricity than oil as the fluid, when the rotation of the sleeve 1 is started and stopped, the dynamic pressure of the outer peripheral surface of the shaft main body 2a is reduced. The generation grooves 2d and 2e may come into contact with the inner peripheral surface of the sleeve 1 facing the same, and may cause damage to the dynamic pressure generation groove portion which is important for performance as a bearing device.
[0010]
Further, in a hydrodynamic gas bearing device using a gas having a lower viscosity than oil, the diameter of the fixed shaft 2 is large and the axial length is large in order to increase the radial rigidity and load capacity of the bearing. Set longer. For this reason, when the rotation of the sleeve 1 is started, the contact area between the outer peripheral surface of the shaft 2 and the inner peripheral surface of the sleeve 1 is increased, the starting current supplied to the coil 5 is increased, and heat is generated in the bearing. 5, the rotation efficiency is deteriorated. As a result, there is a problem that the battery of the bearing device is consumed, power consumption is increased, and the like.
[0011]
SUMMARY OF THE INVENTION The present invention has been made in consideration of the above-described conventional problems, and can prevent damage to a dynamic pressure generating groove and can improve the rotational efficiency of a bearing device, and can provide a dynamic pressure gas bearing device and a disk recording / reproducing device using the same. The purpose is to improve reliability and operating characteristics.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, a dynamic pressure gas bearing device of the present invention includes a fixed shaft, a sleeve whose inner peripheral surface is rotatably opposed to the outer peripheral surface of the fixed shaft, and whose upper portion is closed by a cap having a vent hole. At least two sets of circumferential-side dynamic pressure generating grooves that are provided on at least one of an outer circumferential surface of the fixed shaft and an inner circumferential surface of the sleeve facing the outer circumferential surface and generate a supporting force in a radial direction; An upper surface side dynamic pressure generating groove provided on at least one of an upper end surface of a fixed shaft and a surface of the cap facing the upper end surface of the shaft to generate a supporting force in a thrust direction, and a drive for rotationally driving the sleeve. Part, wherein the thickness of the film to be surface-treated between the peripheral-surface-side dynamic pressure generating grooves on the outer peripheral surface of the fixed shaft is reduced by the outer peripheral surface of the fixed shaft. Displayed on the surface-side dynamic pressure generation groove formation Characterized by being larger than the film thickness to be processed.
[0013]
With this configuration, it is possible to avoid damage due to contact of the dynamic pressure generating groove portion, which is important in terms of performance as a bearing device at the start and stop of rotation of the sleeve, and at the start of rotation of the sleeve, to the outer peripheral surface of the shaft and the sleeve. The contact area of the inner peripheral surface can be reduced, the starting current supplied to the coil decreases, and the heat generation of the bearing can be suppressed. Therefore, the dynamic pressure generating groove can be prevented from being damaged, and the rotational efficiency of the bearing device can be improved, so that the reliability and operating characteristics of the dynamic pressure gas bearing device can be improved.
[0014]
Further, by performing DLC (diamond-like carbon) treatment as a surface treatment to be performed on the shaft, the above-described shape is easily formed as compared with other surface treatments (plating, resin coating, and the like).
[0015]
In addition, from the viewpoint of the abrasion resistance and the peeling resistance of the formed film, the thickness of the surface treated between the circumferential-side dynamic pressure generating grooves on the outer peripheral surface of the fixed shaft is set to the outer peripheral surface of the fixed shaft. It is desirable that the thickness is 0.5 to 1.0 μm larger than the film thickness of the surface treatment of the portion where the side dynamic pressure generating groove is formed.
[0016]
In addition, the disk recording / reproducing apparatus of the present invention can improve reliability and operation characteristics by mounting the dynamic pressure gas bearing device, and is suitable as a hard disk drive for a server or a mobile device. .
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
[0018]
FIG. 1 is a sectional view showing a main part of a disk recording / reproducing apparatus for explaining an embodiment of a dynamic pressure gas bearing device according to the present invention.
[0019]
As shown in FIG. 1, a recording / reproducing disk 8 is fixed to an outer periphery of a sleeve 1 closed by a cap 3 having a ventilation hole 4, and a shaft 2 as a fixed shaft and a sleeve 1 as a rotating body are fixed. Is filled with gas. The shaft 2 includes a shaft body 2a and a protruding shaft portion 2b extending below the shaft body 2a. The upper end surface of the shaft 2 is provided with a thrust bearing 2c. The protruding shaft portion 2b is fixed to the base 7.
[0020]
Reference numerals 2d and 2e denote a plurality of (two in this example) peripheral-surface-side dynamic pressure generating grooves for generating pressure in the radial direction, and 2f an upper surface-side dynamic pressure generating groove for generating pressure in the thrust direction. is there. Further, on the outer peripheral surface of the shaft main body 2a, a surface having a larger film thickness between the two sets of the peripheral surface dynamic pressure generating grooves 2d and 2e than the portion where the peripheral surface dynamic pressure generating grooves 2d and 2e are formed. Processing has been applied. In the drawing, reference numeral 5 denotes a coil, and reference numeral 6 denotes a magnet, which constitute a rotation driving unit of the sleeve 1.
[0021]
In the dynamic pressure gas bearing device of the present embodiment configured as described above, when the coil 5 is energized, an electromagnetic force is generated between the coil 5 and the magnet 6, and the sleeve 1 moves in the direction of arrow A. Start spinning. At this time, the peripheral-surface-side dynamic pressure generating grooves 2d and 2e on the outer peripheral surface of the shaft main body 2a collect gas and generate pressure in the radial direction to cause the sleeve 1 to float. On the other hand, the sleeve 1 is supported in the thrust direction by the pressure generated between the upper surface side dynamic pressure generating groove 2f of the thrust bearing portion 2c shown in FIG. The recording / reproducing disk 8 fixed to the sleeve 1 rotates with the contact, and rotates with high precision.
[0022]
As a result, when the rotation of the sleeve 1 is started and stopped, the contact portion between the outer peripheral surface of the shaft 2 and the inner peripheral surface of the sleeve 1 is in contact with the peripheral surface side dynamic pressure generating groove 2d formed on the outer peripheral surface of the shaft main body 2a. , 2e, so that damage due to contact of the dynamic pressure generating groove portion, which is important in terms of performance as a bearing device, can be avoided. Furthermore, at the start of rotation of the sleeve 1, the contact area between the outer peripheral surface of the shaft main body 2a and the inner peripheral surface of the sleeve 1 can be reduced, so that the starting current supplied to the coil 5 decreases, and the bearing generates heat due to heat generation of the bearing. Deterioration of the rotation efficiency of the device can be suppressed.
[0023]
The surface treatment applied to the shaft main body 2a is performed by decomposing a hydrocarbon gas in a plasma by an ion source 10 in a vacuum vessel 9 and colliding ions or excited molecules in the plasma with the shaft 2 as shown in FIG. And a DLC (diamond-like carbon) process for forming a film on the outer peripheral surface of the shaft 2.
[0024]
Further, in this surface treatment apparatus, a space 11a facing between the peripheral side dynamic pressure generating grooves 2d and 2e formed on the outer peripheral surface of the shaft main body 2a is provided between the installation position of the shaft 2 and the ion source 10. A mask plate 11 having a size that covers the portions where the peripheral surface side dynamic pressure generating grooves 2 d and 2 f are formed is installed at a distance from the shaft 2. Further, a motor 12 for rotational driving is attached to the shaft 2.
[0025]
For this reason, the ions or excited molecules in the vacuum vessel 9 pass through the space 11a of the mask plate 11, and the DLC film having a thickness B is formed on the outer peripheral surface of the shaft main body 2a between the peripheral side dynamic pressure generating grooves 2d and 2e. Are formed, and ions or excited molecules flow from above and below in the gap S between the mask plate 11 and the shaft 2, and are formed on the peripheral surface side dynamic pressure generating grooves 2 d and 2 e formed on the outer peripheral surface of the shaft main body 2 a. A DLC film having a thickness of C is formed. During the processing, the shaft 2 is rotated by the motor 12 (in the direction of the arrow E), so that the film is uniformly formed on the outer peripheral surface of the shaft 2 with the film thickness.
[0026]
By this DLC processing, a film having the above-mentioned film thickness can be easily formed as compared with other surface treatments (plating, resin coating, etc.) in which masking needs to be attached to the shaft main body 2a during the processing.
[0027]
In addition, from the viewpoint of the abrasion resistance and the peeling resistance of the formed DLC film, the thickness B of the surface treated between the peripheral side dynamic pressure generating grooves 2 d and 2 e on the outer peripheral surface of the shaft 2 is set to It is desirable to make the thickness C larger by 0.5 to 1.0 [mu] m than the film thickness C to be surface-treated on the portion of the outer peripheral surface where the peripheral surface side dynamic pressure generating grooves 2d and 2e are formed. Specifically, the film thickness B to be surface-treated between the peripheral-surface-side dynamic pressure generating grooves 2d and 2e on the outer peripheral surface of the shaft 2 is set to 1.0 to 1.3 μm. Note that a DLC film having a size larger than this may be likely to peel off. The thickness C of the surface-treated hydrodynamic pressure generating grooves 2d and 2e on the outer peripheral surface of the shaft 2 fulfills the object of the present invention because of the processing accuracy such as the cylindricity of the shaft 2 and the sleeve 1. Therefore, it is necessary to provide a difference in the film thickness of 0.5 to 1.0 μm, and thus the thickness is set to 0.3 to 0.5 μm.
[0028]
FIG. 4 is a configuration diagram of an embodiment of a disk recording / reproducing apparatus using the dynamic pressure gas bearing device according to the present invention. The head arm 14 swings about a swing shaft 15 (in the direction of arrow D) by a voice coil motor 16 provided on the base 7. The heads 13 respectively attached to the head arms 14 perform oscillating motion on the surface of the rotating disk 8, are positioned at arbitrary positions, and perform signal recording / reproducing with the disk 8. It is configured.
[0029]
By using the dynamic pressure gas bearing device as described with reference to FIGS. 1 to 3 for the disk recording / reproducing apparatus, the disk 8 can be rotated with high accuracy, and high reliability is obtained in recording / reproducing. A disk recording / reproducing apparatus can be provided.
[0030]
In the present embodiment, the peripheral-side dynamic pressure generating grooves 2d and 2e are provided on at least one of the outer peripheral surface of the shaft 2 and the inner peripheral surface of the sleeve 1 facing the outer peripheral surface. The pressure generating groove 2f may be provided on at least one of the upper end surface of the shaft 2 and the surface of the cap 3 facing the upper end surface of the shaft 2, and is not limited to the installation structure described with reference to FIGS. .
[0031]
【The invention's effect】
As described above, the dynamic pressure gas bearing device of the present invention is configured such that the film thickness to be surface-treated between the peripheral surface dynamic pressure generating grooves on the outer peripheral surface of the shaft is adjusted to the peripheral surface dynamic pressure on the outer peripheral surface of the shaft. By setting the thickness to be greater than the film thickness to be surface-treated at the portion where the generation groove is formed, it is possible to avoid damage due to contact of the dynamic pressure generation groove portion which is important for performance as a bearing device when the sleeve starts rotating and stops rotating. At the same time, at the start of rotation of the sleeve, the contact area between the outer peripheral surface of the shaft and the inner peripheral surface of the sleeve can be reduced, the starting current supplied to the coil decreases, and the heat generation of the bearing can be suppressed. Can improve the rotation efficiency.
[0032]
In addition, the disk recording / reproducing apparatus of the present invention can improve reliability and operating characteristics by being provided with the dynamic pressure gas bearing device, and thus is suitable for use in a hard disk drive or the like for a server or a mobile device. .
[Brief description of the drawings]
FIG. 1 is a sectional view showing a main part of a disk recording / reproducing apparatus for explaining an embodiment of a dynamic pressure gas bearing device according to the present invention. FIG. 2 shows a thrust bearing portion of the dynamic pressure gas bearing device of FIG. FIG. 3 is an explanatory view of a processing apparatus for performing a surface treatment applied to a shaft main body of the dynamic pressure gas bearing device of FIG. 1. FIG. 4 is a disk recording / reproducing apparatus using the dynamic pressure gas bearing device according to the present invention. FIG. 5 is a cross-sectional view showing a main part of a disk recording / reproducing apparatus using a conventional hydrodynamic gas bearing device.
1 sleeve 2 shaft (fixed shaft)
2a Shaft main body 2b Protruding shaft portion 2c Thrust bearing portion 2d, 2e Peripheral surface dynamic pressure generating groove 2f Upper surface side dynamic pressure generating groove 3 Cap 4 Vent hole 5 Coil 6 Magnet 7 Base 8 Disk 9 Vacuum container 10 Ion source 11 Mask plate 12 motor 13 head 14 head arm 15 swing shaft 16 voice coil motor

Claims (4)

固定軸と、内周面が前記固定軸の外周面に回転可能に対向し、上部が通気孔を有するキャップで閉塞したスリーブと、前記固定軸の外周面と該外周面に対向する前記スリーブの内周面との少なくとも一方に設けられ、ラジアル方向に支持力を発生する少なくとも2組の周面側動圧発生溝と、前記固定軸の上端面と前記キャップにおける前記軸の上端面に対向する面との少なくとも一方に設けられて、スラスト方向に支持力を発生させる上面側動圧発生溝と、前記スリーブを回転駆動する駆動部とを備えた動圧気体軸受装置であって、前記固定軸の外周面における前記周面側動圧発生溝の間に表面処理される膜厚さを、前記固定軸の外周面における前記周面側動圧発生溝の形成部分に表面処理される膜厚さよりも大きく設定したことを特徴とする動圧気体軸受装置。A fixed shaft, an inner peripheral surface rotatably opposed to the outer peripheral surface of the fixed shaft, and a sleeve whose upper portion is closed by a cap having a vent hole; and a sleeve opposed to the outer peripheral surface of the fixed shaft and the outer peripheral surface. At least two sets of circumferential-side dynamic pressure generating grooves that are provided on at least one of the inner circumferential surfaces and generate a supporting force in the radial direction, and face the upper end surface of the fixed shaft and the upper end surface of the shaft in the cap. A dynamic pressure gas bearing device provided on at least one of the surfaces, the upper surface side dynamic pressure generating groove for generating a supporting force in a thrust direction, and a drive unit for rotatingly driving the sleeve, wherein the fixed shaft The film thickness that is surface-treated between the peripheral surface-side dynamic pressure generating grooves on the outer peripheral surface of the fixed shaft is larger than the film thickness that is surface-treated on the outer peripheral surface of the fixed shaft where the peripheral surface-side dynamic pressure generating groove is formed. Is also set to be large. Dynamic pressure gas bearing device. 前記固定軸の外周面に成膜する表面処理を、ダイヤモンド・ライク・カーボン処理としたことを特徴する請求項1記載の動圧気体軸受装置。The hydrodynamic gas bearing device according to claim 1, wherein the surface treatment for forming a film on the outer peripheral surface of the fixed shaft is a diamond-like carbon treatment. 前記固定軸の外周面における前記周面側動圧発生溝の間に表面処理される膜厚さを、前記固定軸の外周面における前記周面側動圧発生溝の形成部分に表面処理される膜厚さよりも0.5〜1.0μm大きくしたことを特徴とする請求項2記載の動圧気体軸受装置。The film thickness to be surface-treated between the peripheral-surface-side dynamic-pressure generating grooves on the outer peripheral surface of the fixed shaft is surface-treated on the portion where the peripheral-surface-side dynamic pressure-generating grooves are formed on the outer peripheral surface of the fixed shaft. 3. The hydrodynamic gas bearing device according to claim 2, wherein the thickness is 0.5 to 1.0 [mu] m larger than the film thickness. 記録/再生用のディスクを回転駆動させて、電気信号の記録/再生を行うディスク記録/再生装置において、前記ディスクの回転駆動部に請求項1,2または3記載の動圧気体軸受装置を搭載したことを特徴とするディスク記録/再生装置。4. A disk recording / reproducing apparatus for recording / reproducing an electric signal by rotating a recording / reproducing disk, wherein the dynamic pressure gas bearing device according to claim 1, 2, or 3 is mounted on a rotation driving section of the disk. A disk recording / reproducing apparatus characterized by doing the above.
JP2003003814A 2003-01-10 2003-01-10 Kinetic pressure gas bearing device, and disk recording/reproducing apparatus Pending JP2004218668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003003814A JP2004218668A (en) 2003-01-10 2003-01-10 Kinetic pressure gas bearing device, and disk recording/reproducing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003003814A JP2004218668A (en) 2003-01-10 2003-01-10 Kinetic pressure gas bearing device, and disk recording/reproducing apparatus

Publications (1)

Publication Number Publication Date
JP2004218668A true JP2004218668A (en) 2004-08-05

Family

ID=32894970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003003814A Pending JP2004218668A (en) 2003-01-10 2003-01-10 Kinetic pressure gas bearing device, and disk recording/reproducing apparatus

Country Status (1)

Country Link
JP (1) JP2004218668A (en)

Similar Documents

Publication Publication Date Title
US6664685B2 (en) High adhesion, wear resistant coatings for spindle motors in disk drive/storage applications
US8304946B2 (en) Spindle motor
US8184396B2 (en) Disk drive device with hub having a rotational frequency of axial run-out smaller than 0.1 μm for improved shock resistance
JP2004011897A (en) Dynamic-pressure bearing device
US7133250B2 (en) Inboard thrust surface fluid recirculation pump
US7059771B2 (en) Motors with oil dynamic pressure bearing, oil dynamic pressure bearing devices and method for manufacturing the same
US20110200279A1 (en) Rotary device
US20100239194A1 (en) Disk drive device improved in handling property
JP5553621B2 (en) Disk drive
JP2012055088A (en) Rotary apparatus
JP2004218668A (en) Kinetic pressure gas bearing device, and disk recording/reproducing apparatus
US7750519B2 (en) Hydrodynamic bearing device, motor and information recording and reproducing apparatus in which same is used, and method for manufacturing shaft used in hydrodynamic bearing device
JP2003194060A (en) Fluid dynamic pressure bearing device
JP3865569B2 (en) Spindle motor
JP2003264955A (en) Permanent magnet motor
JP2011021631A (en) Disk drive device
JP2004162780A (en) Dynamic pressure gas bearing device and disk regenerative recorder
US8454237B2 (en) Spindle motor
JPH11313461A (en) Motor with dynamic pressure fluid bearing and device mounted with the motor
JP2004239346A (en) Fluid dynamic pressure bearing, motor with the same, and disk drive device with the motor
JP2016178818A (en) motor
JPH06284631A (en) Motor
JP2015014370A (en) Disk drive
JP3984756B2 (en) Air dynamic pressure bearing device
JP2001339899A (en) Spindle motor