JP2004218666A - Insulating joint structure, and valve having the same - Google Patents

Insulating joint structure, and valve having the same Download PDF

Info

Publication number
JP2004218666A
JP2004218666A JP2003003782A JP2003003782A JP2004218666A JP 2004218666 A JP2004218666 A JP 2004218666A JP 2003003782 A JP2003003782 A JP 2003003782A JP 2003003782 A JP2003003782 A JP 2003003782A JP 2004218666 A JP2004218666 A JP 2004218666A
Authority
JP
Japan
Prior art keywords
joint
insulating
joint body
valve
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003003782A
Other languages
Japanese (ja)
Inventor
Shinichi Kitazaki
伸一 北崎
Keiichi Yanase
啓一 柳瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2003003782A priority Critical patent/JP2004218666A/en
Publication of JP2004218666A publication Critical patent/JP2004218666A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Joints With Sleeves (AREA)
  • Flanged Joints, Insulating Joints, And Other Joints (AREA)
  • Valve Housings (AREA)
  • Taps Or Cocks (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a valve having an insulating structure capable of enhancing earthquake resistance by increasing joining strength against an external force. <P>SOLUTION: A joint 4 comprises an annular first joint body 6 welded to a valve box body 32 and having an insertion hole, and a cylindrical second joint body 7 with one end portion thereof inserted in the insertion hole. The second joint body 7 has a flange portion 8 on one end portion thereof. A stepped portion 9 to regulate the movement of the flange portion 8 in the drawing direction A is formed on the first joint body 6, and an annular fixing member 13 disposed facing the stepped portion 9 from the side opposite to the flange portion 8 with respect to the first joint body 6 is housed over the second joint body 7. The fixing member 13 and another tubular body 3 are welded to the second joint body 7. A space between the first joint body 6 and the second joint body 7 and a space between the first joint body 6 and the fixing member 13 are insulated with insulating material 14. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、継手を介して一方の管体と他方の管体とを接続する絶縁継手構造および絶縁継手構造を備えた弁に関する。
【0002】
【従来の技術】
従来、絶縁継手構造としては、例えば図14に示すように、一方の管体51の端部に、複数のねじ孔52を有する一方のフランジ53が一体に形成され、他方の管体54の端部に、複数のボルト孔55を有する他方のフランジ56が一体に形成され、これら両フランジ53,56同士が複数のボルト57,ナット58によって接合されたものがある。
【0003】
上記各ボルト57は、ボルト孔55に挿通されてねじ孔52に螺合されている。また、両フランジ53,56間には、電気絶縁性およびシール性を有する絶縁シート59が介装され、上記各ボルト孔55の内周面には、円筒状の絶縁スリーブ60が挿入され、各ナット58と他方のフランジ56との間には、絶縁ワッシャ61が介装されている。
【0004】
これによると、ボルト57,ナット58を用いて一方の管体51と他方の管体54とを接合した場合、両フランジ53,56間は絶縁シート59で絶縁され、ボルト57と他方のフランジ56との間は絶縁スリーブ60で絶縁され、ナット58と他方のフランジ56との間は絶縁ワッシャ61で絶縁される。
【0005】
また、上記のような絶縁継手構造62を備えた弁としては、例えば図15,図16に示すように、ボール弁子65を内蔵した弁本体66が一方の本体部66aと他方の本体部66bとに分割され、一方のフランジ53が一方の本体部66aに一体に形成され、他方のフランジ56が他方の本体部66bに一体に形成され、これら両フランジ53,56同士が複数のボルト57,ナット58で接合されているものがある(例えば、特許文献1参照。)。
【0006】
【特許文献1】
実開昭62−149677号公報
【0007】
【発明が解決しようとする課題】
しかしながら上記の従来形式では、例えば、地中に埋設されている配管を図14に示した絶縁継手構造62を用いて接合した場合、ボルト57,ナット58で両フランジ53,56同士を接合しているため、外力に対して接合強度が弱く、耐震性が劣るといった問題がある。
【0008】
また、図15,図16に示したように地中に埋設されている弁67に上記のような絶縁継手構造62を備えた場合も同様に、ボルト57,ナット58で両フランジ53,56同士を接合しているため、外力に対して接合強度が弱く、耐震性が劣るといった問題がある。
【0009】
本発明は、外力に対する接合強度を増大させて、耐震性を向上させることができる絶縁継手構造および絶縁継手構造を備えた弁を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成するために本第1発明は、一方の管体と他方の管体とを継手を介して接続する絶縁継手構造であって、上記継手は、挿入孔を有する環状の第1の継手本体と、一端部が上記挿入孔に挿入される筒状の第2の継手本体とで構成され、上記第2の継手本体は、その一端部の外周面に、全周にわたって外側へ突出した鍔部を有し、上記第1の継手本体に、上記鍔部の外径よりも小さな内径を有し且つ挿入孔の手前部に位置して上記鍔部の引抜方向への移動を規制する段付部が全周にわたり一体に形成され、上記第1の継手本体に一方の管体が溶接され、上記段付部に対して鍔部とは反対側から対向するように配置された環状の固定部材が第2の継手本体に外嵌され、上記第2の継手本体に固定部材と他方の管体とが溶接され、上記第1の継手本体と第2の継手本体との間および第1の継手本体と固定部材との間に、絶縁材が全周にわたり設けられているものである。
【0011】
これによると、第1の継手本体の挿入孔に第2の継手本体の一端部を挿入し、第2の継手本体の他端側から固定部材を外嵌し、この固定部材を第2の継手本体に溶接する。これにより、段付部が鍔部に対して引抜方向側に対向するため、第2の継手本体の引抜方向への移動は上記段付部と鍔部とによって規制される。また、段付部が固定部材に対して押込方向側に対向するため、第2の継手本体の押込方向への移動は上記段付部と固定部材とによって規制される。これにより、第2の継手本体が第1の継手本体に固定され、第1の継手本体と第2の継手本体との間および第1の継手本体と固定部材との間は絶縁材で絶縁される。
【0012】
また、上記第1の継手本体に一方の管体が溶接され、第2の継手本体に他方の管体と固定部材とが溶接されて一体に取付けられているとともに、段付部が第1の継手本体に一体に形成されているため、ボルト,ナットで両フランジ同士を接合する従来形式の絶縁継手構造に比べて、外力に対する接合強度が増大し、耐震性が向上する。
【0013】
また、本第2発明は、絶縁材は、相対向する鍔部の引抜方向側の端面と段付部の押込方向側の端面との間に装填される一方の絶縁パッキンと、相対向する段付部の引抜方向側の端面と固定部材の押込方向側の端面との間に装填される他方の絶縁パッキンと、鍔部の外周面と挿入孔の内周面との間に装填される第1の絶縁樹脂部材と、第2の継手本体の外周面と段付部の内周面との間に装填される第2の絶縁樹脂部材とで構成され、上記一方の絶縁パッキンの径方向の幅が他方の絶縁パッキンの径方向の幅よりも小さく形成されているものである。
【0014】
これによると、一方の絶縁パッキンの接触面積が他方の絶縁パッキンの接触面積よりも小さくなるため、一方の絶縁パッキンの圧縮量が他方の絶縁パッキンの圧縮量よりも大きくなり、一方の絶縁パッキンの面圧が他方の絶縁パッキンの面圧よりも高くなる。これによって、上記一方の絶縁パッキンはシールに要する十分大きな面圧を確保することができ、したがって、鍔部の引抜方向側の端面と段付部の押込方向側の端面との間が上記一方の絶縁パッキンによって確実にシールされ、内部の流体が上記鍔部の引抜方向側の端面と段付部の押込方向側の端面との間を通って外部へ漏れ出すのを確実に防止することができる。
【0015】
さらに、本第3発明は、上記第1発明又は第2発明の絶縁継手構造を備えた弁であって、第1の継手本体が弁箱の一部を形成し、この弁箱に一方の管体が一体に設けられ、第2の継手本体の他端部に他方の管体が溶接され、弁箱内の弁体を開くことによって、流体が一方の管体と他方の管体との間を流れるものである。
【0016】
これによると、継手を介して他方の管体が弁箱に接続されるため、ボルト,ナットで両フランジ同士を接合する従来形式の絶縁継手構造を備えた弁に比べて、外力に対する接合強度が増大し、耐震性が向上する。
【0017】
【発明の実施の形態】
以下、本発明における第1の実施の形態を図1〜図10に基づいて説明する。図1に示すように、1は一方の管体2と他方の管体3とを継手4を介して接続する絶縁継手構造である。
【0018】
図1〜図5に示すように、上記継手4は、挿入孔5を有する円環状の第1の継手本体6と、一端部が上記挿入孔5に挿入される円筒状の第2の継手本体7とで構成されている。尚、図3に示すように、上記挿入孔5は第1の継手本体6の他端側に形成され、第1の継手本体6の一端側には、挿入孔5よりも外側に拡径した内周面6aが形成されている。また、図4に示すように、第2の継手本体7は、その一端部の外周面に、全周にわたって外側へ突出した鍔部8を有している。尚、上記鍔部8の外周面8aには、径方向の内側に落ち込んだ被係合部8bが形成されている。
【0019】
図1,図3に示すように、第1の継手本体6には、挿入孔5の手前部に位置して上記鍔部8の引抜方向Aへの移動を規制する段付部9が全周にわたり一体に形成されている。尚、上記段付部9の内径Diは、鍔部8の外径Doよりも小さく且つ第2の継手本体7の外径Dよりも僅かに大きく形成されている。
【0020】
また、上記第1の継手本体6の一端には、両端部の口径が異なる異径短管11(レジューサ等)を介して、上記一方の管体2が全周溶接W1により一体に接合されている。尚、上記異径短管11は全周溶接W2により第1の継手本体6に一体に接合されている。
【0021】
また、上記段付部9に対して鍔部8とは反対側(手前外側)から対向するように配置された円環状の固定部材13が第2の継手本体7に外嵌されている。尚、上記固定部材13の他端部は全周溶接W3によって第2の継手本体7の外周面に一体に接合されている。また、上記第2の継手本体7の他端部には、他方の管体3が全周溶接W4によって一体に接合されている。
【0022】
また、上記第1の継手本体6と第2の継手本体7との間および第1の継手本体6と固定部材13との間は絶縁材14によって絶縁されている。すなわち、図2,図6に示すように、絶縁材14は、相対向する鍔部8の引抜方向A側の端面8cと段付部9の押込方向B側の端面9aとの間に装填される円環状の一方の絶縁パッキン14aと、相対向する段付部9の引抜方向A側の端面9bと固定部材13の押込方向B側の端面13aとの間に装填される円環状の他方の絶縁パッキン14bと、鍔部8の外周面8aと挿入孔5の内周面との間に装填される円筒状の第1の絶縁樹脂部材14cと、第2の継手本体7の外周面と段付部9の内周面9cとの間に装填される円筒状の第2の絶縁樹脂部材14dとで構成されている。
【0023】
尚、上記絶縁パッキン14a,14bの材質は例えば四ふっ化エチレン(PTFE)等である。また、上記各絶縁樹脂部材14c,14dも絶縁パッキン14a,14bと同程度以上の硬度を有する絶縁樹脂を材質としている。
【0024】
また、上記両絶縁パッキン14a,14bの内径は同一であり、一方の絶縁パッキン14aの外径が他方の絶縁パッキン14bの外径よりも小さく形成され、これにより、一方の絶縁パッキン14aの径方向の幅Daは他方の絶縁パッキン14bの径方向の幅Dbよりも小さく形成されている。
【0025】
また、上記第1の絶縁樹脂部材14cは、鍔部8の被係合部8b(図4参照)に係合して押込方向Bへの位置ずれを防止する位置決め用突片14ciを有している。尚、図2に示すように、上記位置決め用突片14ciは一方の絶縁パッキン14aの外周側に位置し、また、第2の絶縁樹脂部材14dは両絶縁パッキン14a,14bの内周側に位置している。
【0026】
また、鍔部8の外周面8aに全周にわたり形成された溝16には、第1の絶縁樹脂部材14cの内周面と鍔部8の外周面8aとの間をシールする内側O−リング17(シール部材の一例)が嵌め込まれている。さらに、挿入孔5の内周面に全周にわたり形成された溝18には、第1の絶縁樹脂部材14cの外周面と挿入孔5の内周面との間をシールする外側O−リング19(シール部材の一例)が嵌め込まれている。
【0027】
以下、上記構成における作用を説明する。
先ず、図7,図8に示すように、両O−リング17,19をそれぞれ溝16,18に嵌め込んだ後、第1の継手本体6の一端側から一方の絶縁パッキン14aと第1の絶縁樹脂部材14cとを挿入し、上記第1の絶縁樹脂部材14cを挿入孔5の内周面に嵌め込み、上記一方の絶縁パッキン14aを第1の絶縁樹脂部材14c内に嵌め込んで段付部9の端面9aに当て付ける。
【0028】
次に、図8の仮想線で示すように、第2の継手本体7を第1の継手本体6の一端側から挿入孔5に挿入する。この際、図9に示すように、鍔部8が一方の絶縁パッキン14aを介して段付部9に当接することにより、第2の継手本体7の引抜方向Aへの移動が規制され、上記挿入孔5に第2の継手本体7の一端部が挿入される。その後、他方の絶縁パッキン14bと第2の絶縁樹脂部材14dとを第2の継手本体7に外嵌し、上記第2の絶縁樹脂部材14dを段付部9の内周面9cと第2の継手本体7の外周面との間に挿入し、上記他方の絶縁パッキン14bを段付部9の端面9bに当て付けて第2の絶縁樹脂部材14dに外嵌する。
【0029】
そして、図10に示すように、固定部材13を第2の継手本体7の他端側から第2の継手本体7に外嵌して第1の継手本体6側に押し付けるとともに、上記第2の継手本体7に引抜方向Aへの引張力Fを加えて引張り、第2の継手本体7を引抜方向Aへ伸ばした状態で、固定部材13を第2の継手本体7の外周面に溶接(全周溶接W3)する。次に、上記引張力Fを除くことによって、第2の継手本体7が押込方向Bへ縮もうとするため、固定部材13と鍔部8とがそれぞれ段付部9に強い押圧力で押圧され、隙間が生じることはない。
【0030】
その後、図10の仮想線で示すように、他方の管体3を第2の継手本体7の他端に全周溶接W4(図1参照)によって一体に接合する。さらに、第1の継手本体6の一端側に全周溶接W2(図1参照)によって異径短管11を一体に接合するとともに、この異径短管11に全周溶接W1(図1参照)によって一方の管体2を一体に接合する。これにより、図1に示すように、継手4を介して一方の管体2と他方の管体3とが接続される。
【0031】
上記のような絶縁継手構造1によると、段付部9は鍔部8に対して引抜方向A側に対向するため、第2の継手本体7の引抜方向Aへの移動は上記段付部9と鍔部8とによって規制される。また、段付部9は固定部材13に対して押込方向B側に対向するため、第2の継手本体7の押込方向Bへの移動は上記段付部9と固定部材13とによって規制される。これにより、第2の継手本体7が第1の継手本体6に固定される。
【0032】
この際、図2に示すように、相対向する鍔部8の端面8cと段付部9の端面9aとの間が一方の絶縁パッキン14aによって絶縁され、相対向する段付部9の端面9bと固定部材13の端面13aとの間が他方の絶縁パッキン14bによって絶縁され、鍔部8の外周面8aと挿入孔5の内周面との間が第1の絶縁樹脂部材14cによって絶縁され、第2の継手本体7の外周面と段付部9の内周面9cとの間が第2の絶縁樹脂部材14dによって絶縁される。これにより、例えば、両管体2,3内に都市ガス等の可燃性の流体が流れる場合であっても、上記一方の管体2と他方の管体3との間が絶縁されるため、防爆および防食効果が得られる。
【0033】
また、上記第1の継手本体6に異径短管11を介して一方の管体2が溶接され、第2の継手本体7に他方の管体3と固定部材13とが溶接されて一体に取付けられているとともに、段付部9が第1の継手本体6に一体に形成されているため、従来(図14参照)のようにボルト57,ナット58で両フランジ53,56同士を接合する形式の絶縁継手構造62に比べて、外力に対する接合強度が増大し、耐震性が向上する。
【0034】
さらに、図6に示すように、一方の絶縁パッキン14aの径方向の幅Daは他方の絶縁パッキン14bの径方向の幅Dbよりも小さく形成されているため、図2に示すように、一方の絶縁パッキン14aの接触面積は他方の絶縁パッキン14bの接触面積よりも小さくなる。これにより、上記のように固定部材13を押込方向Bへ押し込んだ状態で第2の継手本体7に溶接(全周溶接W3)した場合、一方の絶縁パッキン14aの圧縮量が他方の絶縁パッキン14bの圧縮量よりも大きくなり、一方の絶縁パッキン14aの面圧が他方の絶縁パッキン14bの面圧よりも高くなるため、上記一方の絶縁パッキン14aはシールに要する十分大きな面圧を確保することができる。
【0035】
また、上記全周溶接W3をした後、引抜方向Aへの引張力が作用した場合、上記一方の絶縁パッキン14aの面圧が増大するため、上記一方の絶縁パッキン14aによるシール性がさらに向上する。また、押込方向Bへの圧縮力が作用した場合、他方の絶縁パッキン14bの接触面積が大きい分、他方の絶縁パッキン14bの圧縮量が小さくなり(あまり圧縮されない)、このため、一方の絶縁パッキン14aの圧縮量はわずかに減少するだけであまり変化せず、一方の絶縁パッキン14aの面圧の減少も軽微となり、上記一方の絶縁パッキン14aによるシール性の低下はほとんどなく、十分なシール性が確保できる。したがって、鍔部8の端面8c(図4参照)と段付部9の端面9a(図3参照)との間が上記一方の絶縁パッキン14aによって確実にシールされ、内部の流体が上記両端面8c,9a間を通って外部へ漏れ出すのを防止することができる。
【0036】
また、図2に示すように、上記一方の絶縁パッキン14aの外周縁には、このパッキン14aと同程度以上の硬度を有する第1の樹脂部材14cが配置され、一方の絶縁パッキン14aの内周縁には、このパッキン14aと同程度以上の硬度を有する第2の樹脂部材14dが配置されているため、一方の絶縁パッキン14aの径方向への変形を防止することができる。また、第1の絶縁樹脂部材14cは、位置決め用突片14ciが鍔部8の被係合部8b(図4参照)に係合することにより、押込方向Bへの位置ずれが防止される。
【0037】
さらに、図2に示すように、第1の継手本体6の内周面6aは挿入孔5よりも外側に拡径しているため、上記第1の継手本体6の内周面6aと鍔部8の外周面8aとは径方向において一定の段差Eが形成される。これにより、万一、配管内の異物が上記内周面6aに堆積しても、上記段差Eの存在によって上記異物が第2の継手本体7の鍔部8にまで達することは防止され、したがって、上記異物を介して第1の継手本体6と第2の継手本体7とが導通するのを防ぐことができる。
【0038】
尚、第1の絶縁樹脂部材14cの内周面と鍔部8の外周面8aとの間は内側O−リング17によってシールされ、第1の絶縁樹脂部材14cの外周面と挿入孔5の内周面との間は外側O−リング19によってシールされる。これにより、上記一方の絶縁パッキン14aによるシール機能に、上記両O−リング17,19によるシール機能が加わるため、万一、上記一方の絶縁パッキン14aが劣化したり損傷しても、上記両O−リング17,19によってシール性が保持され、これにより、安全性が向上する。
【0039】
上記第1の実施の形態では、防爆対象の流体として都市ガスが流れる管路に上記絶縁継手構造1を採用しているが、都市ガスに限定されるものではなく、他の流体、例えば石油精製プラント等の管路に上記絶縁継手構造1を採用してもよい。
【0040】
次に、第2の実施の形態を図11〜図13に基づいて説明する。すなわち、第2の実施の形態は、先述した第1の実施の形態における絶縁継手構造1を供えたボール弁30であり、その構成は以下の通りである。
【0041】
上記ボール弁30は二方弁であり、その弁箱31は弁箱本体32と継手4とで構成されている。一方の管体2は、弁箱本体32の一端側に鍛造によって一体に形成されており、配管(図示省略)に対する挿口を成している。
【0042】
また、上記弁箱本体32の他端側には、継手4の第1の継手本体6の一端部が全周溶接W5によって一体に接合されており、第1の継手本体6の挿入孔5には第2の継手本体7の一端部が挿入され、第2の継手本体7には他方の管体3と固定部材13とがそれぞれ全周溶接W3,W4によって一体に接合されている。尚、他方の管体3は配管(図示省略)に対する挿口を成している。また、第1の継手本体6は、第2の継手本体7側から弁箱本体32側に向けて次第に拡大するテーパー状に形成されている。また、継手4と他方の管体3との接合構造は先述した第1の実施の形態のものと同様である。
【0043】
上記一方の管体2内の奥端側には、弁箱内空間33と一方の管体2内とに連通する一方の弁箱ポート34が形成され、一方の弁箱ポート34の開口周縁部には円環状の弁箱シート35が設けられている。また、第2の継手本体7内の奥端側には、弁箱内空間33と第2の継手本体7内とに連通する他方の弁箱ポート36が形成されている。尚、他方の弁箱ポート36には弁箱シートは設けられていない。
【0044】
弁箱内空間33には、弁棒37の軸心廻りに回転する弁体38が配置されている。この弁体38は、図12に示すように全開時において上記両弁箱ポート34,36間を連通する弁体流路39を有し、この弁体流路39に直交する方向のいずれか片側位置には、図11に示すように全閉時において上記弁箱シート35に圧接する円板状の弁体シート40が設けられている。
以下、上記構成における作用を説明する。
【0045】
第1の継手本体6を弁箱本体32に溶接する前に、先ず、両O−リング17,19をそれぞれ溝16,18に嵌め込んだ後、第1の継手本体6の一端側から一方の絶縁パッキン14aと第1の絶縁樹脂部材14cとを挿入し、上記第1の絶縁樹脂部材14cを挿入孔5の内周面に嵌め込み、上記一方の絶縁パッキン14aを第1の絶縁樹脂部材14c内に嵌め込んで段付部9の端面9aに当て付ける。
【0046】
次に、図13に示すように、第2の継手本体7を第1の継手本体6の一端側から挿入孔5に挿入する。この際、鍔部8が一方の絶縁パッキン14aを介して段付部9に当接することにより、第2の継手本体7の引抜方向Aへの移動が規制され、上記挿入孔5に第2の継手本体7の一端部が挿入される。その後、他方の絶縁パッキン14bと第2の絶縁樹脂部材14dとを第2の継手本体7に外嵌し、上記第2の絶縁樹脂部材14dを段付部9の内周面9cと第2の継手本体7の外周面との間に挿入し、上記他方の絶縁パッキン14bを段付部9の端面9bに当て付けて第2の絶縁樹脂部材14dに外嵌する。
【0047】
そして、固定部材13を第2の継手本体7の他端側から第2の継手本体7に外嵌して第1の継手本体6側に押し付けるとともに、上記第2の継手本体7に引抜方向A(図11参照)への引張力Fを加えて引張り、第2の継手本体7を引抜方向Aへ伸ばした状態で、固定部材13を第2の継手本体7の外周面に溶接(全周溶接W3)する。次に、上記引張力Fを除くことによって、第2の継手本体7が押込方向B(図11参照)へ縮もうとするため、固定部材13と鍔部8とがそれぞれ段付部9に強い押圧力で押圧され、隙間が生じることはない。
【0048】
その後、他方の管体3を第2の継手本体7の他端に全周溶接W4によって一体に接合する。さらに、図11に示すように、第1の継手本体6の一端側を全周溶接W2によって弁箱本体32に一体に接合する。これにより、継手4を介して他方の管体3が弁箱31に接続される。
【0049】
また、ボール弁30内に都市ガス等の可燃性の流体が流れる場合であっても、上記弁箱31と他方の管体3との間が絶縁されるため、防爆および防食効果が得られる。
【0050】
また、従来(図15,図16参照)のようにボルト57,ナット58で両フランジ53,56同士を接合する形式の絶縁継手構造62を備えたボール弁67に比べて、上記ボール弁30の方が外力に対する接合強度が増大し、耐震性が向上する。
【0051】
また、図12に示すように、弁棒37を介して弁体38を全開位置まで回転した場合、両弁箱ポート34,36間が弁体流路39によって連通し、一方の管体2内から流れ込んだ流体は、一方の弁箱ポート34と弁体流路39と他方の弁箱ポート36とを通って、他方の管体3内へ流出する。
【0052】
また、図11に示すように、弁棒37を介して弁体38を全閉位置まで回転した場合、弁体シート40が弁箱シート35に圧接することにより、一方の弁箱ポート34側が弁体シート40で閉塞されるため、一方の管体2内の流体は、上記弁体シート40で遮断され、他方の管体3へ流れることを阻止される。
【0053】
上記第2の実施の形態では、一方の管体2側を流体入口とし、他方の管体3を流体出口としているが、流体出入口を反対にしてもよい。
上記第2の実施の形態では、防爆対象の流体として都市ガスが流れる管路に上記ボール弁30を設けているが、都市ガスに限定されるものではなく、他の流体、例えば石油精製プラント等の管路に上記ボール弁30を設けてもよい。
【0054】
上記第2の実施の形態では、ボール弁30を二方弁としているが、三方弁や他の形式の弁であってもよい。
【0055】
【発明の効果】
以上のように本第1発明では、継手を介して一方の管体と他方の管体とを接続した際、第1の継手本体と第2の継手本体との間および第1の継手本体と固定部材との間は絶縁材で絶縁される。また、ボルト,ナットで両フランジ同士を接合する従来形式の絶縁継手構造に比べて、外力に対する接合強度が増大し、耐震性が向上する。
【0056】
また、本第2発明では、一方の絶縁パッキンはシールに要する十分大きな面圧を確保することができ、鍔部の引抜方向側の端面と段付部の押込方向側の端面との間が上記一方の絶縁パッキンによって確実にシールされ、内部の流体が上記鍔部の引抜方向側の端面と段付部の押込方向側の端面との間を通って外部へ漏れ出すのを確実に防止することができる。
【0057】
さらに、本第3発明では、ボルト,ナットで両フランジ同士を接合する従来形式の絶縁継手構造を備えた弁に比べて、外力に対する接合強度が増大し、耐震性が向上する。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態における絶縁継手構造の断面図である。
【図2】同、絶縁継手構造の一部拡大断面図である。
【図3】同、絶縁継手構造の第1の継手本体の一部拡大断面図である。
【図4】同、絶縁継手構造の第2の継手本体の一部拡大断面図である。
【図5】同、絶縁継手構造の固定部材の一部拡大断面図である。
【図6】同、絶縁継手構造の絶縁材を構成している構成部材の断面図である。
【図7】同、絶縁継手構造を用いて管体を接続する手順を示す断面図であり、第1の継手本体に絶縁材を装着する行程を示す。
【図8】同、絶縁継手構造を用いて管体を接続する手順を示す断面図であり、第1の継手本体に第2の継手本体を装着する行程を示す。
【図9】同、絶縁継手構造を用いて管体を接続する手順を示す断面図であり、継手に固定部材を装着する行程を示す。
【図10】同、絶縁継手構造を用いて管体を接続する手順を示す断面図であり、継手に管体を溶接する行程を示す。
【図11】本発明の第2の実施の形態における絶縁継手構造を備えた弁の断面図であり、全閉状態を示す。
【図12】同、絶縁継手構造を備えた弁の断面図であり、全開状態を示す。
【図13】同、絶縁継手構造を備えた弁の絶縁継手構造部分の拡大断面図である。
【図14】従来の絶縁継手構造の断面図である。
【図15】従来の絶縁継手構造を備えた弁の断面図である。
【図16】同、絶縁継手構造を備えた弁の絶縁継手構造部分の拡大断面図である。
【符号の説明】
1 絶縁継手構造
2 一方の管体
3 他方の管体
4 継手
5 挿入孔
6 第1の継手本体
7 第2の継手本体
8 鍔部
8a 鍔部の外周面
8c 鍔部の引抜方向側の端面
9 段付部
9a 段付部の押込方向側の端面
9b 段付部の引抜方向側の端面
9c 段付部の内周面
13 固定部材
13a 固定部材の押込方向側の端面
14 絶縁材
14a 一方の絶縁パッキン
14b 他方の絶縁パッキン
14c 第1の絶縁樹脂部材
14d 第2の絶縁樹脂部材
30 ボール弁
31 弁箱
38 弁体
A 引抜方向
B 押込方向
Da,Db 径方向の幅
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an insulated joint structure for connecting one tube to another via a joint, and a valve provided with the insulated joint structure.
[0002]
[Prior art]
Conventionally, as an insulating joint structure, for example, as shown in FIG. 14, one flange 53 having a plurality of screw holes 52 is integrally formed at one end of one tubular body 51, and the other tubular body 54 has one end 53. In some parts, the other flange 56 having a plurality of bolt holes 55 is integrally formed, and both flanges 53 and 56 are joined together by a plurality of bolts 57 and nuts 58.
[0003]
Each of the bolts 57 is inserted into the bolt hole 55 and screwed into the screw hole 52. An insulating sheet 59 having electrical insulation and sealing properties is interposed between the flanges 53 and 56, and a cylindrical insulating sleeve 60 is inserted into the inner peripheral surface of each of the bolt holes 55. An insulating washer 61 is interposed between the nut 58 and the other flange 56.
[0004]
According to this, when one pipe body 51 and the other pipe body 54 are joined using the bolt 57 and the nut 58, the two flanges 53, 56 are insulated by the insulating sheet 59, and the bolt 57 and the other flange 56 are insulated. Are insulated by an insulating sleeve 60, and between the nut 58 and the other flange 56 are insulated by an insulating washer 61.
[0005]
In addition, as a valve provided with the above-described insulating joint structure 62, as shown in FIGS. 15 and 16, for example, a valve body 66 having a ball valve 65 built therein is composed of one main body 66a and the other main body 66b. One flange 53 is formed integrally with one main body 66a, the other flange 56 is formed integrally with the other main body 66b, and these two flanges 53, 56 are connected to a plurality of bolts 57, Some are joined by a nut 58 (for example, see Patent Document 1).
[0006]
[Patent Document 1]
Japanese Utility Model Publication No. 62-149677
[0007]
[Problems to be solved by the invention]
However, in the above-described conventional type, for example, when piping buried underground is joined using the insulating joint structure 62 shown in FIG. 14, both flanges 53 and 56 are joined together by bolts 57 and nuts 58. Therefore, there is a problem that the joint strength is weak against external force and the earthquake resistance is poor.
[0008]
Similarly, when the valve 67 buried underground is provided with the above-described insulating joint structure 62 as shown in FIGS. 15 and 16, the flanges 53 and 56 are similarly connected to each other by bolts 57 and nuts 58. However, there is a problem that the joining strength is weak against external force and the earthquake resistance is inferior.
[0009]
An object of the present invention is to provide an insulated joint structure capable of increasing the joint strength with respect to an external force and improving seismic resistance, and a valve provided with the insulated joint structure.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, a first aspect of the present invention is an insulating joint structure for connecting one pipe body and the other pipe body via a joint, wherein the joint has an annular first shape having an insertion hole. A joint main body and a cylindrical second joint main body whose one end is inserted into the insertion hole, and the second joint main body protrudes outward over the entire circumference on the outer peripheral surface of the one end. A step having a flange portion, wherein the first joint body has an inner diameter smaller than the outer diameter of the flange portion and is located in front of the insertion hole to regulate movement of the flange portion in the pull-out direction; An annular fixing part is formed integrally over the entire circumference, one of the tubes is welded to the first joint main body, and is arranged to face the stepped part from the side opposite to the flange part. The member is externally fitted to the second joint body, and the fixed member and the other tube are welded to the second joint body, Between the fitting body and between the first fitting body and the second joint body and the fixing member, in which an insulating material is provided over the entire circumference.
[0011]
According to this, one end of the second joint body is inserted into the insertion hole of the first joint body, and a fixing member is externally fitted from the other end side of the second joint body. Weld to the body. Accordingly, the stepped portion is opposed to the flange in the pulling-out direction, so that the movement of the second joint body in the pulling-out direction is restricted by the stepped portion and the flange. In addition, since the stepped portion faces the fixing member in the pushing direction, the movement of the second joint body in the pushing direction is restricted by the stepped portion and the fixing member. Thereby, the second joint body is fixed to the first joint body, and the space between the first joint body and the second joint body and the space between the first joint body and the fixed member are insulated by the insulating material. You.
[0012]
Also, one tube is welded to the first joint body, the other tube and the fixing member are welded and integrally attached to the second joint body, and the stepped portion is formed of the first joint body. Since it is formed integrally with the joint body, the joint strength against external force is increased and the earthquake resistance is improved as compared with the conventional insulated joint structure in which both flanges are joined together with bolts and nuts.
[0013]
Also, in the second invention, the insulating material may include one insulating packing loaded between an end surface of the facing flange portion on the pulling direction side and an end surface of the stepped portion on the pushing direction side, and the opposing step. The other insulating packing loaded between the end surface of the attachment portion on the pulling direction side and the end surface of the fixing member on the pushing direction, and the other insulating packing loaded between the outer peripheral surface of the flange portion and the inner peripheral surface of the insertion hole. A first insulating resin member and a second insulating resin member loaded between the outer peripheral surface of the second joint main body and the inner peripheral surface of the stepped portion. The width is formed smaller than the radial width of the other insulating packing.
[0014]
According to this, since the contact area of one insulating packing is smaller than the contact area of the other insulating packing, the amount of compression of one insulating packing is larger than the amount of compression of the other insulating packing, and the amount of compression of one insulating packing is The surface pressure becomes higher than the surface pressure of the other insulating packing. Thereby, the one insulating packing can secure a sufficiently large surface pressure required for sealing, and therefore, the gap between the end surface of the flange portion on the pulling-out direction side and the end surface of the stepped portion on the pushing direction side is the one-sided one. It is reliably sealed by the insulating packing, and it is possible to reliably prevent the internal fluid from leaking to the outside through the space between the end surface of the flange portion on the pulling direction side and the end surface of the stepped portion on the pushing direction side. .
[0015]
Further, the third invention is a valve provided with the insulating joint structure of the first invention or the second invention, wherein the first joint body forms a part of a valve box, and one valve is connected to the valve box. The body is provided integrally, and the other tube is welded to the other end of the second joint body, and by opening the valve body in the valve box, fluid flows between the one body and the other body. It flows through.
[0016]
According to this, since the other pipe is connected to the valve box via a joint, the joint strength against external force is lower than that of a valve having a conventional type insulated joint structure in which both flanges are joined by bolts and nuts. It increases and the earthquake resistance improves.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 1, reference numeral 1 denotes an insulating joint structure for connecting one tube 2 and the other tube 3 via a joint 4.
[0018]
As shown in FIGS. 1 to 5, the joint 4 has an annular first joint body 6 having an insertion hole 5 and a cylindrical second joint body having one end inserted into the insertion hole 5. 7. As shown in FIG. 3, the insertion hole 5 is formed at the other end of the first joint body 6, and the diameter of the one end of the first joint body 6 is increased outside the insertion hole 5. An inner peripheral surface 6a is formed. Further, as shown in FIG. 4, the second joint body 7 has a flange 8 protruding outward over the entire circumference on the outer peripheral surface at one end. Note that an engaged portion 8b which is recessed inward in the radial direction is formed on the outer peripheral surface 8a of the flange portion 8.
[0019]
As shown in FIGS. 1 and 3, the first joint body 6 is provided with a stepped portion 9 which is located in front of the insertion hole 5 and regulates the movement of the flange 8 in the pulling-out direction A. Are formed integrally. The inner diameter Di of the stepped portion 9 is formed smaller than the outer diameter Do of the flange 8 and slightly larger than the outer diameter D of the second joint body 7.
[0020]
Further, one end of the first joint body 6 is integrally joined to one end of the first joint body 6 by a full-circumferential welding W1 via different diameter short tubes 11 (reducers and the like) having different diameters at both ends. I have. In addition, the said different diameter short pipe 11 is integrally joined to the 1st joint main body 6 by the whole circumference welding W2.
[0021]
Further, an annular fixing member 13 that is arranged to face the stepped portion 9 from the side opposite to the flange 8 (outer side) is externally fitted to the second joint body 7. Note that the other end of the fixing member 13 is integrally joined to the outer peripheral surface of the second joint body 7 by full circumference welding W3. Further, the other pipe 3 is integrally joined to the other end of the second joint main body 7 by a full circumference weld W4.
[0022]
Further, the insulating material 14 insulates between the first joint body 6 and the second joint body 7 and between the first joint body 6 and the fixing member 13. That is, as shown in FIGS. 2 and 6, the insulating material 14 is loaded between the end face 8 c of the facing flange portion 8 on the pullout direction A side and the end face 9 a of the stepped portion 9 on the push direction B side. One of the ring-shaped insulating packings 14a, and the other of the ring-shaped insulating packings loaded between the facing end surface 9b of the stepped portion 9 on the drawing direction A side and the end surface 13a of the fixing member 13 on the pushing direction B side. An insulating packing 14b, a cylindrical first insulating resin member 14c to be loaded between the outer peripheral surface 8a of the flange portion 8 and the inner peripheral surface of the insertion hole 5, and a step between the outer peripheral surface of the second joint body 7 and the step. It is composed of a cylindrical second insulating resin member 14d loaded between the inner peripheral surface 9c of the attaching portion 9 and the inner peripheral surface 9c.
[0023]
The material of the insulating packings 14a and 14b is, for example, ethylene tetrafluoride (PTFE). Each of the insulating resin members 14c and 14d is also made of an insulating resin having a hardness equal to or higher than that of the insulating packings 14a and 14b.
[0024]
The inner diameters of the two insulating packings 14a and 14b are the same, and the outer diameter of one of the insulating packings 14a is smaller than the outer diameter of the other insulating packing 14b. Is smaller than the radial width Db of the other insulating packing 14b.
[0025]
The first insulating resin member 14c has a positioning projection 14ci that engages with the engaged portion 8b (see FIG. 4) of the flange 8 to prevent displacement in the pushing direction B. I have. As shown in FIG. 2, the positioning projection 14ci is located on the outer peripheral side of one insulating packing 14a, and the second insulating resin member 14d is located on the inner peripheral side of both insulating packings 14a and 14b. are doing.
[0026]
A groove 16 formed over the entire outer circumference 8a of the flange 8 has an inner O-ring for sealing between the inner circumference of the first insulating resin member 14c and the outer circumference 8a of the flange 8. 17 (an example of a sealing member) is fitted. Further, an outer O-ring 19 for sealing between the outer peripheral surface of the first insulating resin member 14c and the inner peripheral surface of the insertion hole 5 is provided in the groove 18 formed over the entire inner peripheral surface of the insertion hole 5. (An example of a seal member) is fitted.
[0027]
Hereinafter, the operation of the above configuration will be described.
First, as shown in FIGS. 7 and 8, after both O-rings 17 and 19 are fitted in the grooves 16 and 18, respectively, one insulating packing 14 a and the first insulating packing 14 a are inserted from one end of the first joint body 6. The insulating resin member 14c is inserted, the first insulating resin member 14c is fitted into the inner peripheral surface of the insertion hole 5, and the one insulating packing 14a is fitted into the first insulating resin member 14c to form a stepped portion. 9 to the end face 9a.
[0028]
Next, as shown by a virtual line in FIG. 8, the second joint body 7 is inserted into the insertion hole 5 from one end side of the first joint body 6. At this time, as shown in FIG. 9, the movement of the second joint body 7 in the withdrawing direction A is regulated by the flange portion 8 abutting on the stepped portion 9 via one of the insulating packings 14a. One end of the second joint body 7 is inserted into the insertion hole 5. Thereafter, the other insulating packing 14b and the second insulating resin member 14d are externally fitted to the second joint body 7, and the second insulating resin member 14d is connected to the inner peripheral surface 9c of the stepped portion 9 and the second insulating resin member 14d. It is inserted between the outer peripheral surface of the joint main body 7 and the other insulating packing 14b is applied to the end surface 9b of the stepped portion 9 to fit outside the second insulating resin member 14d.
[0029]
Then, as shown in FIG. 10, the fixing member 13 is externally fitted to the second joint body 7 from the other end side of the second joint body 7 and pressed against the first joint body 6, and the second joint body 6 is pressed. The fixing member 13 is welded to the outer peripheral surface of the second joint body 7 while the second joint body 7 is extended in the pull-out direction A by applying a tensile force F in the pull-out direction A to the joint body 7 to pull the joint member 7 (total). Girth welding W3) is performed. Next, since the second joint body 7 tries to shrink in the pushing direction B by removing the tensile force F, the fixing member 13 and the flange 8 are each pressed against the stepped portion 9 with a strong pressing force. There is no gap.
[0030]
Thereafter, as shown by the imaginary line in FIG. 10, the other pipe 3 is integrally joined to the other end of the second joint body 7 by full circumference welding W4 (see FIG. 1). Further, the short pipe 11 of different diameter is integrally joined to one end of the first joint body 6 by full circumference welding W2 (see FIG. 1), and the full circumference welding W1 (see FIG. 1) is connected to the short pipe 11 of different diameter. Joints one of the tubes 2 integrally. Thereby, as shown in FIG. 1, one pipe 2 and the other pipe 3 are connected via the joint 4.
[0031]
According to the insulating joint structure 1 as described above, since the stepped portion 9 is opposed to the flange portion 8 in the pulling-out direction A, the movement of the second joint body 7 in the pulling-out direction A is limited to the stepped portion 9. And the flange 8. In addition, since the stepped portion 9 is opposed to the fixing member 13 in the pushing direction B, the movement of the second joint body 7 in the pushing direction B is regulated by the stepped portion 9 and the fixing member 13. . Thereby, the second joint body 7 is fixed to the first joint body 6.
[0032]
At this time, as shown in FIG. 2, the end face 8c of the opposed flange portion 8 and the end face 9a of the stepped portion 9 are insulated by one insulating packing 14a, and the end face 9b of the opposed stepped portion 9 is formed. And the end surface 13a of the fixing member 13 are insulated by the other insulating packing 14b, and the outer peripheral surface 8a of the flange 8 and the inner peripheral surface of the insertion hole 5 are insulated by the first insulating resin member 14c. The outer peripheral surface of the second joint body 7 and the inner peripheral surface 9c of the stepped portion 9 are insulated by the second insulating resin member 14d. Thereby, for example, even when a flammable fluid such as city gas flows in the two pipes 2 and 3, the insulation between the one pipe 2 and the other pipe 3 is provided. Explosion-proof and anti-corrosion effects are obtained.
[0033]
Also, one tube 2 is welded to the first joint body 6 via a short pipe 11 of a different diameter, and the other tube 3 and the fixing member 13 are welded to the second joint body 7 to be integrated. The flanges 53 and 56 are joined together by bolts 57 and nuts 58 as in the related art (see FIG. 14) because they are attached and the stepped portion 9 is formed integrally with the first joint body 6. Compared to the type of insulated joint structure 62, the joint strength against external force is increased, and the earthquake resistance is improved.
[0034]
Further, as shown in FIG. 6, a radial width Da of one insulating packing 14a is formed smaller than a radial width Db of the other insulating packing 14b, and therefore, as shown in FIG. The contact area of the insulating packing 14a is smaller than the contact area of the other insulating packing 14b. Accordingly, when the fixing member 13 is welded to the second joint main body 7 in the state where the fixing member 13 is pushed in the pushing direction B as described above (all-round welding W3), the compression amount of one of the insulating packings 14a is reduced to the other insulating packing 14b. And the surface pressure of one insulating packing 14a is higher than the surface pressure of the other insulating packing 14b. Therefore, the one insulating packing 14a can secure a sufficiently large surface pressure required for sealing. it can.
[0035]
In addition, when a tensile force is applied in the pull-out direction A after performing the entire circumference welding W3, the surface pressure of the one insulating packing 14a increases, so that the sealing performance of the one insulating packing 14a is further improved. . Further, when a compressive force is applied in the pushing direction B, the amount of compression of the other insulating packing 14b is reduced (less compressed) due to the large contact area of the other insulating packing 14b. The amount of compression of the insulating packing 14a does not change much, only slightly decreases, and the surface pressure of the one insulating packing 14a is also slightly reduced. Can be secured. Therefore, the space between the end face 8c of the flange portion 8 (see FIG. 4) and the end face 9a of the stepped portion 9 (see FIG. 3) is securely sealed by the one insulating packing 14a, and the internal fluid is removed. , 9a can be prevented from leaking to the outside.
[0036]
As shown in FIG. 2, a first resin member 14c having a hardness equal to or greater than that of the packing 14a is disposed on an outer peripheral edge of the one insulating packing 14a. Since the second resin member 14d having the same or higher hardness as that of the packing 14a is disposed on the first packing, it is possible to prevent the one insulating packing 14a from being deformed in the radial direction. The first insulating resin member 14c is prevented from being displaced in the pushing direction B by the positioning projection 14ci engaging with the engaged portion 8b (see FIG. 4) of the flange portion 8.
[0037]
Further, as shown in FIG. 2, the inner peripheral surface 6 a of the first joint main body 6 is enlarged outside the insertion hole 5, so that the inner peripheral surface 6 a of the first joint main body 6 and the flange portion are formed. A constant step E is formed in the radial direction with respect to the outer peripheral surface 8a. Accordingly, even if foreign matter in the pipe is deposited on the inner peripheral surface 6a, the foreign matter is prevented from reaching the flange 8 of the second joint body 7 due to the presence of the step E. In addition, conduction between the first joint body 6 and the second joint body 7 via the foreign matter can be prevented.
[0038]
The space between the inner peripheral surface of the first insulating resin member 14c and the outer peripheral surface 8a of the flange portion 8 is sealed by the inner O-ring 17, and the outer peripheral surface of the first insulating resin member 14c and the inside of the insertion hole 5 are formed. The outer surface is sealed by an outer O-ring 19. As a result, the sealing function of the two O-rings 17 and 19 is added to the sealing function of the one insulating packing 14a. Therefore, even if the one insulating packing 14a is deteriorated or damaged, The sealing performance is maintained by the rings 17, 19, whereby the safety is improved.
[0039]
In the first embodiment, the insulated joint structure 1 is employed in a pipe through which city gas flows as the explosion-proof fluid. However, the present invention is not limited to city gas, and other fluids such as petroleum refining are used. The above-mentioned insulating joint structure 1 may be adopted in a pipeline of a plant or the like.
[0040]
Next, a second embodiment will be described with reference to FIGS. That is, the second embodiment is a ball valve 30 provided with the insulating joint structure 1 according to the first embodiment described above, and has the following configuration.
[0041]
The ball valve 30 is a two-way valve, and its valve box 31 is composed of a valve box body 32 and a joint 4. One of the pipes 2 is integrally formed on one end side of the valve box main body 32 by forging, and forms an opening for piping (not shown).
[0042]
Further, one end of the first joint body 6 of the joint 4 is integrally joined to the other end side of the valve box body 32 by the entire circumference welding W5, and is inserted into the insertion hole 5 of the first joint body 6. One end of the second joint body 7 is inserted, and the other tubular body 3 and the fixing member 13 are integrally joined to the second joint body 7 by full-circumferential weldings W3 and W4, respectively. The other pipe 3 forms an opening for a pipe (not shown). The first joint body 6 is formed in a tapered shape that gradually expands from the second joint body 7 side to the valve box body 32 side. The joint structure between the joint 4 and the other tubular body 3 is the same as that of the first embodiment described above.
[0043]
On the far end side inside the one pipe body 2, one valve box port 34 communicating with the space 33 inside the valve box and the inside of the one pipe body 2 is formed. Is provided with an annular valve box sheet 35. Further, on the far end side in the second joint body 7, the other valve box port 36 communicating with the space 33 in the valve box and the inside of the second joint body 7 is formed. Note that the other valve box port 36 is not provided with a valve box sheet.
[0044]
A valve body 38 that rotates about the axis of a valve rod 37 is disposed in the valve box space 33. As shown in FIG. 12, the valve body 38 has a valve body flow path 39 communicating between the two valve box ports 34 and 36 when fully opened, and one side in a direction orthogonal to the valve body flow path 39 is provided. As shown in FIG. 11, a disc-shaped valve body sheet 40 is provided at the position, which is pressed against the valve box sheet 35 when fully closed.
Hereinafter, the operation of the above configuration will be described.
[0045]
Before welding the first joint body 6 to the valve box body 32, first, the O-rings 17 and 19 are fitted into the grooves 16 and 18, respectively. The insulating packing 14a and the first insulating resin member 14c are inserted, the first insulating resin member 14c is fitted into the inner peripheral surface of the insertion hole 5, and the one insulating packing 14a is inserted into the first insulating resin member 14c. And applied to the end face 9 a of the stepped portion 9.
[0046]
Next, as shown in FIG. 13, the second joint body 7 is inserted into the insertion hole 5 from one end side of the first joint body 6. At this time, the movement of the second joint body 7 in the withdrawal direction A is regulated by the flange 8 contacting the stepped portion 9 via the one insulating packing 14a. One end of the joint body 7 is inserted. Thereafter, the other insulating packing 14b and the second insulating resin member 14d are externally fitted to the second joint body 7, and the second insulating resin member 14d is connected to the inner peripheral surface 9c of the stepped portion 9 and the second insulating resin member 14d. It is inserted between the outer peripheral surface of the joint main body 7 and the other insulating packing 14b is applied to the end surface 9b of the stepped portion 9 to fit outside the second insulating resin member 14d.
[0047]
Then, the fixing member 13 is externally fitted to the second joint body 7 from the other end side of the second joint body 7 and pressed against the first joint body 6, and the second joint body 7 is pulled out in the pulling direction A. (See FIG. 11), the fixing member 13 is welded to the outer peripheral surface of the second joint body 7 in a state where the second joint body 7 is stretched in the pull-out direction A by applying a tensile force F to the second joint body 7 (all-around welding). W3). Next, since the second joint main body 7 tends to contract in the pushing direction B (see FIG. 11) by removing the tensile force F, the fixing member 13 and the flange 8 are each strong against the stepped portion 9. It is pressed by the pressing force, and no gap is generated.
[0048]
After that, the other pipe 3 is integrally joined to the other end of the second joint body 7 by full circumference welding W4. Further, as shown in FIG. 11, one end side of the first joint main body 6 is integrally joined to the valve box main body 32 by full circumference welding W2. Thereby, the other pipe 3 is connected to the valve box 31 via the joint 4.
[0049]
Further, even when a flammable fluid such as city gas flows in the ball valve 30, the valve box 31 and the other pipe 3 are insulated, so that explosion-proof and anti-corrosion effects can be obtained.
[0050]
In addition, as compared with a conventional ball valve 67 having an insulating joint structure 62 of a type in which both flanges 53 and 56 are joined by bolts 57 and nuts 58 (see FIGS. 15 and 16), In this case, the joint strength against external force is increased, and the earthquake resistance is improved.
[0051]
As shown in FIG. 12, when the valve body 38 is rotated to the fully open position via the valve rod 37, the valve body ports 34 and 36 communicate with each other through the valve body flow path 39, and the inside of one pipe 2 The fluid that flows in from one of the pipes passes through one valve box port 34, the valve body channel 39, and the other valve box port 36, and flows out into the other pipe 3.
[0052]
As shown in FIG. 11, when the valve body 38 is rotated to the fully closed position via the valve rod 37, the valve body sheet 40 comes into pressure contact with the valve box sheet 35, so that one valve box port 34 side has a valve. Since the fluid is closed by the body sheet 40, the fluid in one tube 2 is blocked by the valve body sheet 40 and is prevented from flowing to the other tube 3.
[0053]
In the second embodiment, one of the tubes 2 is used as a fluid inlet and the other tube 3 is used as a fluid outlet. However, the fluid ports may be reversed.
In the second embodiment, the ball valve 30 is provided in a pipe through which city gas flows as a fluid to be explosion-proof. However, the present invention is not limited to city gas, and other fluids, such as a petroleum refining plant, etc. The above-mentioned ball valve 30 may be provided in the pipeline.
[0054]
In the second embodiment, the ball valve 30 is a two-way valve, but may be a three-way valve or another type of valve.
[0055]
【The invention's effect】
As described above, according to the first aspect of the present invention, when one pipe and the other pipe are connected via a joint, the first pipe is connected to the second pipe and the first pipe and the second pipe. It is insulated from the fixing member by an insulating material. Also, compared with the conventional type insulated joint structure in which both flanges are joined to each other with bolts and nuts, the joint strength against external force is increased, and the earthquake resistance is improved.
[0056]
In the second invention, one of the insulating packings can secure a sufficiently large surface pressure required for sealing, and the gap between the end face of the flange in the pulling-out direction and the end face of the stepped portion in the pushing direction is as described above. It is reliably sealed by one of the insulating packings, and reliably prevents the internal fluid from leaking to the outside through the space between the end face of the flange in the pulling-out direction and the end face of the stepped portion in the pushing direction. Can be.
[0057]
Furthermore, in the third aspect of the invention, compared to a valve having a conventional type insulated joint structure in which both flanges are joined together by bolts and nuts, the joint strength against external force is increased, and the earthquake resistance is improved.
[Brief description of the drawings]
FIG. 1 is a sectional view of an insulating joint structure according to a first embodiment of the present invention.
FIG. 2 is a partially enlarged sectional view of the same insulating joint structure.
FIG. 3 is a partially enlarged cross-sectional view of a first joint body having the insulating joint structure.
FIG. 4 is a partially enlarged cross-sectional view of a second joint body having the insulating joint structure.
FIG. 5 is a partially enlarged cross-sectional view of the fixing member having the insulating joint structure.
FIG. 6 is a cross-sectional view of a component constituting the insulating material of the insulating joint structure.
FIG. 7 is a cross-sectional view showing a procedure for connecting the pipes using the insulating joint structure, showing a process of attaching an insulating material to the first joint main body.
FIG. 8 is a cross-sectional view showing a procedure for connecting the pipes using the insulated joint structure, showing a process of attaching a second joint body to the first joint body.
FIG. 9 is a cross-sectional view showing a procedure for connecting a pipe using the insulating joint structure, showing a process of attaching a fixing member to the joint.
FIG. 10 is a cross-sectional view showing a procedure for connecting the pipe using the insulating joint structure, showing a process of welding the pipe to the joint.
FIG. 11 is a cross-sectional view of a valve having an insulating joint structure according to a second embodiment of the present invention, showing a fully closed state.
FIG. 12 is a cross-sectional view of the valve having the insulating joint structure, showing a fully opened state.
FIG. 13 is an enlarged sectional view of an insulating joint structure portion of the valve having the insulating joint structure.
FIG. 14 is a sectional view of a conventional insulating joint structure.
FIG. 15 is a sectional view of a valve having a conventional insulating joint structure.
FIG. 16 is an enlarged sectional view of an insulating joint structure portion of the valve having the insulating joint structure.
[Explanation of symbols]
1 Insulation joint structure
2 One tube
3 The other tube
4 Fitting
5 insertion hole
6. First joint body
7. Second joint body
8 Tsubabe
8a Outer peripheral surface of flange
8c End face of flange in pull-out direction
9 Stepped part
9a End face of stepped part on pushing direction side
9b End face of stepped part on pull-out direction side
9c Inner peripheral surface of stepped part
13 Fixing member
13a End surface of fixing member in pushing direction side
14 Insulation
14a One insulating packing
14b The other insulating packing
14c first insulating resin member
14d second insulating resin member
30 ball valve
31 Valve box
38 valve body
A Pulling direction
B Push direction
Da, Db Radial width

Claims (3)

一方の管体と他方の管体とを継手を介して接続する絶縁継手構造であって、上記継手は、挿入孔を有する環状の第1の継手本体と、一端部が上記挿入孔に挿入される筒状の第2の継手本体とで構成され、上記第2の継手本体は、その一端部の外周面に、全周にわたって外側へ突出した鍔部を有し、上記第1の継手本体に、上記鍔部の外径よりも小さな内径を有し且つ挿入孔の手前部に位置して上記鍔部の引抜方向への移動を規制する段付部が全周にわたり一体に形成され、上記第1の継手本体に一方の管体が溶接され、上記段付部に対して鍔部とは反対側から対向するように配置された環状の固定部材が第2の継手本体に外嵌され、上記第2の継手本体に固定部材と他方の管体とが溶接され、上記第1の継手本体と第2の継手本体との間および第1の継手本体と固定部材との間に、絶縁材が全周にわたり設けられていることを特徴とする絶縁継手構造。An insulated joint structure for connecting one tube and the other tube via a joint, wherein the joint includes an annular first joint body having an insertion hole, and one end inserted into the insertion hole. The second joint body has a flange portion protruding outward over the entire circumference on an outer peripheral surface of one end thereof, and the second joint body has a first joint body. A stepped portion having an inner diameter smaller than the outer diameter of the flange portion and located in front of the insertion hole and restricting the movement of the flange portion in the pulling-out direction is integrally formed over the entire circumference; One tubular body is welded to the first joint body, and an annular fixing member arranged so as to face the stepped portion from the side opposite to the flange portion is externally fitted to the second joint body, The fixing member and the other pipe body are welded to the second joint main body, and a gap between the first joint main body and the second joint main body is formed. Insulating joint structure between the first joint body and the fixing member, an insulating material and being provided over the entire circumference. 絶縁材は、相対向する鍔部の引抜方向側の端面と段付部の押込方向側の端面との間に装填される一方の絶縁パッキンと、相対向する段付部の引抜方向側の端面と固定部材の押込方向側の端面との間に装填される他方の絶縁パッキンと、鍔部の外周面と挿入孔の内周面との間に装填される第1の絶縁樹脂部材と、第2の継手本体の外周面と段付部の内周面との間に装填される第2の絶縁樹脂部材とで構成され、上記一方の絶縁パッキンの径方向の幅が他方の絶縁パッキンの径方向の幅よりも小さく形成されていることを特徴とする請求項1記載の絶縁継手構造。The insulating material is one insulating packing loaded between an end face on the pulling-out side of the facing flange portion and an end face on the pushing direction of the stepped portion, and an end face of the facing stepped portion on the drawing direction side. A first insulating resin member loaded between an outer peripheral surface of the flange portion and an inner peripheral surface of the insertion hole; And a second insulating resin member loaded between the outer peripheral surface of the joint body and the inner peripheral surface of the stepped portion, wherein the radial width of the one insulating packing is equal to the diameter of the other insulating packing. 2. The insulating joint structure according to claim 1, wherein the width is smaller than the width in the direction. 請求項1又は請求項2に記載の絶縁継手構造を備えた弁であって、第1の継手本体が弁箱の一部を形成し、この弁箱に一方の管体が一体に設けられ、第2の継手本体の他端部に他方の管体が溶接され、弁箱内の弁体を開くことによって、流体が一方の管体と他方の管体との間を流れることを特徴とする絶縁継手構造を備えた弁。A valve provided with the insulating joint structure according to claim 1 or 2, wherein the first joint body forms a part of a valve box, and one of the pipes is provided integrally with the valve box, The other pipe is welded to the other end of the second joint body, and the fluid flows between the one pipe and the other pipe by opening the valve in the valve box. Valve with insulation joint structure.
JP2003003782A 2003-01-10 2003-01-10 Insulating joint structure, and valve having the same Pending JP2004218666A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003003782A JP2004218666A (en) 2003-01-10 2003-01-10 Insulating joint structure, and valve having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003003782A JP2004218666A (en) 2003-01-10 2003-01-10 Insulating joint structure, and valve having the same

Publications (1)

Publication Number Publication Date
JP2004218666A true JP2004218666A (en) 2004-08-05

Family

ID=32894947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003003782A Pending JP2004218666A (en) 2003-01-10 2003-01-10 Insulating joint structure, and valve having the same

Country Status (1)

Country Link
JP (1) JP2004218666A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101180284B1 (en) 2012-01-18 2012-09-06 엠씨브이 주식회사 Welding type insulation ball valve

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101180284B1 (en) 2012-01-18 2012-09-06 엠씨브이 주식회사 Welding type insulation ball valve

Similar Documents

Publication Publication Date Title
US7232159B2 (en) Tube coupling
US11692658B2 (en) Couplings
US7464728B2 (en) Pipe seal assembly and method
JP4939826B2 (en) How to assemble pipe fittings
KR100942957B1 (en) The fitting for connecting branch pipe
JPWO2015075966A1 (en) Pipe joint structure
KR20110033548A (en) Apparatus for connection spiral corrugated pipes
JP4034819B2 (en) Piping cover assembly set
JP2004218666A (en) Insulating joint structure, and valve having the same
CN203115338U (en) Compression type single ferrule fitting
JP2019120379A (en) Leakage repairing structure and leakage repairing tool
KR20050046508A (en) Pipe join structure
RU2461762C1 (en) Connection device
JP2004218755A (en) Insulating joint structure and valve having the same
KR101304551B1 (en) Pipe connecting device
KR20190091172A (en) double shut a flange piping joint
KR200235241Y1 (en) Pipe Joint Body
CN214119286U (en) Pipeline connecting structure
JP2005016561A (en) Fluid pipe connector, fluid pipe connection device, method for connecting fluid pipe connector to fluid pipe, and fluid pipe having fluid pipe connector
JP7012623B2 (en) Pipe line closing stopper and pipe line closing method
KR200299412Y1 (en) Structure for jointing pipes
CA2939627A1 (en) Rigid self-sealing pipe clamp system and method
IL301148B1 (en) Containment connector
JPH11325354A (en) Pipe connecting structure
CA2660250C (en) Internal pipe seal