【0001】
【発明の属する技術分野】
本発明は、油圧ショベル等の建設機械に設置される昇降ステップ等に設けられる踏板、特には、この踏板の端部に別部材を用いることなく滑り止め措置を施したものに関する。
【0002】
【従来の技術】
建設機械に設けられるステップに滑り止め構造を設けた従来の技術としては、昇降ステップを構成する踏板の踏面に開口を有する凹凸部を複数形成するとともに、ステップの側縁部に踏面から上方に突出する縦壁を滑り止めとして固設したものがある(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開平11−93215号公報
【0004】
【発明が解決しようとする課題】
建設機械を代表する油圧ショベル、特に大型油圧ショベルはオペレータが運転操作を行うキャビンの地上からの高さが高く、その途中には昇降ステップが備えられている。オペレータがこの昇降ステップを通過する際の安全性確保のために、昇降ステップには滑り止め措置が施される。
しかしながら、上記特許文献1に開示された従来の技術による建設機械の昇降ステップでは、この昇降ステップの踏板の端部に滑り止め措置を施す場合に、踏板本体を構成する板部材とは別に縦壁用の板部材が必要となり、部品点数が増える。また、本体を構成する板部材に縦壁用の板部材を固設する工程が必要となり、コストアップとなる。
【0005】
本発明は、上述した従来技術の問題に鑑みてなされたもので、油圧ショベル等の建設機械に設置される昇降ステップに設けられる踏板に関し、この踏板の端部に別部材を用いることなく滑り止め措置を施すものである。
【0006】
【課題を解決するための手段】
請求項1の発明に係る踏板は、板部材により構成され、略水平方向に延在する踏面を有する踏板であって、板部材は、一端側が踏面に対して下方に折り曲げられ、その折り曲げ部には、板部材の踏面の一部が上方に立ち上がって成る滑り止めが形成されている。
請求項2の発明では、上記滑り止めが、折り曲げ部に沿って複数個設けられている。
請求項3の発明では、上記踏面に、開口を有する膨出部が他の滑り止めとして複数形成されている。
請求項4の発明に係る昇降ステップは、上述の滑り止め付き踏板を複数有して成る。
請求項5の発明に係る建設機械は、請求項4に記載の昇降ステップをキャビンに向かう経路に配置して成る。
請求項6の発明に係る踏板の製造方法は、踏面および滑り止めを構成すべき板部材に滑り止めに応じた形状の切込みを形成する工程と、切込みが形成された板部材をその切込み部分にて折り曲げる工程とを有し、上記折り曲げにより、切込みを入れた部分が踏面に対して滑り止めとして立ち上がるようにしたものである。
【0007】
【発明の実施の形態】
図1〜図9により本発明を大型油圧ショベルの昇降ステップに適用した場合の一実施形態を説明する。
図1,図2に示すように、大型油圧ショベルは下部走行体1と上部旋回体2とから成り、上部旋回体2の前部にはキャビン3が設けられるとともに、作業フロント(不図示)が連結される。このような大型油圧ショベルではキャビン3が高い位置にあるため、オペレータのキャビン3への出入りは上下の昇降ステップ(階段)10,20を用いる。また上部旋回体2には、オペレータがメンテナンス等を行うためのサイドステップ31〜33が設けられている。
【0008】
図3は上側昇降ステップ20の正面図(図2のA方向から見た図)であり、ステップ20は一対の側板21に支持された複数の踏板22を有する。個々の踏板22は、図4に示すように一枚の金属製板部材の前側および後側を略直角に折り曲げて形成され、折り曲げにより略水平の踏面22Aと、略垂直の前面(ステップ20を上ろうとするオペレータに対向する面)22Bおよび後面22Cとが形成される。
【0009】
板部材を折り曲げる前の工程で、板部材の前側折り曲げ部にあたる箇所に図5に示すような略コ字状の溝DRを打抜きにより形成しておく。溝DRは、折り曲げ線Lに沿って所定間隔で複数形成される。溝DRを形成した後に板部材を線Lに沿って略90度折り曲げると、図6に示すように溝DRを形成した部分22Dは折り曲がらず踏面22Aに対して垂直に立ち上がる。この複数の立ち上がり部分22Dが滑り止めとして機能する。滑り止め22Dの幅は30mm程度、間隔は80mm程度とされ、踏面22Aからの突出量は5mm程度とされる。
このように構成された複数の踏板22は、図8に示すように上下に並べて配置され、各踏板22の左右端が側板21に支持されてステップ20が構成される。
【0010】
ステップ20を昇降する際には、各踏板22の突出端(前側折り曲げ部分)に靴底をかけるのが人間の動作として自然であり、本実施形態では、その突出端部分に滑り止め22Dが形成されている。滑り止め22Dの幅や寸法は上述した通りであり、これによれば、各踏板22において2個乃至は3個の滑り止め22Dがオペレータの靴底に当たることになる。したがって靴の前後および左右方向の滑りを最小限に抑制できる。因みに従来の滑り止めは、踏面の縁に沿って均一に延在するものであり、複数の滑り止めを間隔をあけて配置するものではなかったため、横滑りの可能性が高い。これを防止するには、滑り止め用の板部材の上端に凹凸加工を施す必要があり、コスト高となる。
【0011】
また本実施形態では、滑り止め22Dを設けるにあたって他の部材を必要とせず、1枚の板部材を折り曲げることで滑り止め22Dを形成しているので、従来のように他の滑り止め用の板部材を別途用意する必要がなく、部品点数の低減が図れる。また2枚の板部材を溶接する工程(溶接は高価である)も不要であり、製造コストの低減が図れる。
【0012】
さらに、踏面22A上には滑り止め22Dが位置していた部分が孔HLとして残り、これらの孔HLは、踏面22A上に落ちた雨水や泥などを下方に落とす排水/排土孔として有効である。特にオペレータが滑り止め22Dに靴底をかけた際、靴底についていた泥が滑り止め22Dでそぎ落とされことがあるが、孔HLは必然的に各滑り止め22Dの直ぐ後方に形成されているため、泥は直ぐに孔HLを通って下方に落下する。したがって、滑り止め22Dと踏面22Aとの隅部に泥が溜まって滑り止め機能が低下するといった不都合はない。そして、かかる排水/排土孔HLは板部材の折り曲げ工程、つまり滑り止め22Dを立ち上げる工程において自動的に形成されるものであるから、孔HLを開けるための別工程は不要である。因みに従来のように滑り止めを溶接により固着する方法では、上述のような排水/排土孔を設けるにあたって別途孔開け工程が必要となる。
【0013】
図9,図10は別実施形態を示し、これは踏板の踏面にも滑り止めを設けたものである。図3と同一の構成要素には同一の符号を付す。
踏面22Aに設けられる滑り止め23は複数の膨出部から構成され、各膨出部23には開口OPが設けられている。開口OPの縁部により踏面22A上での靴底の滑りが防止される。さらに滑り止め23の間には排水/排土孔HL2が設けられ、これにより踏面上に雨水や泥が溜まることが防止される。
図11は滑り止め23の間に下側に凸の膨出部24を設け、ここに排水/排土孔HL2を設けることで排水/排土性を向上させたものである。
【0014】
以上では、踏板の基となる板部材に溝DRを打抜きにより形成したが、溝DRに代えて図12のようなスリットSLでも同様に滑り止め22D’を形成することができる。スリットSLはレーザ装置を用いて形成することができ、打抜きと比べて形成に要する時間はかかるものの、複雑な形状のスリットSL(滑り止め)を形成することができる。
【0015】
なお、図1,図2の上側昇降ステップ20の踏板に本発明を適用した例を示したが、下側昇降ステップ10の踏板にも同様に適用できる。またサイドウォーク31〜33の外縁部に同様の方法で滑り止めを形成してもよい。
【0016】
さらに滑り止めを踏面に対して直角に立ち上げるようにしたが、直角でなくてもよい。滑り止めの角度は板部材の折り曲げ角度により調節でき、例えば踏面と前面とが鋭角となるよう折り曲げれば、滑り止めは上前方に斜めに立ち上がることになる。また滑り止めを踏板の全幅に渡って等間隔に設けたが、必ずしも全幅に渡って設ける必要はなく、中央部のみに設けてもよい。滑り止めの幅や間隔も一定でなくてもよく、中央に至るほど密になるようにしてもよい。さらに滑り止めの形状も制約を受けない。油圧ショベルに適用した例を示したが、その他の建設機械の昇降ステップやサイドウォークの踏板にも本発明を適用できる。
【0017】
【発明の効果】
本発明によれば、板部材を折り曲げることで板部材の一部を滑り止めとして立ち上げるようにしたので、滑り止め用の部材を別途設ける必要がなく部品点数の低減が図れる。また滑り止め用の部材を溶接により固着する工程も不要となり、製造コストの低減が図れる。
本発明の滑り止め付き踏板を複数有する昇降ステップを構成すれば、この昇降ステップを安価に製造することができるとともに、建設機械への取付けも容易に行うことができる。
本発明の昇降ステップをキャビンに向かう経路に配置して建設機械を構成すれば、例えばオペレータが夜間等に昇降ステップを通過する場合、昇降ステップを踏み外すことなく安全に昇降することができ、その安全性を確保することができる。
本発明の製造方法によれば、2枚の板部材を溶接する工程が不要であり、切込みが形成された1枚の板部材を折り曲げる工程のみでよく、製造コストの低減ができる。
【図面の簡単な説明】
【図1】本発明の一実施形態における大型油圧ショベルの平面図。
【図2】上記大型油圧ショベルの側面図。
【図3】大型油圧ショベルの昇降ステップ20を図2のA方向から見た図。
【図4】昇降ステップを構成する踏板を示す平面図、正面図およびE線から見た断面図。
【図5】踏板を構成する板部材に溝を形成した状態を示す図。
【図6】図5の板部材を折り曲げて構成された滑り止め付き踏板を示す斜視図。
【図7】踏板の滑り止め部分を示す平面図、正面図および側面断面図。
【図8】複数の踏板を上下に配置した状態を示す図。
【図9】踏板の踏面に他の滑り止めと排水/排土孔を設けた例を示す図。
【図10】踏面に設けた滑り止めと排水/排土孔とを示す断面図。
【図11】踏面に設けた滑り止めと排水/排土孔の他の例を示す断面図。
【図12】スリットSLにより滑り止めを形成した例を示す図。
【符号の説明】
2 上部旋回体
10,20 昇降ステップ
21 側板
22 踏板
22A 踏面
22D,22D’ 滑り止め
DR 溝
HL 排水/排土孔
SL スリット[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a tread provided on a lifting step or the like installed on a construction machine such as a hydraulic shovel, and more particularly, to a tread provided with a non-slip measure at an end of the tread without using a separate member.
[0002]
[Prior art]
As a conventional technology in which a non-slip structure is provided on a step provided on a construction machine, a plurality of uneven portions having openings are formed on a tread surface of a tread plate constituting an elevating step, and projecting upward from a tread surface on a side edge portion of the step. There is one in which a vertical wall is fixed as a non-slip (for example, see Patent Document 1).
[0003]
[Patent Document 1]
JP-A-11-93215
[Problems to be solved by the invention]
2. Description of the Related Art Hydraulic shovels representing construction machines, particularly large hydraulic shovels, have a high cabin from which the operator operates the cabin above the ground, and are provided with an elevating step on the way. In order to ensure safety when the operator passes through the elevating step, the elevating step is provided with a non-slip measure.
However, in the elevating step of the construction machine according to the conventional technique disclosed in Patent Document 1, when a non-slip measure is applied to the end of the tread in the elevating step, a vertical wall is provided separately from the plate member constituting the tread main body. Plate members are required, and the number of parts increases. In addition, a step of fixing the plate member for the vertical wall to the plate member constituting the main body is required, and the cost is increased.
[0005]
The present invention has been made in view of the above-described problems of the related art, and relates to a tread provided in a lifting step installed in a construction machine such as a hydraulic shovel, and a non-slip without using a separate member at an end of the tread. Take action.
[0006]
[Means for Solving the Problems]
The tread according to the first aspect of the present invention is a tread having a tread surface formed of a plate member and extending in a substantially horizontal direction, wherein the plate member has one end side bent downward with respect to the tread surface, and has a bent portion. Has a non-slip structure in which a part of the tread surface of the plate member rises upward.
According to the second aspect of the present invention, a plurality of the slip stoppers are provided along the bent portion.
According to the third aspect of the invention, a plurality of bulging portions having openings are formed on the tread surface as other slip stoppers.
The elevating step according to the invention of claim 4 includes a plurality of the above-described non-slip treads.
A construction machine according to a fifth aspect of the present invention is configured such that the elevating step according to the fourth aspect is arranged on a path toward the cabin.
The method for manufacturing a tread according to the invention of claim 6 is a step of forming a notch in a shape corresponding to the non-slip on a tread surface and a plate member to constitute a non-slip, and applying the plate member with the notch to the cut portion. And bending so that the cut portion rises as a non-slip against the tread surface by the bending.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
One embodiment in which the present invention is applied to a lifting and lowering step of a large-sized hydraulic excavator will be described with reference to FIGS.
As shown in FIGS. 1 and 2, the large-sized hydraulic excavator includes a lower traveling structure 1 and an upper revolving structure 2. A cabin 3 is provided at a front portion of the upper revolving structure 2, and a work front (not shown) is provided. Be linked. In such a large-sized hydraulic excavator, since the cabin 3 is located at a high position, the operator enters and exits the cabin 3 by using up and down steps (stairs) 10 and 20. The upper swing body 2 is provided with side steps 31 to 33 for the operator to perform maintenance or the like.
[0008]
FIG. 3 is a front view (a view as viewed from the direction A in FIG. 2) of the upper elevating step 20, and the step 20 has a plurality of tread plates 22 supported by a pair of side plates 21. As shown in FIG. 4, each of the tread plates 22 is formed by bending the front and rear sides of a single metal plate member at substantially right angles, and by bending, a substantially horizontal tread surface 22A and a substantially vertical front surface (step 20). A surface (facing the operator who is going to climb) 22B and a rear surface 22C are formed.
[0009]
In a process before bending the plate member, a substantially U-shaped groove DR as shown in FIG. 5 is formed by punching at a position corresponding to a front bent portion of the plate member. A plurality of grooves DR are formed at predetermined intervals along the bending line L. When the plate member is bent substantially 90 degrees along the line L after the formation of the groove DR, the portion 22D where the groove DR is formed does not bend and rises perpendicularly to the tread surface 22A as shown in FIG. The plurality of rising portions 22D function as slip stoppers. The width of the non-slip 22D is about 30 mm, the interval is about 80 mm, and the amount of protrusion from the tread 22A is about 5 mm.
As shown in FIG. 8, the plurality of treads 22 configured as described above are arranged vertically, and the left and right ends of each tread 22 are supported by the side plate 21 to form the step 20.
[0010]
When moving up and down the step 20, it is natural for a human operation to put a shoe sole on the protruding end (front bent portion) of each tread plate 22, and in this embodiment, a non-slip 22D is formed on the protruding end portion. Have been. The width and dimensions of the non-slip 22D are as described above, and according to this, in each tread plate 22, two or three non-slip 22D hit the shoe sole of the operator. Therefore, slippage of the shoe in the front-back and left-right directions can be suppressed to a minimum. Incidentally, the conventional non-slip extends uniformly along the edge of the tread surface, and is not one in which a plurality of non-skids are arranged at intervals, so that there is a high possibility of skidding. In order to prevent this, it is necessary to apply unevenness to the upper end of the anti-slip plate member, which increases the cost.
[0011]
Further, in the present embodiment, since another member is not required to provide the non-slip 22D, the non-slip 22D is formed by bending a single plate member, so that another non-slip plate is provided as in the related art. There is no need to separately prepare members, and the number of parts can be reduced. Further, a step of welding two plate members (welding is expensive) is not required, and the manufacturing cost can be reduced.
[0012]
Further, the portion where the non-slip 22D is located on the tread 22A remains as a hole HL, and these holes HL are effective as drainage / discharge holes for dropping rainwater, mud, etc., which have fallen on the tread 22A. is there. In particular, when the operator puts the sole on the non-slip 22D, mud on the sole may be scraped off by the non-slip 22D, but the hole HL is necessarily formed immediately behind each non-slip 22D. Therefore, the mud immediately falls downward through the hole HL. Therefore, there is no inconvenience that mud accumulates at the corner between the non-slip 22D and the tread surface 22A and the anti-slip function is reduced. Since the drainage / discharge hole HL is automatically formed in the step of bending the plate member, that is, in the step of raising the non-slip 22D, a separate step for opening the hole HL is unnecessary. Incidentally, in the conventional method of fixing the non-slip by welding, a separate drilling step is required for providing the drainage / discharge holes as described above.
[0013]
9 and 10 show another embodiment, in which the tread of the tread is also provided with a non-slip. The same components as those in FIG. 3 are denoted by the same reference numerals.
The non-slip 23 provided on the tread surface 22A is composed of a plurality of bulging portions, and each bulging portion 23 has an opening OP. The edge of the opening OP prevents the shoe sole from slipping on the tread surface 22A. Further, a drainage / discharge hole HL2 is provided between the non-skids 23, thereby preventing accumulation of rainwater and mud on the tread.
FIG. 11 shows that drainage / discharge properties are improved by providing a downwardly protruding bulging portion 24 between the anti-skids 23 and providing drainage / discharge holes HL2 here.
[0014]
In the above description, the groove DR is formed by punching in the plate member serving as the base of the tread plate. However, the non-slip 22D ′ can be formed in the slit SL as shown in FIG. 12 instead of the groove DR. The slit SL can be formed using a laser device, and although it takes more time to form as compared with punching, a slit SL (slip stopper) having a complicated shape can be formed.
[0015]
In addition, although the example which applied this invention to the tread of the upper raising / lowering step 20 of FIG. 1, FIG. 2 was shown, it can be similarly applied to the tread of the lower raising / lowering step 10. A non-slip may be formed on the outer edge of the side walks 31 to 33 in the same manner.
[0016]
Furthermore, although the non-slip is raised at a right angle to the tread surface, it may not be at a right angle. The angle of the non-slip can be adjusted by the bending angle of the plate member. For example, if the tread and the front surface are bent at an acute angle, the non-slip rises obliquely upward and forward. In addition, although the non-slip is provided at equal intervals over the entire width of the tread plate, it is not always necessary to provide the anti-slip over the entire width, and it may be provided only at the central portion. The width and interval of the non-slip may not be constant, and may be made denser toward the center. Further, the shape of the anti-slip is not restricted. Although an example in which the present invention is applied to a hydraulic excavator is shown, the present invention can be applied to other steps such as a lifting step of a construction machine and a sidewalk tread.
[0017]
【The invention's effect】
According to the present invention, since a part of the plate member is raised as a non-slip member by bending the plate member, it is not necessary to separately provide a non-slip member, and the number of components can be reduced. In addition, a step of fixing the non-slip member by welding is not required, and the manufacturing cost can be reduced.
If a lifting step having a plurality of non-slip treads of the present invention is configured, this lifting step can be manufactured at low cost and can be easily attached to a construction machine.
If the construction machine is configured by arranging the elevation step of the present invention on the path toward the cabin, for example, when the operator passes through the elevation step at night or the like, the operator can safely ascend and descend without stepping off the elevation step. Property can be ensured.
According to the manufacturing method of the present invention, a step of welding two plate members is not required, and only a step of bending one plate member having a cut is required, so that manufacturing cost can be reduced.
[Brief description of the drawings]
FIG. 1 is a plan view of a large-sized hydraulic excavator according to an embodiment of the present invention.
FIG. 2 is a side view of the large hydraulic excavator.
FIG. 3 is a view of an ascending and descending step 20 of the large-sized hydraulic shovel viewed from a direction A in FIG. 2;
FIG. 4 is a plan view, a front view, and a cross-sectional view taken along the line E showing a tread plate constituting a lifting step.
FIG. 5 is a view showing a state in which a groove is formed in a plate member constituting the tread plate.
FIG. 6 is a perspective view showing a non-slip tread plate configured by bending the plate member of FIG. 5;
FIG. 7 is a plan view, a front view, and a side sectional view showing a non-slip portion of the tread.
FIG. 8 is a diagram showing a state in which a plurality of treads are arranged vertically.
FIG. 9 is a diagram showing an example in which another slip stopper and a drainage / discharge hole are provided on the tread surface of the tread plate.
FIG. 10 is a sectional view showing a non-slip and a drainage / discharge hole provided on a tread surface.
FIG. 11 is a cross-sectional view showing another example of a non-slip and drainage / discharge hole provided on a tread surface.
FIG. 12 is a diagram showing an example in which a non-slip is formed by a slit SL.
[Explanation of symbols]
2 Upper revolving structure 10, 20 Elevating step 21 Side plate 22 Tread plate 22A Tread surface 22D, 22D 'Non-slip DR groove HL Drainage / discharge hole SL Slit